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1. Introduction

Nanomedicines, capitalizing on the well-established enhanced
permeability and retention (EPR) effect in solid tumors, offer
considerable potential for augmenting therapeutic efficacy
while minimizing systemic toxicity, thereby serving as “magic
bullets”.[1–3] Despite the development of thousands of

nanomedicine formulations, only a limited
number have been approved for clinical
use.[4,5] This disparity between preclinical
success and clinical translation can be
largely attributed to the heterogeneity of
the EPR effect among patients.[6,7] The
EPR effect exhibits variability not only
across patients with different tumor types
but also among those with the same tumor
type and even within distinct subregions of
an individual tumor.[6,8–10] Consequently,
predicting the EPR effect is crucial for facil-
itating clinical translation and identifying
patients who would benefit most from
nanomedicine treatments.

EPR heterogeneity is characterized by
differences in nanomedicine accumulation
between tumors and organs (macro-
distribution) as well as within intratu-
moral subregions (microdistribution).[6,11]

Intratumoral nanomedicine distribution
plays a critical role in determining thera-
peutic efficacy. Numerous tumor microen-
vironment factors, including tumor vessel
volume, microvessel density, cell density,

and matrix composition, have been shown to impact
microdistribution.[11–14] Tumor microenvironment imaging
techniques, such as contrast-enhanced ultrasound,[15,16] positron
emission tomography,[17,18] fluorescence imaging,[19] and mass
spectrometry imaging,[20] have demonstrated potential for pre-
dicting intratumoral nanomedicine distribution. For example,
Stapleton’s group showed a significantly positive relationship
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In this study, the critical need for precise and accurate prediction of intra-tumor
heterogeneity related to the enhanced permeability and retention effect and
spatial distribution of nanoprobes is addressed for the development of effective
nanodrug delivery strategies. Current predictive models are limited in terms of
resolution and accuracy, prompting the construction of a high-resolution pre-
diction network (HRPN) that estimates the microdistribution of quantum dots,
factoring in tumor vascular and nuclear features. The HRPN algorithm is trained
using 27 780 patches and validated on 4920 patches derived from 4T1 breast
cancer whole-slide images, demonstrating its reliability. The HRPN model
exhibits minimal error (mean square error= 1.434, root mean square error
= 1.198), satisfactory goodness of fit (R2= 0.891), and superior image quality
(peak signal-to-noise ratio= 44.548) when compared to a generative-adversarial-
network-structured model. Furthermore, the HRPN model offers improved
prediction accuracy, broader prediction intervals, and reduced computational
resource requirements. Consequently, the proposed model yields high-resolution
predictions that more closely resemble actual tumor microdistributions, poten-
tially serving as a powerful analytical tool for investigating the spatial relationship
between the tumor microenvironment and nanoprobes.
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between the tumor perfusion imaging map and intra-tumoral
retention of liposomes.[21] Despite these advances, accurately
predicting intratumoral nanomedicine distribution remains
challenging due to the complex spatial relationship between
the tumor microenvironment and nanomedicine accumulation.

Deep learning models are well suited for analyzing complex
high-dimensional data and drawing inferences.[22–25] Our group
has previously demonstrated the feasibility of using deep learn-
ing models, specifically generative adversarial network for distri-
bution analysis (GANDA), to predict intratumoral nanomedicine
distribution with high accuracy.[26] However, practical imple-
mentation of models based on the generative adversarial network
(GAN) architecture is hindered by the loss of distribution infor-
mation during the training process and inherent difficulties in
stabilizing GANs.[27–29]

High-resolution net (HRNet) is a recently proposed network
architecture that has shown promising results in various vision
tasks.[30,31] This architecture connects high- and low-resolution
sub-networks in parallel, as opposed to the traditional series con-
nection, yielding benefits in terms of universal network architec-
ture and training efficiency. In light of this, we present a
high-resolution prediction network (HRPN) based on the
HRNet model architecture to conditionally generate pixel-level
distributions of intratumoral quantum dots (QDs), constrained
by given tumor vascular and nucleus information. Compared

to the previously developed GANDA platform, HRPN
demonstrates superior performance and accuracy, providing a
high-throughput prediction model capable of cellular-resolution
analysis with more precise spatial localization.

2. Results

To investigate the spatial relationship between the tumor micro-
environment and nanoprobe distribution using deep learning
models, two prerequisites must be satisfied: i) images encom-
passing the spatial information of both the tumor microenviron-
ment and nanoprobes and ii) a sufficient volume of data to train
the model. As illustrated in Figure 1A, we selected QDs as the
nanoprobe model and documented their intratumoral distribu-
tion using whole-slide fluorescence imaging (WSFI). Tumor ves-
sels and cell nuclei were stained with fluorescent dyes and
recorded in other WSFI channels. WSFI images of tumors no.
0–4 were decomposed into 27 780 patches to ensure adequate
data for model training. The HRPN model architecture is
depicted in Figure 1B. Once the HRPN was successfully trained,
it was tested by predicting the QDs-channel image of tumor no. 5
based on its vessel and cell nucleus information.

Subsequently, we analyzed the heterogeneity of tumor
vessels, cell nuclei, and QDs across patches. The representative

Figure 1. Using high-resolution prediction network (HRPN) predicting the intratumoral distribution of nanoprobes. A) The workflow of the training and
predicting process. The distribution of tumor cell nuclei, vessels, and quantum dots (QDs) were represented by blue, green, and red fluorescence in
whole-slide fluorescence imaging. Mean square error (MSE) was used to measure the similarity between the predicted and real QD distribution. B) The
architecture of HRPN.
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whole-slide image of tumor no. 5 is shown in Figure 2A, with the
background set to white to emphasize the fluorescence signal.
Vascularity and cell density are known to influence intra-tumor
blood flow and fluid diffusion, which are essential for nanoprobe
delivery and retention. As demonstrated in Figure 2B and S3,
Supporting Information, the abundance of tumor vessels, cell
nuclei, and QDs varied significantly among patches, revealing
the complex interaction between the tumor microenvironment
and intratumoral QDs distribution. To quantify the abundance
of cell nuclei, tumor vessels, and QDs, the total pixel intensity of
the DAPI, Alexa-Fluor-488, and QD channels for each patch was
calculated. The distribution of total intensity for cell nuclei, tumor
vessels, and QDs exhibited considerable heterogeneity (Figure 2C).

To evaluate prediction accuracy at the whole-slide image level,
the generated patches of HRPN and GANDA were recomposed
and compared with the actual QDs-channel images. We first con-
ducted a fivefold cross-validation, and four metrics, including
mean square error (MSE), root mean square error (RMSE),
goodness of fit (R2), and peak signal-to-noise ratio (PSNR),
were calculated to compare model performance (Figure 3A,B).
The loss of HRPN during the training process was recorded

in Figure S4, Supporting Information. The predictions of the
HRPN model exhibited smaller MSE and RMSE values than
those of the GANDAmodel, indicating that the HRPN prediction
accuracy was higher at the whole-slide image level. Consistently,
the HRPN predictions demonstrated higher R2 and PSNR values,
suggesting a greater similarity between HRPN predictions and
real QDs distribution. To further investigate the generalization
ability of the HRPN model, we compared its performance on
tumor no. 5, which was withheld from the entire training pro-
cess. The MSE, RMSE, R2, and PSNR values of the HRPNmodel
in the test set were similar to those in cross-validation, indicating
that the model’s exceptional performance was not due to overfit-
ting. Once again, the HRPN model outperformed the GANDA
model in the test set (lower MSE and RMSE, higher R2, and
PSNR). The actual and predicted whole-slide QDs-channel
images of tumor no. 5 are shown in Figure 3C.

To compare the fine-grained local accuracy of the different
models, three regions of interest (ROIs) (960� 864 pixels) were
randomly selected from the QDs-channel image of the test
tumor. Fluorescence colocalization analysis of real and predicted
QDs signals was performed on these ROIs using Fiji. The actual

Figure 2. Heterogeneity of tumor characteristics and distribution of QDs. A) The representative whole-slide image of tumor no. 5, composed of 4 0,
6-diamidino-2 0-phenylindole (DAPI) channel (blue: cell nuclei), Alexa Fluor 488 (AF488) channel (green: vessels), and QD channel (red: polyethylene
glycol (PEG)ylated CdSe/ZnS QDs). B) Patches (512� 512 pixels) decomposed from the whole-slide image of tumor N0.5. The scale bar represents
30 μm. C) Violin plot analysis of QDs and tumor features (nuclei and vessels) for each patch. Each dot represents one channel’s total pixel intensity value
in one patch. There are at least 3648 patches per tumor.
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QDs signals were colored red, the predicted signals green, and
yellow indicated the overlapping area (Figure S5, Supporting
Information). A linear regression analysis was carried out pixel
wise on each ROI to measure prediction accuracy. The average
correlation coefficient between the actual and HRPN-predicted
QDs signals was 0.92� 0.06, higher than the correlation between
the actual and GANDA-predicted QDs signals (0.75� 0.18). These
results demonstrated that the HRPNmodel could more accurately
predict the local details of QDs-channel images (Figure 4).

Model collapse is a common issue with GAN models, which
can limit output variety and reduce the model’s performance.
Therefore, we compared the output intensity distribution

of HRPN and GANDA. As shown in Figure 5A and S6,
Supporting Information, the predicted intensity distribution of
HRPN was closer to the real QDs intensity distribution of tumor
no. 5 in both low- and high-intensity intervals. The results of the
Anderson–Darling test also show that there is no statistical dif-
ference between the distribution of HRPN-predicted images and
the real images (P= 0.25) (Figure S7, Supporting Information).
In contrast, GANDA produced a narrower and lower distribution
of QDs intensity, making it more prone to underestimating QDs
intensity when the real intensity is high. The images were then
segmented using different intensity percentiles of real images as
thresholds, and the similarity of the segmentation was evaluated

Figure 3. Comparison of model prediction accuracy. A) Test and cross-validation schemes. B) Performance of different models on validation and test sets
(MSE, root mean square error [RMSE], R2, peak signal-to-noise ratio [PSNR]). Predicted and real images were compared on the whole-slide view. Each
point in the box plot indicates the onefold result in fivefold cross-validation. C) Model-predicted and real QDs distribution images of the test tumor.
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using the MIoU between the real and predicted QDs images.
The results showed that as the threshold intensity increases,
the MIoU between the real and GANDA-predicted images
decreased rapidly, while the MIoU between the real and
HRPN-predicted images remained higher than 0.6. This obser-
vation was consistent with the Q–Q plot, indicating that HRPN
produces a wider distribution of QDs intensity than GANDA
(Figure 5B,C).

In addition, the HRPN prediction network is a lightweight
model that requires fewer computing resources to train. The total
parameters of HRPN were about half of those of the GANDA
network (Table 1). Since the HRPN does not need to find the
point of equilibrium between the two competing networks,
the time required for training was significantly reduced. On
an Nvidia RTX 3080 Ti GPU, training the HRPNmodel took only
5min per epoch, compared to the 25min required by the
GANDA network for the same input data.

To investigate the impact of input channels and resolution
branches on HRPN prediction accuracy, the performance of
HRPN variants was compared. Figure 6A shows that the
HRPN trained by DAPIþ AF488 channels patches exhibited
the highest prediction accuracy, indicating that both tumor ves-
sels and cell density information are critical for successful pre-
diction. The results of cross-validation are also supplemented in
Figure S8, Supporting Information. Notably, the HRPN trained
by the AF488 channel demonstrated better performance than
that trained by the DAPI channel, suggesting that vessels may
dominate the intratumoral distribution of QDs. Figure 6B

indicates that ablating the low-resolution branches of HRPN
decreases prediction accuracy, suggesting that fusing
multi-resolution information representations is beneficial for
reliable QDs distribution prediction.

3. Discussion and Conclusion

In this study, we developed a deep learning model based on the
HRNet backbone to predict the intratumoral nanoprobes distri-
bution with high accuracy according to the tumor vessels and cell
nuclei features. Compared to the model based on GAN architec-
ture, the proposed HRPN achieved less residual error, higher
accuracy, and wider prediction intervals using fewer computa-
tional resources. Through ablation and comparative studies,
the effectiveness of the multi-resolution branches fusing and
two-channel input was verified.

The promising predictive performance of HRPN suggests
potential clinical applications. First, this technique indicates that
it is feasible to predict the intratumoral distribution of nanodrugs
from histopathology slices. If trained on human tumor samples,
the model could predict the tumor-targeting capability of
nanodrugs based on preoperative biopsy specimens, providing
evidence for personalized nanodrug selection in clinics.
Second, with established models predicting distributions of vari-
ous nanodrugs, in silico screening could be performed to reduce
the cost of drug development.

In summary, we developed a deep learning model based on
HRNet to accurately predict the intratumoral distribution of

Figure 4. Colocalization analysis of fluorescence images. The size of ROIs was 960� 864 pixels. The scale bar represents 30 μm. On the left is the overlay
of real and predicted images. Red is the real distribution of QDs, green is the predicted distribution, and yellow is the accurately predicted area. The right
scatter plot shows the correlation coefficient between the real and predicted QDs distribution images. The X axis denotes real image intensity, while the Y
axis shows generated image intensity. Rtotal was calculated by Fiji.
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nanoprobes. We envision the HRNet architecture would be a
powerful tool to analyze the spatial relationship between tumor
microenvironment and nanoprobes, and have great potential to
facilitate personalized nanomedicine and accelerate new drug
discovery in the future.

4. Experimental Section

Data Source and Preprocessing: The data was obtained from our previous
work and preprocessed in the same way. In brief, six tumors were collected
from BALB/c mice inoculated with 4T1 cells. Mice were injected with
100 μL of 20 nm PEGylated CdSe/ZnS QDs through the tail vein and exe-
cuted 24 h later, 10 times the blood clearance time.[26] The tumors were
freeze-embedded, sliced, and stained with 4 0,6-diamidino-2 0-phenylindole
(DAPI), and Alexa Fluor 488 (AF488) tagged antibody against CD31. The

whole-slide fluorescence images of tumor sections were obtained using a
Nikon’s digital eclipse C1 microscope system and the DAPI, AF488, and
QD channels were processed and measured by QuPath (version0.3.2).[32]

The pixel resolution of the whole-slide images was 0.2744� 0.2744 μm,
with additional information detailed in Table S1, Supporting
Information. The images of each channel were decomposed into patches
(512� 512 pixels), and the position index of each patch was recorded
using Python (version 3.8).

Training Set, Cross-Validation, and Test Set: The six tumors were indexed
from no. 0 to 5. The patches from five tumors (no. 0–4) were used for
model training and cross-validation first. In detail, the models were trained
using DAPI- and AF488-channel patches of four tumors as data and the
corresponding QD-channel patches as targets. The patches from the
remaining tumor were used as the validation set. This process was
repeated five times for cross-validation to tune the hyperparameters.
Then, the models were trained by the patches from five tumors
(no. 0–4, training set). The performance of the final model was estimated
by predicting the QD-channel patches of tumor no. 5 through DAPI- and
AF488-channel patches. The test set (tumor no. 5) was hidden from the
model tuning process to ensure the unbiased estimation of the models.

HRPN: HRPN is a supervised learning method built on the HRNet
architecture. During preprocessing, instead of applying a global intensity
normalization method, HRPN was trained on raw image data. The model
used four resolution branches to extract features in parallel during the
training process. It performed feature fusion among different scales after
each residual block to achieve complete semantic information and precise
location during the training process. One or more stride convolutions

Figure 5. Comparison of model prediction diversity. A) Histograms of the intensity distribution of real and model-predicted images. B) Q–Q plot was
fitted based on the intensity percentile of real and predicted images. C) Mean intersection over union curves under different thresholds. The threshold
values were the intensity percentile of the real image.

Table 1. Params of different models.

HRPN GANDA

Total params 2 176 824 4 385 570

Trainable params 2 176 824 4 381 122

Non-trainable params 0 4,448
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(3� 3) were used in the conversion from high to low resolution, while one
or more transposed convolutions (3� 3) were used in the conversion
from low to high resolution. Two types of residual modules were used
during model training: bottleneck ResBlock and basic ResBlock.[33] The
residual connection could make more convolution and nonlinear transfor-
mation for each part of the model and prevent gradient vanishing
and model degradation during the training process. The bottleneck
ResBlock used 1� 1 convolution for up/down dimensioning, which could
reduce the network parameters and deepen the network depth, making the
training more accessible. Stepped convolution was used to perform down-
sampling. The detail of the blocks is depicted in Figure S1, Supporting
Information.

During training, the mini-batch size was set as 32, and the root mean
square propagation optimizer was employed with an initial learning rate at
1e�5 momentum at 0.9, and weight decay at 1e�8. The training process
was terminated within 20 epochs. Mean square error (MSE) loss ensured
pixel wise the similarity between the generated and the real QD-channel
patches

losspatch ¼
1
n

Xn
i¼1

xi � yið Þ2 (1)

where xi and yi referred to model generated and target pixel value of the
patches.

GANDA: GANDA used the same architecture as our previous report.[26] In
brief, the model consisted of a generator and a discriminator. Discriminator
and generator optimized their strategies to compete against each other
alternatively and repetitively. The fully convolutional network (FCN)-
based generator learned from the spatial information of DAPI and

AF488 channels and synthesized patches of QD channel. The discriminator
network was trained to identify whether the generated QD patches were true
or false.

GANDA batch size was set at 20, the epoch was set at 50, and the initial
learning rate was set at 2e�4 using the Adam optimizer. The loss function was

loss G, Dð Þ ¼ ladv Gð Þ þ ladv Dð Þ (2)

where ladv Gð Þ combines pixel loss and generator loss to ensure similarity
and ladv Dð Þ refers to discriminator loss. The architecture of GANDA is
depicted in Figure S2, Supporting Information.

GANDA’s input patches were normalized by the following equation[26]

input patch ¼ 2� p
max Ið Þ � 1 (3)

where max(I) is the max value of original image I and p denotes patches
decomposed from this image. When merging generated patches pg to a
single image, anti-normalizations were operated as follows

out patch ¼
pg þ 1

� �
2

�max Ið Þ (4)

Recomposition of Generated QD Patches: The trained models were used
to synthesize patches of QD channel. These patches were recomposed to
a whole-slide image by recorded indexes.

Prediction Accuracy Metrics at the Whole-Slide Image Level: Two metrics,
MSE and root mean square error (RMSE), were used to measure the
pixel-wise similarity between synthesized and real QD channels of each
patch. The formulas were listed as follows

Figure 6. Ablation studies of input channels and resolution branches. A) Results of varying the input channels of HRPN. DAPI indicates only DAPI-
channel patches, AF488 indicates only AF488 channel patches, and DAPIþ AF488 indicates that both channel patches were input to the model. B) Results
of varying the resolution branches of HRPN fusion. 1, 2, and 4 correspond to models fusing different resolution branches. The provided results were
observed on the test tumor.
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MSE ¼ 1
n

Xn
i¼1

Yi � Ŷ i
� �

2 (5)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

Yi � Ŷ i
� �

2

s
(6)

where Yi and Ŷ i were model generated and target pixel value of the image.
The goodness of fit of models was measured by the coefficient of deter-
mination (R2). The image quality of the synthesized images is measured by
the term peak signal-to-noise ratio (PSNR).

PSNR ¼ 20 ⋅ log10
MAXIffiffiffiffiffiffiffiffiffiffi
MSE

p
� �

(7)

where MAXI was the maximum possible pixel value of the image.
Prediction Accuracy Metrics at the Local-Region Level: Three ROIs

(960� 864 pixels) were randomly selected from the real QD-channel
images of tumor no. 5 (test set). The corresponding ROIs from the pre-
dicted QD-channel images from HPRN and GANDA were also selected.
The predicted images of ROIs were merged with the real QD-channel
images by Fiji to observe the colocalization. The correlation coefficient
(Rtotal) between the predicted and real intensity of pixels was calculated.
If the distribution prediction was ideal, the Rtotal should be equal to 1.

Diversity of the Model Prediction: The histograms of the predicted and
real QD intensity of tumor no. 5 (test set) were calculated and compared
using Q–Q plot. A threshold was applied to the synthesized and real QD
channels to create masks, where pixels with intensity higher or equal to the
threshold were set to white and the others were set to black. Different
models were compared at different percentiles of the true distribution.
The intersection of masks between synthesized and real QD-channel
images of tumor no. 5 was measured by mean intersection over union
(MIoU)

MIoU ¼ TP
FNþ FPþ TP

(8)

where TP is the number of pixels that are white in the masks of synthesized
and real images, FN is the number of pixels that are white only in the mask
of real images, and FP is the number of pixels that are white only in the
mask of synthesized images.

Ablation Studies: Source Channel: Ablated HRPN models were trained
by patches of DAPI channel or AF488 channel of (tumor no. 0–4) only. The
performance of these models was compared with the full HRNet model
(trained by patches of DAPI and AF488 channels).

Resolution Branches: The predictive value of different resolution
branches was also verified by ablation experiments. HRPN models
containing one and two resolution branches (1� and 2�HRNet) were
constructed and compared with the full HRNet model (4�). Model
training and optimization were performed on an Nvidia RTX 3080 Ti GPU.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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