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Abstract—This work introduces an attention mechanism
that can be integrated into any standard convolution neural
network (CNN) to improve model sensitivity and prediction
accuracy with minimal computational overhead. We introduce
the attention mechanism in a lightweight network- Alexnet
and evaluate its classification performance for human micro-
Doppler signatures. We show that the Alexnet model trained
with an attention module can implicitly learn to highlight
the salient regions in the radar signatures whilst suppressing
the irrelevant background regions and consistently improve
the network predictions by more than 4% in most cases. We
further provide network visualizations through class activation
mapping, providing better insights into how the predictions are
made.

Index Terms—Radar Sensing, Attention Networks, Deep
Learning, Micro-Doppler Signatures, Human Activity Recogni-
tion

I. INTRODUCTION

In recent years, deep convolutional neural networks (DC-
NNs) have become the state-of-the-art method for classify-
ing human micro-Doppler signatures [1]. DCNNs can jointly
learn informative features and classification boundaries,
resulting in them being an order of magnitude faster than
traditional approaches that use additional feature extraction
algorithms. The success of DCNNs is attributed to the
ever-increasing processing speeds of computers, greater
availability of digitally recorded data, and almost unlimited
memory capacity.

Unlike the vision community, radar researchers are con-
strained by the limited availability of open radar databases.
Therefore, researchers have used different DCNN initial-
ization methods for micro-Doppler classification with low
training sample support. One such method is using a trans-
fer learning technique where pre-trained networks from
optical imagery (such as AlexNet, VGGNet, GoogleNet) are
trained with a limited radar data set [2], [3]. However, the
performance using low-weight networks such as Alexnet re-
mained sub-optimal, possibly due to the low interpretability
of the radar micro-Doppler signatures, especially at lower
carrier frequencies.

To address this general problem, we propose a simple and
yet effective solution, called attention mechanism [4]-[6].
The attention mechanism can automatically localize and
highlight the salient regions of interest in the radar micro-
Doppler signatures. In addition, it can improve model
sensitivity and accuracy by suppressing feature activations
in irrelevant regions. The attention modules are highly

flexible and can be integrated with any existing DCNN
architecture without introducing significant computational
overhead in model parameters. The attention-enhanced
DCNN (AE-DCNN) can be trained similarly to any standard
DCNN network.

Given an intermediate feature map, our proposed atten-
tion module jointly utilizes the global features computed
at the network’s last layer to highlight salient local re-
gions of interest at intermediate layers. Since the atten-
tion module uses global features to refine intermediate
layer features, we termed this as a global spatial atten-
tion module (GSAM). The attention refined features from
the intermediate layers are then aggregated with global
features to yield the final predictions. In this work, we
incorporate GSAM into a lightweight network- Alexnet, to
demonstrate its effectiveness in automatically localizing the
object of interest and improving the overall classification
performance. We choose to evaluate our implementation on
a publically available radar dataset in [7]. The dataset has
been acquired using three synchronized RF sensors at three
frequencies- 10GHz, 24GHz, and 77GHz. It comprises radar
micro-Doppler signatures corresponding to eleven human
activities of daily life. The results show that AE-Alexnet
consistently improves prediction accuracy across different
datasets while achieving performance better than complex
state-of-the-art DCNN models such as Resnet and VGG.

Attention mechanisms have been commonly used in
natural language processing (NLP) tasks such as image
captioning, and machine translation [4]-[6]. In computer
vision, it has been applied to -Image classification, Image
Segmentation, and Image captioning [8], [9]. Attention
models have also been exploited for medical report genera-
tion, and medical image classification [10]. In the context of
radar image analysis, attention models have been exploited
for synthetic aperture radar (SAR) image segmentation and
classification problems [11]. More recently, it has been used
for the classification of the high range resolution profile of
radar targets [12]. However, our work uses a more complex
cascaded network architecture for the desired task. Only a
handful of works use attention mechanisms. To the best
of the authors knowledge there is no literature available
on using attention mechanisms to classify micro-Doppler
signatures. Therefore, this work proposes one of the first
used cases of attention mechanism in a feed-forward CNN
model applied to a radar micro-Doppler signature classifi-
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Fig. 1: Schematic of the proposed attention module. The intermediate feature maps F I are adaptively refined and scaled with spatial
attention mask M;. Spatial regions are selected by jointly analysing the global features G, and the intermediate layer features F*. The
idea is to attend the features on a regional basis that are most relevant for the human activity recognition task.

cation. The modified network is lightweight and end-to-end
trainable.

II. METHODOLOGY
This section introduces the proposed attention mech-
anism that can be incorporated into any existing CNN
architecture to improve its performance; however, we chose
a lightweight Alexnet to be our base architecture in this
work.

A. Alexnet

A standard AlexNet model contains eight layers; the
first five are convolutional layers, the last three are fully
connected layers, followed by a classification layer with a
SoftMax activation function [13]. Finally, max-pooling layers
follow the first two layers.

This work demonstrates that improved performance can
be achieved by integrating attention modules in standard
Alexnet architecture. Furthermore, it does not require mul-
tiple additional layers or the training of multiple models.
Instead, it progressively suppresses feature responses in
irrelevant background regions without the requirement to
crop a region of interest and enhances the response by
putting more weight on the most crucial spatial structural
information in the radar micro-Doppler signatures.

B. Attention Enhanced Alexnet (AE-Alexnet)
1) Global Spatial Attention Module

Fig.1 presents the proposed global spatial attention mod-
ule (GSAM). Given the feature maps F' € R”*W*C at chosen
intermediate layer [/ € 1,2,..,L, GSAM computes a two-
dimensional spatial attention mask M;, where the entries
of M€ [0,1], in order to identify salient local information
in the feature maps F' and prune feature responses to
suppress the information in the irrelevant regions. It does

so by jointly utilizing the feature maps at the last con-
volutional layer (global features G) and the feature maps
F! at any intermediate layer . The deeper layers encode
global information from a large spatial context to identify
the location of the target objects in the images and model
their relationship at a global scale. Therefore, these global
features can provide flexibility regarding focusing on a
regional basis and disambiguate irrelevant feature content
present in intermediate layer features F;. Here, H, W, and
C are the feature maps’ height, width, and the number of
channels at any layer /.

In standard CNN architectures, the feature-map is grad-
ually down-sampled to capture sufficiently large receptive
fields. Therefore, the resulting spatial resolution of each
layer might be different. To generate the attention mask
M;, we can either up-sample the global feature maps
G € RT*W>C to match to the intermediate feature maps’
F! spatial resolution (H x W). Since the spatial resolution
of the feature maps might differ from layer to layer, the
spatial grid re-sampling of the input feature maps F! is
performed to obtain feature maps F' of the size equivalent
to global features G e RT*WxC \where, H, W and C are the
height, width and number of channels of G. The output of
GSAM is F! = Msﬁl, where each feature map F'ZAE RHXWXC
is scaled by the 2D spatial attention map M; e RP>W,

The detailed global attention process is depicted in Fig.2.
To compute the spatial attention, we first apply two pooling
operations- average and max-pooling along the channel axis
of both, the intermediate feature maps F' and the global
feature maps G. The operations result in the generation
of four efficient feature maps ﬁi‘yg, GA,,g, I:“]l\/]ax, GMux

each of size H x W. The average-pooled features F Ilqy < and

GA,,g are added together and passed through a non-linear
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Fig. 2: The architecture of global spatial attention module (GSAM). As illustrated, GSAM jointly utilizes intermediate feature maps and
the global features maps to compute the sum of the respective max-pooled and average-pooled features along the channel axis. The
resulting 2D spatial maps are added and forwarded to a convolution layer. The range of the 2D-spatial attention mask M is restricted

between [0, 1] through an element-wise sigmoid operation.

actiyation function o; to focus on the informative regions
in F! relative to global information. The same process is
repeated for the max-pooled features. The average-pooled
and max-pooled features descriptors are finally added to-
gether and passed through a convolution layer to generate a
global spatial attention map M;(F!) encoding the regions to
emphasize or suppress. In short, the global spatial attention
map can be formulated as

M;(FY) = 02 (f7 (01 (Bl g + Gavg) + 01 (Fryg + Garan))) (1)
Where Fj, . = AvgPool(F!), Gavg = AvgPool(G), Fy,, =
MaxPool(FY), Gyrax = MaxPool(G), and o is the normal-
isation function which can be sigmoid or softmax operation
to restrict M€ [0,1]. f Il represents a convolution opera-
tion with the filter of size 1 x 1. However, we used element-
wise sigmoid operation to normalise the spatial mask.

The final refined features F! are computed by the
element-wise multiplication ), of the attention mask M
with the down-sampled intermediate layer feature maps £
as shown below

Fl=M,QF )
During multiplication, the spatial attention map M; of size
H x W are copied along the channel dimension of the £ €
RWxC resulting in overall size of A x W x C .

2) GSAM Enhanced Alexnet For Classification

Fig.3 presents the attention-gated classification model of
Alexnet. The proposed attention units are incorporated into
the 274, 374 and 4!t layer of the Alexnet to exploit local
information present in these intermediate layers. We found
that the attention maps are less effective if applied to the

first layer feature maps as the first layer represents very low-
level features that are not discriminative enough to require
attention.

We use activation maps of the 5 layer as our global
features. Generally, the global feature maps must encode
global spatial contextual information; it is usually obtained
from the layer just before the final softmax layer. However,
in Alexnet, the layer before the softmax layer is the fully-
connected layer. In the context of radar micro-Doppler
signatures, since most signatures of interest are highly
localized, flattening may have the disadvantage of losing
important spatial contextual information. Therefore, we
consider the 5" activation maps as our global features
(right before any flattening is done).

The local feature maps at 2"¢, 3% and 4" layers are
passed through the GSAM along with the global feature
maps to obtain the attention refined feature maps. Then,
we aggregate these attention refined features and the global
features together to yield the final predictions. In order
to do so, we first compute the global average pooling
along the spatial axis, resulting in a vector of length equal
to the number of channels in refined feature maps. In
addition, we also perform the global average pooling on
the global feature maps. Subsequently, the average pooled
features are concatenated and passed through two fully
connected layers. Finally, a softmax operation is applied to
the resulting flattened vector, and the entry with maximum
activation is selected as the prediction.

ITI. EXPERIMENTAL DATASET DESCRIPTION AND RESULTS
A. Evaluation Datasets

We test the performance of the AE-Alexnet on the pub-
lically available radar dataset acquired from three synchro-
nized RF sensors at the following three frequencies- 10GHz,
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Fig. 3: The architecture of the proposed AE-Alexnet for human activity recognition.

TABLE I: Human Activity Dataset Description

Activity Number | Activity ID Activity
1 WLKT Walking towards the radar
2 WLKA Walking away from the radar
3 PICK Pick up an object from the ground
4 BEND Bending
5) SIT Sitting on a chair
6 KNEEL Kneeling
7 CRWL Crawling towards the radar
8 WTOES Walking on both toes
9 LIMP Limping with right leg stiff
10 SHSTEP Walking with short steps
11 SCSSR Scissor gait

24GHz, and 77GHz [7]. The experimental setup used for
data acquisition placed all the sensors side-by-side at the
height of 1-meter from the ground, with the test subject
moving between 0.5m to 3m in front of the sensors. For
the detailed explanation of the data acquisition protocol,
we refer the readers to [7].

The dataset consists of micro-Doppler signatures of six
participants of different heights, gender and ages groups
performing eleven different activities of daily living, as listed
in Table I. These activities are mainly inspired by intelligent
home applications, where monitoring of daily living can
help support non-intrusive health monitoring and enabling
healthy living [14]. Each participant repeated these activities
ten times, resulting in 60 radar signatures per class per
sensor. Note that all the experiments are performed in line-
of-sight conditions.

B. Network Training Parameter Settings

We empirically found the following parameter settings to
be the most effective- optimization with adaptive moment
estimation (ADAM) with an initial learning rate of a of
0.0001, gradient decay factor of f; = 0.9 and squared
gradient decay factor of B, = 0.99. The learning rate is

updated for every 100 epochs with a batch size fixed to
10. All the attention modules at intermediate layers are
randomly initialized.

We perform training of our AE-Alexnet on Matlab 2020b,
where all the variables are stored as 64-bit floats, with
the following GPU configuration- GeForce GTX 1650 Ti,
Compute Capability of '7.5" with a multi-processor count
of 16.

C. AE-Alexenet Classification Results and Comparison to

state-of-the-art Alexnet framework
We perform 5-Fold cross-validation on our dataset, where

the entire dataset is split into five-folds, with each fold used
as a testing set at some point. The first fold is used to test
the model in the first iteration, and the rest are used to
train the model. The second fold is used as the testing set
in the second iteration, while the rest serve as the training
set. This process is repeated until each fold of the 5-folds
has been used as the testing set.

The 5-Fold classification results corresponding to the
sensor dataset at 24GHz are presented in Table II. The
performance difference over standard Alexnet is presented
in the brackets. The highlighted values represent an im-
provement of over 1% compared to standard Alexnet. We
used the following metrics for the class-wise classification
performance evaluation: accuracy, precision, and recall. As
we can observe, AE-Alexnet improves the results at all
metric levels. It achieves higher precision and reduces the
false-positive rate, likely because the attention mechanism
suppresses irrelevant background in the radar signatures
and forces the network to predict based on class-specific
features. Moreover, we see that the precision improved by
more than 5% in seven target classes which are significant
enough to demonstrate the effectiveness of the attention



TABLE II: 5-Fold Class-wise classification performance for AE-
Alexnet using micro-Doppler radar signature dataset acquired at
24GHz. The improvement over standard Alexnet is presented in
the brackets. Values colored red highlights the improvement of
more than 1%.

Activity Accuracy Precision Recall
WLKT 0.968 (2.2) 0.994 (10.4) 0.968 (2.2)
WLKA 0.995 (0.6) 0.989 (0.4) 0.995 (0.5)
PICK 0.922 (5.2) 0.931 (7.4) 0.922 (5.2)
BEND 0.948 (6.7) 0.929 (8) 0.948 (6.8)

SIT 0.964 (4) 0.969 (0.2) 0.964 (4.1)

KNEEL 0.959 (4.6) 0.955 (7.1) 0.959 (4.6)
CRWL 0.983 (3.3) 0.986 (-0.2) 0.983 (3.3)

WTOES 0.959 (17.9) 0.930 (6.2) 0.959 (17.9)
LIMP 0.954 (9.7) 0.939 (-0.8) 0.954 (9.7)

SHSTEP 0.932 (4.1) 0.946 (10) 0.931 (4.1)
SCSSR 0.947 (2.8) 0.962 (11.4) 0.947 (2.9)

mechanism. The class-wise results for 10GHz and 77GHz
sensor datasets will be presented in a subsequent paper.

To further rigorously evaluate our attention module, we
perform additional classification experiments for 2-Fold, 3-
Fold, and 4-Fold partitions and compare its performance
with the 5-Fold dataset. We follow the same protocol speci-
fied in the previous section and benchmark its performance
with standard Alexnet. Table III summarizes our experi-
mental results. The AE-Alexnet outperforms the baseline;
a consistent improvement in performance can be observed
across all the folds and all frequency sensor data. It shows
that GSAM boosts the accuracy of baselines significantly
for 5-Folds and favorably improves the performance of
more challenging 3-Fold and 2-Fold scenarios where limited
data is used for training (indicating low-training sample
support). The results demonstrate that our proposed ap-
proach is powerful, showing the efficacy of a new attention
mechanism that generates richer spatial feature descriptors
with a quite small overhead in terms of parameters and
computation. It motivated us to apply our proposed module
GSAM to lightweight networks like Alexnet and demonstrate
its great potential for applications on low-end devices.

D. AE-Alexnet Visualisations With Class Activation Mapping

We use class activation mapping (CAM) for the qualitative
analysis and determine which part of the input signatures
is responsible for network predictions. We compare the
CAM visualization results of attention refined features with
standard Alexnet features. The resulting visualization maps
are presented in Fig.4-Fig.6 corresponding to target class
WLKT at three different frequencies- 10GHz, 24GHz, and
77GHz, respectively. The first column presents the ground
truth signatures, the second presents the CAM visualization
of raw features, and finally, the third column presents the
CAM visualization of attention refined features obtained at
the following intermediate convolutional layers- 2"¢, 374
and 4",

In Fig.4-Fig.6, we can see that the CAM masks of AE-
Alexnet cover the class-specific activity regions better than
unrefined features. The network bases its classification on
the entire signature, but the most decisive input comes from
the red areas. It shows that GSAM can effectively calculate
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Fig. 4: Class activation mapping (CAM) visualisation result from
AE-Alexnet for radar signatures classification at 10GHz. Red re-
gions contribute the most. The detected region highly agrees with
the object of interest.
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Fig. 5: Class activation mapping (CAM) visualisation result from
AE-Alexnet for radar signatures classification at 24GHz.

the importance of the spatial locations in convolutional
layers and detects the region that highly agrees with the
object of interest. Although the attention map outlines the
discriminant region, it does not necessarily coincide with
the entire activity region.

IV. DISCUSSION AND FUTURE WORK

In this work, we propose an attention mechanism that
jointly exploits the global information to highlight the
local regions of interest in the intermediate network lay-
ers and suppress the background noise and the region
of no-interest, thus significantly improving the classifica-
tion performance compared to the standard network. The
CAM visualization results show that the detected region
that contributes the most to the predicted class highly
agrees with the regions of interest. The proposed attention
module could support explainable deep learning, a vital
research area for automatic radar signature classification.
In particular, we investigated several aspects, including-
spatial attention mechanism, feature aggregation strategy
with attention mechanism, and visualization techniques
to give deeper insights into the predictions made by the



TABLE III: Multi-Fold AE-Alexnet classification results
Baseline Accuracy | Modified Alexnet | Modified Alexnet | Modified Alexnet | Modified Alexnet
Training | Testing Alexnet with Attention with Attention with Attention with Attention
5-Fold Accuracy 5-Fold Accuracy 4-Fold Accuracy 3-Fold Accuracy 2-Fold Accuracy
77GHz 77GHz 90.83 94.84 (4.01) 94.03(3.2) 94.23(3.4) 92.22(1.39)
24GHz 24GHz 90.15 95.74 (4.91) 94.85(4.02) 94.89(4.06) 92.83 (2)
10GHz 10GHz 90.93 93.89 (3.06) 92.65 (1.82) 91.75 (0.92) 90.71 (-0.12)
L85 noise (AWGN) to increase the training support and
Input Raw Refined : : : ses
Signature Feature Map | Feature Map improve the overall classification performance. Initial
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Fig. 6: Class activation mapping (CAM) visualisation result from
AE-Alexnet for radar signatures classification at 77GHz.

network. However, many open research problems still need
to be addressed.

1) The attention refined feature vectors are aggregated
with the global feature vector to yield the final pre-
dictions. However, to do so, a global average pooling
operation is performed along the spatial axis of the
AE feature maps, resulting in a vector of length equal
to the number of channels at each intermediate layer.
Future work will investigate the aggregation of average
pooled features along the channel axis, resulting in a
feature matrix of size equal to the spatial dimension
of the input maps. This 2D matrix can be flattened to
generate a feature vector and aggregate these vectors
for investigating better network predictions.

In this work, we consider Alexnet to be our base
architecture for investigating the performance of the
attention mechanism. However, the literature suggests
that the VGG-16 network seems to perform well
over radar micro-Doppler signatures [7]. Therefore,
we believe introducing an attention mechanism into
VGG-16 or more complex networks like ResNet could
significantly improve the classification performance.
Moreover, we hope to investigate the most practical
combination of intermediate layers to give the best
performance in the case of deeper networks such as
VGG-16, VGG-19, and Resnet.

The dataset used to investigate the network per-
formance comprised some poor quality radar sig-
natures that could have significantly influenced the
network’s performance. Future investigations will drop
the poor quality signatures and use data augmenta-
tion schemes such as adding additive white Gaussian

2)

3)

investigation into data augmentation schemes found
that adding AWGN noise data to the training further
improved the performance of AE-Alexnet by more
than 1% for the 77GHz dataset. However, the detailed
experiments are still under investigation and will form
part of future research.
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