Proc. of the International Conference on Electrical, Computer and Energy Technologies (ICECET)

9-10 December 2021, Cape Town-South Africa

A SysML-based Design and Development of Stereo
Vision System with Pose and Velocity Estimation
for Cooperative Automated Vehicles

Narsimlu Kemsaram
Department of Space Robotics

Anweshan Das
Department of Electrical Engineering Department of Electrical Engineering

Gijs Dubbelman

Space Robotics (SpaceR) Research Group Mobile Perception Systems (MPS) Lab Mobile Perception Systems (MPS) Lab

SnT Centre
University of Luxembourg
L-1855 Kirchberg, Luxembourg
Email: narsimlu.kemsaram@uni.lu
ORCID: 0000-0003-4672-6272

Abstract—Cooperative automated vehicles must perceive the
environment accurately and have precise information about the
leading vehicle’s pose and velocity. This paper presents a SysML-
based approach to design and develop a stereo vision-based
perception system in an urban platooning scenario. It detects
objects, lane markers, and free space in front of the follower
vehicle using deep neural networks and computes the lead
vehicle’s relative pose and velocity. The relative pose is estimated
using a geometric model-based pose estimation algorithm. The
relative velocity is estimated from the change in pose within a
known time. The lead vehicle’s relative pose and velocity control
the follower vehicle to follow the lead vehicle autonomously.
Also, it displays the lead vehicle’s pose and velocity information
in a meaningful way on the in-vehicle display of the follower
vehicle. The proposed system uses a custom-built automotive-
grade stereo camera as input and runs on an automotive-grade
embedded platform. It is tested on a simulation and prototype
cooperative automated vehicle research platform. The evaluation
results demonstrate that the proposed system operates in real-
time and is suitable for cooperative automated vehicles.

Index Terms—Autonomous vehicles, cooperative automated
vehicles, deep neural networks, pose estimation, stereo vision
system, systems modeling language, velocity estimation.

I. INTRODUCTION

Researchers have made significant progress in Autonomous
Vehicles (AVs) and Cooperative Automated Vehicles (CAVs)
to reduce road accidents caused by human error and traffic
congestion in recent years [1]. Especially, CAVs that interact
with leader-follower vehicles attract significant attention in
intelligent vehicle applications. An example of such coopera-
tive behavior is platooning, where a group of vehicles driving

This research work was supported in part of the integrated Cooperative
Automated Vehicles (i-CAVE) research programme within the sensing, map-
ping and localization project by the Netherlands Organisation for Scientific
Research (NWO) under the Grant Number: 10024085.

978-1-6654-4231-2/21/$31.00 © 2021 IEEE

Signal Processing Systems Group
Eindhoven University of Technology
5612 AZ Eindhoven, Netherlands
Email: anweshan.das@tue.nl
ORCID: 0000-0003-4008-7123

Signal Processing Systems Group
Eindhoven University of Technology
5612 AZ Eindhoven, Netherlands
Email: g.dubbelman@tue.nl
ORCID: 0000-0001-6635-3245

autonomously in formation with fixed spacing. In a platooning
scenario, the front vehicle is driven by the driver while the
other vehicles follow the lead vehicle autonomously. Platoon-
ing can dramatically reduce the drag coefficient and fuel costs
by reducing the spacing between the vehicles. Other benefits of
platooning are the increase in road capacity and traffic safety
[2]. The integrated Cooperative Automated Vehicles (i-CAVE)
research project team has set up a Renault Twizy vehicle
platooning, consisting of one lead vehicle and one follower
vehicle, for this challenging task [3], is shown in Figure 1.
The knowledge about the leading vehicle’s pose and velocity

Fig. 1: i-CAVE: A Renault Twizy Vehicle Platooning.

is a vital prerequisite for developing platooning vehicles. In
literature, several approaches use sensors like Camera, LiDAR,
and Radar to solve these problems. In most approaches,
platooning rely on a special infrastructure. For example, these
approaches work well on highways. In the urban scenario,

these approaches can have many problems. In order to solve
these problems, we use a custom-built stereo camera with
a high dynamic range of capable automotive-grade cameras,
a powerful automotive-grade computation platform, Artificial
Intelligence (AI) based Deep Neural Networks (DNNs), and a
geometric model-based pose and velocity estimation algorithm
in the i-CAVE research project. The various Electronic Control
Units (ECUs) are deployed in the i-CAVE research project to
enforce digital control of functional aspects such as Stereo
Camera, Radar, GPS, IMU, and Vehicle Control System.
Since the number of ECUs grows in the i-CAVE research
project, there is an increase in the complexity of managing
the software. In order to manage the software complexity, we
propose a Systems Modeling Language (SysML) based design
methodology and model-driven algorithms.

The main objective of this paper is to design, develop, and
evaluate an onboard stereo vision system using an automotive-
grade stereo camera for cooperative automated vehicles.

The key contributions of this paper are:

o We design an onboard stereo vision system model with

a SysML-based design methodology using the IBM Ra-
tional Rhapsody tool.

o The model-driven methods are derived from the designed
model, developed, and integrated into an independent
onboard stereo vision system. It can estimate the lead
vehicle’s pose and velocity.

o The performance of the onboard stereo vision system has
been evaluated with the Carla simulator and cooperative
automated research vehicles.

This paper is structured as follows. Section II provides
an overview of the related works in the field of design
methodologies and development algorithms. Section III de-
scribes the proposed onboard stereo vision system’s primary
functions in the form of a stakeholder’s needs, functional and
non-functional requirements. Section IV explains the SysML-
based design methodology of the proposed system. Section
V describes the model-driven development algorithms of the
proposed system. Section VI presents the experimental results
of the proposed system. Finally, Section VII concludes the

paper.
II. RELATED WORK

This section discusses the related work in design method-
ologies and developing algorithms for autonomous vehicles in
detail.

A. Design Methodologies

In 1999, the Unified Modeling Language (UML) was in-
troduced for the purpose of system design [4]. Later, UML
was used in the development of a complex System-on-a-
Chip (SoC) [5]. It was also utilized for platform-based design
concepts in embedded systems [6]. Additionally, an approach
is proposed for implementing embedded systems that unify
UML and SoC design methodologies [7]. Later, a generic
object-oriented framework has been proposed for real-time
systems modeling based on the UML Real-Time (UML-RT)

[8]. The Systems Modeling Language (SysML) is an extension
of the UML used for system design modeling [9]. It is also
more and more adopted by complex embedded systems such as
mechatronics embedded systems [10], automotive embedded
systems [11], and aerospace embedded systems [12]. In this
paper, we use a SysML-based design methodology for stereo
vision system design.

B. Development Algorithms

Vision-based pose estimation algorithms, such as non-
model-based and model-based pose estimation algorithms
[13], have been used to solve vehicle platooning problems
in various ways. Non-model-based pose estimation algorithms
include structure from motion [14], optic flow [15], and stereo
ego-motion estimation [16]. Model-based pose estimation al-
gorithms include feature-based model tracking [17], contour
tracking [18], template matching [19], and Pose from Orthog-
raphy and Scaling (POS) algorithm [20]. The POS method is
fast, simple, and robust, even when camera calibration issues
are present. It has the advantage of not necessitating a starting
pose [21]. However, there is a limitation that does not work if
the objects are flat or plane. To overcome this limitation, there
is an advanced algorithm, which is coplanar POSIT (POS with
Iterations) [22]. However, this is not possible with POSIT if
the object correspondences are unknown. To overcome this
problem, there is a new formulation of the POSIT algorithm,
which is SoftPOSIT [23]. In this paper, we use the SoftPOSIT
development algorithm for pose estimation.

III. PROPOSED ONBOARD STEREO VISION SYSTEM

This section defines the proposed onboard stereo vision sys-
tem’s main functions using a Stakeholder’s Needs Document
(SND) that includes stakeholders’ needs, functional and non-
functional requirements.

A. Stakeholder’s Needs

The proposed system is an ECU of the i-CAVE research
project, consisting of an onboard Al-based acquisition and
processing system. The system is intended to provide the en-
vironment perception within cooperative automated vehicles.
The system provides consistent assistance to a follower vehicle
during the vehicles’ platooning. The purpose of the system is
to detect the objects, identify lane markings, recognize drivable
free space, estimate the lead vehicle’s pose and velocity in
front of the vehicle. The system also provides environment
obstacle information for the vehicle control system and visu-
alizes the obstacle information on the in-vehicle display. The
following functional and non-functional requirements are met
to meet the stakeholder’s needs, as mentioned above.

B. Functional Requirements

The most important functional requirements of the proposed
system are: i) system operational: on power-up, the system
shall perform the functional activation and deactivation using
the human-machine interface, ii) environmental perception:
system shall perform the environmental perception functions

such as object detection, lane detection, and free space de-
tection on activation, and iii) platooning operation: system
shall estimate the lead vehicle’s pose and velocity during the
vehicle platooning operation. The system shall monitor the
environment from a stereo camera and process it to send
the obstacle information to the vehicle control system. The
system shall visualize the obstacle information on the in-
vehicle display.

C. Non-functional Requirements

The most important non-functional requirements of the
proposed system are: i) functional: system must be capable
of functioning in any situation and on any road surface,
ii) usability: system must straightforward to use by any
cooperative automated vehicle, iii) reliability: system must
consistently perform the specified functions without failure, iv)
performance: system must run on a low power consumption
device and capable of executing with real-time performance,
and v) supportability: system must have a modular design, a
standardized interface, and easy to install in a wide range of
vehicle platooning applications.

IV. SYSML-BASED DESIGN METHODOLOGY

In this section, a SysML-based design methodology [24] is
presented. SysML models and diagrams are created by using
the IBM Rational Rhapsody 8.3.1 tool.

The proposed design methodology aims to assist designers
in creating consistent modeling in system design. It is a two-
level design view modeling process: i) a black-box design
view, which gives an external point of view of the proposed
system, ii) a white-box design view, which gives an internal
point of view of the proposed system. Each design view is
made up of several activities. In each activity, a SysML dia-
gram describes a specific point of view of the proposed system.
More detail about each activity in each design view and how
they are represented with SysML diagrams is explained below.

A. Black-Box Design

In this black-box design view, the proposed system is
considered a black box. In this view, an external point of view
design is performed to identify the system’s requirements and
specifications.

The key activities of this black-box design view are:

i) Identify Stakeholders Needs: This activity identifies the
system requirements of the proposed system. It is usually
in the form of an SND with the Stakeholder’s needs, as
mentioned in Section III-A.

ii) Elicit Requirements: This activity captures the system’s
requirements based on identified Stakeholder’s needs. These
system requirements are captured in the SysML Requirements
Diagram (RD). The SysML RD contains functional and non-
functional requirements. The functional requirements contain
requirements for system operational, environmental percep-
tion, and platooning operation, as mentioned in Section III-B.
The non-functional requirements contain functional, usability,
reliability, performance, and supportability requirements, as

mentioned in Section III-C. In this design view, we con-
sider only functional requirements and do not consider non-
functional requirements.

iii) Define System Context: This activity defines the system’s
context or boundary, which may interact with external systems
directly or indirectly based on elicited requirements. This
system context represent is represented in a SysML Block
Definition Diagram (BDD), including the proposed system
and its interactions with external interface actors such as
stakeholders and external systems, shown in Figure 2. The

bdd [Package] BlackBoxAnalysis [System Context]

VisugzeObstades
L
Left Stereo Camera Acaurelefilmage
1 In-Vehice Display
AcquifsRightimage =

1
ActivateOrDeactivateSystem

SendCANMessages

Right Stereo Camera
Driver Vehide Control System

Fig. 2: Stereo Vision System Context Diagram.

Onboard Stereo Vision System is the system of interest in the
BDD, and it provides the context for the proposed system. The
other stakeholders are external systems to the proposed system.
These include the Driver, Left Stereo Camera, Right Stereo
Camera, Vehicle Control System, and In-Vehicle Display. Its
relationships as defined by its associations.

iv) Define External Interfaces: This activity defines the
system’s external interfaces based on defined system context
and interactions with external systems. The Onboard Stereo
Vision System is the system of interest block, and the other
systems are external interface actors to the system block. These
include the Driver, Left Stereo Camera, Right Stereo Camera,
Vehicle Control System, and In-Vehicle Display. Its interfaces
as defined by its proxy ports.

v) Identify Use Cases and Actors: This activity defines the
proposed system’s use cases and actors based on the defined
system’s external interfaces. The association relationship be-
tween actors and use cases in a Use Case Diagram (UCD),
shown in Figure 3. In the UCD, the Perceive Environment
use case represents the system’s main functionality that is
always performed when the Driver performs the Activate
System use case. The Activate System, Stereo Vision, Detect
and Classify Objects, Estimate Pose, Estimate Velocity, Iden-
tify Lane Markings, Recognize Free Space Boundary, Send
Obstacle Information, and Deactivate System use cases include
the Perceive Environment use case. The Visualize Obstacle
Information use case extends the Perceive Environment use

uc [Package] BlackBoxAnalysis [SterecVisionSystem]

'On-board Stereo Vision System Use Case Diagram

\ PO

Driver

Left Stereo Camera

dincludes

Stereo Vision

“indude»

sinciides
=

Detect and Classify
Objects

sincluder

v

Estimate Pose

Right Stereo Camera

P

Ll

Perceive Environment %!

Deactivate System

Visualize Obstacle /

Information In-Vehide Display

«dhcudes

Lo metends Send Obstadle

Information

T =

nchudes

L N -kﬁ Recognize Free Space
“\“‘lﬂdUdE” Boundary Vehide Control System
% dndudei- |
cincludes
5 Identify Lane
Markings

Estimate Velodty

Fig. 3: Stereo Vision System Use Case Diagram.

case. The active actor is Driver, and the passive actors are
the Left Stereo Camera, Right Stereo Camera, Vehicle Control
System, and In-Vehicle Display.

vi) Define Functional Scenarios: This activity defines the
proposed system’s sequential description of a functional sce-
nario with a Sequence Diagram (SD) for each identified use
case. In the SD, the interactions between the system and its
external interfaces are detailed. The behavior for the Perceive
Environment use case from the UCD in Figure 3 is represented
in the SD in Figure 4. The SD shows the Driver sending
an Activate System message requesting the Onboard Stereo
Vision System to activate. The Onboard Stereo Vision System
responds with the System Activated reply message shown as a
dashed line. This is followed by the Left Stereo Camera, Right
Stereo Camera, and Onboard Stereo Vision System interactions
to acquire images. The three interactions, Object Perception,
Lane Perception, Free Space Perception, occur parallel to
perceive the obstacles. The Onboard Stereo Vision System
estimates the detected object’s pose and velocity estimation
using EstimatePose and EstimateVelocity. Also, it sends this
information to the Vehicle Control System and displays it
on the In-Vehicle Display. The last interaction is Deactivate
System by the Driver. The SD shows the Driver sending a
Deactivate System message requesting the Onboard Stereo
Vision System to deactivate. The Onboard Stereo Vision System
responds with the System Deactivated reply message shown as
a dashed line.

vii) Identify System States and Modes: This activity defines
the proposed system’s operating states and modes based on the
defined system’s behavior in the SD. The proposed system’s
State Machine Diagram (STM) is shown in Figure 5. In the
STM, the system operates in three modes: Activate, Perceive,

sd [Paciage] BlckBoxAnalysis [Functiona cenaris]

<Orboard Stereo
Vision System

“Vehick Control “InVehide

Display.

“Driver Left Stereo Right Stereo

Gmera Camera

ActivateSystem()

Actyate System
o T

e
Acaurelefimages) peresre]

AcquireRghtImages(

Acquirelmages()

(il

ProcessStereoVision()

il

DetectAndChssfyObjects()

Object Percepton

]

RecogrizelaneMarkings()

Lane Perception

([

IdentifyfreeSpaceBoundary)

Free Space Per@ption

EstimatePose()

EstimateVelocity()

sendobsade Information()
Visuaiize Obstaclelnforma ion() >

Deactivate System
- 7 St

Fig. 4: Stereo Vision System Sequence Diagram.

and Deactivate, and six states: Initialize, Process, Update,

act [Package] BlackBoxAnalysis [StateMachineDiagram]
P
s
[
Activate Deactivate
| I
Percieve | Vi
—_ -
{Render)
e W‘ }
| oe———J |
[}
T T T
A |Release)
[Vvehicle | === |
l | Contrl [‘ [Rolease | |
I Sysem [| Memary |

| Ss== | [
[! [)

Fig. 5: Stereo Vision System State Machine Diagram. Modes:
Activate, Perceive, Deactivate, and States: Initialize, Process,
Update, Render, Reset, Release.

Render, Reset, and Release.

viii) Analyze Requirements with Use Cases: This activity
analyzes the proposed system’s user-level requirements and
system-level requirements and ensures the traceability links
between them based on their relationships, such as derive,
refine, and satisfy.

B. White-Box Design

In this white-box design view, an internal point of view
design is performed to model the system’s structure and
behavior based on the black-box view’s design.

The key activities of this white-box design view are:

i) Identify Internal Functions: This activity identifies the
proposed system set of internal functions based on the identi-
fied system operating states and modes. The system’s internal
functions are represented through activities and linked to its
operations. The functional architecture is represented with an
Activity Diagram (ACT) in Figure 6, which describes internal
system functions.

ii) Define Logical Components: This activity defines the
proposed system set of logical components based on the
identified system set of internal functions. The system’s logical
components are represented through classes and linked to
specified functions in the functional architecture. The logical
architecture is defined with an IBD in Figure 7, which de-
scribes internal system components and flows between com-
ponents.

iii) Define Physical Components: This activity defines the
proposed system’s physical components based on the identified
system’s logical components. The system’s physical compo-
nents are represented through components and ports and linked
to specified components in the logical architecture.

V. MODEL-DRIVEN DEVELOPMENT ALGORITHMS

This section presents developed algorithms to solve the
vehicle platooning using an onboard stereo vision system for

the i-CAVE research project.

Figure 8 shows that a follower vehicle is equipped with
an onboard stereo camera and following a lead vehicle. The
pose estimation method presented in this paper is used to
estimate the lead vehicle’s relative pose and velocity with
respect to the follower vehicle by tracking the feature points
of the lead vehicle. The relative pose and velocity estimation
allow the follower to maintain a safe distance between the lead
and follower vehicle. Based on the relative pose and velocity
estimation, the throttle and brakes can be controlled with an
actuation command of the follower vehicle control system to
avoid collision with the lead vehicle or losing track of the
lead vehicle. Also, it displays these results to the driver on the
in-vehicle display. The below algorithms are implemented in
C++ on an Ubuntu 16.04 LTS and deployed on an Nvidia Drive
PX2 automotive embedded hardware platform with OpenCV
3.4.9, DrvieWorks 1.2, CUDA 9.2, cuDNN 7.4.1, Armadillo,
and Boost libraries.

A. Object Perception

The object perception provides the obstacle information to
the navigation system in front of the follower vehicle. We
use Nvidia’s deep learning-based DriveNet DNN to perform
real-time object perception. Through the use of a DNN, the
detection and classification of objects are computed efficiently
and quickly. The input to this algorithm is a Red-Clear-Blue
(RCB) image, and the output is an original image plus a list
of detected objects with the following attributes: bounding
box, object class, and confidence of detection. It detects and
classifies objects such as cars, bicycles, pedestrians, road signs,
and traffic lights. The bounding boxes’ color represents the
classes it detects: i) red for cars, ii) blue for bicycles, iii)
orange for pedestrians, iv) green for road signs and v) magenta
for traffic lights.

B. Pose Estimation

A geometric model for relative pose and velocity estimation
using a stereo camera is shown in Figure 9. The relative pose
is estimated using the SoftPOSIT pose estimation algorithm
from a single image [23]. This algorithm requires at least
four known pairs of 3D feature point coordinates and their
corresponding 2D image coordinates and the camera’s focal
length. This algorithm generates a linear equation based on
known 3D feature point coordinate pairs using a perspective
projection model. This algorithm is in an iteration loop,
repeated until it reaches the tolerance with the least error to
give out the optimum solution of the pose estimation in terms
of camera coordinates. This algorithm takes the input image,
list of object points, list of image points and returns the 3x3
rotation matrix (R) and the 3x1 translation vector (7).

Rotation matrix,

Ri1 Ri2 Ry
R= |Ra1 Ry Ra3 (D
R31 R3» Rs3

| e e [P e

= Dizrty oo
i | jot Oty = =
Percagion Esimasn [3
el How == o
| REB
|
L Leneslevierny Cumafie s
— — L
Lefttr (LR i — — 35| Percspon ot ey s L . A
Vision (= SET Estimation Fi F.,,
! REB
FroaSnace [e N
of
RaBA
T J— 4@

Fig. 6: Stereo Vision System Functional Architecture.

5 [Soc] DriboerdSredviEonS e [Logikale i re|

Fig. 7: Stereo Vision System Logical Architecture.

Lead Vehicle

Fig. 8: A Geometric Model for Relative Pose and Velocity
Estimation using a Stereo Camera in Vehicle Platooning
(Pictorial View).

Translation vector,

T =)

SS S

Rotation Angle: After obtaining the lead vehicle’s rotation
matrix (R) with respect to the follower vehicle in a vehicle
platooning, the rotation angle is computed using the following
steps. First, we can derive the Euler angles (6, 8, 0.) from
the rotation matrx:

Pan,
9$ = atan2(R32/R33) (3)

Tilt,
0, = atan2(—R31/\/ R%, + R%;) “4)

Roll,
0. = atan2(Ra1/R11) 5

Euler angles are,

0=1[0, 60, 0. ©)

where the elements of ¢ hold the rotation angles around the
X, Y, and Z-axis, respectively. From the Euler angles, we can
estimate the rotation angle,

w=2~0,

@)
Relative Distance: The translation vector, 1" represents the
position of the object’s reference point, P, with respect to the
current origin, O. The length of this vector equals the distance
between these two reference points (OP):
Relative distance,

p=\T2+ T+ T2

®)

A

Heading Axis w (Rdtation

>
o
<
=<
o

Object Frame

<
_ Y
3

&

o

2

H]

o

ta;c;)--_____

i Cluc,vo) §

g 1

a1

1=

[T

[

(K] Zc

] s

118

I 1=

| I

* * Camera Frame

Xr X (09 _§
-y
|

Follower Vehicle

Fig. 9: A Geometric Model for Relative Pose and Velocity
Estimation using a Stereo Camera in Vehicle Platooning
(Front View). The reference camera coordinate system is right-
handed, with the x-axis points to the right of the image plane,
the y-axis points to the bottom of the image plane, and the
z-axis points towards the center of the image plane.

Orientation Angle: The orientation angle can be calculated
using the translation vector, 7', in the XY-plane between the
X-axis and 7. The orientation is defined as the angle in the
XY-plane between the X-axis and 7.

Orientation angle,

v = arctan(AY/AX))

C. Velocity Estimation

The relative velocity (v) of the lead vehicle can be estimated
using the relative distance and timestamps:

v = (d/At) (10)

where d is the lead vehicle travelled distance within known
time /At, and v the relative velocity.

D. Lane Perception

The lane perception provides the lane markings in front of
the follower vehicle to the navigation system. We use Nvidia’s
deep learning-based LaneNet DNN to perform real-time lane
perception. Using a DNN, the detection and classification of
lane markings are computed efficiently and quickly. The input
to this algorithm is an RCB image, and the output is an original
image plus a list of lane markings with a lane position and
appearance type. It classifies a lane marking into one of the
following five-position types: left adjacent lane, left ego-lane,
right ego-lane, right adjacent lane, and undefined position.
It detects a lane marking’s appearance from the following
four types: i) solid lane marking, ii) dashed lane marking, iii)
road boundary, and iv) undefined appearance. It overlays the
polylines on the lane markers detected. The polylines’ colors

represent the lane marking types: i) yellow for the left adjacent
lane, ii) red for the left ego-lane, iii) green for the right ego-
lane and iv) blue for the right adjacent lane.

E. Free Space Perception

The free space perception provides the drivable free space to
the navigation system in front of the follower vehicle. We use
Nvidia’s deep learning-based FreeSpaceNet DNN to perform
real-time free space perception. Using a DNN, the detection
and classification of free space are computed efficiently and
quickly. The input to this algorithm is an RCB image, and
the output is an original image plus a free space boundary for
the drivable free space. The recognized free space boundary
divides the obstacles from open drivable free space. Each pixel
on the boundary has a semantic label: i) green for the curb,
ii) blue for pedestrians, iii) red for cars, and iv) yellow for
others.

VI.

This section covers the proposed onboard stereo vision
system’s experimental results on simulation and prototype
research vehicles.

EXPERIMENTAL RESULTS

A. Simulation

The proposed system acquires synthetic images from the
virtual stereo camera in the Carla simulation environment. The
simulation results of the proposed system are shown in Figure
10.

Fig. 10: Results of Stereo Vision System with Simulation.

B. Research Vehicle

The proposed system acquires input images from the on-
board stereo camera in a real-world environment. The exper-
imental results of the proposed system are shown in Figure
11.

C. Performance Evaluation

The processing time of the proposed system with Carla
simulation and research vehicle is shown in Table I. The
proposed system’s processing time on the host computer with
the Intel Core i7 CPU, the Nvidia TITAN Xp GPU card is 23

Fig. 11: Results of Stereo Vision System with Vehicle.

TABLE I: Processing Time (in milliseconds).

Platform Perception Deep Neural Networks Stereo
Object Lane Free Space | Vision
Perception | Perception | Perception | System
Simulation 11 03 01 23
Vehicle 34 06 04 138

ms (43 Hz), and the target Drive PX2 computer is 138 ms (7.2
Hz), which is suitable for low-speed cooperative automated
vehicles.

VII. CONCLUSION

This paper presented a SysML-based design and develop-
ment of an onboard stereo system for cooperative automated
vehicles. The SysML-based design simplifies the complexity
of stereo vision software. The proposed design model fulfills
the functional and non-function requirements of the Stake-
holder’s needs. The model-driven methods are derived from
the designed model, developed, and integrated into an inde-
pendent electronic control unit. The experimental evaluation
has been performed on the Carla simulation and cooperative
automated vehicle research platform. The experimental result
shows that the proposed system classifies objects, identifies
lane markings, recognizes drivable-free space boundary, and
estimates the relative pose and velocity. The proposed system
runs at 43 Hz (23 ms) on a high-end computer with a Titan
Xp graphics card. It achieves more than 7.2 Hz (138 ms) on
an Nvidia Drive PX2 automotive-grade hardware platform in
real-time. However, an extension of the perception system with
a combination of a Stereo camera and Radar to improve the
estimation of pose and velocity is desirable. Therefore, future
work should include a follow-up work designed to evaluate
whether the sensor fusion of the Stereo camera and Radar
operates in real-time on an Nvidia Drive PX2 automotive-
grade embedded platform.

ACKNOWLEDGMENT

The authors would like to thank the entire integrated Coop-
erative Automated Vehicles (i-CAVE) research team, without
whom the project would not have been possible.

[1]

[2]

[3

[t

[4]

[5]

[6]

[7]
[8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

REFERENCES

E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey of
autonomous driving: Common practices and emerging technologies,”
IEEE Access, vol. 8, pp. 58443-58 469, 2020.

J. Ploeg and R. de Haan, “Cooperative automated driving: from platoon-
ing to maneuvering,” in 5th International Conference on Vehicle Technol-
ogy and Intelligent Transport Systems, VEHITS 2019. SCITEPRESS-
Science and Technology Publications, Lda., 2019, pp. 5-10.

Integrated Cooperative Automated Vehicles (i-CAVE) project, https://
i-cave.nl/, [Online], 2019.

G. Martin, “Uml and vcc. cadence design systems,” Inc., White Paper,
1999.

T. Moore, Y. Vanderperren, G. Sonck, P. Van Oostende, M. Pauwels, and
W. Dehaene, “A design methodology for the development of a complex
system-on-chip using uml and executable system models,” in Proc. of
ECSL’02, 2002.

R. Chen, M. Sgroi, L. Lavagno, G. Martin, A. Sangiovanni-Vincentelli,
and J. Rabaey, “Uml for real: design of embedded real-time systems,
chapter 5—uml and platform-based design,” 2003.

M. Edwards and P. Green, “Uml for hardware and software object
modeling,” in UML for Real. Springer, 2003, pp. 127-147.

B. Selic, “A generic framework for modeling resources with uml,”
Computer, vol. 33, no. 6, pp. 64-69, 2000.

F. Mhenni, “Safety analysis integration in a systems engineering ap-
proach for mechatronic systems design,” Ph.D. dissertation, Ecole Cen-
trale Paris, 2014.

F. Mhenni, J.-Y. Choley, O. Penas, R. Plateaux, and M. Hammadi, “A
sysml-based methodology for mechatronic systems architectural design,”
Advanced Engineering Informatics, vol. 28, no. 3, pp. 218-231, 2014.

J. D’Ambrosio and G. Soremekun, “Systems engineering challenges
and mbse opportunities for automotive system design,” in 2017 IEEE
International Conference on Systems, Man, and Cybernetics (SMC),
2017, pp. 2075-2080.

X. Fei, C. Bin, L. Rui, and H. Shunhua, “A model-based system
engineering approach for aviation system design by applying sysml
modeling,” in 2020 Chinese Control And Decision Conference (CCDC),
2020, pp. 1361-1366.

J. Shi, S. Ulrich, and S. Ruel, “Spacecraft pose estimation using
a monocular camera,” in 67th International Astronautical Congress,
Guadalajara, Mexico, 2016.

C. Tomasi and T. Kanade, “Shape and motion from image streams under
orthography: a factorization method,” International journal of computer
vision, vol. 9, no. 2, pp. 137-154, 1992.

D. Sinclair, A. Blake, and D. Murray, “Robust estimation of egomotion
from normal flow,” International Journal of Computer Vision, vol. 13,
no. 1, pp. 57-69, 1994.

L.-P. Morency and R. Gupta, “Robust real-time egomotion from stereo
images,” in Proceedings 2003 International Conference on Image Pro-
cessing (Cat. No. 03CH37429), vol. 2. IEEE, 2003, pp. 1I-719.

D. B. Gennery, “Visual tracking of known three-dimensional objects,”
International Journal of Computer Vision, vol. 7, no. 3, pp. 243-270,
1992.

M. Isard and A. Blake, “Condensation—conditional density propagation
for visual tracking,” International journal of computer vision, vol. 29,
no. 1, pp. 5-28, 1998.

F. Jurie, M. Dhome et al., “Real time robust template matching.” in
BMVC, vol. 2002, 2002, pp. 123-132.

D. F. Dementhon and L. S. Davis, “Model-based object pose in 25 lines
of code,” International journal of computer vision, vol. 15, no. 1-2, pp.
123-141, 1995.

D. Grest, T. Petersen, and V. Kriiger, “A comparison of iterative 2d-
3d pose estimation methods for real-time applications,” in Scandinavian
Conference on Image Analysis. Springer, 2009, pp. 706-715.

D. Oberkampf, D. F. DeMenthon, and L. S. Davis, “Iterative pose
estimation using coplanar feature points,” Computer Vision and Image
Understanding, vol. 63, no. 3, pp. 495-511, 1996.

P. David, D. Dementhon, R. Duraiswami, and H. Samet, “Softposit:
Simultaneous pose and correspondence determination,” International
Journal of Computer Vision, vol. 59, no. 3, pp. 259-284, 2004.

S. Friedenthal, A. Moore, and R. Steiner, A practical guide to SysML:
the systems modeling language. Morgan Kaufmann, 2014.

