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Abstract—In this letter, the learning vector quantization (LVQ)
from machine learning (ML) is adopted into the large-scale
multiple-input multiple-output (MIMO) detection to improve the
detection performance. Inspired by the decision region from
lattice decoding, the random Gaussian noises are applied in the
proposed learning vector quantization-aided detection (LVQD)
algorithm for data generation. Then, based on the classification,
supervised learning is activated to update the targeted prototype
vector iteratively, so as to a better detection performance.
Meanwhile, the decoding radius in lattices is also used to serve as
a preprocessing for LVQD, which leads to an efficient detection
without performance loss. Finally, simulation results confirm that
considerable performance gain can be achieved by the proposed
LVQD algorithm, which suits well for suboptimal detection
schemes.

Keywords: Learning vector quantization, large-scale MI-
MO detection, lattice decoding, machine learning.

I. INTRODUCTION

NOwadays, the large-scale multiple-input multiple-output
(MIMO) system has become a promising extension

of MIMO in 5G, which boosts the network capacity on a
much greater scale without extra bandwidth [1]. However,
the dramatically increased system size also places a pressing
challenge on signal detection in MIMO communications. In
theory, the problem in MIMO detection is known as the
closest vector problem (CVP) in lattice decoding [2], and the
technique of lattice reduction (LR) from number theory was in-
troduced to improve the detection performance. Unfortunately,
although the full receive diversity can be achieved by lattice-
reduction-aided detection, the performance gap between the
suboptimal detection schemes and the optimal ML detection
is still substantial especially in high dimensional systems [3].

On the other hand, in pursuit of efficient detection, a number
of advanced works have been made. Specifically, to avoid the
computations invoked by matrix inversion in linear detection
schemes (i.e. MMSE detection), low-complexity techniques
like Neumann Series Expansion, Gauss-Seidel, Chebyshev
iteration and conjugate gradient are introduced, which reduce
the computational complexity of MMSE detection from O(n3)
to O(n2) [4]. Besides, the low-complexity message passing
(MP) detection scheme is also provided in [5], and a genetic-
based detection scheme for MIMO systems can be found
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in [6]. In addition, sampling detection strategy is introduced
for MIMO detection in [7], which obtains the near-optimal
detection solution by probabilistic sampling.

Different from these detection schemes, we propose a
supervised learning-based detection scheme named as learning
vector quantization-aided detection (LVQD) algorithm, where
the eligible labeled data are generated through the random
Gaussian noises. By fully making use of these labeled data,
the supervised learning, which is motivated by learning vector
quantization (LVQ) from machine learning, is carried out to
refine the target prototype vector. In order to ensure the reliable
and efficient detection, the concepts of decision region and
decoding radius from lattice decoding are introduced. Overall,
this could be a good attempt for MIMO detection to exploit
the detection potential in the way of supervised learning.

To summarize, this work advances the state of the art of
MIMO detection in two fronts. On one hand, based on the
learning vector quantization technique from machine learning,
the proposed LVQD algorithm is driven by supervised learn-
ing, which could be significantly enhanced through deep neural
networks [8]. On the other hand, in sharp contrast to the deep
learning-based MIMO detection [9], [10], the proposed LVQD
algorithm has no stringent request upon the excessive off-line
data for training, making it easy to implement. Meanwhile, the
mechanism of learning vector quantization also allows parallel
implementation, which is beneficial for practical applications.

II. SYSTEM MODEL

For notational simplicity, here we consider the detection
of an n × n real-valued MIMO system, where the scenario
extension to the n×m, n > m complex-valued one is straight-
forward [11]. Typically, let x ∈ Zn denote the transmitted
signal. Then the received signal y ∈ Rn is given by

y = Hx+ n (1)

where n is the noise vector with zero mean and variance σ2
n,

H = [h1, . . . ,hn] ⊂ Rn×n is an n×n full column-rank matrix
with Gaussian channel coefficients.

Given the MIMO system in (1), the optimal maximum
likelihood (ML) detection reads

x̂ = arg min
x∈Zn

‖y −Hx‖2, (2)

which corresponds to solving the closest vector problem
(CVP) in lattice decoding [2]. Typically, in lattice theory, the
n-dimensional lattice generated by H is defined by

L(H) = {Hx : x ∈ Zn}, (3)

where H is referred to as the lattice basis. In other words,
the ML detection in large-scale MIMO systems corresponds
to finding the closest lattice point Hx to y in the space.
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In order to perform analytic diagnosis about detection
schemes, the concept of decision region was proposed in [2].
Without loss of generality, let the transmitted signal x be 0,
for example, the decision region of ML detection, i.e., RML,
can be described as

RML = {y : ‖y −Hx‖ ≥ ‖y‖,∀x ∈ Zn}, (4)

where RML is also known as the voronoi cell of a lattice.
Theoretically, if the given query point y locates in the decision
region of ML (i.e., y ∈ RML), then it will be correctly
detected by ML detection. Besides ML detection, each sub-
optimal detection also accounts for an own decision region as
well while correct detection can be achieved if y locates in
the overlap between decision regions of ML and itself, i.e.,
y ∈ Rdetection scheme ∩ RML. To make it clear, the decision
regions of suboptimal detections like zero forcing (ZF) and
successive interference cancelation (SIC) are also depicted
in Fig. 1 for a fixed but arbitrary 2-dimensional lattice (i.e.,
n = 2) [2]. Typically, the decision region of ZF detection is the
fundamental parallelogram of lattice L(H) while the decision
region of SIC is a rectangle specified by the Gram-Schmidt
(GS) vectors as {Ĥa,a ∈ Rn, |ai| ≤ 1/2}. Since the signal
space is geometrically uniform in lattices, all these decision
regions are symmetric with respect to the origin.

Based on decision regions, the minimum decoding distance
(also known as decoding radius), i.e., denoted by d, was
defined to serve as a performance measurement for various
detection schemes. In particular, it indicates the Euclidean
distance from the original point 0 to the closest facet of the
decision region R. Specifically, the decoding radii of ZF, SIC
and ML are derived as [2]

dZF =
1

2
min
i
‖hi‖ sin θi, (5)

dSIC =
1

2
min
i
‖ĥi‖ =

1

2
min
i
‖hi‖ sinφi, (6)

dML =
1

2
λ(H). (7)

Here, θi denotes the angle between hi and the linear space
spanned by the other n− 1 basis vectors, ĥi’s are the Gram-
Schmidt vectors of the matrix H according to Gram-Schmidt
orthogonalization (GSO), φi is defined as the angle between
hi and the hyperplane spanned by h1, ...,hi−1, and λ(H)
represents the shortest nonzero vector of lattice L(H). Based
on the decoding radius, the related sphere region for each
detector can be obtained. Theoretically, once the received
query point y locates within the sphere, it would be correctly
detected for sure, which means a larger decoding radius
naturally corresponds to a better detection performance1.

III. LEARNING VECTOR QUANTIZATION-AIDED
DETECTION

According to the concept of decision region, the locations
of the given query point y can be summarized in the following

1Since ĥi only needs to be orthogonal to h1, ...,hi−1, after careful
ordering φi is at least more than θi and therefore dZF ≤ dSIC.
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Fig. 1. Decision regions of ZF (blue dotted line), SIC (red dash-dotted line)
and ML (black solid line) detections in a 2-D lattice Hx with H = [h1h2]
and x ∈ Z2. The blue and red circles denote the sphere region determined
by decoding radii dZF and dSIC.

four cases (take ZF detection as an example), which are
illustrated in Fig. 2 in detail:

1) within the sphere built by decoding radius ‖y−Hx̂‖ ≤
dZF (depicted by the blue circle);

2) outside the sphere ‖y−Hx̂‖ > dZF but in the decision
region y ∈ RZF ∩RML (depicted by solid lines);

3) outside the decision region of ZF y /∈ RZF but still in
the decision region of ML detector y ∈ RML (depicted
by dash-dotted lines);

4) outside the decision region of ML detection y /∈ RML
(other regions).

Undoubtedly, y in the first two 1) and 2) cases can be correctly
detected due to y ∈ RZF ∩ RML. Here, the correct decision
region in 1) can be found out by the derived decoding radius
while the correct decision region in 2) is generally hard to
know in most cases of interest. Different from cases 1) and
2), in case 4) because y locates outside the decision region of
ML criterion, it would never be correctly detected even with
ML detection.

Apart from cases 1), 2) and 4), significant detection po-
tential can be exploited with respect to y in case 3), where
ZF detection yields a wrong result but ML detection issues
a correct answer. Therefore, it is possible to optimize the
location of y in case 3) to make it gradually evolve into the
case 2) or 1), which leads to a better detection performance.
To this end, the learning vector quantization (LVQ) technique
from machine learning is introduced to dynamically update y
to a better location.

As a special case of artificial neural networks, learning
vector quantization is a prototype-based supervised classifica-
tion algorithm [12], which applies a winner-take-all Hebbian
learning-based approach. Since LVQ was introduced by Koho-
nen, it has been used in a variety of academic and commercial
applications, which is rather appealing for easy implementa-
tion and controllable complexity. Most importantly, different
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Fig. 2. Illustration of the decision regions of ZF detection with cases 1 (the
region within the sphere), 2 (the region with solid lines), 3 (the region with
dash-dotted lines) and 4 (the other regions), where y locates in the region of
case 2.

from other classification schemes like feedforward networks
or support vector machine (SVM), LVQ is straightforward to
interpret due to the explicit class assignment via the closest
prototype, making it attractive in various research fields.

According to the refined prototypes, LVQ performs the clas-
sification over the labeled data, where each prototype accounts
for a class region. Since MIMO detection only pays attention
on the correct detection results, the proposed LVQD algorithm
only concerns the prototype indicating the classification with
the best detection results while other prototypes are ignored
during the detection process. Along with the iterations of
the target prototype vector y, the final detection results x̂ is
outputted from it. Specifically, the proposed LVQD algorithm
can be described by the following 5 steps.
• Preprocessing: The proposed LVQD algorithm aims

to improve the performance of suboptimal detection
schemes through supervised learning. However, the opti-
mal detection results also can be obtained by suboptimal
detection schemes if the effect of noises is mild (i.e.,
the cases 1) and 2) about the location of y). In this
condition, there is no need to recall the proposed LVQD.
Motivated by this, here we propose to set a threshold for
the activation judgement, which is based on the decoding
radius as

‖y −Hx̂‖ ≤ α · ddetection scheme. (8)

Here, x̂ and ddetection scheme are the detection result and
the decoding radius of the applied suboptimal detection
scheme respectively, and α ≥ 1 serves as a coefficient to
adjust the threshold. Intuitively, with α = 1, if (8) is sat-
isfied by x̂ from the suboptimal detection scheme, then x̂
could be directly output to save computational complexity
without any performance loss. Otherwise, the following
procedures of LVQD will be invoked to improve the
detection performance. Note that such a preprocessing
can be omitted if the decoding radius is unknown, and
the proposed LVQD algorithm shown below still works.

• Initialization: The data for supervised learning are gen-

erated through the random Gaussian noises as follows

yj = y + nj ∈ Rn, (9)

where 1 ≤ j ≤ K indicates the index number, K is data
size and nj ∈ Rn follows zero mean with variance β ·σ2

n.
Here, coefficient β > 0 is used to adjust the impact of
the added noises. It is clear to see with β = 1 the noise
effect upon the given query point y can be offset in the
ideal case (i.e., nj = −n). In general, the generated data
yj’s are randomly distributed with center locating at y.

• Classification: Given the generated data yj’s, subop-
timal detection is applied to recover x ∈ Zn, where
the number of classification, i.e., T , is determined by
the number of different recovered vectors x̂1, . . . , x̂T .
Note that the suboptimal detections over yj’s can be
implemented in parallel, making it more efficient Af-
ter this, the labeled data D can be obtained as D =
{(y1, x̂1), (y2, x̂2), . . . , (yK , x̂T )} and could be further
expressed by subsets as

D = S1 ∪ . . . ∪ ST (10)

with Si ∩Sj = ∅, 1 ≤ i 6= j ≤ T , where the subset St =
{y′js ∈ Rn|x̂t ∈ Zn}, 1 ≤ t ≤ T only contains the data
with the same classification. Given the labels x̂1, . . . , x̂T ,
the optimal classification can be found according to the
fitness function

x̂ = arg min
x∈{x̂1,...,x̂T }

‖y −Hx‖2 (11)

so as to determine the positive subset Spositive. Accord-
ingly, the subsets marked by other labels are referred
to as negative subsets. Note that according to (11) there
could be numerous negative subsets but only one positive
subset.

• Update: Based on the results of classification, the target
prototype vector y is updated by

y(i) = y(i−1) + ηp · (ypositive − |Spositive| · y(i−1)) (12)

and

y(i) = y(i−1) − ηn · (ynegative − |Snegative| · y(i−1)) (13)

respectively with

ypositive =
∑

i∈Spositive

yi and ynegative =
∑

j∈Snegative

yj , (14)

where the superscript i is the iteration index of the
supervised learning with y(0) = y, ηp, ηn ∈ (0, 1) are the
learning rates, |S| denotes the set size of S. Subsequently,
with respect to the updated y(i), the supervised learning
steps into the next iteration including initialization, clas-
sification and update for a better target prototype vector.

• Stopping Criteria: The target prototype vector y(i) is
updated along the iterations shown above, and the number
of iterations, i.e., N , can be used as the stopping trig-
ger. The more number of iterations, the better detection
performance. Then, the target prototype vector y(i) is
detected to output the final solution. Note that at the end
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Fig. 3. Illustration of the proposed LVQD algorithm with ZF detection in a
2-D lattice. The blue points are the generated data centered at the query point
y while the red arrows denote the update by supervised learning.

of each iteration the judgement in (8) can be recalled,
and the detection may terminate if the target prototype
vector has been well developed.

According to the supervised learning, it is clear to see that
the target prototype vector y is gradually approaching to the
direction composed by ypositive while is getting far away from
the direction made up by ynegative’s, where the convergence
speed is controlled by the learning rates ηp and ηn. For the
consideration of detection efficiency, it is preferred to choose
a negligible learning rate ηn for the update from negative
subsets while maintains a regular learning rate ηp for the
update from the positive subset. By doing this, the update of
the target prototype vector y is mainly based on the supervised
learning from the positive subset, and the updates driven by
negative subsets are ignored so that the related calculations
about those negative subsets can be avoided, which leads to a
better detection efficiency.

In particular, the cost function of the proposed LVQD
algorithm can be described as

ŷ(i) = arg min
y(i)=µ(y,D)

‖y −HQ(y(i))‖2, (15)

where Q(·) denotes the detection operations of the applied
suboptimal detector and µ indicates the nonlinear operations
to update y at each iteration given the labeled data D. This
is different from the original LVQ method as it does not have
an associated cost function to ensure the convergence. For
this reason, the original LVQ method in machine learning
is deemed as heuristic, and such a convergence problem is
addressed in the generalized LVQ (GLVQ) through the setup of
cost function so that the learning rule is derived via the steepest
descent [13]. Most importantly, the movement of the target
prototype y is actually determined by the fitness function in
(11), which is measured by the Euclidean distance ‖y−Hx‖.

For a better understanding, the illustration of the proposed
LVQD algorithm in a 2-D lattice is presented in Fig. 3. Clearly,
the target prototype vector y goes through 2 iterations and
reaches into the sphere built by decoding radius, which results

Algorithm 1 Learning Vector Quantization-based Detection
Input: H,y,K,N, α, β, ηp, ηn
Output: x̂

1: perform sub-optimal detection to obtain x̂
2: if ‖y −Hx̂‖ ≤ α · ddetection scheme then
3: output x̂ as the detection result directly
4: else
5: for i =1, . . . , N do
6: given y(i−1) generate K data yj’s by (9)
7: get the labeled data D = {(y1, x̂1), . . . , (yK , x̂T )}
8: perform the classification D = Spositive ∪ S ′negatives

9: update the target prototype y(i) by (12) and (13)
10: given updated y(i) output the detection result x̂
11: if ‖y −Hx̂‖ ≤ α · ddetection scheme then
12: break output x̂ as the detection result
13: end if
14: end for
15: given the updated y(N) output the detection result x̂
16: end if

in a correct detection thereafter. For a clear presentation, the
generated data at the second iteration are not shown in Fig. 3.

Given the decision region of ML detection RML, an ef-
fective way to strengthen the proposed LVQD algorithm is
to optimize the decision region and improve the decoding
radius. Therefore, powerful suboptimal detection schemes are
encouraged. Besides, Lenstra-Lenstra-Lovász (LLL) reduction
is also recommended as it not only refines the decision region
but also enlarges the decoding radius by introducing a more
orthogonal lattice basis [2]. In a word, our work about LVQ-
based neural networks is just a beginning and there are several
open questions worthy being further considered for a better
detection trade-off, e.g., the learning rates need to be set
properly to guarantee the performance improvement. It is
also possible to further simplify the supervised learning for a
more efficient detection. To summarize, the operations of the
proposed LVQD algorithm is outlined in Algorithm 1. Another
point should be emphasized is that although decision regions
are used here to serve for the algorithm description, there is
no need to find them out in the proposed LVQD algorithm
because the detection results about x can be obtained directly
without recalling them.

IV. SIMULATION RESULTS

In this section, the performance of the proposed LVQD
algorithm is evaluated through MIMO detection. Note that
the proposed LVQD algorithm is designed to enhance the
suboptimal detection schemes, and MMSE detection is applied
here as an example. Typically, the default configurations of
the LVQD algorithm are as follows: α = 1, β = 1, ηp = 0.6
and ηn = 0.001 which could be further exploited for a better
detection performance.

As can be seen from Fig. 4, the proposed learning vector
quantization-aided MMSE detection achieves a better detec-
tion performance than the standard MMSE. In particular, it
is clear to see that with the increment of data size K =
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Fig. 4. Bit error rate versus Eb/N0 for the uncoded 10×10 MIMO system
using 64-QAM.

30, 50, 100, the detection performance increases gradually.
Meanwhile, given the fixed data size K = 100, the detection
performance also can be further improved along the number
of iterations N = 1, 2, 3. This is accordance with the update
of the target prototype vector y(i) as it is optimized via the
supervised learning. On the other hand, as for the coefficients
setup, two detection results with β = 0.8 and β = 1.2 are
shown as fair comparisons. It is interesting to observe that
the case with β = 0.8 is even better than the default case
with β = 1. This is a little counterintuitive and is worthy
being further investigated. Moreover, with α = n, the de-
tection suffers negligible performance loss but the a certain of
detection complexity can be saved through the decoding radius
judgement. By letting α = 1.5n, the judgement becomes
more loose so that more detection through LVQD are avoided
but the corresponding performance loss is also introduced.
Moreover, in Fig. 5, the bit error rates (BERs) comparison
of the proposed LVQD algorithms over various suboptimal
detectors (i.e., MMSE-SIC detection, MMSE-LLL detection
and EP detection in [14]) are given in a 8×8 uncoded MIMO
system with 16-QAM, where the performance gain induced
by LVQD can be verified clearly.

As a complement to illustrate the computational reduction,
the percentages of direct detection by MMSE are also given
in Table I. In particular, the designed coefficient α ≥ 1
controls the threshold of the preprocessing stage. The larger α
corresponds to the less recalls of LVQD, and direct detection
by suboptimal detector itself will be applied more frequently.
As can be seen from Table I and Fig. 4, for α = n with
Eb/N0 = 25, about 14.5% recalls of LVQD can be saved by
direct MMSE detection but with negligible performance loss,
which leads to a better detection trade-off. With the increment
of α = 1.5n, more recalls of LVQD would be avoided but the
performance loss also increases accordingly. Therefore, a well
chosen α is highly desired.
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