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SUMMARY
The generation of distinct cell types in developing tissues depends on establishing spatial patterns of gene
expression. Often, this is directed by spatially graded chemical signals—known as morphogens. In the
‘‘French Flagmodel,’’ morphogen concentration instructs cells to acquire specific fates. How thismechanism
produces timely and organized cell-fate decisions, despite the presence of changing morphogen levels, mo-
lecular noise, and individual variability, is unclear. Moreover, feedback is present at various levels in devel-
oping tissues, breaking the link between morphogen concentration, signaling activity, and position. Here,
we develop an alternative framework using optimal control theory to tackle the problem ofmorphogen-driven
patterning: intracellular signaling is derived as the control strategy that guides cells to the correct fate while
minimizing a combination of signaling levels and time. This approach recovers experimentally observed
properties of patterning strategies and offers insight into design principles that produce timely, precise,
and reproducible morphogen patterning.
INTRODUCTION

Embryogenesis depends on positioning functionally distinct

types of cells in the right place, at the right time in a developing

tissue. In many cases, this is guided by chemical signals (usually

termed morphogens). Emanating from a localized source, a

morphogen spreads across a field of cells to form a gradient;

hence, cells at different positions are exposed to different levels

of the morphogen.1 In the influential ‘‘French Flag model,’’ cells

are proposed to read the gradient, such that the local signal con-

centration instructs position-dependent cell fate.2 It has become

apparent, however, that morphogen concentration alone is

insufficient to explain the interpretation of morphogen gradients.

In many tissues, morphogen gradients are dynamic, and there is

no simple relationship between morphogen concentration and

position within the tissue.3,4 It is also unclear how a simple

gradient mechanism would allow timely and accurate cell-fate

decisions, despite the presence of molecular noise and individ-

ual variability.

The interpretation of morphogen signals involves gene regula-

tory networks (GRNs) in responding cells.4 These comprise the

intracellular signaling pathways of the morphogens and the

downstream transcriptional responses and are central to trans-

forming the continuous spatiotemporal input of morphogen

signaling into discrete cell fates. Regulatory interactions be-

tween components of these networks appear to perform the

equivalent of an analog-to-digital conversion.4–7 GRNs have

also been proposed to contribute to the accuracy and reproduc-
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ibility of patterning in the presence of intracellular noise.8–10

Moreover, non-linearities and feedback within the GRN can

confer multi-stability, memory, and hysteresis to cellular deci-

sion-making. A consequence of this is that cell fate depends

not only on the levels of signals and effectors but also on their

temporal features. Taken together, the complexity of interactions

within the GRN can produce rich dynamics in the signaling and

gene expression in developing tissues. Understanding the origin

and function of these dynamics offers insights into patterning.

Moreover, the interplay between morphogen gradient and

GRN allows cells to actively contribute to morphogen signaling,

rather than being simply ‘‘instructed’’ by the gradient. This high-

lights the need for alternative paradigms to the French Flag

model, in which the GRN plays a complementary and equally

important role to the morphogen, to frame questions about

morphogen activity.

The dorso-ventral patterning of the developing vertebrate neu-

ral tube is a well-established example of amorphogen-patterned

tissue.4,11 In the ventral neural tube, the secreted morphogen

Sonic hedgehog (Shh)—produced from the notochord and floor

plate, which are located at the ventral pole—forms a ventral to

dorsal gradient.12 Binding of Shh to its receptor Patched1

(Ptch1) releases the inhibition of downstream signaling and leads

to the conversion of the transcriptional effectors—the Gli family

of proteins—from their repressor to their activator forms. The

Gli proteins regulate the expression of a set of transcription fac-

tors, which include members of the Nkx, Olig, Pax, and Irx fam-

ilies. This comprises the neural tube GRN. Interactions between
or(s). Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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intracellular signaling and the transcriptional network generate a

dynamic response of Gli activity to varying amounts of Shh and

produce a sequence of genetic toggle switches that generate

distinct gene expression states over time.3,13 Feedback leads

to the desensitization of cells to themorphogen signal,12,14–16 re-

sulting in adaption in Gli activity.16 Similar effects of negative

feedback have been observed for many signaling pathways,

but its function and implications for morphogen-dependent

pattern formation remain unclear.

Dynamical systems theory provides a framework to describe

the activity of morphogens and GRNs. The behavior produced

by such models can often be represented geometrically as a

dynamical landscape. This provides an intuitive description of

cell-fate decisions that correspond to the idea of an ‘‘epigenetic

landscape’’ proposed by Waddington.17 In this view, the devel-

opmental trajectory of a cell is analogous to a particle rolling

on an undulating landscape, where valleys and watersheds

represent fates and decision points, respectively. Morphogens

can be thought of as tilting the landscape in such a way that

the valleys can be made deeper, shallower, or disappear alto-

gether. In this way, themorphogen controls the terrain and hence

the valley a cell enters. Although originally introduced as a picto-

rial representation of development, this idea has been used to

develop quantitative methods that reproduce key features of

GRNs and make predictions about the effect of signals.18–20

Nevertheless, it remains a challenge to construct landscape

models that incorporate the knowledge of signals and GRNs.

How is the landscape modified by an external signal and how

are feedback mechanisms incorporated? How can experimen-

tally inferred landscapes give insights into the signaling

dynamics?

Here, we set out to develop a framework to understand the

intracellular signaling strategies used by cells to interpret a

morphogen signal. Are there design principles to the signaling

pathways that contribute to timely, precise, and accurate

morphogen-controlled tissue patterning? What role does feed-

back play and does this result in a trade-off between speed, ac-

curacy, and robustness of the pattern formation? To this end, we

adopt an optimization approach, with the aim of discovering

strategies that underlie the solution of an information-processing

task, namely morphogen-driven patterning, by maximizing the

performance. Specifically, we cast the morphogen-driven

patterning process as an optimal control problem, where a

trade-off is sought that minimizes the distance from a specified

target and the amount of signal given. One advantage of this

approach is that it can easily interface with optimization tech-

niques such as reinforcement learning (RL).21 An additional

feature that makes this strategy particularly suited for the study

of morphogen-driven patterning is that it allows the activity of

signaling effectors to be a generic function of both extracellular

signal and target genes within the GRN. Thus, it provides a

way in which the function of feedback within the signaling

pathway and from the GRN to the signaling pathway can be

investigated.

We first applied this approach to a Waddington-landscape

model representing a genetic toggle switch—where analytical

treatment is possible. We then extended the analysis to a

dynamical-system model describing gene regulation in ventral

neural tube progenitors. We show that desensitization of the
signaling pathway to morphogen emerges as a means to mini-

mize control inputs in the context of multi-stability. The approach

discovers morphogen-patterning strategies that are widely used

in biological systems and suggests an explanation for these stra-

tegies. Using this optimal control framework placesmorphogens

and GRNs on the same footing, each playing complementary

roles as parts of a whole decision-making unit. In this sense,

the approach provides an alternative framework to the French

Flag paradigm.

RESULTS

A case for optimal control—computational vs.
reductionist modeling
The interpretation of morphogen by cells in developing tissues

can be regarded as an example of information processing in a

biological system. Neuroscientists David Marr and Tomaso Pog-

gio pointed out how ‘‘understanding’’ information-processing

systems can be (and has to be) achieved at relatively indepen-

dent levels,22 introducing a framework that is often referred to

as Marr’s levels of analysis. This framework, made explicit for

the visual system,23 has since become widely accepted as a

paradigm in understanding general cognitive processes—and

information-processing in biology more generally.24 The distinct

levels pertain to the tasks performed, i.e., the problems solved

by the system under consideration (computational level); the

rules and representations used in solving these tasks, which

can be described by input-output mathematical laws (algo-

rithmic level); and, finally, the physical realization of those laws,

i.e., the hardware and physical processes used to solve the

computational problem (implementation level).

These levels are only relatively independent from one another.

Questions can be formulated at each one of them, but under-

standing aspects at one level can shed light on aspects at

another. An understanding of a system means connecting these

different levels of analysis. Mathematical modeling constitutes

reductionist attempts to step from the implementation level to

that of the algorithms: what kind of logic can be obtained given

a set of components, their behavior in isolation and their possible

interactions? Due to the emergent complexity of the whole sys-

tem, this often requires a level of abstraction such that specific

details of the implementation are approximated, averaged in

time and space, or even neglected, such that the description

at the algorithmic level becomes relatively independent of

them. The modeling framework in Cohen et al.13 and Bintu

et al.25 are examples of such attempts (see STAR Methods sec-

tion ventral neural-progenitor GRNmodel (PONI network)). How-

ever, capturing the qualitative features of the laws at the level of

the algorithms from the ground up in this way is often so difficult

that it becomes practically impossible.26 Even in those instances

where this can be successfully carried out, it could be argued

that the laws at the algorithm level are qualitatively so different

from those at the implementation level that they acquire relative

independence from them and that a whole different description

is more useful for their understanding. This is well understood

in physics27,28 and applies, to an even greater extent, to the

study of biological systems29 and beyond.30 A fruitful approach

to ‘‘understand’’ behavior is one that moves from the computa-

tional (pertaining to the goals of the system of interest) toward
Cell Systems 14, 940–952, November 15, 2023 941
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the implementation level, rather than vice versa, from the top

down, instead of from the bottom up.26 This does not invalidate

bottom-up, reductionist modeling, which remains a complemen-

tary approach and becomesmore useful themore developed the

understanding of a system’s parts and their laws.

When a measure of performance associated with a computa-

tional problem can be formulated, the search for the strategies

that maximize performance provides a means to discover the

possible rules that can be used to solve the particular problem.

This approach can draw from the well-grounded mathematical

theory of optimization and a plethora of numerical techniques.

Optimal control is a class of mathematical problems that can

provide a framework for this approach, as it represents part of

the broader theory of decision-making. Cell fate decision-mak-

ing and the interpretation of morphogen signaling in developing

tissues appear to be a suitable problem to which tools from

optimal control can be applied. The goal is to identify and under-

stand the rules (algorithms) cells use to solve the problem of

(compute) pattern formation.
Dynamical systems and optimal control approach to
cell-fate decisions
In this section, we describe how decision-making in the context

of a cell or a tissue can be framed as an optimal control problem.

The dynamics of gene regulation and cell-fate decisions can be

described using a Langevin equation

dx

dt
= fðx;uÞ+ sðx; uÞh (Equation 1)

where x is the set of concentrations of the components of the

network, and u is a set of inputs or control variables. The func-

tions f and s are the drift and the strength of the noise, respec-

tively (h is a standard Gaussian white noise). In general, the noise

term has a multiplicative form, i.e., it depends on the cell state x.

This is the case when stochasticity arises not only from external

disturbances but also from the finite copy number of each spe-

cies in the network.31–33 The drift and noise functions f and s

can incorporate mechanistic knowledge of the regulatory logic

of the network and the effect of morphogen signaling, for

instance, transcriptional control via binding/unbinding of tran-

scription factors to their respective regulatory elements and

cooperative and competitive effects.13,25 Multiplicative noise

can have very profound effects on the dynamics, altering the sta-

bility of the system substantially, and has to be dealt with care-

fully.34 For instance, from the point of view of its analytical treat-

ment, multiplicative noise poses the issue of the convention

(notably, Itô or Stratonovich) used to solve the Langevin equa-

tion, as detailed in Coomer et al.34 However, when Equation 1

is derived from more detailed microscopic models the choice

of the convention is a natural one. When multiplicative noise is

considered in this work, it is derived within the chemical Lange-

vin equation framework,31 which prescribes the Itô convention

(see also STAR Methods section ventral neural-progenitor

GRN model (PONI network)).

The dynamical systems that result from representing GRNs in

this way are generally non-linear and may operate in multistable

regimes. The input u can substantially change the dynamics of

the network, altering the position of attractors (stable states)
942 Cell Systems 14, 940–952, November 15, 2023
and saddle nodes (decision points). Moreover, the attractor

reached by a system depends on the full history of the inputs.

This can be seen, for example, in the neural progenitor GRN,13

where the input u comprises the activating and repressing forms

of the Shh morphogen-regulated Gli effectors (Figure 1).

The behavior of such systems can be visualized as a dynam-

ical landscape with valleys representing the stable states of the

network and signals tilting the landscape to determine which val-

leys are accessible or inaccessible. The dynamical-system func-

tion f is thus given by the gradient of the landscape, V, paramet-

rically dependent on the effector u. This approach has been used

to reproduce the qualitative features of GRNs as well as to pre-

dict patterning processes in embryos18,19 and proportions of cell

types in differentiation protocols.20

Given this dynamical system’s view of patterning, how does

the signaling input to a GRN generate a sufficiently precise

pattern in a developmentally relevant time period? To address

this, we recast patterning as an optimization problem and ask

what sort of signal input is necessary to produce precise, reli-

able, and timely cell-fate decisions. The framework that naturally

deals with these types of problems is optimal control theory. We

are faced with the task of choosing a dynamic signaling regime u

(here referred to as control) that minimizes the average of a cost

accumulated along the trajectory (referred to as running cost),

plus a cost determined by the distance from the target at the

termination of the decision task (hence called terminal cost)

occurring upon a differentiation event. The running cost quan-

tifies how much, during the task, gene expression deviates

from the target and how much control is exerted (respectively,

through a function q, minimum at the target state, and through

a term quadratic in u, weighted by a trade-off parameter e).

The terminal cost also measures the distance from the target

but is evaluated only at the end of the time window through a

function Q. If the random termination of the task occurs with a

homogeneous probability rate t� 1, the cost function so defined

can be written as

C =

Z N

0

dt e� t=t
�e
2
juðtÞj2 + qðxðtÞÞ + t� 1QðxðtÞÞ

�
:

(Equation 2)

From the point of view of decision-making, the constant rate

of differentiation assigns more weight to more imminent events

while discounting those further in the future (see STAR Methods

section exponential discounting). Notice that, in Equation 2, the

terminal target-state cost can be formally interpreted as a

running cost, as a result of exponential discounting (see

STAR Methods section terminal cost and discounting for de-

tails), so that q and Q can be used interchangeably up to a t

scale factor. Additionally, t features as a trade-off parameter

setting a relative weight between terminal and running costs.

In this work, we chose q and Q to be the square distance be-

tween the state and the target (see STAR Methods section

optimal control in a potential). In general, any convex function

that has a minimum at the target state will lead to qualitatively

similar results, upon appropriate choice of the trade-off param-

eters. It is also important to note that there is no mechanistic

interpretation of the target cost function: as discussed in the



Figure 1. External input changes the stability

properties of the dynamical system

(A) We consider a model of gene regulation that

describes the patterning dynamics in the ventral

neural tube with the addition of intrinsic noise,8,13

whereby the Gli effectors (activator green and

repressor red) control differential expression of

downstream genes interacting in a network.

(B and C) Cartoons showing the qualitative spatio-

temporal behavior of such networks. (B) When

exposed to a static gradient of activator/repressor,

starting from identical initial conditions, cells at

different positions in the tissue attain different

steady-state expression, and a pattern is estab-

lished over time, with three qualitatively distinct re-

gions, labeled ‘‘ventral’’ (high Nkx2.2, cyan), ‘‘inter-

mediate’’ (high Olig2, magenta), and ‘‘dorsal’’ (high

Pax6 and Irx3, co-expressed, blue). (C) In the

framework of dynamical systems, we understand

this as the effect of a control parameter changing the stability properties of the system, whereby the qualitatively different steady states correspond to distinct

point attractors. The parameters used in this model throughout the manuscripts are reported in STARMethods, see the table in section ventral neural-progenitor

GRN model (PONI network).
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previous section, the cost function is a quantification of perfor-

mance that lives at the computational level and has, in princi-

ple, no connection with the molecular mechanisms involved—

other than the fact that it is expressed in terms of the genes

of interest. By contrast, the cost for control could be given a

mechanistic interpretation as a proxy for an energetic cost.

For Markov processes, stochastic thermodynamics functions

such as work and entropy production can be expressed as

an additive functional similar to the running control cost intro-

duced here.35 However, this form is not valid for non-Markov

processes, except in particular limiting cases.36,37 Here, the

particular form chosen does not quantify the energetics of

the production/regulation of the signaling effectors mechanisti-

cally, which would require a detailed knowledge of the

physical processes involved in it. Instead, despite the simplistic

Markovian assumption that is convenient for the mathematical

and computational analysis, it retains the functional signifi-

cance as the (evolutionary) pressure to reduce effort/energy

expenditure during the developmental process.

When the system to be controlled is completely deterministic,

i.e., s = 0 in Equation 1, given the initial conditions we can pre-

dict the optimal trajectory x�ðtÞ, and an expression of optimal

control u� can be given in the open-loop form, i.e., as a function

explicitly dependent on time only. An example of open-loop con-

trol of a toggle-switch GRN is depicted in Figure 2A. However,

open-loop control strategies are generally suboptimal when

the system is stochastic. In such a case, u� cannot be planned

in advance, since fluctuations in the state of the system need

to be constantly monitored by the controller in order to behave

optimally. The minimization of a cost function in the form of

Equation 2 naturally yields the optimal control in the closed-

loop (feedback) form, u�ðtÞ = 4�ðx�ðtÞÞ, i.e., the dependence

on time is through the state of the system (see STAR Methods

section optimal control in a potential). For the toggle-switch

GRN, this case is depicted in Figure 2C.

Although the open-loop picture can be used for modeling

scenarios such as optogenetic driving or differentiation proto-

cols in a dish, involving pre-defined signaling protocols, the

closed-loop picture is particularly relevant in the context of
the control of gene expression in a cell, where aspects of the

signal transduction pathway and the signal effector can be un-

der the control of the transcription factors in the GRN. Solving

for the optimal control u� yields optimal feedback designs

and can shed light on the functional role of observed feedback

mechanisms.

In general, the optimality equations are difficult to solve

exactly, but approximate solutions can be found via techniques

such as RL.21 Although deterministic control problems—which

admit open-loop optimal solutions—are special cases of more

general stochastic control problems, in practice, their solution

is generally approached by very different techniques.38,39 Only

in some limiting cases can the optimality equations be solved

analytically or numerically. In the next section, we analyze in

detail a simple model of a toggle-switch that lends itself to

analytical treatment and that can be accurately solved with nu-

merical methods. Despite its simplicity, this example is useful

in illustrating the framework and provides a guide for under-

standing the parameters of the cost function.

Controlling the epigenetic landscape of a genetic switch
Here, we consider a simple model for a binary cell-fate decision,

which can be implemented via a toggle-switch network with two

mutually repressing genes integrating an external activator (Fig-

ure 2A), as in Perez-Carrasco et al.40 A landscape model for this

system is represented by one-dimensional double-well potential

VðxÞ with minima at, e.g., ± 1, which corresponds to two

possible cells fates (see STAR Methods section optimal control

in a potential). In this example, the noise is modeled as an addi-

tive and independent of control, so that s in Equation 1 is given

by
ffiffiffiffiffiffiffi
2D

p
, with constant D. We model morphogen signaling as

an additive drift contribution u, which ‘‘tilts’’ the landscape,

Vðx; uÞ = VðxÞ � u$x, from which it follows that in Equa-

tion 1,f = � VV + u (Figure 2B). Note that here the noise is

assumed to depend neither on the state x nor on the control u:

this is somewhat limiting with respect to the general case in

Equation 1. Also, the additivity of the control is somewhat artifi-

cial and would generally not apply if we were to ‘‘derive’’ a land-

scape model from a microscopic model of gene regulation. For
Cell Systems 14, 940–952, November 15, 2023 943



Figure 2. Optimal control representation of a

Waddington landscape

(A) A GRN for a simple toggle-switch network with

two genes can be dynamically controlled to reach a

target state by explicitly defining a signaling protocol

uðtÞ (open-loop control).

(B) In the Waddington-landscape picture, we can

think of the external control as ‘‘tilting’’ the land-

scape over time; the colored lines represent the

instantaneous landscape felt by the ‘‘particle’’ of the

same color.

(C) Alternatively, the signal can be placed under

control of the target genes through a feedback

function 4. This results in closed-loop, or feedback,

control.

(D) The optimal closed-loop control is incorporated

into a ‘‘static’’ effective landscape, describing the

dynamical properties of the signaling and GRN

system as a whole.

(E) The solution for the optimal control (dashed red

line) exhibits adaptation near the target, when this

corresponds to a stable fixed point of the uncon-

trolled landscape (dashed-dotted gray line, not in

scale).

(F) This can also be seen in a sample trajectory of the

dynamics of a cell (green line), where the control (red

line) is switched off after an initial transient and is

activated only to prevent large fluctuations away

from the target. For (E) and (F), the parameters used

are D = 0:10, t = 10, and e = 10.
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instance, these modeling assumptions do not hold for the model

depicted in Figure 1 and are considered in the next section. How-

ever, they allow the problem to be analytically tractable, while

still being able to shed light on general principles of control, in

addition to being easily interpretable geometrically.18,19 We

note that for the Langevin equation in this example, the quadratic

cost for control has an information-theoretical interpretation as a

Kullback-Leibler divergence, which makes it a convenient regu-

larization term in machine-learning applications (also STAR

Methods section optimal control in a potential).

We then seek a control protocol u (the dynamics of signal) that

drives a cell from state x = � 1 to the state x = 1 in the optimal

way, i.e., minimizing the combination of how far the cell is from

its target and the amount of control exerted to accomplish this

(Equations 12 and 26 in STAR Methods). As highlighted in the

previous section, the optimal control strategy in the presence

of noise is naturally expressed in the closed-loop form (Fig-

ure 2C). Due to the specific form of the dynamics and the control

cost (dynamical system linear in u and quadratic cost for control),

the deterministic part of the optimally controlled dynamics can

be expressed analytically as the negative gradient of a land-
944 Cell Systems 14, 940–952, November 15, 2023
scape function Veff , i.e., f = � VVeff. This equals the original

landscape function V plus the optimal cost expected to be

paid from a given state x, i.e., the optimal cost-to-go function:

VeffðxÞ = VðxÞ+min
u
E½C j x0 = x� (Equation 3)

where C is given by Equation 2 and should be regarded as a

function of the trajectory xðtÞ in state space and the control func-

tion u evaluated along the trajectory (see STAR Methods section

optimal control in a potential for details). The additional term is

also referred to as (minus) the value function—that is its more

customary name in the context of decision-making. The opti-

mally controlled dynamics take the form

dx

dt
= � VVeffðxÞ+

ffiffiffiffiffiffiffi
2D

p
h (Equation 4)

Thus, rather than thinking of the control as tilting the landscape

over time, it can be incorporated into a new landscape that de-

scribes the system as a whole (Figure 2D). Such a landscape

can be inferred by measuring the steady-state distribution of

provide insights into the function of
cell state which, according to the Langevin

dynamics in Equation 4, is related to Veff via

rssðxÞ = Z� 1 exp ð � VeffðxÞ=D Þ
(Equation 5)

where Z =
R
dx exp ð � VeffðxÞ=D Þ is a

normalization constant. This observation

suggests that the inverse problem might



Figure 3. Effect of the discounting (differentiation) time t

(A) The mean first passage time (MFPT) at the target x = 1 from x0 = � 1 as a function of t, from the numerical integral of the analytical formula, under the optimal

control. This is shown relative to the value of t on a logarithmic scale. For high (low) values of t, theMFPT for the optimally controlled dynamics is far lower (higher)

than t itself.

(B) State and control costs from 5,000 simulations for various values of t (color coded). The optimal control for ‘‘small’’ or ‘‘large’’ values of t effectively minimizes

cost for control, whereas for intermediate values of t, a non-trivial trade-off is observed (left). Only for low values of tx1 does the terminal cost for the distance

from the target have a large contribution to the overall cost (right).

(C) Statistics of 100 samples of the dynamics for the state (green) and the control (red). Solid lines are the median values, shaded areas the 25th to 75th percentile.

The gray-shaded area highlights the values of the control variable u for which the controlled landscape is still bistable, i.e., between the bifurcation values ± uc. In

all panels, e = 10; in (B) and (C)D = 0:05. For intermediate values, when theMFPT is comparable with t, the switch is driven by a non-trivial transient dynamics for

the control, resulting from competition between control and target running costs.
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feedback mechanisms in cell-fate decisions: given experimental

observations and a landscape associated with the underlying

GRN, it might be possible to distinguish the contributions of

the controlled system (the GRN) from the feedback mechanisms

(Figure 2E).

We notice that the resulting optimal control protocol leads to

adaptive dynamics: high levels of control are necessary to leave

the initial attractor; then, as the system approaches the target

attractor, the amount of control is minimal and only required

to prevent noise from reversing the transition (Figures 2F and

S1). From this example, we see that the optimal solution mini-

mizes control by taking advantage of the multi-stability built

into the system.

This example also provides intuition into the effect of the differ-

entiation rate—equivalently, of discounting cost over time. What

is the optimal behavior of the system before a cell differentiates?

At one limit, when the differentiation rate is comparable with

the overall timescale of the system, t(2, and the noise, D, is

low, only imminent running costs and the terminal costs have a

meaningful effect on the total cost, and the optimally controlled

dynamical system is bistable. This is because when the system

is far from its target, a substantial reduction in the distance of

the system from its target within a short time t would have a

very high cost for control. Therefore, the only part of the cost
that the controller can minimize is the cost of the control itself.

This leads to low values of the control at every state, and the sys-

tem remains within the bistable regime (Figures 3A, 3C, and S1,

bottom left). Such small values of t would mean that a cell only

rarely reaches its target before differentiation.

Very similar dynamics are observed in the opposite limit, when

t[1 (Figures 3A, 3C, and S1, top left). Here, no terminal cost is

paid, and the problem consists of optimizing the average cost

per unit of time at steady state. For low D, when multiple stable

fixed points are present (as in the case of small u—bistable

regime), the system spends long periods of time near each of

them,with rare stochastic transitions between. In STARMethods

section optimal control in a potential, we demonstrate how the

steady-state average of the cost q is exponentially small in

u=D, when D is small: this allows very low values of u to yield

large discrepancies between the probabilities of being in either

attractor at steady state. This explains why, in such a limit, it is

optimal to choose u well within the bi-stability regime.

For intermediate values, 5(t(20, the optimally controlled dy-

namics are such that the time needed to perform the switch is

comparable with t itself. When this is the case, characteristic

transient dynamics are observed: in the first phase, high levels

of control are applied to the system in order to drive the transi-

tion; in the second phase, the control can be reduced to very
Cell Systems 14, 940–952, November 15, 2023 945
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low levels, within the bistable regime. This suggests that, in these

scenarios, the optimal strategy is for the controller to apply high

levels of control for a short time, resulting in a lower cost from be-

ing off target for a shorter period of time (Figures 3A and 3D).

These observations are partially reflected in the distribution of

the different terms in the total cost C. For low and high values of

t, the control term of the cost is relatively less important than

target-state term of the cost, compared with the intermediate

values of t (Figure 3B, left). Also, the smaller t is, the shorter

the average time given to complete the task and therefore the

higher the contribution from the terminal cost (Figure 3B, right).

As already seen analytically, t plays the role of a trade-off param-

eter between the running and terminal target-state costs, q

and Q.

We also quantified the dependency of the distribution of tran-

sition times from x = � 1 to 1 under the optimally controlled dy-

namics on the noise strengthD (Figures 3A and S2). As remarked

above, for extreme values of t, the control strategy is very similar,

and the time to target is primarily controlled by noise, with a

smaller and smaller average transition time as D increases—as

given by theory of stochastic transitions (Figure S2; STAR

Methods section optimal control in a potential). Instead, for inter-

mediate values of t, this distribution has a non-trivial depen-

dency on D, with the mean transition time showing a non-mono-

tonic behavior (see, e.g., t = 20, in Figures 3A and S2). These

effects are subtle, and their rigorous mathematical analysis is

outside the scope of this work. However, taken together, these

results show that the requirement of optimality in the presence

of multi-stability and noise can yield control strategies with

counter-intuitive resulting dynamics.

By making use of a simple Waddington landscape model, this

example shows how optimal control theory can make sense of

adaptation as the least-effort strategy to drive a cell to a desired

target while exploiting the multi-stability of a downstream

network and its stochastic dynamics. The analytical results sug-

gest an explanation for optimal signaling in the face of varying

degrees of noise andmulti-stability and for different values of dif-

ferentiation rates, which set the exponentially distributed time

horizon within which cell-fate decision needs to take place.

Control of cell-fate in ventral neural progenitors
We applied this optimal control approach to a GRN model that

captures the patterning dynamics in the ventral region of the

developing neural tube.13 In this model, noise from fluctuations

in the copy number of components of the system have been

introduced using the chemical Langevin equation approxima-

tion8,31 (Figure 1; reported in STARMethods section ventral neu-

ral-progenitor GRN model (PONI network)). The control here is a

two-component vector representing the activator and repressor

form of the morphogen-controlled Gli effectors. These directly

regulate the two most ventral markers, Nkx2.2 and Olig2 (Fig-

ure 4A). In this case, we find an approximate solution of the

optimal control equations via RL.21 RL provides the means to

identify optimal control strategies, without knowledge of the

dynamical-system function f, by sampling states, actions (con-

trols), and running costs (or reward signals). Here, and in the

following section, we use the twin delayed deep deterministic

(TD3) algorithm,41 which is a state-of-the-art RL algorithm for

continuous control problems (see algorithm 1 in STAR Methods
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for details). Using this approach, we identify optimal control stra-

tegies for the system to adopt an Olig2 state or a Nkx2.2 state.

In all cases, we optimize the discounted cost function, Equa-

tion 26, with tx5 (arbitrary units, A.U. —see table in ventral neu-

ral-progenitor GRN model (PONI network)): this can be

compared with the half-life of Nkx2.2 and Olig2, t1=2x0:35.

Thus, if t1=2x4h, then tx2:5 days, consistent with the develop-

mental timescales in the embryonic mouse neural tube. For both

targets, the control input shows a very clear transient, whereby

the activator Gli is initially high and then drastically reduces at

the steady state.

Acquiring and maintaining the Olig2 state requires a very high

sensitivity of control with respect to Olig2 levels, which is re-

flected in the high variability of the repressive form of Gli effector

at the population level (Figures 4D and 4E) and in the learning

curves (Figure S4). The learned control is such that below a

threshold value of Olig2, Gli repressor is high, and above the

threshold, Gli repressor is low (Figure 4E, right). One explanation

for this could be that higher levels of repressor are necessary to

restrain the system from bifurcating to Nkx2.2 when levels of

Olig2 are too low. This is consistent with the experimental evi-

dence that Olig2 may provide negative feedback onto the

expression of Gli3, which is the dominant repressor for Shh

signaling.16,42,43

Different runs of the RL algorithm yield quantitatively different

transient dynamics of the signaling effectors; however, the con-

trol strategies at steady state are consistent across runs, and the

same qualitative features commented on above are maintained

even in the transient states (Figure S3). This is because conver-

gence to the optimal solution in the neighborhood of a given

configuration depends on how many times states in that neigh-

borhood are visited during learning: transient configurations

are visited less frequently than those at the steady state, leading

to higher run-to-run variability in those regions.

The results for the Nkx2.2 target can be compared with those

for the Olig2 target (Figures 4B and 4C). Similar values for the

activator form of Gli are found at steady state, but much lower

values for the Gli repressor are observed. The overall low levels

of the effectors are also consistent with the repressive role of

Nkx2.2 on Gli gene expression, as supported by experimental

data.15,16,43 It is notable that under the optimally controlled dy-

namics, a cell reaching the Nkx2.2 target must transition through

the Olig2 state before acquiring Nkx2.2 expression.

Morphogen-driven patterning
In the previous section, we identified optimal control strategies

independently for two target states. Here, we extend the

approach to identify an integrated optimal control strategy that

would generate a morphogen-patterned tissue comprising mul-

tiple states in response to a spatially graded and dynamic

morphogen signal. We then define the state of the controlled

system to comprise the GRN state and the signal as subsystems

(Figure 5A).

Patterning, as an optimal control problem, can be conceived

as a cooperative multi-agent task, whereby multiple cells have

to reach their respective targets simultaneously, but where the

shared morphogen input provides the positional information.

Collectively, cells minimize a global shared cost, with the

constraint that the controller function—representing the



Figure 4. Reinforcement learning solution for the optimal control of the ventral neural tube GRN

(A) Schematic representation of the closed-loop control: the activator and repressor form of Gli proteins are given by a function 4 of the neural progenitor markers

Pax6, Olig2, Nkx2.2, and Irx3, which evolve according to the stochastic dynamics defined in STARMethods section ventral neural-progenitor GRNmodel (PONI

network). The colors in the legend are maintained in all plots. The optimal control problem is solved separately for two different targets: (A and C) the Nkx2.2+

target; (D and E) the Olig2+ target. For each problem, a different feedback function 4 is found through deep-RL—4 is perturbed by a noise e, as prescribed by the

algorithm used (see algorithm 1 in STAR Methods for details about the TD3 algorithm).

(B) Samples of the controlled dynamics for the Nkx2.2+ target (solid lines are the medians, and the shaded areas the 10th to 90th percentile): the control u�,
comprising activator and repressor Gli (top) and the gene expression dynamics (bottom). In this solution, although the repressor Gli remains always low, the

activator Gli exhibits an initial transient characterized by high values, to then reduce drastically at steady state, reminiscent of the adaptive dynamics observed in

experiments.16

(C) Activator Gli (left) and repressor Gli (right) as a function of Olig2 and Nkx2.2 levels at steady state (colored points) together with the corresponding average

trajectory (dashed gray line). For the parameters used no feedback 4 could be found for the dynamics to ‘‘avoid’’ the transient Olig2+ state.

(D) A similar transient appears in the activator Gli for the Olig2+ target.

(E) In addition, a negative feedback from Olig2 onto the repressor appears to be required to maintain cells in the Olig2+ state, which also explains the high

variability of repressor Gli at steady state—(E), right; the inset shows Gli repressor as a function of Olig2 (points), with a repressive Hill function fit, with Hill

coefficient h and threshold c. One possibility is that this prevents the activator driving the state toward Nkx2.2+ state (the optimally controlled trajectories of C are

overlaid as gray lines—the dashed-gray line is the average).
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signaling pathway with its feedback loops—has to be the same

for all cells. The target pattern, implemented through the running

cost q, has two boundaries that divide the tissue into three equal

parts, with ventral, middle, and dorsal fates corresponding to

Nkx2.2, Olig2, and Pax6+/Irx3 expressing, respectively (Fig-

ure 5B). We adapt the TD3 algorithm for the patterning task
and test it on the patterning of the ventral neural tube (see algo-

rithm 2 in STAR Methods).

The morphogen dynamics (Figure 5B) are given by stochastic

simulations of a diffusion process of independent Shh particles,

whereas the GRN model is the same as in the previous section

(details in STAR Methods section environment dynamics). We
Cell Systems 14, 940–952, November 15, 2023 947



Figure 5. Reinforcement learning solution for the morphogen-driven patterning task

(A) Compared with the single-cell case in Figure 4, in addition to the target genesG, the controller 4 also receives as input themorphogen signalS and thememory

variablesM and returns themaximal production rates for thememory variables in addition to the signaling effectorsU. Also, a unique feedback function 4 needs to

be found across all cells, which we seek for by means of multi-agent reinforcement learning algorithm, in a mean-field approximation (see STARMethods section

multi-agent control and algorithm 2 for details).

(B) Driven by a stochastically diffusing morphogen S (one realization shown in the heatmap, left), the goal is to minimize a trade-off between the distance from a

target gene expression profile (right) and themagnitude of the control over time (see main text). The dashed lines at 1/3 and 2/3 of the total D-V extension indicate

the positions of the boundaries between target differential expression regions.

(C) The cell-by-cell view of the dynamics averaged over 100 simulations (solid lines are themedians, shaded areas the 10th to 90th percentile; individual panels are

labeled by the D-V position of the selected cells) reveals the control strategy for each position. Similar features shown in Figure 4 are also found here, highlighting

the potential functional role of Gli repression by Olig2 and Nkx2.2 in the patterning process.

(D and E) A single realization of the optimally controlled dynamics with the morphogen field as in (B)—the target expression for each gene is shown at the right of

each panel for comparison.
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derive the optimality equation for this, in the ansatz of indepen-

dent cells, in STARMethods sectionmulti-agent control. This an-

satz can only be an approximation to the optimal solution

because the (stochastic) morphogen dynamics exhibit spatio-

temporal correlations. Indeed, it works for a deterministic and

static gradient—where the ansatz is exact (Figure S5)—and

can be a good approximation when the steady state of

the morphogen is reached fast compared with the GRN. A naive

implementation of the independence ansatz for a ‘‘slow’’

morphogen fails to reproduce the target pattern, due to the

increasing effect of the correlations between morphogen signals

at different locations in the tissue. Nevertheless, the (ensemble)

average of the morphogen signal experienced by individual cells

can be expressed with independent but non-autonomous dy-

namics (see STAR Methods section dynamics of a stochastic

gradient).

This suggests that the introduction of memory variables into

the decision-making may help to solve the problem by ‘‘extract-

ing’’ temporal features of the morphogen (Figures 5A and S6;
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STAR Methods section memory in signal interpretation). These

variables can be thought to represent the intermediate compo-

nents in the signaling cascade, such as the Shh receptor Ptch1,

the transmembrane protein Smo, etc. The activity of these com-

ponents in response to Shh introduces delays and persistence to

the transmission of the instantaneous changes in themorphogen.

The control model we introduce features more general feedback

mechanismswithin the signaling cascade and from theGRN spe-

cies. With this extension, the algorithm is able to find strategies

that lead to the target pattern (Figure 5B, right), which we were

not able to achieve without the memory variables.

In Figures 5C and 5E, we see the dynamics of the tissue

patterning process under the control strategy found by the RL al-

gorithm. At the beginning of themorphogen spread, all cells are in

the initial pre-pattern (dorsal) condition. As morphogen spreads

into the tissue, Olig2 and Nkx2.2, are sequentially induced

ventrally (Figures 5D and 5E, dynamics in space and time, per

gene), resulting in a kinematicwave of gene expression spreading

from ventral to dorsal until the target pattern is reached. The
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pattern is then maintained. The dynamics of the effectors in indi-

vidual cells (Figure 5C) share some features with those found for

the single-cell control (Figures 4A and 4C). Because the initial

conditions are the same for all cells in the tissue (Pax6+/Irx3+,

vanishing morphogen signal and memory variables—see STAR

Methodssectionmemory in signal interpretation), the signal levels

are also the same, corresponding to the values needed to main-

tain cells in the dorsal state, i.e., high levels of repressor together

with low levels of activator (Figure 5C, top row). For cells that are

assigned toanOlig2+ fate, after an initial delay setby thespreadof

the Shh morphogen, the dynamics are similar to those found for

the Olig2 target in a single cell (Figures 4D and 5E): levels of

repressor negatively correlated with Olig2 concentration and

low levels of activator at steady state (Figure 5C, middle). In cells

acquiring anNkx2.2+ fate, we also observe a negative correlation

of Gli repressor levels with Nkx2.2 (Figure 5C, bottom). Thus, the

learned control strategy recovers the repressive feedback from

both Olig2 and Nkx2.2 on Gli, which results in adaptive dynamics

of the signaling effectors. Both of these features are supported by

experimental data.15,16,42,43

DISCUSSION

Here, we used optimal control theory to develop a framework to

analyze morphogen signaling strategies and identify mecha-

nisms that produce rapid, precise, and reproducible cell-fate de-

cisions during tissue patterning in embryo development. We

demonstrate that this framework can be combined with dynam-

ical—Waddington-like—landscape models of cell-fate decisions

to provide an optimal control representation in the form of a new

landscape. RL can be used to solve optimal control problems

associated with signaling and cell-fate decisions, and we formu-

late the patterning problem as a multi-agent cooperative optimal

control task, in which the objective function is a measure of the

performance of all the cells in the tissue. By using these ap-

proaches to analyze themorphogen patterning of neural progen-

itors, we highlight how the mechanisms obtained from the opti-

mization are consistent with experimental data.

In the celebrated French Flagmodel of morphogen patterning,

cell fates are proposed to be instructed by morphogen concen-

tration such that the concentration is read out directly by cells.2

Information-theoretic approaches have built on this view of

morphogen activity to develop quantitative measures of posi-

tional information based on measuring the local concentrations

of patterning molecules at a specific developmental time

point.44–46 This has been applied to patterning of the anterior-

posterior axis of the Drosophila blastoderm, leading to the idea

that precise cellular identities are available directly from the level

of morphogen.46 In this example, the morphogen signal is read

out within nuclei, without signal transduction or feedback from

the downstream GRN, since the developing tissue is a syncy-

tium, and the precision of patterning is considered in terms of

the statistical properties of the morphogen signal steady state.

Applying a similar approach to other morphogen-patterned tis-

sues—in which the dynamics of morphogen gradient formation,

signaling, and the GRN are crucial to pattern formation, and the

morphogen level is not a direct correlate of position—is chal-

lenging. From this perspective, the French Flag model does

not explain the complex cellular signaling dynamics often
observed experimentally. Moreover, it subordinates the role of

the GRN to that of the extracellular signals.

The optimal control perspective provides an alternative para-

digm that accommodates the dynamics in signal interpretation

and establishes a relationship between the control signal and

the system. Our analysis revealed that for both individual cell

fate decisions and morphogen-driven tissue patterning, adap-

tive signaling dynamics, which are observed experimentally

in vivo,47 emerge as an optimal strategy in the presence of

multi-stability. This suggests that signaling pathways may have

evolved to take advantage of the dynamic landscape that arises

from the GRN.

The objective function includes a notion of ‘‘timing’’ through

exponential discounting. This can be regarded as representing

the tempo of development and the rate of differentiation in a tis-

sue, which limits the amount of time that is available to the cell to

integrate the signal and make a decision. We set this time to be

comparable with differentiation rates and the degradation rates

of the key transcription factors in the GRN.48

Importantly, when a Waddington landscape offers a good

phenomenological model of cell-fate decision, the optimal con-

trol framework provides analytical tools to ‘‘isolate’’ the contribu-

tion of morphogen signaling to the GRN dynamics. Practically,

this could be achieved via the comparison of experimentally

measured landscapes under different genetic or pharmacologic

manipulations of signaling pathways.20

There are limitations to our approach that will need to be ad-

dressed in future work. In the current formulation, the control

input to the system is selected in a ‘‘reactive’’ way, as a function

of the target genes. This rules out possible hysteresis effects in

feedback mechanisms. This is partially addressed via the addi-

tion of memory variables in the morphogen-driven tissue

patterning example. However, the signaling effectors—as a

function of components of the GRN—still retain a memory-less

component. This could be tackled by introducing production-

degradation dynamics, where the control defines the production

rates, rather than the levels. This would have the benefit of allow-

ing the inclusion of known kinetic properties of the effectors,

such as degradation rates.48 Also, the degradation rate has

been assumed independent of the cell state. The control prob-

lem solved here can be extended to cases where the terminal-

time statistics depends on the state and control variables and

include optimal stopping time problems (see, e.g., Sorger49).

From the RL perspective, the introduction ofmemory variables

is analogous to the use of recurrent networks for modeling

systems with memory,50 e.g., in partially observable environ-

ments.51,52 Examining this problem in the broader context

of decision-making in non-Markovian or non-stationary environ-

ments53 could highlight general design principles that optimally

deal with memory. It is interesting to note that the morphogen-

driven patterning task can be formally regarded as a classifica-

tion of signal time series: hidden in the optimally controlled dy-

namics are the features of the temporal profile of the signal,

which can be utilized by the cell in order to make decisions.

Hence, the optimal control perspective provides a link between

the complex computational problem of morphogen interpreta-

tion and the biological hardware available for its solution.

Although we addressed the function of cell-autonomous feed-

back, such as that mediated by transcriptional targets of the
Cell Systems 14, 940–952, November 15, 2023 949
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morphogen-controlled GRN on the expression of components of

the morphogen signal transduction pathway,16 we did not

address all possible feedback mechanisms that could be ex-

ploited by the system. For example, Shh signaling controls the

expression of Shh binding proteins, such as Ptch1, Scube2,

and Hhip1, that alter transport of the morphogen through the tis-

sue.12,14,54 Feedback on morphogen spread could be incorpo-

rated into the model. Indeed, the framework could be used to

investigate virtually any aspect of the system. This could include,

for example, control of diffusivity of signals, degradation rates of

system components, or the accessibility of cis-regulatory ele-

ments and the effect of chromatin remodeling, all of which

have been implicated in the interpretation of morphogen

signaling.1,8,14

The patterning example dealt with in this study is one in which

positional information is provided by a signal external to the tis-

sue. In other cases, symmetry is broken, and patterning is

controlled by internally generated signals, such as in the case

of organoids patterned by Turing-like mechanisms55 Patterning,

in these contexts, poses a problem of coordination by means of

signaling that can be cast into a multi-agent decision-making

task. This, in turn, can be tackled numerically with multi-agent

RL (MARL) algorithms56,57 or analytically via, e.g., mean-field

approximation in the limit of large numbers of cells.58,59 There-

fore, optimal control provides a framework in which to analyze

these systems to investigate functional explanations for the

observed signaling strategies, proportions of cell types, and

self-organization of patterning.

The optimal control approach, with its focus on linking mech-

anisms with control, is ideally suited for the analysis of in vitro

and synthetic systems. This could be used to design and refine

signaling regimes for the directed differentiation of stem cells

in vitro and the production of specific sets of cell types in defined

proportions. An understanding of the control principles oper-

ating in biological systems may provide insights and inspiration

for the construction of artificial systems as well as support the

use of stem cells in diseasemodeling and regenerativemedicine.
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METHOD DETAILS

Overview of optimal stochastic control and its solution
A system with state variables x satisfies the controlled stochastic dynamics

dx

dt
= fðx; uÞ+ sðx;uÞ hðtÞ; (Equation 6)

where f is a deterministic drift, s – multiplying the standard Gaussian white noise h – is the magnitude of the multiplicative noise (in-

terpreted here according to the Itô convention) and u represent a set of control variables. We ask what is the optimal choice of the

control variables u over time in that minimizes the mean of a cost function

C =

Z N

0

dt e� t=tlðxðtÞ;uðtÞÞ; (Equation 7)

where l is a cost per unit time (also termed running cost) associated with the instantaneous state and control at a given time, and t

sets the time-scale for the exponential discount factor – defining the ‘‘far-sightedness’’ of the decision-maker in the estimation of the

cost that is expected to be paid in the future. As we show in STAR Methods section terminal cost and discounting, optimal-control

problemswith terminal-state cost and uncertain terminal time can be cast in theminimisation of a cost function of the formEquation 7.

Throughout this study, the running cost has the formlðx;uÞ = qðxÞ+ e k uk2=2, that is a trade-off between the squared magnitude of

the control and a state-dependent cost measuring the squared distance from a target x, qðxÞ = k x � xk2=2.
For the class of cost functions in the form of Equation 7, it is possible to solve the optimal control problem via dynamic program-

ming. This is achieved by maximising, at every state x, the value function Ju, defined as the negative of the cost-to-go function

JuðxÞ = � Euð$Þ½Cjxð0Þ = x � (Equation 8)

i.e., the cost to be paid conditioned on the initial state, averaged over all the realisations dynamics in Equation 6, with control function

u. Via Itô rule, it is possible to show that this satisfies

f$VJu +DV2Ju�l= 0 (Equation 9)

where D = ssu=2 and V is the gradient with respect to the state variables x. Denoting the component a of the state x by xa, the dif-

ferential operators in Equation 9 are expressed as f$V =
P

af
av=vxa and DV2 =

P
a;bD

abv2=vxavxb.

The value function corresponding to the optimal control u�, denoted J�hJu� , therefore satisfies
Cell Systems 14, 940–952.e1–e11, November 15, 2023 e1
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max
u

�
f$VJ� + D V2J��l

�
= 0 : (Equation 10)

This equation, known as the dynamic programming (or Bellman) equation,38,60 yields the optimal cost as well as the optimal control

as a function u� of the state x. The non-linearity introduced by the max operator, along with the infinite number of states (for contin-

uous states and actions), makes the exact solution of Equation 10 generally impossible. Note that here we did not make any restric-

tive assumption on the type of noise, i.e. additive vs multiplicative.

Numerical techniques can be employed to find approximate solutions: reinforcement learning (RL)21 with function approximation

through deep neural networks41,61 is the numerical scheme used in this work for the solution of Equation 10 for the optimal control of

the ventral neural tube GRN. However, the case where s is constant while f and l have, respectively, linear and quadratic depen-

dence on u (as in the case of the control in a landscape dealt with in the main text), falls into a general class of linearly solvable control

problems,62,63 in that Equation 10 can be cast into a linear form through a change of variables (as detailed in STAR Methods section

optimal control in a potential).

Optimal control in a potential
Let us consider the Langevin dynamics

dx = ð � VV + uÞdt +
ffiffiffiffiffiffiffi
2D

p
dWt (Equation 11)

where V is a confining potential, u is an additional control drift,Wt is a standardWiener process with E½dWtdWt0 � = dðt � t0Þdt, andD

is the diffusion constant, setting the strength of the noise. Everywhere in themanuscript, the noise is interpreted à la Itô. In this section

the noise is additive (we assume that D does not depend on x or t) and the noise interpretation does not pose a problem.

The control u is chosen tominimize a given cost functional, as detailed in the following.We choose the potential V in such away that

the uncontrolled dynamics has two stable fixed points (i.e. minima of V) at x = ±1: VðxÞ = x4=4 � x2=2.

Stationary-state optimization

We introduce the cost function

Cu = lim
T/N

1

T

Z T

0

dt
�e
2
juðtÞj2 + qðxðtÞÞ

�
(Equation 12)

with

qðx; uÞ =
1

2
jx � xj2; (Equation 13)

measuring an overall distance from the target state along the trajectory. The quadratic cost for control can be interpreted as the

Kullback-Leibler (KL) divergence of the measure of controlled paths from that of uncontrolled paths, i.e. generated by the dynamics

with or without u; this KL divergence takes the form of an integral in time of the KL divergence between the controlled and uncon-

trolled (infinitesimal time increment dt) propagators: both propagators are Gaussian distributions with the same variance 4Ddt,

but with means differing by udt, which yields the juj2 term. See also Todorov62 and Dvijotham and Todorov.63

We seek to find the control strategy u that minimizes the expectation value of Cu over all realisations of the stochastic dynamics

Equation 11. If the system is ergodic, E½CujX0 = x� is a constant, i.e. it does not depend on the initial condition. In particular, this

average is equivalent to that of the running cost at the stationary state:

E½CujX0 = x� = m=

Z
dx reqðxÞ

�e
2
juðtÞj2 + qðxðtÞÞ

�
(Equation 14)

We can introduce the value function

JðxÞ = � lim
T/N

E

� Z T

0

dt
0
�e
2
juðtÞj2 +qðxðtÞ Þ � m

� ���� x0 = x

	
(Equation 15)

that is (minus) the excess cumulated cost from a given state relative to the steady state average. We can use the Feynman-Kac for-

mula,64 to show that this satisfies

�DV2J � ðu�VVÞ$VJ + q+
e

2
u2 = m: (Equation 16)

It can be verified bymultiplying by the steady state (equilibrium) distribution req, satisfying ðu� VVÞreq = DVreq, and integrating over

all states. The principle of dynamic programming holds that in order to minimize m, it is sufficient to minimize JðxÞ for every x. We

therefore see that the minimum condition for J yields

u� =
1

e
VJ� (Equation 17)

and that the optimal value function J� satisfies the Bellman equation
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�DV2J� � 1

2e
jVJ�j2 +VV$VJ� + q = m�: (Equation 18)

The constant m� is the minimum average cost at the stationary state.

By replacing J� = eðV + 2D log jÞ this rewrites

�DV2j +

 
q

2De
+
jVV j2
4D

� V2V

2

!
j =

m�

2De
j (Equation 19)

This is formally equivalent to the ground-state problem of a quantum particle of mass m= 2D=-2 in the potential

VS =
q

2De
+
jVV j2
4D

� V2V

2
: (Equation 20)

The change of variables implies that the optimally controlled dynamics is given by

dx = 2DVlog jdt +
ffiffiffiffiffiffiffi
2D

p
dWt: (Equation 21)

From the Fokker-Planck equation associated to Equation 21:

vtr+V$ð2Dr Vlog j� DVrÞ = 0 (Equation 22)

we see that the function j is related to the equilibrium steady-state distribution, reqfj2.

This ground-state problem can be solved by introducing a fictitious dynamics in imaginary time,

vs~j= � bH ~j (Equation 23)

with the Hermitian operator bH = � DV2 +VS. The ground state j0 of the Hamiltonian bH is the slowest mode in the imaginary time

evolution, and in the long-time limit, Equation 23 is solved by

~j/e�E0s j0 (Equation 24)

The solution of the HJB equation, j, then identifies with ~j, up to a scaling factor which depends solely on time. From the rate of

change of the norm of ~j we can infer the minimum average cost:

m� = 2DeE0 = � 2De lim
s/N

vslog k ~jk2: (Equation 25)

Exponential discounting

The control can also be chosen tominimize a cost over a shorter window of time, rather than at the steady-state. This can be done by

introducing an exponential discount factor over time, as in

Cu =

Z N

0

dt e� t=t
�e
2
juðtÞj2 + qðxðtÞÞ

�
(Equation 26)

where t sets a typical time scale over which rewards are accumulated in the future. As in the above case, we seek u that minimizes the

expectation value E½Cu� over the stochastic dynamics.

We can introduce the value function as (minus) the expected discounted cost-to-go from a given state at a given time

Jðx; tÞ = � lim
T/N

E

� Z T

t

dt
0
e�ðt0 � tÞ=t

�e
2
juðtÞj2 +qðxðtÞ Þ

� ���� xt = x

	
(Equation 27)

We see that this satisfies

�DV2J � ðu�VVÞ$VJ + t� 1J+q+
e

2
u2 = 0 : (Equation 28)

The optimality condition requires the control to be given by u� = e� 1VJ, and optimality Bellman equation writes

�DV2J� � 1

2e
jVJ�j2 + t� 1J� +VV$VJ� +q= 0 : (Equation 29)

Analogously to the above case, with the transformation J� = eðV + 2D log jÞ, the Bellman equation takes the form

bHjh�DV2j+

 
q

2De
+
jVV j2
4D

� V2V

2
+ t� 1



V

2D
+ log j

�!
j= 0 (Equation 30)

This non-linear Schrödinger equation can be solved numerically in a similar way as above, by introducing a fictitious dynamics in

imaginary time, Equation 23, and solving it until convergence to the stationary state bHj = 0.
Cell Systems 14, 940–952.e1–e11, November 15, 2023 e3



ll
OPEN ACCESS Article
Terminal cost and discounting

For a process that terminates with a probability per unit time t� 1 (or, in other terms, the probability density function for the terminal

time is exponential, with mean t), the exponential discount factor corresponds to the probability that a process that started at time t

has not yet terminated at time t0:

Probfnot yet terminated after Dtg =

Z N

Dt

dt

t
e� t=t = e�Dt=t (Equation 31)

Therefore, the average of the cost Cu in Equation 26 is equivalent to that of

~Cu =

Z T

0

dt
�e
2
juðtÞj2 + qðxðtÞÞ

�
(Equation 32)

where T is the exponentially-distributed terminal time with mean t.

For the dynamics with a terminal state (time), we can include a terminal cost at the time T,QðxðTÞÞ. This is particularly relevant in the
case of the cell-fate decision or the patterning example considered in the main text.

We can change the definition of the value function in Equation 27 by subtracting the contribution from the terminal cost. This can be

written as

E½QðxðTÞ Þjxt = x � =
Z N

t

dTt� 1 e�ðT � tÞ=tExT = x
0 ½Qðx0 Þ j xt = x � (Equation 33)

Together with the expression in Equation 27, the value for the task including the terminal cost can be expressed as

Jðx; tÞ = � lim
T/N

E

� Z T

t

dt
0
e�ðt0 � tÞ=t

�e
2
juðt0 Þj2 +qðxðt0 Þ Þ+ t� 1 Qðxðt0 Þ Þ

� ���� xt = x

	
: (Equation 34)

Therefore, we recognise that the addition of the terminal cost is equivalent to the replacement of the state-dependent running cost

q by ~q = q+ t� 1Q in Equation 26.

If we choose the terminal cost to be given by the same function q (the dimensions do notmatch, so we understand thatQ is equal to

q multiplied by a unit time constant), then ~q = ð1 + t� 1Þ q. Since the optimal solution is invariant upon multiplications of the cost

function by a global constant (see Equation 17), the problem is equivalent to the one where q is kept the same, but t enters as a re-

scaling of the trade-off parameter e, replaced by ~e = e=ð1 + t� 1Þ.
First passage time near target

The mean first passage time (MFPT) at a given point x, Tx for a process starting at a point x < x, is expressed as

TxðxÞ = E

� Z N

0

dt
0
1
��� xt = x

	
; (Equation 35)

where the region xR x is replaced by absorbing states (viceversa if x > x). For the optimally control dynamics given in Equation 21, this

satisfies64

2D
d

dx
log j $

d

dx
TxðxÞ+D

d2

dx2
TxðxÞ= � 1 : (Equation 36)

Its solution can be found by explicit quadratures, with the boundary conditions TxðxÞ= 0 and Txðx/ � NÞ = N:

TxðxÞ =
1

D

Z x

x

dx0
Z x0

�N

dx00
jðx00Þ2
jðx0Þ2 (Equation 37)

By interpreting j2 = exp ð� Veff =DÞ, we have

TxðxÞ = 1

D

Z x

x

dx
0
Z x

0

�N

dx
00
exp � Veffðx00 Þ � Veffðx0 Þ

D
(Equation 38)

When Veff has two minima, in the small-D limit, Equation 38 recovers the Freidlin-Wentzel theory of stochastic transitions via the

saddle-point approximation.64

Low control and diffusion limit

For small values of u, the controlled potential Vðx; uÞ still has two minima, corresponding to the stable fixed points of the controlled

dynamics. If D is also small, the transitions between the two fixed points are rare, while typical realisations of the noise will produce

small fluctuations around these: in this limit, Equation 38 gives the Freidlin-Wentzel theory of stochastic transitions,64 where the

MFPT from the left minimum x� to the right minimum x+ is therefore approximated as

Tx+ ðx�Þx
1

D
eDVeff=D (Equation 39)
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where DVeff = Veffðx0Þ � Veffðx�Þ, with x0 denoting the local maximum of the potential (or saddle) between the two minima. The rate

for the opposite transition is analogously given by swapping x�4x+.

The steady-state probability to be near one or the other fixed point is given by the average exit time from the fixed point attractor. In

the present example, this can be calculated as the MFPT from x�x � 1 to x+x1, and vice versa.

First of all, we need to solve for the stationary points at a given value of u. In the linear approximation in u, these are

x±x±1+ u=2 ðstableÞ and x0x� u ðunstableÞ (Equation 40)

The value of the potential at these points is

Vðx± ; uÞx � 1 =4Hu;Vðx0;uÞx0 (Equation 41)

The MFPT for the ‘‘reverse’’ transition, Tx� ðx+Þ, and the MFPT for the ‘‘forward’’ one, Tx+ ðx�Þ, are given by Equation 39, and their

ratio gives the relative probability to be in the right or the left attractor at steady state:

r+

r�
x

Tx� ðx+Þ
Tx+ ðx�Þ

xe2u=D: (Equation 42)

Therefore, we see that when D� 1, for a range of control in the regime D � juj� 1, the probability distribution is highly skewed

towards one of the two attractors.

Environment dynamics
Ventral neural-progenitor GRN model (PONI network)

We outline here the details of the GRN model first presented in Cohen et al.,13 with the addition of noise through the chemical Lan-

gevin equation approximation.8,31

We denote by H+ the Hill function

H+ðxÞ =
x

1+x
; (Equation 43)

and by the latin letters the concentrations of the transcription factors, i.e.Ph½Pax6�,Oh½Olig2�,Nh½Nkx2:2�, Ih½Irx3�,Ah ½GliA�,Rh
½GliR�. The dynamics of gene X, in the ventral neural tube GRN (PONI network), is given by the stochastic differential equation (SDE)

dX = fXðP;O;N; IÞdt +
ffiffiffiffiffiffiffiffiffi
2=U

p
gXðP;O;N; IÞ dWX (Equation 44)

where fX is the deterministic component of the dynamics (drift), gX is a multiplicative noise term (intrinsic fluctuations), dWX is an in-

depentent Brownian increment andU is an effective system size (copy number) parameter that controls the size of the fluctuations. In

Equation 44, the noise must be interpreted according to the Itô convention: only in such convention the CLE can be read as the SDE

corresponding to the Fokker-Planck equation that results from expansion in the inverse of the system size U of the chemical master

equation.31,32,64 In this context, therefore, the convention is implicit in the modelling framework.

The drift terms for each gene are

fP = aPax H
+

 
KPax;Pol cPol

ð1+KPax;Oli OÞ2 ð1+KPax;Nkx NÞ2
!

� bPax P

fO = aOli H
+

 
KOli;Pol cPol

ð1+KOli;Nkx NÞ2 ð1+KOli;Irx IÞ2
1+fA KOli;GliA

1+KOli;GliðA+RÞ

!
� bOli O

fN = aNkx H
+

 
KNkx;Pol cPol

ð1+KNkx;Pax PÞ2 ð1+KNkx;Oli OÞ2 ð1+KNkx;Irx IÞ2
1+fA KNkx;GliA

1+KNkx;GliðA+RÞ

!
� bNkx N

fI = aIrx H
+

 
KIrx;Pol cPol

ð1+KIrx;Oli OÞ2 ð1+KIrx;Nkx NÞ2
!

� bIrx I

(Equation 45)

whereKX;Y is the binding affinity of the TF/species Y onto its site on gene X, fA is the binding cooperativity factor for Gli activator, cPol is

the (constant) concentration of RNAp, aX are the maximum production rates, and bX the degradation rates.
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The multiplicative noise terms, calculated from the CLE approximation, are

gP =

"
aPax H

+

 
KPax;Pol cPol

ð1+KPax;Oli OÞ2 ð1+KPax;Nkx NÞ2
!
+bPax P

#1=2

gO =

"
aOli H

+

 
KOli;Pol cPol

ð1+KOli;Nkx NÞ2 ð1+KOli;Irx IÞ2
1+fA KOli;GliA

1+KOli;GliðA+RÞ

!
+bOli O

#1=2

gN =

"
aNkx H

+

 
KNkx;Pol cPol

ð1+KNkx;Pax PÞ2 ð1+KNkx;Oli OÞ2 ð1+KNkx;Irx IÞ2
1+fA KNkx;GliA

1+KNkx;GliðA+RÞ

!
+bNkx N

#1=2

gI =

"
aIrx H

+

 
KIrx;Pol cPol

ð1+KIrx;Oli OÞ2 ð1+KIrx;Nkx NÞ2
!
+bIrx I

#1=2

(Equation 46)

(i.e. the sum of production and degradation rates for the gene of interest, scaled by the inverse system size, under square root) multi-

plied by a standard Gaussian white noise, independent for each gene. See table below for the parameter values used.

The integration of Equations 44, 45, and 46 is performed via the Euler-Maruyamamethod, with time step dt = 0:05 (10 times smaller

than the typical protein life time, given by the inverse degradation rates, b� 1 = 0:5). For gene X, this is

Xt+dt = fXdt +
ffiffiffiffiffiffiffiffiffiffiffiffiffi
U� 1dt

p
gX wX

t (Equation 47)

where fX and gX are evaluated at time t, and where wX
t is a normal-distributed random number with mean 0 and covariance

E½wX
t wY

t0 � = dX;Y dðt � t0Þ.
Parameters of the GRN model (dimensionality of the constants are indicated in the header to every section)

Symbol Meaning Value

Concentrations � [conc]

cPol RNAp concentration 0.8

Binding affinities � [conc]–1

KPax;Pol binding affinity of RNAp to Pax6 4.8

KOli;Pol binding affinity of RNAp to Olig2 47.8

KNkx;Pol binding affinity of RNAp to Nkx2.2 27.4

KIrx;Pol binding affinity of RNAp to Irx3 23.4

KOli;Gli binding affinity of Gli to Olig2 18.0

KNkx;Gli binding affinity of Gli to Nkx2.2 373.0

KPax;Oli binding affinity of Olig2 to Pax6 1.9

KNkx;Oli binding affinity of Olig2 to Nkx2.2 27.1

KOli;Nkx binding affinity of Nkx2.2 to Olig2 60.6

KNkx;Pax binding affinity of Pax6 to Nkx2.2 4.8

KPax;Nkx binding affinity of Nkx2.2 to Pax6 26.7

KOli;Irx binding affinity of Irx3 to Olig2 28.4

KIrx;Oli binding affinity of Olig2 to Irx3 58.8

KNkx;Irx binding affinity of Irx3 to Nkx2.2 47.1

KIrx;Nkx binding affinity of Nkx2.2 to Irx3 76.2

Cooperativity coefficients and noise intensity � 1

fA activation constant 10.0

U� 1 noise intensity 0.005

Degradation rates � [time]–1

bPax degradation rate of Pax6 2.0

bOli degradation rate of Olig2 2.0

bNkx degradation rate of Nkx2.2 2.0

(Continued on next page)
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Continued

Symbol Meaning Value

bIrx degradation rate of Irx3 2.0

Production rates � [conc][time]–1

aPax maximum production rate of Pax6 2.0

aOli maximum production rate of Olig2 2.0

aNkx maximum production rate of Nkx2.2 2.0

aIrx maximum production rate of Irx3 2.0
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Dynamics of a stochastic gradient

In the patterning task, we also include a dynamics for the morphogen gradient. We simulate a non-stationary stochastic field bSx;t, as

the empirical number density field bSx;t =
P

idð bXi

t � xÞ associated to a stochastic reaction-diffusion with.

d bXi

t =
ffiffiffiffiffiffiffi
2D

p
dWi

t (Equation 48)

and where particles are removed with independent rates k and added at x0 with rate J0. The SDE in Equation 48 provides an explicit

method to simulate the spatio-temporal dynamics of the stochastic field bSx;t. To do so, we simulate trajectories of Equation 48 via,

e.g. Euler-Maruyama method, with time discretisation dt, that is

Xi
t+dt = Xi

t +
ffiffiffiffiffiffiffiffiffiffiffi
2Ddt

p
wi

t (Equation 49)

with wi
t a normal-distributed random number with mean 0 and covariance E½wi

t w
j
t0 � = di;j dðt � t0Þ; in the time step between t and

t +dt, each particle is eliminated with probability kdt, and a burst of nb new particles is added at x0< 0 with probability J0dt= nb
(so that J0 is the overall average production rate, but with burst size nb). The number density field can be then defined with a spatial

resolution dx, as the count of the number of particles within ½x� dx=2; x +dx=2�, divided by dx. The resolution dx is chosen to be the

single-cell size.

We set the parameters of the dynamics as follows. 81 cells are aligned along one axis within ½0;1�, so dx = 1=80. The time discre-

tization dt is chosen as 5 times smaller than that for the PONI network, but configurations are taken every 5 steps. The free param-

eters of the dynamics must set a time scale, a length scale and a typical number of particles. We set the overall time scale of the

process through the degradation rate k. The length scale is the decay length l of the average gradient profile at steady state,

E
� bSx;t/N



fexpð � jx � x0jlÞ. This is fixed to 0.15 in all simulations, consistently with experimental measures.16 This decay length

can be derived analytically to be l =
ffiffiffiffiffiffiffiffiffi
D=k

p
, from which we fix the diffusion constant accordingly to be D = k l2. The typical density

is chosen to be the average number density at x = 0 at steady state, which isN0 = J0 e
� jx0 j=2kl. With a fixed burst rate r = J0= nb =

50, we modulate the burst size nb by inverting the expression for N0.

The ensemble average of the field S = E½ bS�, satisfies the PDE

vtS � DV2S + kS = J0 dðx � x0Þ (Equation 50)

By integrating the spatial part, we can write

vtS = J0

exp

 
� kt � ðx � x0Þ2

4Dt

!
ffiffiffiffiffiffiffiffiffiffiffi
4pDt

p : (Equation 51)

In Equation 51, the spatial variable enters only parametrically and the dynamics can be described as an ODE with time-dependent

production rates. Therefore, (ensemble) averages of the signal experienced at different spatial locations can be regarded as ‘‘inde-

pendent’’, but at the expense of allowing non-autonomous dynamics for the local signal.

Parameters used for the simulations in this work are l= 0:15 (in units of D-V axis length), k= 0:5 (equal to b=4 – See the table above,

and N0 = 5000.
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Multi-Agent control
Here we derive the Bellman equation for the multi-agent (MA) case. The equations are written for the discrete-time and discrete-state

case – as it is more transparent for a reinforcement learning implementation – but are easily generalized to continuous space and/or

time. The notation is explained in the below table.
Notation for multi-agent reinforcement learning (in parenthesis, the biological interpretation of the variables)

Symbol Meaning Value

Dynamics

N number of agents (simulated cells) 81

�� multi-agent (tissue-level) variable, e.g. x = fxigNi = 1 –

i agent (cell) index 1.N

xi;x state variable (gene expression, extracellular signal levels, memory variables) –

ui ;u action variable (intracellular effectors, memory variables production rates) –

p single-agent transition probability (single-cell stochastic dynamics) –

P multi-agent transition probability (tissue-level stochastic dynamics) –

p single-agent policy (single-cell control strategy) –

P multi-agent policy (tissue-level control strategy) –

Objective function

t exponential discounting time (differentiation rate) 5 (A.U.)

xi ;x target point (gene expression) –
Full multi-agent case

The multi-agent probability distribution at time t, rtðxÞ, satisfies the forward Kolmogorov equation

rt+1ðxÞ =
X
x
0
;u

0
Pðxjx0;u0ÞPðu0jx0Þ rtðx0Þ (Equation 52)

The goal of the agents is to maximize the expectation value of the discounted return (in the decision-making and reinforcement

learning literature, it is more customary to express the goal in terms of maximisation of rewards, rather than minimisation costs):

Rt =
XN
t0 = 0

gt0 rt+t0 (Equation 53)

with

rt = r
�
xt;ut

�
(Equation 54)

In the end, we will be interested in a reward of the form

rðx;uÞ= �q
x
ðxÞ � e

2
k uk2 (Equation 55)

where, e.g. q
x
ðxÞ = k x � xk2=2. This negative reward is a cost that penalises certain configurations of theMA system –implementing

the requirement to reach the target- and high values of control.

The objective function JP = EP½R0�, that is the ensemble average of R0 over the trajectories generated by the policy P, writes

J P =
X
t

gt
X
x;u;x

0
Pðx0jx;uÞPðujxÞ rtðxÞ rðx;uÞ

=
X
x;u;x

0
Pðx0jx;uÞPðujxÞ hðxÞ rðx; uÞ

(Equation 56)

where h is the discounted occupancy

hðxÞ =
XN
t = 0

gtrtðxÞ (Equation 57)
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We can introduce the quality (or state-action value) function, which is the expectation value of the return conditioned on the initial

state and action, Qt
Pðx;uÞ = E½Rt

��xt = x;ut = u�. We can write a recursive equation of the value function Qt
P, expressing the con-

ditional expectation value E½Rtjx;u� by making use of Equation 52:

Qt
Pðx;uÞ =

X
x0
Pðx0jx; uÞ

(
rðx;uÞ + g

X
u0
Pðu0jx0Þ Qt+1

P ðx0; u0Þ
)
: (Equation 58)

Since there is no finite horizon and neither rewards nor transition probabilities depend explicitly on time, we can seek for a station-

ary solution Qt
P = QP.

The principle of dynamic programming38,60 consists in maximizing the expected return –i.e. the objective function JP– by maxi-

mizing its conditional expectation at intermediate times, that is the value function. The optimal policyP�, then, is given in terms of the

quality function as

P�ðujxÞ = du;u�ðxÞ; with u�ðxÞ = argmax
u

Q�ðx; uÞ (Equation 59)

where the optimal quality function satisfies the Bellman equation

Q�ðx;uÞ =
X
x0
Pðx0jx; uÞ

�
rðx;uÞ + gmax

u0
Q�ðx0; u0Þ

�
: (Equation 60)

Independent agents

To reflect the requirement of each agent individually to reach their own target, we write q
x
ðxÞ =

P
iqxi ðxiÞ, where qx is some convex

function that has a minimum at x. This is true for the cost rate q
x
ðxÞ = k x � xk22 =

P
i k xi � xik22. So, the instantaneous reward for

the MA system is the sum of rewards for the individual agents, ci, that are functions of the single agent’s observations and actions:

riðx;uÞ= �qxi ðxÞ � e

2
k uk2 (Equation 61)

As discussed above, the MA policy P with respect to which we want to optimize the performance is of the form

PðujxÞ =
YN
i = 1

pðuijxiÞ (Equation 62)

that is, actions by individual agents are chosen independently according to the same single-agent policy p. We seek for solutions of

the Bellman equation of the form

Qt
Pðx;uÞ =

XN
i = 1

Qt
pðxi;uiÞ: (Equation 63)

By replacing Equations 62 and 63, into the Bellman Equation 58, we have

X
x0
Pðx0jx;uÞ

X
i

8<:rðxi;uiÞ + g
X
u0
i

p
�
u0
i

��x0i� Qt+1
p

�
x0i ;u

0
i

� � Qt
pðxi;uiÞ

9=;= 0 : (Equation 64)

Optimality, in this approximation, is

p�ð$jxÞ = du;u�ðxÞ; with u�ðxÞ = argmax
u

Q�ðx;uÞ (Equation 65)

where Q� denotes the optimal quality function solvingX
x0
Pðx0jx;uÞ

X
i

�
rðxi;uiÞ + gmax

u0
Q��x0i ;u0� � Q�ðxi;uiÞ

�
= 0 : (Equation 66)

This is approximately solved by minimizing the expectation of the square MA error

DQðx0; x;uÞ2 =
X
i

�
rðxi;uiÞ+gmax

u0
Q
�
x0i ;u

0� � Qðxi;uiÞ
�2

(Equation 67)

with respect to the Q,

Q�xargmin
Q

X
x0
Pðx0jx; uÞ DQðx0; x;uÞ2: (Equation 68)
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The independent-agent ansatz is exact when the transition probabilities Pðx0jx;uÞ can be factorized into single-agent transition

probabilities

Pðx0jx;uÞ =
YN
i = 1

pi

�
x0i
��xi;ui

�
; (Equation 69)

that is, when the dynamics of each agent is independent of other agents. This can be seen intuitively for a static and deterministic

gradient, but also for a stochastic gradients such as in Petkova et al.,46 where no dynamics in the morphogen is taken into account.

In such cases, the constant (statistics of the) morphogen signal at the location of a given cell enters as a parameter in the quality

function Q: it’s role is to ‘‘select’’ the specific single-agent problem for that particular cell. This effectively makes the MA task trivially

decomposed into single-agent ones. In general, when the morphogen gradient is modelled as a diffusion-degradation process –as in

this case– this approximation is not valid. The limit of a stationary gradient could be recovered only when the morphogen concen-

tration profile reaches a steady state fast enough (high k) compared to other system variables.

One can show that the average of the concentration field over the noise, S = E½ bS�, can be calculated as the solution of independent

differential equations with local time-dependent rates (see Equation 51). So, even though we may be able to express the average

dynamics of the morphogen at individual cells locations as independent, 1) fluctuations will anyway be correlated and 2) we do so

at the cost of introducing time dependence.

Here, we assume that it is possible to approximate the transition probability P by a factorized form as in Equation 69, at the expense

of introducing auxiliary variables fMhgNmem

h = 1, included in the ‘‘state’’ of the single cell along with its gene expression G and the local

(stochastic) morphogen signal bS. Thesememory variables integrate over time the extracellular signal S andmodel the effective mem-

ory. We model these as the species in a signalling cascade, whereby bS directly influences the production ofM1, which in turn affects

production of M2 etc.,

tM
dM1

dt
= r1 bS �M1

tM
dMh

dt
= rh Mh�1 �Mh; for h> 1

(Equation 70)

where rh are components of the control vector u, therefore functions of the single cell state variables – bound between ± 1. While the

coefficients frhgNmem

h contribute to a generally non-linear dynamics in signal interpretation –possibly integrating feedback from any of

the GRN components– the linear dependence of the production rate of Mh on Mh� 1 represents a feed-forward backbone architec-

ture. In this work, this architecture is motivated by the experimental knowledge about the Shh signalling pathway

We choose the overall time constant tM = 1; this value has been chosen to be comparable with the typical timescales of the GRN

(see table in the section ventral neural-progenitor GRN model (PONI network), reflecting the experimental observation about the dy-

namics of intermediate species in the Shh signalling.16

RL solution
The approximate solution of Equation 64 via reinforcement learning (RL) requires the sampling of the tuples ðxt;ut;rt;xt+1Þ. State-of-
the-art deep-RL algorithms— such as DQN,61 DDPG,65 TD3,41 SAC66 etc— solve the problem of the stability of learning by storing a

replay buffer B with the last Nreplay tuples visited, and estimating gradients of the loss functions by averaging over a small number

Nbatch (batch size) of them.

Here we use TD3,41 which is an actor-critic deep-RL algorithm, designed for continuous control problems. Similar to other actor-

critic algorithm, it stores function approximators for both the policy (actor), and the value (critic) function. These are represented by

deep neural networks with parameters 4 and q, respectively (pxp4 and QxQq).

In order to reduce the bias in the estimate of the value function Q, TD3 uses two critics (T for ‘‘twin’’). In standard Q-learning, the

value of the state after the transition is taken to be the maximum over all actions of the Q function evaluated at that state, by boos-

trapping. This is a problem that is present also in actor-critic algorithms like DDPG, where the ‘‘maximization over actions’’ is implicit

in the policy-gradient formula, which typically leads to an overestimation of the value (as demonstrated in the paper), and therefore to

sub-optimal policies.

As in other deep-RL AC algorithms, in order to make learning more stable, TD3 stores two copies of each function approximator:

the first is updated on-line; the second is used as target and integrates the first at a slow rate, and with delay. TD3 uses a SARSA-like

target for the value function, by sampling the next action using the target policy.

We here use the TD3 algorithm for episodic tasks (see Fujimoto et al.41 for details). We use a = 10� 3, b = 10� 3. All other details

are the same as in the original paper. The discount factor (which is a property of the task!) g = 0:99, which for time step dt = 0:005

corresponds to the exponential discount time in continuous time t x 5.

In the following, the notation h ibatch indicates a sample mean over a batch.

Algorithm 1. Twin Delayed Deep Deterministic (TD3) policy gradient for episodic tasks.

Initialize actor and critic networks with parameters 4, q1 and q2

Initialize target networks: 40)4, q01)q1 and q02)q2
e10 Cell Systems 14, 940–952.e1–e11, November 15, 2023
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Initialize replay buffer B

Define exploration parameters s, regularization parameter ~s, target learning rate t, and optimizers learning rates a and b

for Nep episodes do:

Initialize agent in state x0 � r0
for t = 0.T� 1 (T cutoff time) or until terminal state do

Select control, ut = p4ðxtÞ+ e, with exploration noise e� N ð0;sÞ
Observe reward rt and new state xt+1

Store the tuple ðxt;ut; rt; xt+1Þ in the buffer B

Sample Nbatch random tuples ðx;u; r; x0 Þ
For each of these, compute target y)r +g mini˛ f1;2gQq0i

ðx0;u0Þ, where u0 = p40 ðx0Þ+ e, with e� N ð0;~sÞ
Update the critic networks (‘‘)a’’ indicates gradient-based optimizer step with learning rate a):

qi)aVqi Cðy � Qqi ðx;uÞ Þ2Dbatch
if episode multiple of d (delay) then

Update on-line policy network with deterministic policy gradient:

4)bV4CVu0Qq1ðx;u0Þju0 = p4ðxÞV4p4ðxÞDbatch
Update the target networks:

40)ð1 � tÞ40 + t 4

q0i)ð1 � tÞ q0i + t qi

In the case of theMAproblemdescribed above, we need tomodify this algorithm by storing transitions of theMA system, defining a

target for each individual agent (based on their single-agent rewards, states and actions), and averaging gradients over the agents as

well. This is detailed in algorithm 2. The learning rates here are a= 3310� 5 and b = 10� 5.

Algorithm 2. Multi-Agent Twin Delayed Deep Deterministic (TD3) policy gradient for episodic tasks

Initialize actor and critic networks with parameters 4, q1 and q2

Initialize target networks: 40)4, q01)q1 and q02)q2

Initialize replay buffer B

Define exploration parameters s, regularization parameter ~s, target learning rate t, and optimizers learning rates a and b

for Nep episodes do:

Initialize the N agents in state x0 � r0
for t = 0.T� 1 (T cutoff time) or until terminal state do

Select control, ut = p4ðxtÞ+ e, with exploration noise e� N ð0;sÞ
Observe reward rt and new state xt+1

Store the tuple ðxt;ut; rt; xt+1Þ in the buffer B

Sample Nbatch random tuples ðx;u; r; x0 Þ
For each of these, and for each agent j,

compute targets yj)rj +g mini˛ f1;2gQq0i
ðx0j ;u0jÞ, where u0j = p40 ðx0j Þ+ ej, with ej� N ð0;~sÞ

Update the critic networks

qi)aVqi CN
� 1
PN

j = 1

�
yj � Qqi

�
xj;uj

� �2
Dbatch

if episode multiple of d (delay) then

Update on-line policy network with deterministic policy gradient:

4)bV4CN� 1
PN

j = 1Vu0Qq1ðxj; u0Þju0 = p4ðxjÞV4p4ðxjÞDbatch
Update the target networks:

40)ð1 � tÞ40 + t 4

q0i)ð1 � tÞ q0i + t qi
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