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ABSTRACT
Solving the Liouville–von-Neumann equation using a density operator provides a more complete picture of dynamical quantum phenomena
than by using a wavepacket and solving the Schrödinger equation. As density operators are not restricted to the description of pure states,
they can treat both thermalized and open systems. In practice, however, they are rarely used to study molecular systems as the computational
resources required are even more prohibitive than those needed for wavepacket dynamics. In this paper, we demonstrate the potential utility
of a scheme based on the powerful multi-layer multi-configurational time-dependent Hartree algorithm for propagating multi-dimensional
density operators. Studies of two systems using this method are presented at a range of temperatures and including up to 13 degrees of
freedom. The first case is single proton transfer in salicylaldimine, while the second is double proton transfer in porphycene. A comparison is
also made with the approach of using stochastic wavepackets.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0172956

I. INTRODUCTION

Quantum dynamics simulations, which solve the time-
dependent Schrödinger equation (TDSE), have become standard
computational technique to understand the quantum behavior of
molecular systems. In particular, they are used to great effect in
describing the time-evolution of a system after photo-excitation
and in helping to unravel the signal provided by time-resolved
spectroscopic experiments. They also have utility in describing the
fundamental reactivity of atoms and molecules and in other situa-
tions, such as proton and electron transfer where quantum effects
dominate the dynamics.

Solving the TDSE yields the system wavefunction as an evolv-
ing superposition of states, known as a wavepacket. A wavepacket,
however, is restricted to the description of pure states in which the
superposition of states is coherent. While this is a complete descrip-
tion for closed-system dynamics at 0 K, what happens when the
system is open (i.e., interacts with an environment) or is at finite

temperature? Accurately modeling and predicting the dynamics of
thermalized open systems are key to the understanding of almost all
chemical and biological processes as no process occurring in nature
is truly ever a closed system at 0 K.

Recent studies have shown that temperature effects can play an
important role in the quantum dynamics in a range of systems, such
as nanoparticles,1 surface adsorption,2 and liquid water.3 They are
also important to correctly describe the electron transfer process in
solar cells, which clearly do not have working temperatures of 0 K.
There has even been evidence that dye sensitized solar cells, unlike
first generation silicon based solar cells, actually increase in effi-
ciency with temperature.4,5 Therefore, investigating these systems at
working temperatures is critically important for the goal of creating
more efficient, renewable energy sources.

The TDSE is no longer sufficient to simulate these types
of systems, which must be described by an incoherent superpo-
sition of states. A density operator representation is, therefore,
required for a full treatment, and the Liouville–von-Neumann (LvN)
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equation must be solved in place of the TDSE. The advantage of a
density matrix approach, however, is that not only thermalized sys-
tems can be described but also open systems can be treated with an
environment described by a dissipative operator.6–9

The disadvantage, however, is that the computational effort
required to solve the LvN scales quadratically with system size com-
pared to the TDSE. Given that the latter is a hard computational
problem with an underlying exponential scaling with system size,
density operators have not seen much use in recent years as they are
restricted to very small systems.

For propagating wavepackets, multi-configuration time-
dependent Hartree (MCTDH) has proved itself to be one of the
most general and powerful algorithms available, although there
are alternatives such as time-dependent coupled cluster meth-
ods and methods based on the time-dependent density matrix
renormalization group.10–12 By providing a time-dependent tensor
contraction scheme for the underlying primitive basis used in
quantum dynamics simulations, it is able to treat much larger
systems than conventional numerical solutions to the TDSE, which
require huge grids. In the multi-layer (ML-MCTDH) form,13–15

the TDSE for systems with over 1000 degrees of freedom has been
treated.16 Density operators have also been previously propagated
with the MCTDH approach, termed the ρMCTDH method, with
some success.17–19 Here, we revisit this direction of research using
an ML-MCTDH expansion to show how multi-dimensional density
matrices may be propagated.

A number of other methods have been developed, which allow
for the simulation of multi-dimensional dynamics at finite tempera-
tures. Some are based on the MCTDH method for solving the time-
dependent Schrödinger equation,20–23 such as statistical MCTDH
approaches24,25 and thermofield MCTDH.26 Statistical approaches
take an average over randomly sampled thermalized wavepackets
to build up the density matrix, thus keeping the scaling as for solv-
ing the TDSE, although many runs may be required for a converged
result. The Thermofield approach maps the density matrix dynamics
onto a set of states, including an effective set of bath mode, turning
the problem into propagating a wavefunction with a doubling of the
number of vibrational modes. Other approaches are based on tensor
trains27 and the density matrix renormalization group (DMRG).28,29

These methods use tensor contraction schemes to break the natural
exponential scaling of solving the TDSE. They can be related to the
ML-MCTDH method, which uses a more general tensor contraction
scheme.30

Proton transfer (PT) is a temperature sensitive process and
is a common rate limiting step in enzymes and other biological
systems.31,32 The light mass of the proton means tunneling will be
important at temperatures below the reaction barrier, and so PT
needs to be modeled using quantum dynamics simulations for a
correct description.

In this paper, after an overview of the theory, two systems will
be treated. The first is salicylaldimine, which is a rigid molecule with
an asymmetric PT between a nitrogen and oxygen atom. It has been
studied previously using wavepacket dynamics,33 and the same sim-
ple model potentials will be used to show the scaling behavior of
different density matrix approaches with up to 13 DOFs included
in largest simulations. The temperature behavior as a function of
system size will also be investigated. A second system based on
porphycene, again using a Hamiltonian from previous wavepacket

dynamics,34 will then be investigated. This includes a double PT,
and the behavior with the temperature including up to 10 degrees
of freedom will be presented.

II. THEORY
A. Solving the TDSE

If a system can be described by a pure state with wavefunction
Ψ(t), its time-evolution is given by the TDSE,

i
∂Ψ(t)
∂t

= ĤΨ(t), (1)

where Ĥ is the Hamiltonian of the system. To numerically solve the
TDSE, one approach is to expand the multi-dimensional wavefunc-
tion into a time-independent “grid” basis and use the Dirac–Frenkel
variational principle,35

⟨∂Ψ∣H − i
∂

∂t
∣Ψ⟩ = 0. (2)

Arguably, the most efficient of these methods to emerge is the
MCTDH method.20,21

In the following, the MCTDH method is described along
with its multi-layer (ML-MCTDH) extension, before moving on to
the density matrix variants, ρMCTDH and ML-ρMCTDH. In the
MCTDH formalism, there is a gauge constraint required to ensure
that the time-dependent basis functions remain orthonormal.21 In
the following, the standard gauge in which the constraint vanishes is
chosen.

1. MCTDH
The MCTDH approach expands the wavefunction into a direct-

product of some chosen number p sets of time-dependent basis
functions, φ(κ), known as single-particle functions (SPFs),

Ψ(Q1 . . .Qp, t) =
n1

∑
j1=1
⋅ ⋅ ⋅

np

∑
jp=1

Aj1...jp(t)
p

∏
κ=1

φκjκ(Qκ, t), (3)

where A j1... jp(t) are the time-dependent expansion coefficients
and κ is the mode number in the system with coordinate Qκ.
These mode coordinates are typically a set of system coordinates
Qκ = {q1, q2, . . .}. The SPFs themselves are further expanded into
a linear combination of static primitive basis functions, with time-
independent coefficients. These static basis functions usually take
the form of a discrete variable representation (DVR),21,36

φκjκ(Qκ, t) =∑
α

cαj(t)χα(Qκ), (4)

where χα(Qκ) are the time-independent DVR functions. Expanding
the wavefunction in this way allows the results to be converged, from
the fast, but inaccurate, limiting case of Time-Dependent Hartree
(TDH) with nk = 1, up to the complete solution with nk = Nk.21 The
latter is a numerically exact solution of the TDSE within the limits of
accuracy given by the basis set and integration schemes used.

We now introduce the compact notation for the wavefunction
expansion,

Ψ(Q, t) =∑
J

AJ(t)ΦJ(Q, t), (5)
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where ΦJ is an n-dimensional Hartree product configuration, AJ are
the expansion coefficients, J is a multi-index subscript J = j1, . . . , jp,
and Q = {Q1, . . . , Qp}.

By applying the Dirac–Frenkel variational principle to the
MCTDH wavefunction ansatz, two coupled equations of motion
(EOM) can be derived. The first represents the evolving coefficients,

iȦJ =∑
L
⟨ΦJ ∣H∣ΦL⟩AL, (6)

where ΦJ is a p-dimensional Hartree product of the SPFs (a
configuration) and AJ are the expansion coefficients.

The second EOM, derived for the SPFs, is

iφ̇j
κ
= (1 − Pκ)∑

m,l
(ρκj,m)

−1
⟨Ĥ⟩κm,lφ

κ
l , (7)

where Pκ is a projection operator defined as

Pκ =
nκ
∑
j=1
∣φκj⟩⟨φ

κ
j ∣ (8)

and ρκj,l is a density matrix defined as

ρκj,l = ⟨Ψ
κ
j ∣Ψ

κ
l ⟩, (9)

where Ψκ
l is a “single-hole” wavefunction, which excludes the

DOF κ,

Ψκ
l =

n1

∑
j1=1
⋅ ⋅ ⋅

nκ−1

∑
jκ−1=1

nκ+1

∑
jκ+1=1

⋅ ⋅ ⋅

np

∑
jp=1

Aj1...jκ−1 ljκ+1...jpφ
1
j1 . . .φ

κ−1
jκ−1φ

κ+1
jκ+1 . . .φ

p
jp

.

(10)
Therefore, by using this single-hole notation, summing over all l
gives the full wavefunction,

Ψ =
nκ
∑
l=1

ψκl Ψ
κ
l . (11)

Thus, ⟨Ψκ
j ∣Ψκ

l ⟩ results in the integration over all the DOF except the
κth. Here, ⟨Ĥ⟩ is the mean-field operator acting on the SPFs,

⟨Ĥ⟩κjl = ⟨Ψ
κ
j ∣Ĥ∣Ψ

κ
l ⟩. (12)

2. ML-MCTDH
Although the MCTDH approach is able to treat larger sys-

tems compared to the standard approach, which expresses the
wavefunction directly on the time-independent grid, it still has lim-
itations with regard to memory requirements and computational
efficiency.22 To improve its utility, we move to a multi-layer version,
termed ML-MCTDH. The key to this method is to expand each SPF
recursively in an “MCTDH-like” form to create “layers.”13,16 In what
follows, the nomenclature developed by Manthe13 is used.

To form the top layer, the wavefunction is expanded as before
in MCTDH into configurations, ϕJ , that are products of SPFs,

Ψ(q1 ⋅ ⋅ ⋅ q f , t) =∑
J

A1
J (t)ϕ

1
J (q1 ⋅ ⋅ ⋅ q f , t)

= ∑
j1 ⋅ ⋅ ⋅jd1

A1
j1 ⋅ ⋅ ⋅ jd1

(t)φ1:1
j1 (q

1:1, t) ⋅ ⋅ ⋅φ1:d1
jd1
(q1:d1 , t), (13)

where superscript 1 denotes the first layer, d1 is the dimensionality
of this layer (number of sets of SPFs), and q1:κ

= (q1 . . . qdκ) is the set
of coordinates for the κth mode (set of SPFs).

In the next layer, each SPF is expanded into a further set of
lower-dimensional SPFs, denoted by superscript 2,

φ1:κ
j =∑

k
A2:κ

j:kϕ
2:κ
k

= ∑
k1 ⋅ ⋅ ⋅kdκ

A2:κ
j:k1 ⋅ ⋅ ⋅kdκ

(t)φ2:κ1
k1
(q2:κ1, t) ⋅ ⋅ ⋅φ2:κdκ

kdκ
(q2:κdκ , t). (14)

The superscript 2 : κ denotes functions (and coefficients) in the sec-
ond layer coming from the κth mode from the top layer. These
functions can, in turn, be expanded as

φ2:κμ
j =∑

k
A3:κμ

j:k ϕ
3:κμ

= ∑
k1 ⋅ ⋅ ⋅kdκμ

A3:κμ
j:k1 ⋅ ⋅ ⋅kdκμ

(t)φ3:κμ1
k1
(q3:κμ1, t) ⋅ ⋅ ⋅φ3:κμdκμ

kdκμ
(q3:κμdκμ , t).

(15)

Further layers take the same form as this with respect to the layer
above. Note that the superscript keeps track of where the function
comes from, running down the expansion tree from the top layer
(κμ) in addition to the layer number [3 in Eq. (15)] and function
number in that layer (e.g., k1). Therefore, this can be simplified
notationally into a single index so that (15) can be written as

φ2:κ
j = ∑

k1 ⋅ ⋅ ⋅kdκ

A3:κ
j:k1 ⋅ ⋅ ⋅kdκ

(t)φ3:κ1
k1
(q3:κ1, t) ⋅ ⋅ ⋅φ3:κdκ

kdκ
(q3:κdκ , t). (16)

Note also that coefficients require a subscript, j, to denote which
function in the layer above they relate to, or in general,

φm:κ
j (q

m:κ, t)

= ∑
k1 ⋅ ⋅ ⋅kd

Am+1:κ
j:k1 ⋅ ⋅ ⋅kd

(t)φm+1:κ1
k1

(qm+1:κ1, t) ⋅ ⋅ ⋅φm+1:κd
kd

(qm+1:κd, t)

=∑
K

Am+1:κ
j:K (t)ϕm+1:κ

K (qm:κ, t). (17)

Note that the relationship to the layer above on the left-hand side
φm:κ

j is implicit—this is simply the jth function of the κth mode of
the mth layer with dimension d. The history on the right-hand side,
φm+1:κλ

kλ , only explicitly goes up one layer—this is the kλth function of
the mode κλ in layer m + 1, where κλ means the λth set of functions
used to expand the κth mode of the layer above. The functions {φκλk }

span the set of coordinates qm+1:κλ, which are a subset of qm:κ. Equa-
tion (17) also defines layer configurations, ϕm:κ

k . As a final note on the
structure of the ML-MCTDH wavefunction, it should be mentioned
that the lowest level of the expansion is usually a time-independent
DVR, as with standard MCTDH, but it could also be a Gaussian
wavepacket (GWP) basis.37

It is useful to define layer single-hole functions (SHFs). As for
MCTDH, the top layer wavefunction can be written as

Ψ(q1 ⋅ ⋅ ⋅ q f , t) =∑
j
ψ1:κ

j φ1:κ
j , (18)
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with the SHF ψ1:κ
j being the wavefunction excluding the SPFs for

mode κ. Expanding φ1:κ
j using (17) gives

Ψ =∑
j
ψ1:κ

j ∑
k1 ⋅ ⋅ ⋅kd

A2:κ
j:k1 ⋅ ⋅ ⋅kd

φ2:κ1
k1
⋅ ⋅ ⋅φ2:κλ

kλ ⋅ ⋅ ⋅φ
2:κd
kd

(19)

=∑
k
ψ2:κλ

k ϕ2:κλ
k , (20)

where (19) and (20) define the relationship between SHFs on
different layers. The generalization of (20) is

Ψ =∑
k
ψm:κλ

k φm:κλ
k (21)

=∑
k
ψm:κλ

k ∑
J

Am+1:λ
k:J ϕm+1:λ

J . (22)

The equations of motion are obtained as usual using the
Dirac–Frenkel variational principle. First, the top layer coefficients
δA′J is varied, and taking the common MCTDH gauge constraint
⟨ϕJ ∣ϕ̇K⟩ = 0 to retain orthonormality of the SPFs, we obtain the usual
MCTDH equations of motion,

iȦ1
J =∑

K
⟨ϕ1

J ∣H∣ϕ
1
K⟩A

1
K. (23)

Varying the basis functions is equivalent to varying all the expansion
coefficients on all the layers—these are the remaining “parameters”
that define the wavefunction. These can be found by using the SHF
of (22).

Analogously to MCTDH, it is useful to define the layer density
matrices,

ρm:λ
jj ′ = ⟨ψ

m−1:κλ
j ∣ψm−1:κλ

j ′ ⟩, (24)

the layer mean-field matrices,

Hm:λ
jj ′ = ⟨ψ

m−1:κλ
j ∣H∣ψm−1:κλ

j ′ ⟩, (25)

and finally the layer SPF projector,

Pm:λ
=∑

j ′
∣φm:λ

j ′ ⟩⟨φ
m:λ
j ′ ∣ (26)

= ∑
j ′KK′
∣ϕm:λ

j ′K⟩A
m:λ
j ′K A∗j ′K′⟨ϕ

m:λ
K′ ∣. (27)

Using these, we can write the general form of the EOMs for the
expansion coefficients for some arbitrary mth layer (including the
lowest layer) as

iȦm:λ
ℓK = (ρ

m:λ
ℓ j )

−1
∑
j ′K′
⟨ϕm:λ

K ∣(1 − Pm:λ
)Hm:λ

jj ′ ∣ϕ
m:λ
K′ ⟩A

m:λ
j ′K′. (28)

Note that (28) is identical to the usual MCTDH equations of motion
for the SPFs except that a layer dependent basis representation is
being used. In fact, standard MCTDH can be thought of the special
case where the ML tree consists of just one layer. Equations (23) and
(28) are the ML-MCTDH EOMs, which can be implemented using
the recursive structure of Manthe.13

This recursive expansion can be represented as a tree (e.g., see
Fig. 1 in the supplementary material), and each lower layer set of

SPFs is represented by further “nodes.” Each node is connected to
nodes in the lower layer, representing the expansion into a lower-
dimensional set of SPFs, and at the bottom layer by the standard
primitive basis expansion of the SPFs. Expressing the nuclear wave-
function in this layered way is very flexible and can vary in how many
layers are required.14

The ML-MCTDH approach is more complicated than standard
MCTDH, and for smaller systems, it is much less efficient.14 How-
ever, as the system size increases, ML-MCTDH combines modes
into smaller groups, now with a new layer of more manageable
coefficients. Further reading on the specifics of the EOM for the
ML-MCTDH method is widely available in the literature, for
instance, Wang et al.16,38,39 and Meyer et al.14,40–42 presented
particularly thorough derivations.

B. Solving the LvN equation
If a system is not in a pure state, one can no longer express

the system as a wavefunction and it can only be fully described by a
density operator,43

ρ =∑
i

Pi∣ψi⟩⟨ψi∣, (29)

where Pi is the probability of being in the pure state ψi. Repre-
senting the system using probabilities offers a way of describing
an incoherent superposition of states. These are the outcome of
the thermalization of a system interacting with an environment.44

Instead of solving the Schrödinger equation as one would for a pure
state propagation, the time-evolution of the density matrix is given
by the Liouville–von-Neumann equation,

ρ̇ = −i[Hρ − ρH] = L (ρ), (30)

where L is the Liouvillian superoperator.
A variational principle analogous to the Dirac–Frenkel princi-

ple has been used to solve the LvN within the MCTDH formalism.44

The ρMCTDH method, therefore, operates in a Liouville space
rather than in a Hilbert space and uses the Hilbert–Schmidt norm in
place of the usual scalar product. For two matrices (operators), A
and B, this norm is defined by the trace of the product

⟨⟨A∣B⟩⟩ = Tr (A†B). (31)

Two formalisms for ρMCTDH have been developed, which are dis-
tinguished by the type of basic functions used. These are called types
I and II, and their mathematical and numerical properties were
examined by Raab and Meyer.18,19

1. ρMCTDH(I)
Type I density operators are analogous to the MCTDH scheme

for wavefunction expansion, as in Eq. (3), but instead, the density
operator is expanded into single-particle density operators (SPDOs),

ρ(Q1, . . . , Q f , Q′1, . . . , Q′f , t) =
n1

∑
τ1=1

. . .
n f

∑
τ f =1

Bτ1...τ f (t)

×

f

∏
κ=1

σ(κ)τκ (Qκ, Q′κ, t), (32)
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where Bτ1...τ f are the expansion coefficients and σ(κ)τκ are the
SPDOs.

As a density operator is Hermitian, the B coefficients must be
real and the SPDOs are Hermitian. These properties are conserved
throughout the propagation.22 As with the standard wavefunction
MCTDH, this representation is not unique and constraints are
necessary to ensure orthonormality. The following quantities in ρ-
MCTDH are defined analogously to (8), (9), and (12). First, the new
ρMCTDH density matrix is defined as

Dκ
μν =

κ
∑
τ

B∗τκμBτκν . (33)

The projector operator is

Pκ =
nκ
∑
ν=1
∣σκν ⟩⟩⟨⟨σ

κ
ν ∣, (34)

and finally, the mean-field Liouvillian superoperator is

⟨L⟩
κ
μν = ⟨⟨Π

κ
μ∣(L )Π

κ
ν⟩⟩, (35)

where Πκ
μ is a single-hole density matrix, similar to the MCTDH

single-hole function. The double brackets in the above equations
indicate the Hilbert–Schmidt norm. The operation takes place in
Liouville space, rather than in the Hilbert space, taking the trace of
the product of matrices rather than a vector product.

Given these definitions, the EOM for the coefficients
and the SPDOs of the type I density matrix operator from
Ref. 44 are

iḂτ =∑
τ′
⟨⟨Ωτ ∣LΩτ′⟩⟩Bτ′ , (36)

iσ̇ κ = (1 − Pκ)(Dκ
)
−1
⟨L⟩

κσκ, (37)

where Ωτ is a Hartree product of SPDOs.

2. ρMCTDH(II)
The SPDOs of ρMCTDH(I) can further be expanded

using the SPFs of the MCTDH method for wavefunctions σ(κ)τκ

= ∣φ(κ)jκ (Qκ)⟩⟨φ(κ)lκ
(Q′κ)∣ with τκ = (jκ, lκ), and SPFs {φj}, leading to

the ansatz

ρ(Q1, . . . , Q f , Q′1, . . . , Q′f , t) =
n1

∑
j1 ,l1=1

⋅ ⋅ ⋅

n f

∑
j f ,l f =1

B1...j f ,l1...l f (t)

×

f

∏
κ=1
∣ψ(κ)jκ (Qκ, t)⟩⟨ψ(κ)lκ

(Q′κ, t)∣.

(38)

This is known as the type II density operator. The EOM for the
coefficients for the type II density matrices from Ref. 44 is

iḂJ,L = ⟨ΦJ ∣L (ρ)∣ΦL⟩, (39)

and the EOM for the SPFs for ρMCTDH(II) is

iψ̇ k
= (1 − Pk

)Tr{L(ρ)ρ}k(D2,k
)
−1φk, (40)

where D is the single-particle reduced density matrix,

D2,k
jj ′ =∑

l
Dk

jlj ′ l =∑
L,Jk

B∗Jkj ′ ,LBL,Jkj , (41)

where the aforementioned multi-index notation is used.
The extra effort of ρMCTDH(I) compared to wavepacket

MCTDH is due to the extra dimension of the SPDOs compared to
SPFs, and the bottleneck to this method lies in this high dimension-
ality. In contrast, as the type II density operator is expanded into
SPFs, the bottleneck now lies in the expansion coefficients of these
SPFs. ρMCTDH(I) will, therefore, be more efficient at high temper-
atures as the thermalization is automatically incorporated into the
SPDOs rather than needing many configurations and coefficients as
in ρMCTDH(II).

As a consequence of adhering to the Dirac–Frenkel variational
principle, the MCTDH wavefunction conserves both total probabil-
ity and energy. However, while this is still the case for ρMCTDH(II),
for ρMCTDH(I), Tr(ρ2

) and Tr(ρ2H) are conserved rather than
Tr(ρ) and Tr(ρH).18 The conservation of Tr(ρ)will be achieved in a
converged calculation as an accurate description of the exact density
matrix is obtained.

3. ML-ρMCTDH
A natural way to improve the scaling of ρMCTDH is to use

the ML-MCTDH formalism for density matrices to enable larger
calculations to be made. The ML-ρMCTDH method relates to
ρMCTDH in the same way that ML-MCTDH relates to MCTDH.
In essence, the SPDOs used to expand the full density matrix in
the ρMCTDH equation [Eq. (32)] can be further expanded through
the ML-algorithm. This new construction has analogous EOMs to
the ML-MCTDH SPFs and coefficients, where the Hamiltonian
operator is replaced with the Liouvillian operator. This novel tech-
nique can open the door to treating larger systems in a complete
and accurate way, while also including temperature and solvent
effects.

The derivation of the ML-ρMCTDH EOMS follows the same
steps as ML-MCTDH. The ρMCTDH(I) density matrix is written in
terms of SPDOs,

ρ(q1 ⋅ ⋅ ⋅ q f , q′1 ⋅ ⋅ ⋅ q
′
f , t) = ∑

j1 ⋅ ⋅ ⋅jρ
Aj1 ⋅ ⋅ ⋅jρσ

(1)
j1
⋅ ⋅ ⋅ σ(ρ)jρ .

By using SPDOs on the top layer and each subsequent layer, the
structure of the full ML expansion is thus the same as the stan-
dard ML formalism, but using a basis of density matrices rather than
SPFs. Hence, using the Hilbert–Schmidt norm of ρMCTDH, the
variational derivation above is valid with the following substitutions:
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⟨δΨ∣(H − i
∂

∂t
)Ψ⟩ = 0z→ ⟨⟨δρ∣( L̂ − i

∂

∂t
)ρ⟩⟩ = 0,

Ψ =∑
J

A1
Jϕ

1
J z→ ρ =∑

J
A1

JΩ
1
J top layer,

ϕm:κ
J = φm:κ

j1 ⋅ ⋅ ⋅φ
m:κ
jdκ
z→ Ωm:κ

J = σm:κ
j1 ⋅ ⋅ ⋅ σ

m:κ
jdκ

layer configurations,

φm:κ
j =∑

J
Am+1:κ

J ϕm+1:κ
J z→ σm:κ

j =∑
J

Am+1:κ
J σm+1:κ

J SPDO expansion,

Ψ =∑
j
ψm:κλ

j φm:kλ
j z→ ρ =∑

j
Πm:κλ

j σm:κλ
j single − hole SPDOs.

Thus, it follows that the top layer equation [similar to (23)] is

iȦ1
J =∑

K
⟨⟨Ω1

J ∣L(Ω1
K)⟩⟩A

1
K , (42)

and the lower layer coefficients [as (28) for ML-MCTDH]

iȦm:λ
ℓK = (D

m:λ
ℓ j )

−1
∑
j ′K′
⟨⟨σm:λ

K ∣(1 − Pm:λ
)⟨L ⟩m:λ

jj ′ σ
m:λ
j ′ ⟩⟩A

m:λ
j ′K′ , (43)

where we have defined the following quantities for the layers:

Dm:λ
ℓ j = ⟨⟨Π

m:λ
ℓ ∣Π

m:λ
j ⟩⟩ ‘reduced density matrices’, (44)

⟨L⟩m:λ
jj ′ = ⟨⟨Π

m:λ
j ∣L(Πm:λ

j ′ )⟩⟩ ‘mean-field Liouvillian’, (45)

and the projector

Pm:λ
=∑

k
∣σm:λ

k ⟩⟩⟨⟨σ
m:λ
k ∣. (46)

For type II, the density matrix is written in terms of SPFs rather
than SPDOs,

ρ =∑
JK
∣ϕ1

J ⟩B
1
JK⟨ϕ

1
K ∣ top layer, (47)

with configurations ϕ′K as for ML-MCTDH and a matrix of coeffi-
cients. Following the work of Raab et al. and extending to ML, the
top layer coefficients of equations of motion come from (42) to give

iḂ1
JL = ⟨ϕ

1
J ∣L(ρ)∣ϕ1

L⟩, (48)

and the SPFs again come from (28) to give

iȦm:λ
ℓK = (D

(2)m:λ
ℓ j )

−1
∑
j ′K′
⟨ϕm:λ

K ∣(1 − Pm:λ
)Tr{L(ρ)ρ}λ∣ϕm:λ

K′ ⟩A
m:λ
jK′.

(49)

III. COMPUTATIONAL DETAILS
The algorithms outlined above have all been implemented in

the Quantics package45,46 and, as shown below, are tested on a ther-
malized PT system. Initial thermalization of a density matrix can be
achieved by propagating in imaginary time. This technique finds the
lowest eigenvalue of a wavefunction and for wavepacket propagation
is known as energy relaxation.21,47

The time-evolution of a wavepacket can be written as

Ψ(t) = exp (−iHt)Ψ(0). (50)

This equation can be converted to propagation in temperature by
using the following limit to map from the time domain to the
temperature domain it → 1

kT so that

Ψ(T) = exp(−
H
kT
)Ψ(∞). (51)

The same idea for a density matrix propagation results in a
thermalized density matrix with the form

ρ(T) = exp(
H

2kT
)ρ(∞) exp(−

H
2kT
). (52)

This means that starting with a density matrix in which all states are
equally populated (β = 0, i.e., T =∞), propagation to temperature T
yields the thermalized density.

Systems of different sizes were propagated to examine the
scaling properties of ρMCTDH(I), ρMCTDH(II), ML-ρMCTDH(I),
and ML-ρMCTDH(II). Due to where the bottlenecks occur for the
ρMCTDH(I) and ρMCTDH(II) methods, introduced in Sec. II B 2,
ρMCTDH(I) much more readily lends itself to the ML formulation,
as now the bottleneck lies at the bottom of the ML-tree, whereas the
bottleneck with ML-ρMCTDH(II) lies at the top of the tree, where
a large number of SPFs are needed. Therefore, the way that the ML-
ρMCTDH(II) method is currently implemented means that it is a
much less suitable method for larger systems. As a test, numerically
exact propagations of the density matrix for the 2D system were
also calculated to check that ρMCTDH was predicting the correct
dynamics of the thermalized system. The dynamics of the proton
transfer was extracted by evaluating the expectation value of a step
operator placed at the proton transfer barrier along the reaction
coordinate. This evaluates the wavepacket density that has crossed
the barrier.

To provide a fair comparison of computational time
for the different methods, all propagations used a standard
Adams–Bashforth–Moulton (ABM) sixth-order adaptive time step
predictor-corrector integration scheme. More efficient schemes
have been developed for MCTDH wavepacket calculations, such
as the constant mean-field (CMF) integrator,21,48 which separates
the different parts of the equations of motion and integrates them
separately allowing longer time steps. However, no similar scheme
is yet available for the ρMCTDH methods.
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IV. TEST CASE I: PT IN SALICYLALDIMINE
Salicylaldimine exhibits a ground state intramolecular PT

between an oxygen atom and a nitrogen atom, with the potential
energy surface (PES) along the reaction coordinate with an asym-
metric double well. The PES was computed in previous work as a fit
to ab initio points at the Hartree–Fock theory level with a 6-31G∗

basis set.33 The PES function takes the form of a Taylor expansion
of fourth order, and using mass-frequency scaled normal modes
expanded around the transition state geometry, Q0. The thirteen
modes that contribute the most to reaching the transition state from
the minima were included. The energy barrier for conversion from
the enol to the keto tautomer is 0.19 eV and for the reverse reaction
is 0.058 eV. Figure 1 shows this potential surface along with the keto
and enol tautomers. Details and parameters of the potential and all
parameters can be found in the supplementary material of Ref. 33.

The focus of this test was the performance of the different meth-
ods with system size, and four systems of different sizes were studied.
From an analysis of the potential surface parameters, two modes
have particular significance for the proton transfer. These are ν1, the
proton transition mode, and, ν36, the in-plane perpendicular move-
ment of the proton. This model is denoted as the 2D model. The next
set of calculations used a larger 4D model. This added the modes ν10
and ν11 to the proton transfer modes ν1 and ν36. A 7D model added
modes ν9, ν13, and ν23. Finally, the full 13D model was studied.

Calculations used ρMCTDH on the 2D and 4D systems and
ML-ρMCTDH on the 4D, 7D, and 13D models in both type I

and type II formalisms where possible. Exact propagations of the
density matrix were performed on the 2D system only. Dynamics
simulations were initialized by relaxing to different temperatures.
During this thermalization, the salicylaldimine was localized as the
lower energy enol tautomer by using a harmonic potential where the
minimum and frequency were chosen to match the position and cur-
vature of the keto minimum of the double well. This potential had
the form

V =
1
2
ω0(q − q0)

2
+ V0, (53)

with q0 = 1.790 75, ω0 = 0.473 62 eV, and V0 = −0.192 46 eV. The
harmonic oscillator potential energy surface can be seen in Fig. 1.
Thus, a thermalized enol tautomer was created and subsequent
dynamics could follow the PT process.

A. Scaling with system size
The first step is to demonstrate the scalings of the different

methods by running propagations for 100 fs after relaxation to
1000 K. The zero point energy (ZPE) of the system along the reac-
tion coordinate is 0.094 eV, which means that the energy barrier
is effectively 1140 K, and thus, these simulations are just below the
barrier.

The primitive basis for all calculations used a DVR. The ν1
mode is represented as a sine DVR, with 61 grid points, and all
the other modes use a harmonic oscillator basis on 21 grid points.

FIG. 1. The ground state double well potential of the reaction coordinate for the proton transfer in salicylaldimine. The more stable tautomer is the enol form with the hydrogen
on the oxygen. The left-hand plot is a cut through the PES along the PT mode, ν1. The red curve is a harmonic approximation to the enol minima. The right-hand plot shows
the contours of the PES for this PT mode along with ν36, which is the motion of the proton perpendicular to ν1.

TABLE I. A comparison of the timings and length of the vectors representing the density matrix, ρ, for the different methods for 100 fs propagations of different dimensional
models of PT in salicylaldimine at 1000 K.

Timings Length of ρ vector

Method 2D 4D 7D 13D 2D 4D 7D 13D

Exact 6 h ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

ρMCTDH(I) 23 min 263 min 968 h ⋅ ⋅ ⋅ 41 720 220 218 25 086 894 ⋅ ⋅ ⋅

ρMCTDH(II) 35 s 76 min ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 788 93 088 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

ML-ρMCTDH(I) ⋅ ⋅ ⋅ 306 min 48 h 181 h ⋅ ⋅ ⋅ 180 576 487 132 860 180
ML-ρMCTDH(II) ⋅ ⋅ ⋅ 955 min 76 h ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 165 240 349 120 ⋅ ⋅ ⋅

J. Chem. Phys. 159, 194114 (2023); doi: 10.1063/5.0172956 159, 194114-7

© Author(s) 2023

 28 N
ovem

ber 2023 14:46:35

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

Convergence was achieved with respect to the property of interest:
the PT dynamics. Sufficient convergence was taken to be the point
where the dynamics no longer significantly changed by including
more basis functions, i.e., adding additional SPFs did not change
the PT fraction plots shown below. This is a non-trivial problem
and required large numbers of basis functions for good results. The
basis sets used for the ρMCTDH calculations and the ML-trees are
given in the supplementary material. The groupings of the modes
were based on the coupling strengths and grouping those of similar
strength together.

The cpu-times on a Xeon(R) CPU E5-2620 v3 compute node
for 2D, 4D, 7D, and 13D calculations are shown in Table I. The
first thing to note is the speed-up of the 2D calculation of the
ρMCTDH calculations compared to the numerically exact calcu-
lation. The ρMCTDH(II) propagation is particularly efficient here,
requiring only 35 s in comparison to 6 h taken by the full solution.
However, due to the number of coefficients required by this method,
ρMCTDH(II) was not able to treat the 7D system, which was still
achievable using ρMCTDH(I).

The differing effort of the methods can be represented by the
length of the vector required to represent the density matrices as
for the same Hamiltonian, other parts of the computational effort
(e.g., calculating integrals and mean-fields) will be either the same
or dominated by the size of the density matrix. For MCTDH, the
length of the vector required to store a wavepacket, and hence the
effort, can be written as

effort(MCTDH) ∼ np
+ pnNd, (54)

where p is the number of particles, N is a representative value for
the length of a one-dimensional primitive grid, n is a represen-
tative value for the number of SPFs for a particle, and d is the
dimensionality of a particle. The first term is due to storing the
expansion coefficients, and the second term is due to the SPFs. For
ML-MCTDH, the length is a sum of terms of the form of Eq. (54) for
each node of the multi-layer tree, with appropriate dimensions, not-
ing that for the top and intermediate layers, N represents the number
of SPFs in the layer below. It is thus highly dependent on the tree.

For ρMCTDH(I), the effort is changed by squaring the
primitive grid size due to the use of SPDOs,

effort(pMCTDH(I)) ∼ np
+ pnN2d. (55)

For ML-ρMCTDH(I), the form for the vector length for nodes in
the top and intermediate layers is that of the MCTDH wavepacket,
Eq. (54). Thus, the effort is only increased on the bottom layer by an
effective doubling of degrees of freedom. Finally, for ρMCTDH(II),
the effort is like that of MCTDH for the SPFs, but the size of the
expansion vector is squared,

effort(pMCTDH(II)) ∼ n2p
+ pnNd. (56)

For ML-ρMCTDH(II), the top layer has this size, and all other nodes
have the form of Eq. (54). Thus, naturally type I should avoid com-
bining degrees of freedom together on the lowest layer, while type II
must keep the number of coefficients in the top layer low.

It can also be seen from Table I that using the ML-ρMCTDH
method does not automatically increase efficiency, when compared
to the ρMCTDH method. Due to the additional layers of coupled

calculations required to propagate the wavefunction in the multi-
layer form, for the smaller systems, it becomes more expensive
to solve the wavefunction in this way. This is not specific to the
ML-ρMCTDH method, but the ML-MCTDH method, in general,
and the way the ML-tree is set up can greatly affect the efficiency of
the ML calculations for both density matrices and pure wavefunc-
tions. However, for the 7D system, the ML-ρMCTDH calculations
are not only feasible, but much faster than ρMCTDH(I). The unfa-
vorable scaling of ML-ρMCTDH(II) with system size meant that the
13D system could not be treated by this method with the tree used
here due to the large number of top layer coefficients. A different tree
may be more successful. This was the largest system investigated and
was only accessible using ML-ρMCTDH(I).

An alternative method for simulating dynamics at finite tem-
peratures is to use the thermal wavepacket approach.25 This stochas-
tic approach takes the dynamics averaged over many randomly
generated wavepackets. These wavefunctions are initially set to an
infinite temperature, i.e., equal populations of all configurations but
with random phases. This set of wavefunctions is then relaxed col-
lectively to the correct temperature, and then, each of the resulting
wavepackets is propagated simultaneously in time. Thermalizing the
MCTDH wavefunction was achieved by setting the length of the
relaxation, tfinal, to

tfinal =
1

2kBT
, (57)

where kB is the Boltzmann constant and T is the desired tempera-
ture. A random number generator sets the relative phases of the con-
figurations in the initial MCTDH wavefunction.40 Only after propa-
gating all the generated wavefunctions and averaging out the results
can the final dynamics of the system at that temperature be deter-
mined. To assess how accurately this thermal wavepacket method
predicts dynamics when compared to the ρMCTDH approaches
described above, the dynamics of the 4D system (defined by the PT
fraction at 1000 K) was calculated and is compared in Fig. 2.

It can be seen that convergence was not reached in Fig. 2
using the thermal wavepacket method, despite 100 propagations

FIG. 2. A comparison of the fraction of density that undergoes proton transfer for a
4D model of salicylaldimine at 1000 K for the thermal wavepacket method and the
ρMCTDH method. The convergence of the thermal WP method is shown using 30,
50, 70, and 100 samples.
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(and thus, the same number of relaxations) being carried out. Thus,
although each ML-MCTDH propagation is quicker than the analo-
gous ML-ρMCTDH calculation, taking only 50 cpu minutes, many
more would be required for complete convergence. Indeed, this
number greatly increases with temperature and system size. In com-
parison, while the density matrix approach is initially much more
time consuming, only one relaxation and one propagation are nec-
essary for the equivalent simulation, regardless of system size and
temperature. Therefore, as temperature and system size increase, the
ML-ρMCTDH method potentially becomes the more efficient, and
more accurate, approach for simulating thermalized dynamics.

B. Temperature dependent dynamics
To get insights into the PT dynamics of salicylaldimine, the

fraction of PT as a function of time was calculated over a range
of temperatures by evaluating the expectation value of a step func-
tion placed at the transition barrier (Q = 0). This is shown for the
2D, 4D, and 13D systems in Fig. 3. In each case, the most effi-
cient method, as discussed in Sec. IV A, was used, i.e., for 2D
ρMCTDH(II), 4D ρMCTDH(I), and 13D ML-ρMCTDH(I).

In all cases, at 0 K, the only movement of the system occurs
through proton tunneling through the barrier after being released
from the harmonic well, allowing a small part of the wavepacket
to cross from the global enol-minimum into the less stable keto-
minimum. This density oscillates with a period of ∼40 fs. For the
2D system, increasing the temperature from 0 → 500 K → 1000 K
does not change the dynamics of the system significantly. There is,
however, a notable increase in motion between the wells as the tem-
perature is increased from 1000 K → 2000 K, which allows enough
energy to cross the barrier. In the latter case, the oscillations remain,
but the peak fraction of transfer increases from 20% at 1000 K to 25%
at 2000 K and further to 30% at 3000 K.

The 4D system shows the effect of the increased zero point
energy as there is an increase of PT at 1000 K compared to the
2D model. At higher temperatures still, the oscillations disappear
and the density spreads across both wells. The PT dynamics of the
13D system is similar, except for a larger gap between the 1000 and
2000 K transfer fraction.

V. TEST CASE II: DOUBLE PT IN PORPHYCENE
As a further demonstration of the abilities of the ML-ρMCTDH

method, a double proton transfer system was studied. Abdel-Latif
and Kühn34 provided a two-dimensional model Hamiltonian for the
double-proton transfer in porphycene using symmetric and anti-
symmetric proton transfer coordinates and a potential form with
four minima. The Hamiltonian is

H = −
h̵2

2mH
(
∂2

∂x2
s
+

∂2

∂x2
a
) +Usym +Uasym, (58)

Usym = 2U0 +
U0

x2
0
[(g − 4)x2

a − (g + 4)x2
s ] + a

2U0

x4
0
(x4

s + x4
a + 6x2

ax2
s ),

(59)

Uasym =
αtransU0

x0
xa +

αcisU0

x0
xs. (60)

FIG. 3. The fraction of density that undergoes proton transfer for a (a) 2D model,
(b) 4D model, and (c) 13D model of salicylaldimine at a range of temperatures from
0→ 3000 K.

The parameters, taken from Ref. 34, are listed in the supplementary
material. The potential is shown in Fig. 4(c).

This Hamiltonian was extended to include the remaining
106 vibrations of porphycene in the form of a bath of harmonic
oscillators coupled to the system modes,

H = Hs +Hb +Hsb. (61)

All modes are mass-frequency scaled. They are, therefore, defined as
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FIG. 4. The (a) symmetric, xs, and (b) anti-symmetric, xa, proton transfer vibrational modes of porphycene, along with (c) the potential surface, calculated at the B3LYP/6-
31+G∗∗ level of theory. The minima for the cis and trans isomers are marked on the potential.

Hb =
108

∑
i=3

ωi

2
(−

∂2

∂q2
i
+ q2

i ). (62)

To parameterize this extended model, the transition state struc-
ture was first optimized using the same level of theory used as
Abdel-Latif and Kühn, B3LYP/6-31+G∗∗ as implemented in the
Gaussian09 program.49–51 This structure has D2h symmetry, and the
“symmetric” xs and “anti-symmetric” xa double-proton vibrations
have imaginary frequencies with b2u and b3g symmetry, respectively.
These vibrations are shown in Fig. 4.

Taking symmetry into account, as well as the coupling between
the two system modes and the bath, the system–bath Hamiltonian is
defined as

Hsb =∑
i
γsixsqi +∑

j
γajxaqj +∑

k
γskx2

s qk +∑
k
γakx2

aqk, (63)

where i are the 16 b2u vibrations, j are the 17 b3g vibrations, and k are
the 17 a1g vibrations. The final model Hamiltonian thus includes 55
modes. The parameters for the system–bath coupling were obtained
by calculating the minimum energy structures and relating them to
the potential at the high symmetry point. The values of the coupling
parameters, along with more details of how they were obtained, are
listed in supplementary material.

Next, the porphycene PT model Hamiltonian was used in a
series of calculations using the ρMCTDH methods. Again, this con-
sisted of different dimensional systems at a range of temperatures
to demonstrate the scaling as well as the changes in physical behav-
ior. In all cases, an initial energy relaxation calculation was made
to thermalize the system to the desired temperature, followed by a
propagation of 500 fs. The number of basis functions was chosen
such that all natural populations were below 0.001 after 250 fs. That
is, the initial dynamics is well represented.

As a benchmark for the system dynamics, initially, 2D calcula-
tions, including the xs and xa PT modes, were run at 0, 500, 1061,
1500, and 2000 K. For comparison, the barrier height is 1061 K.
The initial relaxation localized the density in one well centered at
(xs, xa) = (−0.607, 0.0) by including a step function in the Hamilto-
nian during the relaxation to create a high wall at xs = 0.0. This wall
was then removed for the propagation, and the expectation value of
the step function as a function of time was used to determine the
amount of proton transfer taking place.

The proton transfer at varying temperatures is shown in Fig. 5.
At 0 K (purple line), there is a slow transfer, which is almost com-
plete by 300 fs before returning to the initial well. This effect is
likely to be due to tunneling. It can also be seen that as the tem-
perature increases, the transfer is faster, and the amount transferred
decreases.

FIG. 5. Transfer of density between PT minima in the porphycene model at different
temperatures, starting in one minima. (a) 2D model and (b) 4D model.
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FIG. 6. Snapshots of the density of the 2D porphycene model at different times, starting in one minima at 0 K (left) and 1061 K (right).

Snapshots of the density at different times are shown in Fig. 6.
The density is taken from the trace of the time-evolving density
matrix. At 0 K, the initially localized density is seen to move toward
and then cross the barrier. At 1061 K, the initial density is again
localized in the one well and vibrationally excited in the xa mode,
as seen by the structure. In contrast to the 0 K case, this hot density
flows quickly around the maximum of the potential at (xs, xa) = 0, 0
to undergo the double proton transfer. At 20 fs, it is seen to be occu-
pying all four wells, after which the density oscillates back and forth
between the two minima at (xs, xa = ±0.6, 0).

A 4D system was then studied, including the two bath modes
with the strongest coupling ν13 and ν18. The amount of proton trans-
fer for this system as a function of time at different temperatures is
shown in Fig. 5(b). The bath modes have a significant effect in slow-
ing down the dynamics, and population transfer due to tunneling at
0 K is still increasing at 500 fs. Even at the barrier height tempera-
ture, the transfer is increasing in a similar way to the tunneling. Only
when well above the barrier at 2000 K, does the transfer now take
place in less than 100 fs, reaching 50% transfer and staying there,
indicating that the density is spread across the minima equally.
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TABLE II. CPU time in seconds, and the length of the vectors representing the density matrices, ρ vectors, for various dimensional porphycene model systems propagated for
500 fs at 0 K using different algorithms. All calculations were run in serial on a Xeon(R) CPU E5-2620 v3 compute node.

Timings Length of ρ vector

Method 2D 4D 6D 10D 2D 4D 6D 10D

ρMCTDH(I) 5855 8 866 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 92 560 262 400 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

ρMCTDH(II) 4875 14 298 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 161 920 137 895 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

ML-ρMCTDH(I) ⋅ ⋅ ⋅ 967 4993 13 275 ⋅ ⋅ ⋅ 66 304 73 104 192 924
ML-ρMCTDH(II) ⋅ ⋅ ⋅ 6 700 7014 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 71 680 75 820 ⋅ ⋅ ⋅

Finally, a 6D system adding the modes ν17 and ν57 and a
10D system adding ν12, ν20, ν8, and ν25 were examined to show the
performance of the ML-ρMCTDH methods. The cpu-times for cal-
culations on the four systems at 0 K using the different algorithms
are listed in Table II. All four methods could be applied to the
4D system, and the efficiency of the ML-ρMCTDH algorithm is
clear. This difference in effort is even more pronounced for the
6D case, for which regular ρMCTDH is not feasible. For the 10D
system, only the ML-ρMCTDH(I) was feasible in the present imple-
mentation, and surprisingly fast, taking under 4 h for a 500 fs
propagation.

VI. CONCLUSIONS
The results presented demonstrate not only that the ρMCTDH

method can successfully and efficiently model the dynamics of a pro-
ton transfer in a ground state system at finite temperatures but also
further that the ML-ρMCTDH formulation can treat larger density
matrices than previously possible. This ability to predict accurate
quantum dynamics on systems above 0 K, combined with solvent
and/or environmental effects, has many possible applications. For
small systems (2D), the standard ρMCTDH method is able to match
the exact result from 0 to 3000 K. For larger systems, it was further
shown that the new multilayer formulation was able to treat up to a
13D system over this range of temperatures, particularly with ML-
ρMCTDH(I). Both single and double PT systems were investigated,
and it was seen that at temperatures above the barrier, the dynamics
changes from being dominated by tunneling through the barrier to
direct transfer.

It is clear that future work to further improve the efficiency
of the ML-ρMCTDH propagations would make this an even more
powerful tool to tackle many interesting and important prob-
lems. One factor to consider is the choice of integrator. So far,
a simple predictor-corrector integration scheme was used for the
propagations. A more tailored integrator, such as the constant
mean-field integrator, often used for the wavepacket MCTDH
method, would lead to further savings in time. The new Hamilto-
nian for double PT coupled to a bath will also provide a suitable
model for future tests of system–bath dynamics. Another factor
to consider is the structure of the ML tree used for the ML-
ρMCTDH calculations. The ML-MCTDH method, and therefore
the ML-ρMCTDH methods, enormously depend on the how the
ML trees are set up, and investigating further into the best struc-
ture would greatly increase the time efficiency of the ML-ρMCTDH
calculations.

SUPPLEMENTARY MATERIAL

See the supplementary material for details on the basis sets and
multi-layer trees used in the calculations and the parameters of the
model Hamiltonian for porphycene and how they were obtained.
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