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Abstract

Large-scale datasets of consumer behavior might revolu-
tionize the way we gain competitive advantages and in-
crease our knowledge in the respective domains. At the
same time, valuable datasets pose potential privacy risks
that are difficult to foresee. In this paper we study the
impact that the prices from consumers’ purchase histo-
ries have on the consumers’ location privacy. We show
that using a small set of low-priced product prices from
the consumers’ purchase histories, an adversary can de-
termine the country, city, and local retail store where the
transaction occurred with high confidence. Our paper
demonstrates that even when the product category, pre-
cise time of purchase, and currency are removed from the
consumers’ purchase history (e.g., for privacy reasons),
information about the consumers’ location is leaked. The
results are based on three independent datasets contain-
ing thousands of low-priced and frequently-bought con-
sumer products. In addition, we show how to identify the
local currency, given only the total price of a consumer
purchase in a global currency (e.g., in Bitcoin). The re-
sults show the existence of location privacy risks when
releasing consumer purchase histories. As such, the re-
sults highlight the need for systems that hide transaction
details in consumer purchase histories.

1 Introduction

Making data publicly available creates unexpected pri-
vacy risks. Recent examples include AOL’s release of
users’ search keywords [33], which has led to the iden-
tification of users and their profiles [1]. Data released
by Netflix was de-anonymized by leveraging IMDB and
dates of user ratings [31], showing that the release of
data cannot be analyzed in isolation. The privacy risks
of combining different public records have led to sev-
eral [39] de-anonymization attacks. Recent studies of
anonymized mobility data showed that mobility traces

can be de-anonymized by leveraging a few observa-
tions [21]. One source of consumer information involves
their spending patterns. To date however, it was unclear
to what extent consumer prices leak information about
the respective purchase.

Consumer purchase histories are typically recorded by
store chains with loyalty programs and are used to com-
pute consumer spending profiles [7]. Banks, payment
card issuers, and point-of-sale system providers collect
this data at different levels of granularity. In a number of
scenarios, it might be desirable to share this data within
different departments of a company, across companies,
or with the public [8]. Before disclosure, the data is san-
itized so that it does not leak sensitive data, such as per-
sonally identifiable information and that it (partially or
fully) hides location information. In new digital currency
systems such as Bitcoin [36] and Ripple [11], transac-
tion values are stored on a public ledger. Irrespective of
whether transaction values are made available so that a
system can fulfill its functions or are being disclosed for
research purposes, it is important to understand the pri-
vacy implications of such disclosures.

In this paper we focus on quantifying location disclo-
sure resulting from the release of prices from consumer’s
purchase histories. Intuitively, the price distribution for
a product differs from country to country (cf. Figure 17
in appendix), which allows us to identify possible pur-
chase locations. We focus on consumer products which
are generally inexpensive (< 25 USD) and frequently-
bought. More precisely, based on global prices (leverag-
ing the Numbeo dataset [10]), we show that given access
to a few consumer prices (and even without the prod-
uct categories, precise times of purchase or currency), an
adversary can determine the country in which the pur-
chase occurred. Similarly, given the country, the city can
be determined and within a city (leveraging the Chicago
dataset [13]), the local store can be identified. We further
demonstrate that it is possible to distinguish purchases
among store chains (leveraging the Kaggle dataset [8]).
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Figure 1: Overview of our framework for quantifying location privacy leakage from consumer price datasets.

We present a generic framework (cf. Figure 1) that al-
lows the modeling and quantitative evaluation of loca-
tion leakage from consumer price datasets. In our frame-
work we model the adversarial knowledge, composed of
a public dataset of consumer prices and location-specific
information. We assume that the adversary has access
to the individual product prices of a purchase (similar to
the Kaggle dataset) and a coarse-grained value of the pur-
chase time. In order to make the framework more flex-
ible, our model supports different prior knowledge sce-
narios, e.g., the adversary additionally has access to the
merchant category (e.g., knowledge that the product was
bought in a market or a restaurant) or the product cat-
egory (e.g., apples). Furthermore, we model the adver-
sarial attack by detailing the corresponding probability
functions. In particular, we point out how the adversary
leverages multiple product prices in order to increase the
probability of identifying the correct location.

Within our framework, we quantify the location pri-
vacy of consumer purchases in relation to different di-
mensions. For example, we measure how well the adver-
sary estimates the location probability of the purchases
with the Fi-score [38], capturing the test’s accuracy. Fur-
thermore, we use mutual information [20] to quantify the
absolute location privacy loss of consumers, based on the
considered price dataset. In addition, we capture the rel-
ative privacy loss by measuring the reduction in entropy.
The proposed metrics are independent of the choice of
adversarial strategy and therefore allow us to quantita-
tively measure the privacy loss induced from any price
dataset known to the adversary.

We apply our framework to three real-world datasets:
(1) the Numbeo dataset [10] contains, after outlier fil-
tering, crowd-sourced real-world consumer prices from

112 countries and 23 US cities for 23 distinct product
categories; (ii) the Chicago dataset [13] contains 24 mil-
lion prices for 28 product categories capturing on aver-
age of 6304 products sold in Dominick’s stores within
the Chicago metropolitan area; finally, (iii) the Kaggle
dataset [8] contains 350 million purchases from 311,541
consumer across 134 store chains.

Our evaluation shows that in order to infer the coun-
try based on a vector of purchases, an adversary often
needs to observe less than 30 prices. Similarly, after
having identified the country of the purchases and given
roughly 30 prices, we show that we can reliably predict
among 23 major cities within the United States. Finally,
when the adversary narrowed down the coarse location,
such as the Chicago metropolitan area, we show that
based on a regional price dataset, and given a vector of
purchases, an adversary can distinguish with high confi-
dence among local stores using 100 purchases. For com-
parison, a weaker adversary with access only to coarse-
grained time, i.e., the day of the purchase and price in-
formation, requires 50 purchases to identify the country.
Furthermore, to establish practical utility of our method-
ology, we evaluate it on a dataset of purchase records
(Kaggle [8]) and show that an adversary requires ap-
proximately 250 purchases to distinguish with high con-
fidence among 134 store chains.

In addition to our proposed framework, we show that
the local currency of a purchase can be identified, when
only the total purchase price is given (e.g., in Bitcoin).
The currency is an indicator of the location of the pur-
chase. When estimating the currency among 155 local
currencies, based on purchases with up to 20 consumer
products, we achieve an average Fi-score of over (.45,
while the baseline of random guessing is near zero.



The main contributions of this paper are as follows:

e We propose a generic quantitative framework for
evaluating attacks against the location privacy of
consumer purchases. We validate our framework on
three independent price datasets of real-world con-
sumer prices and show that location information can
be extracted reliably.

e We introduce three privacy metrics to capture the
performance of the adversary in the attack as well as
the extent to which location privacy of consumers is
reduced when the adversary has access to a specific
dataset of purchases.

e We show that given the total price of a consumer
purchase in a global currency (e.g., Bitcoin), we can
extract knowledge about the native currency of the
purchase.

To the best of our knowledge, this is the first work to
infer the location and currency of a purchase based on
the price value in consumer purchases.

The remainder of this paper is organized as follows.
In Section 2, we model purchase history and describe the
adversarial model. In Section 3, we present the datasets
selected for our evaluation in Section 4. In Section 5,
we present our methodology for identifying the currency
based on the purchase price. We survey the related work
in Section 6 and conclude the paper in Section 7.

2 Model

In this section we introduce our system and adversar-
ial model. We present the privacy metrics that quan-
tify the probability of location disclosure based on the
assumption that the adversary has access to a part of a
consumer’s purchase history.

2.1 System Model

A consumer interacts with merchants and performs pur-
chases of one or more products. This interaction leaves
a trace of purchase activity as a sequence of purchase
events. We model each of the consumer’s purchase
events together with their contextual information as e:
{consumer u, value v, product p, product category c, lo-
cation /, time ¢}, where v is the price value spent on prod-
uct p of product category c at location / and time ¢. In
our model, one purchase event is limited to one product,
similar to the data contained in the Kaggle dataset. In
addition, the price value is given in a global currency,
which usually is different from the local currency of the
purchase (e.g., the original price is SEK, but recorded
in USD). The trace of purchases performed by the tar-
get consumer U, given as a series of purchase events, is

denoted by Sy:{ej,ez,...,e,}. We define the following
functions to represent the adversarial knowledge:

LOCATION PROBABILITY: It describes the prior prob-
ability of a purchase event taking place in a specific
location, e.g., P(USA) is the prior probability with
which a random purchase event e has e.l = USA.
We define L as the set of all considered locations.

CATEGORY PROBABILITY Given location I, P(c | [)
describes the conditional probability of a purchase
event to belong to a certain product category,
e.g., P(Milk | USA) is the conditional probability
with which a random event e from the USA has
e.c = milk. This conditional probability models
the product category preferences in a location. We
define C as the set of all considered product cate-
gories.

VALUE PROBABILITY: Given location [ and product
category ¢, P(v | [,¢) describes the conditional
probability of a purchase event at a given price
value. It models the price distributions for dif-
ferent product categories in different locations,
e.g., P(1.5| USA,Milk) is the conditional probabil-
ity with which milk can be bought in the USA for
1.5 worth of a global currency.

The adversary can now model the spending behavior
and identify likely candidate locations. Specifically, the
adversary computes the posterior probability that a sin-
gle price value v for a product category c originated from
a location /. The computation involves the prior and the
conditional probabilities described above and the appli-
cation of Bayes’ theorem:

P()-Pe,v| 1)
P(c,v)
In order to infer the location without knowing the

product category, the adversary computes the probabil-
ity that a price value v originates from location /:

P(l|c,v)= (D

P()-P(v[1)

P = =20

2)

2.2 Adversarial Model

The adversary’s goal is to identify the location of the
events in Sy. In this section we present two different
adversaries: (1) an adversary with complete knowledge
and (2) an adversary with only public knowledge.

2.2.1 Adversary with Complete Knowledge

The ideal adversary represents a strong adversary with
complete access to global purchase events. In particular,



the adversary has access to the following prior knowl-
edge:

GLOBAL PURCHASE HISTORY: The complete series
of purchase events in the history of global pur-
chases!, denoted by .7#;. The adversary computes
the posterior probability of a location based on 7.

HISTORY FOR TARGET CONSUMER: The adversary
might have access to prior information about the tar-
get consumer’s purchase history, denoted by 7.
This could help the adversary to optimize the model
for the target consumer?.

Based on this knowledge, the ideal adversary com-
putes the probabilities in Equations 1 and 2.3

2.2.2 Adversary with Public Knowledge

Our second adversarial model is a more realistic one,
where the adversary only makes use of public informa-
tion.

POPULATION: Given the population at each location,
the adversary estimates the location probability
P(1).

PRODUCT BASKET: A product basket indicates which
products an average consumer purchases during
a year, both in terms of quantity and monetary
amount. We leverage the product basket in order to
estimate the probability of a product category given
the location (P(c | 1))*.

PRICE DATASET: For each location and product cate-
gory combination, a price value distribution D is
available, e.g., the Numbeo or the Chicago dataset.
The adversary can use the distribution to estimate
P(v|l,c). We define D(I,c,v) as the number of oc-
currences of price value v for product category c in
location / and D(l,c) as the number of price values
for product category ¢ and location /.

Since D might be imperfect, the adversary can have
incomplete or incorrect knowledge about the price
value probabilities (i.e. unknown or rounded prod-
uct prices). In this case the adversary should per-
form additive smoothing, which assigns a small
probability ¢ to each event [29]. On the contrary, if
the adversary has or assumes complete knowledge
of the price value probabilities, additive smoothing
is not required.

IThe area of the attacker’s interest can be restricted, e. g., when the
adversary knows that its victim is somewhere in that restricted area.

2For example, by only considering the locations of previous pur-
chases.

3The intermediate steps are given in the appendix A.

4We currently use a single product basket for all locations.

The adversary with public knowledge computes the
following probabilities:

P(l) = Population(/)

Y. Population(/’)
I'elL

Basket(/,c)
Y Basket(l,c’)
c'eC
D(l,c,v)+ o
D(l,c)+a-|Sy|

3)

Plc|l) = 4)

P(v]lc)= (&)

In order to compute the probabilities defined earlier
in Equations 1 and 2, the adversary requires access to
either P(I | ¢,v) or P(I | v). Next, we describe how the
adversary computes these probabilities and we define the
adversary’s knowledge.

2.3 Knowledge Scenarios

As mentioned, the adversary’s objective is to identify the
location of the events in Sy. The adversary is given a
finite set of events Sy on which the attack is executed—
the adversary is not allowed to choose or request new
purchase events e. We consider an adversary with public
knowledge and distinguish among three distinct adver-
sarial knowledge scenarios, each consisting of a subset
of the public knowledge. Depending on the knowledge
scenario, the adversary might not have access to all in-
formation from a purchase event e. Therefore, we de-
fine a family of functions Vicenario(¢) = V (e) that filter,
depending on the given scenario, the public knowledge
accessible to the adversary.

PRICE: This scenario corresponds to an adversary
that has access to multiple purchase events e, only the
corresponding price value and a notion of the purchase
time e.t. The adversary is not aware of the product e.p or
the product category e.c. The precision of the purchase
time depends on further specifications of the scenario.
More formally, Vprice(e) = {e.v,e.t}. Given the public
knowledge modeled by Equations 3, 4 and 5, the adver-
sary computes the posterior probability P(I | v) of a price
value v from location /. The intermediate steps for com-
puting P(v | [) and P(v) are detailed in the appendix A in
Equations 12 and 10.

PRICE_MERCHANT: Similar to the former knowl-
edge scenario, the adversary here has access to Sy, a
series of multiple purchase events. In this scenario,
however, the adversary knows the price value e.v of
the event as well as which merchant category m sold
the product. Formally, for each purchase event e,
Vprice_merchant(e) = {e el am}» where Vprice_merchunt re-
quires a function M(e) = m. We consider three merchant
categories: restaurant, market and local transportation.



The Vprice_merchant (€) function estimates the merchant cat-
egory m from the product category e.c of the respective
event (cf. Table 8 for an overview).> Analogously, using
Equation 1, the adversary computes the probability of a
location, based on the merchant and the price value:

P(l)-P(m,v 1)

P(l =
(1| m,v) P(m,v) (6)
where P(m,v | I) is computed as follows:
P(m,v|l)= Z P(c,v|1) ™

ceM—1(m)

PRICE_PRODUCT-CATEGORY: This scenario cor-
responds to the most knowledgeable adversary with pub-
lic knowledge. Similarly to the former scenarios, the ad-
versary receives multiple purchase events Sy. In addi-
tion, the adversary has access to the product category
e.c as well as the price value e.v. Note that e.c im-
plicitly assumes knowledge of the merchant. Formally,
Vpricefproduct-category(3) = {E Vet ae-C}-

Given the public knowledge described in Section 2.2,
the adversary computes the probability P(! | ¢,v) of a pur-
chase event with product category ¢ and price value v
originating in location /. The intermediate steps for com-
puting P(c,v | 1) and P(c,v) are detailed in the appendix
in Equations 13 and 11.

In the following section we provide an intuitive per-
spective on the probabilities P(/ | v) and P(/ | c,v).

2.4 Conditional probability intuition

P(I | v) is the probability of a location, given a price
value in a purchase event. An example plot based on
our evaluation can be found in Figure 2. We have cho-
sen the purchase event e with a price value of e.v =1
Euro and estimated the location of the price. The figure
shows that the most likely location for 1 Euro is France,
closely followed by Germany, Italy and Spain. The plot
also shows P(/ | ¢,v) for a purchase event with e.v =1
Euro and the product category is milk. The most likely
country is again France, followed by Germany and Italy.
Surprisingly, China ranks as 5. This can be explained
by the fact that (i) some prices from China in the dataset
were erroneously reported in Euros and (ii) that the loca-
tion probability P(/) influences the overall outcome, and,
since China’s population is considerable, there is an in-
creased probability of purchases occurring there. Over-
all we observed that the probability distribution changes
when the product category is known, i.e., France is more
likely to have a 1 Euro price for milk, than a 1 Euro price
in general.

5In the following we refer to the merchant category as merchant.
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Figure 2: Probability distribution of P(I | v) and P(! |
c,v), given 1 Euro and milk. France is the most likely
location.

2.5 Multiple purchase events

Up to this point, the analysis has been based on a single
purchase event. To naturally combine multiple purchase
events, we assume that the purchase events are condi-
tionally independent, given the location /. Therefore, the
probability of a location /, given a set of purchase events
Su, 1s calculated as follows:

P(l|Sy)=P(|V(e1),V(er),...,V(en))

P(1)- 1 P(V(e) | 1) ®)

ecSy

P(V(er),...,V(en))

The intermediate steps for computing P(I | Syy) can be
found in the appendix in Equation 18. We experimentally
verified the conditional independence of V (e) given [ for
the three knowledge scenarios and therefore Equation 8
applies equally to the different adversarial knowledge
scenarios. Note that we effectively weaken the adver-
sary by considering the products of different purchases
independent from each other.

2.6 Privacy Metrics

We introduce three privacy metrics in order to capture
the privacy of consumers revealing their purchase histo-
ries across different dimensions: We (i) measure the per-
formance of the adversary in identifying the true location
with the Fj-score. Then, (ii) using the notion of mutual
information [20], we quantify the absolute privacy loss
of the consumer due to the adversary’s knowledge of a
price dataset. Finally, (iii) we use the relative reduced



entropy as a relative privacy metric®.

F1-SCORE: The objective of the adversary is to as-
sign the purchase events to the correct location. In the
worst case, the adversary is forced to randomly guess
among all possible locations. If the adversary, however,
can estimate location probabilities more accurately, lo-
cation privacy is reduced. Our problem corresponds to a
multi-class classification problem and we therefore quan-
tify the adversarial performance by averaging the Fi-
score [38] of each individual class. The Fj-score cor-
responds to the harmonic mean of recall and precision,
measuring the test’s accuracy.

MUTUAL INFORMATION: A purchase event dataset
enables the adversary to infer the distribution of prices
among locations. Therefore, we want to measure how
much privacy consumers lose when their purchase events
are revealed and when the adversary has access to a
dataset of purchase events. We quantify this privacy
objective by measuring the absolute reduced location
entropy given the purchase events. To this extent, we
use the Mutual Information [20], denoted by I(I,V (e)),
which measures how much the entropy of the locations
is reduced given the purchase events (cf. Equation 9).

PV
L, PV ot s

RELATIVE REDUCED ENTROPY: Recall that the
mutual information quantifies what we call the absolute
privacy loss. In fact, there is an inherent randomness in
the price distribution among locations. It is important
to capture to what extent the original uncertainty about
the locations can be reduced when a dataset of purchase
events is given. The relative reduced entropy therefore
captures the relative privacy, as the complement of the
fraction of the conditional entropy over the location en-
tropy. Given H(l) =I(1,V(e))+H(l | V(e)), we com-
H(lV(e))

A l; over all

I(1,V(e)) = ©

pute the relative reduced entropy as 1 —
purchase events.

The proposed evaluation metrics are independent of a
particular adversarial strategy. In return, the output of
the privacy leakage quantification only depends upon the
employed dataset of purchase events. In the next sec-
tion we present the datasets utilized for our experimental
evaluation.

3 Datasets

There are only a couple of datasets accurately accumu-
lating the worldwide product price information. For in-
dividual products (e.g., a Big Mac [6] or Starbucks cof-

Defined as the complement of the fraction of conditional entropy
over the location entropy.

Symbol Description

C Set of considered product categories

L Set of considered locations

e Purchase event, e.g., element on a bill

v Price value, e.g., the price of a product

u Consumer id

p Product, e.g., the name

c Product category

m Merchant: restaurant, market, transportation
[ A location

t A timestamp

D Price value dataset

n Number of trials per location

a Additive smoothing parameter

Vscenario(€)  Filters the content of e, given to the adversary
M(c) Infers the merchant for a product category ¢
Sy Series of purchase events

H(X) Shannon Entropy of X

1(X,Y) Mutual Information of X and ¥

G History log of global purchase events

U History log of Sy of the target consumer

Table 1: Important notations used throughout the paper.

fee [9]), the average price values per country are avail-
able. Because a product often appears multiple times
with different price values in the same country or city,
the average is not a good estimator for elaborate studies.
In the following, we describe the three independent price
datasets considered in our work.

The first dataset, Numbeo [10], is a crowd-sourced
dataset containing worldwide price values per product
category, city and country. It is the most complete dataset
of worldwide harvested prices available to our knowl-
edge. We restricted our analysis to 23 frequently-bought
product categories, listed in Table 8 and split the Numbeo
dataset into two separate datasets: (i) two years of data
as the Numbeo dataset and (ii) five months of data as
the Numbeo test dataset (cf. Table 2). Numbeo performs
sanity checks on the crowdsourced inputs, and we addi-
tionally filtered extreme outlier [4]7 from the data to ac-
count for possible mistakes from crowdsourced data. We
identified 112 countries, with a total of 328,720 price val-
ues. Note that the provided data mostly contains prices
from the US (18%) and India (14%).

The second dataset, referred to as the Chicago
dataset [13], covers 84 stores in the Chicago metropolitan
area over a period of five years. The data is sourced on
a weekly basis from Dominick’s supermarket stores. We
sample 85 weeks with the most data, each containing on
average 283,181 prices, spanning 28 product categories
for an average of 6304 different products.

7 price < 25" percentile — 3 - interquartile range, and
price > 75" percentile + 3 - interquartile range



The third dataset originates from Kaggle [8], a Ma-
chine Learning competition platform. The dataset con-
tains 350 million purchase events from 311,539 con-
sumers across 134 store chains. The data is anonymized,
but contains the individual product price, product cate-
gory, date of purchase and purchase amount. Most pur-
chase events cost less than 25 USD. The country of the
dataset is not disclosed, but purchase prices are given in
USD and purchase amounts are described in the imperial
system.

In order to estimate the location probability, an adver-
sary requires the knowledge of the population in each lo-
cation. On the country granularity, we use the data avail-
able from the World Bank [14] for the year 2013, while
for the US city granularity we used the data from the US
Census Bureau [40].

As described in Section 2.2, we increase the knowl-
edge of the adversary with the product basket. A prod-
uct basket details which and how many products an av-
erage person purchases, both in terms of quantity and
monetary amount. We leverage a national product bas-
ket [5] from 2010 containing over 300 product categories
in order to infer the ratio in which different products are
bought over the year.

Numbeo Dataset (2 years)

Number of countries 112
Number of prices 328,720
Number of cities in the US 23

Number of prices in the US cities 11,686
Number of distinct product categories 23

Numbeo Test Dataset (5 months)

Number of countries 47
Number of prices 40,968
Number of distinct product categories 23

Chicago Dataset (5 years)

Number of stores 84

Number of total prices in top 85 weeks 24,070,437
Average number of prices per week 283,181 £ 6790
Number of distinct product categories 28

Average number of products per week 6304 £+ 461
Kaggle Dataset (1 year)

Number of store chains 134

Number of purchase events 349,655,789

Number of consumers 311,539

Number of distinct product categories 836

Table 2: Statistics about the three price datasets

4 Experimental Evaluation

In this section we evaluate the adversarial models de-
signed in Section 2.2. We start by presenting the assump-
tions and choices made for the evaluation.

4.1 Experimental Considerations

With respect to the value probability P(v | [,c), we as-
sume that the frequency of price values in the Num-
beo dataset reflects the frequency of real-world purchase
events with the corresponding price values. This is a nat-
ural assumption and is further motivated by the fact that
e.g., Numbeo contributors likely entered the most pop-
ular price values for the considered product categories.
Because our datasets contain a limited amount of prod-
ucts and product categories, our analysis is naturally con-
fined to the available products. Note that, if the adversary
knows the product categories of the purchases, e.g. milk,
other categories such as apples can be ignored, which al-
lows precise predictions with knowledge about few prod-
ucts. In order to compute the product category probabil-
ity, P(c | 1), we only consider one national product basket
and apply it to every country. Note that we do not use the
product basket as an indicator of how much money is
spent on average by a person, but rather as an indicator
in which ratio products are bought.

SAMPLING PRICE VALUES: Given a location /, we
generate synthetic consumer purchase events by sam-
pling price values from the respective dataset. For the
three datasets we consider adversaries with complete
knowledge of the price values. In addition we instan-
tiate an adversary with incomplete knowledge with the
Numbeo test dataset. Given the product basket of the
location / we compute the probability of a product cate-
gory being sampled (cf. Equation 4). Thus, we sample
each product category with the product category proba-
bility P(c | I). For each location we repeat the sampling
of the price values n = 1000 times and average the result.

ADDITIVE SMOOTHING PARAMETER: In the case
of an adversary with incomplete knowledge, we make
use of additive smoothing to avoid zero probabilities
when aggregating the probabilities of multiple purchase
events for locations (see Section 2.2.2). We choose a
smoothing parameter ¢ = 0.01 which provides us with
good results on our data (cf. appendix Figure 13).

In the following, we evaluate up to three knowledge
scenarios (cf. Section 2.3) for four location granularities:
(i) across 112 countries worldwide; (ii) across 23 cities
within the United States; (iii) across 84 stores within the
Chicago metropolitan area; (iv) we distinguish among
134 store chains in a country.



4.2 Country Granularity

The adversary has to distinguish 112 candidate countries
for each purchase event. We quantify the privacy given
the three privacy metrics defined in Section 2.6. In par-
ticular, we performed our study in two settings. First, (i)
we assumed that the adversary does not have complete
knowledge. This means that the adversary receives pur-
chase events from the Numbeo test dataset and estimate
their location based on the Numbeo dataset. In the sec-
ond case, (ii) the adversary assumes complete knowledge
of price values, and therefore, the sampled prices are in-
cluded in the price dataset which is adversarial knowl-
edge.

Figure 3 shows the Fj-score for the first case based
on the number of purchase events accessible to the
adversary.  Given one purchase event, the price,
price_merchant and price_product-category knowledge
scenario achieve an average of 0.38, 0.41 and 0.49 re-
spectively. The high Fj-score after one purchase event
shows, that even one event allows a decent prediction.
We observe that the adversary is more likely to identify
the correct location when it knows the product category
of the purchase event. On the contrary, if the adversary
has access to 10 purchase events, the respective Fj-scores
are 0.80, 0.85 and 0.90. In other words, 10 purchase
events significantly improve the ability of the adversary
to identify the location of the purchase events. The re-
ported values are averaged over n = 1000 iterations.

Price Knowledge Scenario
= Price Merchant Knowledge Scenario
Price Product-Category Knowledge Scenario

0 10 20 30 40 50
Number of Purchase Events

Figure 3: Fj-score for identifying the country given pur-
chase events sampled from the Numbeo test dataset, cor-
responding to incomplete knowledge.

Figure 4 corresponds to the second case, where the ad-
versary assumes complete knowledge of the price values.
We observe that the adversary can distinguish more ac-
curately between the possible locations.

The Fi-scores are averaged over all considered coun-
tries. Figure 14 in the appendix plots each considered
country in the price knowledge scenario and shows that
averaging does not hide poorly performing countries.

F1-score

Price Knowledge Scenario
Price Merchant Knowledge Scenario
Price Product-Category Knowledge Scenario

10 20 30 40 50
Number of Purchase Events

Figure 4: Fj-score for identifying the country given pur-
chase events sampled from the Numbeo dataset, corre-
sponding to complete knowledge. Averaging does not
hide poorly performing countries (cf. appendix C).

Table 3 presents the results of the mutual informa-
tion and the relative reduced entropy for each knowledge
scenario. We observe that the price_product-category
knowledge scenario reduces the entropy more signifi-
cantly than the other knowledge scenarios. Naturally,
this is because the price_product-category knowledge
scenario provides the adversary with more information
than the price knowledge scenario, thus effectively re-
ducing uncertainty when identifying the location.

Knowledge Scenarios

Price Price
Price Product-
Merchant
Category
Mutual Information 0.539 0.841 1.703
Relative Reduced E. 0.114 0.178 0.360

Table 3: Mutual information and relative reduced en-
tropy for the three knowledge scenarios when estimating
the country of purchase events from 112 countries.

4.3 US City Granularity

In this section we analyze an adversary that aims to dis-
tinguish among the purchase events of 23 US cities. As
before, we quantify the privacy based on the three pri-
vacy metrics defined in Section 2.6. We sample and test
purchase events on the Numbeo dataset only, since our
test dataset does not contain sufficiently many purchase
events per considered US city.

Figure 5 illustrates the Fj-score depending on the
number of purchase events. We observe, that after 10
purchase events, the Fi-score is greater than 0.7. There-
fore, our methodology also provides accurate estimations
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Figure 5: Fj-score for identifying the US city given pur-
chase events for different knowledge scenarios. The pur-
chase events are sampled from the Numbeo dataset.

on a city granularity. Table 4 reports the mutual infor-
mation and relative reduced entropy when estimating the
US city. We observe that the relative reduced entropies of
country and city granularity match across the knowledge
scenarios. This exemplifies the usefulness of the relative
reduced entropy to highlight similarities across different
price datasets.

Knowledge Scenarios

Price Price
Price Product-
Merchant
Category
Mutual Information 0368 0.572 1.164
Relative Reduced E.  0.101  0.157 0.319

Table 4: Mutual information and relative reduced en-
tropy for the three knowledge scenarios when estimating
the city of purchase events among 23 US cities.

4.4 Chicago Metropolitan Granularity

In this section, we analyze an adversary that aims to dis-
tinguish among the purchase events of 84 Dominick’s
stores within the Chicago metropolitan area. We sam-
ple the price values from the Chicago dataset, and as-
sume an adversary with complete knowledge; we there-
fore do not apply additive smoothing. We consider the
location prior probability P(!) to be uniform, because we
do not have reliable store popularity information for the
Chicago area.

In Figure 6 we can observe that the adversary can iden-
tify a local store given 100 purchase events with high
confidence. We expected a weaker result, since all stores
are operated by the same chain, implying relatively sim-
ilar price structures. We ran our attack on each of the 85

1.0

0.8

F1-score
; [am)
S =

0.2

0.0
0 20 40 60 80 100 120 140 160

Number of Purchase Events

Figure 6: Fj-score and standard deviation over 85 weeks
for identifying the store in the price knowledge scenario.
Data sampled from the Chicago dataset among 84 stores.

weeks with most data, averaged the results and report the
standard deviation as shown in the blue area of Figure 6.

Table 5 shows that the Chicago price dataset reveals
less information about the considered locations than the
Numbeo dataset. This observation holds for both knowl-
edge scenarios, and is consistent with the result that
more price points are required to localize purchase events
within the Chicago area.

Knowledge Scenarios

Price Price

Product-Category
Mutual Information 0.280 0.569
Relative Reduced E. 0.044 0.089

Table 5: Mutual information and relative reduced en-
tropy when estimating the store of purchase events for
84 stores in the Chicago metropolitan area.

4.5 Store chain granularity

The large-scale Kaggle dataset does not provide precise
location information of purchase events, but allows the
adversary to distinguish among 134 store chains. Know-
ing the store chain of purchase events effectively reduces
the possible locations of the purchases. Note, that the
prices of Kaggle are distributed over a year and the ad-
versary therefore does not know the precise time of the
purchase events.

We uniformly sample purchase events of different con-
sumers and perform our attack on the Kaggle dataset.
Figure 7 reveals that given approximately 250 price val-
ues we achieve an Fj-score of over 0.95 for the origin
of the purchase events. Note, that the price_product-
category knowledge scenario is particularly strong due
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Figure 7: Fj-score for identifying the store chain. The
purchase events are sampled from the Kaggle dataset.

Knowledge Scenarios

Price Price

Product-Category
Mutual Information 0.456 2.256
Relative Reduced E. 0.068 0.337

Table 6: Mutual information and relative reduced en-
tropy when estimating the store chain of purchase events
for 134 chains.

to many product categories. This is reflected by the par-
ticularly high Mutual Information (cf. Table 6).

Given these results, we conclude, that our framework
and methodology apply to a wide variety of different
price datasets and allow us to quantitatively compare
their respective privacy leakage. In the following, we
extract further insights from our data to strengthen the
attack.

4.6 Most Revealing Product Category

In this section we investigate which of the 23 considered
product categories from the Numbeo dataset leak more
information. This is a useful insight since an adversary
would pick purchase events of this product category in
order to increase the probability of correctly identifying
their location. Therefore, with the mutual information
we measure the extent to which the location entropy is
reduced, given the purchase events of a particular product
category. Contrary to the previous analysis, we evaluate
the mutual information per product category based on
the price_product-category knowledge scenario defined
in Section 2.3. More specifically, we compute the mutual
information using only purchase events of a particular
product category.

The results of the evaluation can be found in Figure 8.
According to this metric, the most revealing product cat-
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Figure 8: Mutual information of the respective product
categories, the higher the mutual information, the more
revealing is the product category.

egories are milk, a one-way ticket for local transporta-
tion, and a loaf of white bread. On the contrary, the
product categories that disclose less information about
a location are oranges, chicken breasts and rice.

4.7 Required Time Precision

Previously, we assumed that knowledge of the exact
currency conversion rates is required to compare non-
localized purchase events. Exact currency conversion
rates, however, require a precise knowledge of the pur-
chase event times. In this section, we show that our at-
tack does not require the exact currency conversion rates,
but also works if the adversary knows only the date or
even week of the purchase, i.e. it has an uncertainty of
24 hours or 7 days in relation to the conversion rates. We
therefore relax the requirements on the time precision.

Due to the conversion rate differences, the adversarial
estimation of P(v | [,¢) is inaccurate. To compensate for
the conversion rate differences, the adversary can use a
price tolerance. We study two options for the tolerance:
a static tolerance and a dynamic tolerance. For the static
tolerance, the adversary estimates P(v | /,¢) in the pres-
ence of uncertainty by considering price values in the in-
terval [v — tols, v +tolg] where the static tolerance tol; is
a small amount in global currency (e.g., 0.02 USD). The
dynamic tolerance value tol; is a percentage-wise esti-
mate of uncertainty (e.g., 2%). To estimate P(v | [,c)
the adversary considers price values from the interval
[v-(1=toly),v-(1+toly)].

We evaluated the attack to infer the country of pur-



chase events with imprecise purchase times and compen-
sated the time error with different tolerance values. To
simulate imprecise purchase times, we converted the ad-
versarial knowledge using conversion rates of 30 differ-
ent days from the year 2014 and then converted the non-
localized purchase events Sy using the previous days’
conversion rates. As before, we computed the Fj-score
to evaluate the quality of the estimated P(I | Sy).

For static and dynamic tolerance values, we found that
the attack is still accurate, i.e. reaches an Fj-score above
95% with less than 50 purchase events. A higher toler-
ance value has two opposing effects: (i) it compensates
for differences in currency conversion rates and increases
the number of correctly considered price values; (ii) a
higher tolerance, however, also increases the number of
incorrectly considered price values which fall into larger
intervals. Therefore, the tolerance value presents a trade
off between the true-positive and true-negative rate. Our
experimental results reflect this trade off both for static
and dynamic tolerance values (cf. appendix C). Based on
our experimental results we propose a dynamic tolerance
of 2% for a 24-hour time imprecision.

We also evaluated the uncertainty of one week on the
currency conversion rates. We used real-world currency
conversion rates that were seven days apart from each
other. Figure 9 shows the result of this experiment for the
different knowledge scenarios and a dynamic tolerance
value of 2% on the Numbeo dataset. We conclude that
our attack does not require precise purchase event times.

F1-score

Price Knowledge Scenario

Price Merchant Knowledge Scenario

Price Product-Category Knowledge Scenario

0 10 10 50

p 30
Number of Purchase Events

Figure 9: Dynamic tolerance of 2% with one week time
uncertainty on the Numbeo dataset while estimating the
country. Precise time allows an Fj-score of 0.95 after
10 purchase events whereas a one week time uncertainty
achieves an Fj-score of 0.63.

Apart from using a tolerance value to compensate for
purchase time uncertainty, we could also perform an ex-
haustive search over the time interval, apply the subse-
quently presented currency identification and pick the
time at which the currency was most likely converted.
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5 Currency Identification

We now consider the problem of identifying the currency
of a purchase based on the price value. This is rele-
vant since knowing the currency efficiently reduces the
number of possible consumer locations. In the Bitcoin
setting, one for example is able to obtain all transaction
values. Thus, inferring the currency based on that value
would leak location information.

Ideally, one would crawl Bitcoin transactions to cre-
ate a dataset containing the true currency and the trans-
action amount and train a statistical model on this data.
Ground truth, however, is unavailable (notwithstanding
the fact that Bitcoin is currently mostly used for gam-
bling [3, 12]). We therefore simulate block-chain con-
sumer purchases by using the global prices from the
Numbeo dataset. We then evaluate the quality of our pre-
diction model. The trained model can then be used for a
real attack on Bitcoin transactions.

We acknowledge that an adversary would have
additional difficulties operating on the blockchain,
e.g., it is unclear how to reliably filter irrelevant Bit-
coin transactions. Nevertheless, Bitcoin change ad-
dresses [15] and tagged Bitcoin addresses [34] (e.g.,
from blockchain.info) can be identified. More-
over, when a Bitcoin transaction transfers e.g., full in-
teger Bitcoins, it is likely a pure Bitcoin transaction, and
less likely a transfer in a local currency expressed in Bit-
coin.

The key insight to solve this problem is that individual
product prices are not distributed randomly, but are usu-
ally rounded-off at values such as .25, .95 or .99. This is
clearly visible in Figure 10, data is taken from Numbeo.
Research in psychology related to price-setting [27] also
support our assumptions.
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Figure 10: Distribution of prices in native currencies.



In order to infer the currency of a price value, we sug-
gest a simple yet effective approach in which the price is
converted to all known currencies and classified accord-
ing to the following model:

p=mxvXe,

c= argergin{lp— el 1p = P11}

where v is the price in the global currency, e € E is
the target currency conversion rate, p is the predicted
price in the target currency. The effective role of m is
to parametrize the assumption on the price distribution.

N

decision rule
to find most
likely currency

Géa

é‘ ‘gNumbeo
6 dataset of prices
generation of

purchases with
up to 20 products

simulated Bitcoin
transaction

conversions

Figure 11: Experimental setup for identifying the cur-
rency of purchases. We create 1,000,000 purchases by
sampling real-world prices from the Numbeo dataset.

5.1 Experimental Results

To simulate purchase events containing more than one
product, we create n synthetic datasets based on the orig-
inal Numbeo dataset: We sample 1,000,000 purchases,
each purchase containing randomly up to n products,
n € [1,...,20]. We then apply our algorithm on each
dataset separately and report the scores as shown in Fig-
ure 11. We evaluated our hypothesis under two assump-
tions (i) the true conversion rates® used to convert the
price value to the global currency are known (i.e. the Bit-
coin to local currency exchange rate is accurate) and (ii)
we do not aim to predict minor currencies which corre-
spond to a multiple of major currencies (e.g., 1 Bahamas
Dollar equals to 1 USD). Note that we weaken our adver-
sary by considering each product combination as equally
likely while generating the purchase events.

In order to determine the best performing parame-
ter m on the given price value dataset, we choose the
one (m = 10) which maximizes the Fj-score. The Num-
beo dataset features 155 currencies which our algorithm
then distinguishes upon. In Figure 12 we plot the over-
all weighted Fj-score depending on the number of prod-
ucts contained in a purchase. We fit the observed data to

8The conversion rates are sampled from openexchangerates.org
(30.06.2014)
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an exponential decay function, and conclude that even a
purchase with 50 prices has an Fj-score above 0.4. For
comparison, a random baseline achieves an Fj-score of
nearly zero (approximately 0.008).

Fitted Curve: 0.46exp(-0.09x) + 0.42

0.85 ° ° Obtained data
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Figure 12: Fj-score for identifying among 155 currencies
for purchases containing up to 20 products. Purchases
with few products are more likely to reveal the currency.

In the case that the date of the transaction is not
known, the currency conversion rate is not known. Be-
cause there are considerable fluctuations of exchange
rates on even a daily bases, we hypothesize that not
knowing the exact date of the transaction has an ex-
tremely negative effect on the classification algorithm.
We support this hypothesis by using the exchange rates
from a randomly selected day in 2014, instead of the
correct ones. While for some stable currencies the ef-
fect is small (e.g., Fi-score for USD changes by 0.04),
for majority of other currencies the Fi-score deteriorates
to below 0.1. In order to assess our algorithm’s perfor-

Currency  Fj-score Currency  Fj-score

RUB 0.98 TRY 0.93
CNY 0.96 EUR 0.89
INR 0.95 GBP 0.86
BRL 0.95 CAD 0.84
AUD 0.94 USD 0.58

Table 7: Top 10 major currencies and their respective
difficulty of identification. CNY can be reliably guessed.

mance among different currencies we reported the indi-
vidual Fj-score in Table 7 and focus on major curren-
cies. It shows, for example, that we can clearly distin-
guish whether the price is in Chinese Yuan (CNY) or not,
therefore achieving a very high Fj-score.



The quality of the suggested model is established by
very high values of the F;-score [38], which demonstrate
that this side channel information can be used in order to
narrow down the currency and thus the possible locations
of purchase events.

6 Related Work

Location Privacy. Blumberg [18] ef al. provide a non-
technical discussion of location privacy, its issues and
implications. Gruteser and Grunwald [25] initiate ma-
jor research in the area of the anonymization approaches
to location privacy. Further, Narayanan et al. [32] in-
vestigate location privacy from a theoretical standpoint
and present a variety of cryptographic protocols moti-
vated by and optimized for practical constraints while
focusing on proximity testing. Shokri et al. [37] propose
a formal framework for quantifying location privacy in
the case where users expose their location sporadically.
They model various location-privacy-preserving mech-
anisms, such as location obfuscation and fake location
injections. This work is orthogonal to ours, since in our
setting the consumers are not willingly revealing their lo-
cations. Voulodimos et al. [41] address the issue of pri-
vacy protection in context-aware services through the use
of entropy as a means of measuring the capability of lo-
cating a user’s whereabouts and identifying personal se-
lections. Narayanan [31] and Shmatikov propose statis-
tical de-anonymization attacks against high-dimensional
micro-data. We do not rely on their methods, since we
are not aiming to de-anonymize the consumers. De Mon-
tjoye et al. [42] show that consumers can be uniquely
identified within credit card records with only a few spa-
tiotemporal triples containing location, time and price
value. Contrary to their work, we focus on the price val-
ues and we localize instead of identify consumers.

Payment systems. The privacy implications of public
transaction prices have been widely ignored. One promi-
nent example is Bitcoin [36] [19], where transactions are
exchanged between peers by means of pseudonyms. The
actual transaction prices are archived and publicly avail-
able. The literature features many different methods for
analyzing the privacy implications of Bitcoin, e.g., by
means of appropriate heuristics [15], tainting [24], or
other techniques [35] [23]. Reid and Harrigan [34] an-
alyze the flow of Bitcoin transactions in a small part
of the Bitcoin log, and show that external information
like publicly-announced addresses, can be used to link
identities and organizations to some transactions. In
[30] the authors propose Zerocoin, a cryptographic ex-
tension to Bitcoin that augments the protocol to allow
for fully anonymous currency transactions using a dis-
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tributed ECash scheme. To the best of our knowledge
only two contributions [16] [17] have aimed to hide the
transaction prices in Bitcoin.

Price rigidity. Herrmann and Moeser [26] perform a
quantitative analysis on price variability and conclude
that prices are often rigid for several weeks. Pricing
strategies for identical brands, however, vary signifi-
cantly among retailers. Their observations match the
studies of the Big Mac index [6] (the Economist), the
Starbucks coffee index [9] (the Wall Street Journal) and
the Ikea Billy Bookshelf index [2] (Bloomberg). The for-
mer studies show that prices of identical products from a
single brand vary across locations. Dutta et al. [22] find
that retail prices respond promptly to direct cost changes
as well as upstream manufacturers’ costs. Hosken and
Reiffen [28] find that each product has a price mode—
a price that the product stays at most of the time. Note
that Hosken’s non-public dataset contains nearly as many
price observations as our Numbeo dataset.

7 Conclusion

Having a systematic methodology to reason quantita-
tively about the privacy leakage from datasets containing
price relevant information is a necessary step to avoid
privacy leakages. While further tests with more datasets
will help to generally claim that price values alone can
reveal the location of a purchase, our empirical results
provide evidence that with relatively few purchase events
it is possible to identify a consumer’s location. In this
paper, we have raised the following two questions: How
much location information is leaked by consumer pur-
chase datasets? How can it be quantified with the con-
sidered adversarial model and knowledge? In our pro-
posed framework, we have modeled several adversaries
and quantified the privacy leakage according to differ-
ent dimensions. We make extensive use of Bayesian in-
ference in our framework to model the different attack
strategies. Our framework can be easily applied to any
price dataset of consumer purchases and allows one to
compare the privacy leakage of different datasets. We
applied our methodology to three real-world datasets and
achieve comparable results. In addition, we presented
a novel methodology for identifying the currency of a
purchase knowing only the total purchase price. The re-
sults presented in this paper strongly motivate the need
for careful consideration when sharing price datasets and
should be considered when designing public ledger cryp-
tocurrencies.
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Appendix B: Dataset information

Category and Merchant  Unit Prices
Market Product Categories

Apples 1kg 11876
Chicken Breasts 1kg 11893
Cigarettes (Marlboro) 1 pack 12712
Domestic Beer one 0.5 liter bottle 10243
Eggs 12 units 14617
Imported Beer one 0.33 liter bottle 9484
Lettuce 1 head 8966
Loaf of White Bread 0.5 kg 14633
Local Cheese 1kg 10975
Milk (regular) 1 liter 17197
Oranges 1 kg 10289
Potato 1kg 10891
Rice (white) 1kg 10924
Tomato 1 kg 10539
Water 1.5 liter bottle 12762
Wine (Mid-Range) 1 bottle 11893
Restaurant Product Categories

Cappuccino (regular) 1 unit 21539
Coke/Pepsi one 0.33 liter bottle 21351
Fast Food Combo Meal 1 unit 21794
Domestic Beer one 0.5 liter bottle 19128
Imported Beer one 0.33 liter bottle 18048
Water one 0.33 liter bottle 21691
Local Transportation Categories

One-way Ticket 1 unit 15275

Table 8: Product categories of the Numbeo dataset.

Appendix C: Further Experimental Results
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Figure 13: Comparison of different ¢-parameters for
additive smoothing based on the price_product-category
knowledge scenario.
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Figure 14: Fj-score of each individual country for the
price knowledge scenario. The purchase events are sam-
pled from Numbeo. We observe that no country performs
poorly.

Appendix C.1: Required Time Precision

Figure 15 shows, that a larger tol; will improve the over-
all F-score, but more purchase events are needed to filter
out the false positives. Similarly, for the dynamic tol-
erance in Figure 16, a higher value for tol; provides a
better prediction for many purchase events, but a worse
prediction for few purchase events. The figures show the
experiments for the price_product-category knowledge
scenario, however, we note that the results are analogous
to the other scenarios. Based on these results we propose
a dynamic tolerance of 2% in the case of a 24-hour time
imprecision on the conversion rate.

Static Tolerance Values
= 0.005 USD
-~ 0.010 USD
— (.020 USD
= 0.050 USD
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Figure 15: Using static tolerance values to compensate
for imprecise time information (one day uncertainty) in
the price_product-category knowledge scenario.

Appendix C.2: Motivating example

Since products appear in a multitude of price values, it is
at first unclear how accurately price values can identify
a location. To illustrate why purchases can be localized,
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Figure 16: Using dynamic tolerance values to compen-
sate for imprecise time information (one day uncertainty)
in the price_product-category knowledge scenario.

we focus on an example of the product category domestic
beer (0.5L bottle), which can be bought in nearly every
country. The price values are taken from the Numbeo
dataset [10]. Figure 17 shows the distribution of price
values of beer in USD for four countries. We observe
that ranges of prices clearly differ for India and the other
countries, while prices in Australia are more likely to be
higher than in the US and Canada, where distributions

17

of prices are similar. Given a beer price above 3 USD,
in this case, it is highly likely that the purchase has not
occurred in India.
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Figure 17: Distribution of domestic beer prices

(0.5 Liter) in 4 countries. Numbeo prices, converted to
US Dollar.



