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Abstract. Blockchains and DeFi have consistently shown to attract fi-
nancial speculators. One avenue to increase the potential upside (and
risks) of financial speculation is leverage trading, in which a trader bor-
rows assets to participate in the financial market. While well-known over-
collateralized loans, such as MakerDAO, only enable leverage multipli-
ers of 1.67×, new under-collateralized lending platforms, such as Alpha
Homora (AH), unlock leverage multipliers of up to 8× and attracted over
1.2B USD of locked value at the time of writing.
In this paper, we are the first to formalize a model for under-collateralized
DeFi lending platforms. We analytically exposit and empirically evaluate
the three main risks of a leverage-engaging borrower: (i) impermanent
loss (IL) inherent to Automated Market Makers (AMMs), (ii) arbitrage
loss in AMMs, and (iii) collateral liquidation. Based on our analytical
and empirical results of AH over a timeframe of 9 months, we find that
a borrower may mitigate the IL through a high leverage multiplier (e.g.,
more than 4×) and a margin trading before supplying borrowed assets
into AMMs. We interestingly find that the arbitrage and liquidation
losses are proportional to the leverage multiplier. In addition, we find
that 72.35% of the leverage taking borrowers suffer from a negative APY,
when ignoring the governance token incentivization in AH. Finally, when
assuming a maximum ±10% move among two stablecoins, we pave the
way for more extreme on-chain leverage multipliers of up to 91.9× by
providing appropriate system settings.

1 Introduction

Over 44% of the total locked DeFi value is dedicated to lending and borrow-
ing services. Financial debt has therefore manifested its importance within the
decentralized financial ecosystem. The very first DeFi debt protocols focused
on so-called over-collateralized loans — wherein a borrower must collateralize
more financial value than the lent debt amounts to [16,4,15]. Common over-
collateralized loan systems require the collateral value not to decline below 150%
of the total debt value. While over-collateralized loans grant the borrower a wide
degree of flexibility in using the borrowed’ assets, they remain capital-inefficient
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and limit the borrowers leverage multipliers below 2×1 — that is the multiplier
by which traders can increase their financial up- or downside of a loan.

In under-collateralized loans, however, speculate-afine traders can gamble
with leverage multipliers beyond 2×, which we subsequently refer to as leverage
trading. While the borrowed assets remain under the tight control of immutable
on-chain smart contracts, existing on-chain leverage platform, such as Alpha
Homora [1] grants the borrowers the ability to speculate with a leverage of up to
8×. To the best of our knowledge, this is the first work to explore the practices
and possibilities of secure under-collateralized on-chain leverage. We formalize
an on-chain leverage model, measure existing lending practices and assess the
risks quantitatively as we summarize in our contributions:

On-chain Leverage Model: To the best of our knowledge, we are the first
to provide a model for on-chain lending platforms with a leverage factor
beyond 2×. We formalize the generic users and components to encompass
future leverage designs. We show that with reasonable system settings, an
on-chain lending system can achieve a leverage multiplier of up to 91.9×.

On-chain Leverage Analytics: Over a timeframe of 9 months, we analyze
on-chain data analytics of Alpha Homora (AH), with 1.2B USD of locked
value, the largest on-chain leverage platform in DeFi. We find that lenders
consistently benefit from a positive APY, while 72.35% of the leverage taking
borrowers suffer from a negative APY, when ignoring the governance token
incentivization in AH.

Leverage Risk Quantification: We identify three risks causing borrower losses:
(1) impermanent loss (IL) inherent to Automated Market Makers, (2) asset
arbitrage, and (3) collateral liquidation. We find that out of the 10,430 po-
sitions analyzed over 9 months for leverage trading in AH, 1,139 suffer from
IL, 149 are susceptible to asset arbitrage and 270 suffered from collateral
liquidation. We find that a borrower may mitigate the risk of IL by simul-
taneously (1) employing a high leverage multiplier (e.g., more than 4×) and
(2) performing a margin trade to swap the borrowed assets to collateralized
tokens before supplying assets into AMMs.

2 Background

In the following, we provide essential notions of DeFi to further understand the
novelties presented in this paper.

2.1 DeFi

Decentralized Finance, also known as DeFi, is a financial ecosystem which runs
autonomously on smart-contracts-enabled blockchains and has grown to a to-
tal locked value (TVL) of over 100B USD at the time of writing. Many DeFi
1 For instance, 1.67×, in the case of MakerDAO, where the collateral value shall not
decline below 150% of the debt value.
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protocols are inspired by traditional centralized finance (CeFi) systems, such
as lending and borrowing platforms, asset exchanges, derivatives, and margin
trading systems. However, compared to CeFi, DeFi offers distinct features to its
users, such as complete transparency and non-custodial asset control. DeFi also
enables novel financial primitives that do not exist in traditional CeFi, such as
flash loans [27]. Flash loans enable borrowers with nearly zero upfront collateral
to borrow instantly billions of USD. Such financial enablers grant arbitrageur
traders significant power through the atomic execution of arbitrage transactions
across the many composable DeFi markets. For a more thorough background on
DeFi, we refer the interested reader to the related works [28,24].

2.2 Price Oracles

While DeFi is being built, the decentralized finance paradigm remains deeply
connected to CeFi. Because blockchains are isolated databases, and cannot ac-
cess off-chain data, DeFi gathers external data from third-party services, com-
monly referred to as oracles. Price oracles allow feeding e.g. stock or other asset
price information to smart contracts and can therefore act as a bridge between
DeFi and the external world [17]. Oracles can be classified as centralized and
decentralized oracles based on the number of external sources. Two major de-
centralized DeFi oracle providers are Chainlink [8] and the Band Protocol [23].

2.3 Automated Market Maker

The prevalent price-finding and order matching mechanism in centralized ex-
changes (CEXs) is the limit order-book model (LOB), which matches buyers’
bids to sellers’ ask prices [24]. In decentralized exchanges (DEXs) [31,29], the
Automated Market Maker (AMM) evolved to replace LOB due to its suitability
for low-throughput blockchains [35]. An AMM consists of a liquidity pool which
receives and emits financial assets through the control of a pre-defined algorithm,
in its simplest form a constant product formula. A pool is funded by liquidity
providers (LP), who receive LP tokens matching the accounting share of their
pool ownership. Liquidity takers (LT) request a trade with the pool by providing
one asset X plus a transaction fee [9] while receiving another asset Y in return.
The transaction fees are paid to the LPs, proportionally to the LP pool shares.

Impermanent Loss. Liquidity providers have the choice of either depositing
their assets to a liquidity pool, or holding the assets in their wallets. If the
accumulative value of the tokens in a liquidity pool drops below the hypothetical
value of simply holding the assets in a wallet, there exists an impermanent loss
(IL), also known as divergence loss. From the moment of an LP deposit, the
accumulative asset value decline may occur, when the tokens in a liquidity pool
diverge in price from each other [9,6]. If the token values revert to the price ratio
at the time of the LP deposit, the IL is reverted. An IL is therefore only realized,
when an LP exits a liquidity pool in a state where there exists an IL.

Arbitrage. Arbitrage is the process of profiting by selling/buying assets
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among multiple markets, leveraging price differences. Arbitrage increases the
DeFi market efficiency and is typically considered benign. Previous works [10,33,35]
have shown that DeFi arbitrage bots monitor blockchain state changes and ex-
ecute arbitrages among AMMs to make profits.

2.4 Financial Leverage

Leverage is the practice of taking on debt, i.e., to borrow assets for a subsequent
financial operation [5]. One such operation is to perform a momentary exchange
of assets, which is commonly referred to as margin trading. Another operation
would be to take the lent assets and provide these towards a financial instrument,
such as a DeFi liquidity pool, as we investigate within this work.

Leverage, in general, can amplify trader profits, as well as losses. Aggressive
traders are known to be willing to undertake such risks in pursuit of higher re-
turns [30]. The degree of amplification is determined by the leverage multiplier,
which is defined as the ratio of the total assets to the equity (or cash) that a
trader holds. The leverage multiplier can be freely adjusted by the trader, i.e., by
providing or removing ad hoc collateral from the leverage position. A multiplier
of 1× means that the total assets that the trader has access to are equivalent
to the trader’s equity, i.e., the trader does not borrow any assets. A leverage
factor beyond 1× is achieved as soon as the trader can borrow assets to perform
a subsequent financial operation. Centralized cryptocurrency trading platforms
have readily introduced leverage trading, e.g., Prime XBT [32], OkEX [19], Bit-
MEX [7], and Poloniex [22], offering leverage multipliers from 2.5× to 100× [20].

2.5 Leverage in DeFi

Because of the lack of Know-Your-Customer (KYC) verifications and the blockchain’s
pseudonymity, DeFi users cannot safely resort to credit to exert leverage. There-
fore, DeFi borrowing is usually fully collateralized or over-collateralized and
(with 29B USD of total locked value) widely applied in several lending platforms
such as MakerDAO [16], Compound [15] and Aave [4]. MakerDAO for instance,
allows traders to open collateralized debt positions by providing various cryp-
tocurrencies as a then locked security deposit. In exchange for locking these
assets, the trader can then mint a stablecoin DAI, which can be freely used, as
long as the collateral value does not decline below a certain threshold. Specifi-
cally, MakerDAO requires that the collateral value does not decline below 150%
of the granted debt position. As such, MakerDAO enables maximum leverage of
2.5/1.5 ≈ 1.67×, while in this work we investigate protocols that enable higher
leverage multipliers. If the collateral value declines below 150% in MakerDAO,
the debt position becomes liquidatable as we elaborate further in the following.

2.6 Liquidations

If the value of debt collateral in a lending system declines below a custom thresh-
old, then the debt position may be opened for liquidation. The Health Factor



Speculative Multipliers on DeFi: Quantifying On-Chain Leverage Risks 5

(HF) is a common metric to measure the health of a debt position, whereas an
HF smaller than 1 indicates that a debt position is liquidatable [25]. A liquida-
tion is then an event in which a liquidator repays outstanding debts of a position
and, in return, receives a portion of the collateral of the position as a reward.
Liquidations in DeFi are widely practiced, and related works have quantified
that over the years 2020 and 2021, liquidators realized a financial profit of over
800M USD while performing liquidations [25].

3 On-Chain Leverage System

We proceed to outline the actors and components of on-chain leverage systems
as shown in Figure 1.
Lending Pool. A lending pool is a multi-asset management pool that allows
capital-providing entities to earn interest on their capital as well as capital-taking
entities to trade with a multiple of the capital they hold. Essentially, three actors
interact with a lending pool: Lenders, Borrowers as well as Liquidators.
Lender. Lenders supply assets (e.g., ETH, USDT) to the lending pool to earn
from the lending interest rate. The lending interest rate is paid by the borrowing
interest rate that leveraged yield farmers contribute for borrowing assets.
Borrower. Borrowers supply assets as collateral to the lending pool to then
open leveraged positions, while paying borrowing interests. To avoid liquidations,
borrowers can provide additional collateral or partially repay their position. In
addition, borrowers can supply the borrowed assets to liquidity providing pools
to earn trading fees, or stake LP tokens to liquidity mining pools to earn profits.
Liquidator. Leveraged positions are subject to liquidation when the debt be-
comes unhealthy [25]. A liquidator can repay the debt and benefit from a liqui-
dation spread.
Price Oracle. The lending pool obtains the asset prices of various cryptocur-
rencies through external price oracles, which can then inform the smart contract
whether a position is liquidatable.

Lending Pool 
Supply Assets/Collateralize

Price Oracle

Open Leverage
Borrowers

Lend

Withdraw

Supplied + Borrowed Assets 

Liquidity Mining Pools 
(AMMs) 

APY

Lenders

Stake LP Tokens 

Liquidators

Liquidate

Liquidity Providing Pools 
(AMMs) 

Feed

Fig. 1. High-level system diagram of on-chain leverage platforms. The solid arrows (→)
represent the movement of cryptocurrencies, and the dash arrows (99K) represent the
transmission of data.
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Table 1. Notation Summary

Notations Definitions Notations Definitions
LV leverage platform Collt(PC

id) amount of collateral cryptocurrency
Pid = (C, B) debt position Borrt(PB

id) amount of borrowing cryptocurrency
x X x amount of cryptocurrency X pB→C

t price of B in the unit C at time t

DebtRatiot(Pid) debt ratio Credit(B, C)
how much credit a position gains when
collaterizing 1 C and borrowing 1 B

LMt(Pid) leverage multiplier m the initial leverage multiplier when opening a position

LossIL impermanent loss ReturnIL,Mg
cp

the return from impermanent
loss and margin trading

LossAR arbitrage loss ReturnMg
cp

the return from margin trading without impermanent
loss

LossLQ liquidation loss LS
liquidation spread, which determines the
rewards for a liquidator after repaying the debt

3.1 Formal Leverage Model

In the following, we formalize the leverage model. We also provide a table to
summarize the notations used in this paper (cf. Table 1).

We denote an on-chain leverage platform as LV = 〈C,B,P,F〉, where C de-
notes the set of collateral cryptocurrencies; B denotes the set of debt cryptocur-
rencies available for borrowing; P denotes the set of debt positions. A position
is denoted as P = (C, B), where C ∈ C is a collateral cryptocurrency and B ∈ B is
a debt cryptocurrency. F denotes the set of farming cryptocurrencies that bor-
rowers can receive after providing their borrowing cryptocurrencies into farming
pools. In practice, borrowers can (1) supply their borrowing cryptocurrencies
to liquidity providing pools to earn trading fees, and (2) stake LP tokens to
liquidity mining pools to earn profits. For simplicity, in our model, we regard
steps (1) and (2) as block box and only consider borrowers’ final returns.

Each debt position P = (C, B) has a unique id, denoted as Pid. We define
Collt(PC

id) and Borrt(PB
id) as the amount of collateral and borrowing cryptocur-

rencies of a position Pid respectively in LV at time t (in practice, time t is
measured in block timestamp). In a leverage platform, the prices of cryptocur-
rencies are available through a price oracle (cf. Section 2.2). We denote x amount
of cryptocurrency X with x X. We denote pB→C

t as the price of B in the unit C at
time t, i.e., 1 B = pB→C

t C.
LV maintains the state of every position Pid ∈ P, and the state is quantified

by the debt ratio DebtRatiot(Pid) =
Borrt(PB

id)
Collt(PC

id)
· Credit(B, C) · pB→C

t · 100%, where
Credit(B, C) is a fixed parameter set by the platform LV, which determines
how much credit Pid receives when collaterizing 1 C and borrowing 1 B. When
DebtRatiot(Pid) exceeds 100% due to, for example, the fluctuations of price pB→C

t ,
Pid becomes available for liquidations.

A position Pid is over-collateralized, if Collt(PC
id) > Borrt(PB

id) · pB→C
t , and

under-collateralized otherwise. Debt positions in a leverage platform LV are
typically under-collateralized. We finally define the leverage multiplier to mea-
sure to what degree borrowers can expand their assets in a position Pid, i.e.,
LMt(Pid) =

Borrt(PB
id)·p

B→C
t +Collt(PC

id)
Collt(PC

id)
.
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3.2 AMM Model

AMM exchanges are to date the most prevalent markets where leverage borrow-
ers deposit borrowed assets to realize revenue through the collection of trading
fees. Hence, the borrowers’ returns and risks are fundamentally influenced by the
underlying AMM mechanisms. To ease our subsequent analysis, we proceed to
outline an AMM (cf. Section 2.3) model. We assume the existence of an AMM
A allowing the exchange between a pair of cryptocurrencies X and Y. xt and yt
denote the amount of X and Y respectively supplied in A at time t. xt and yt
satisfy a conservation function f(xt, yt,~k) = 0, where ~k is invariant over time.
The spot price of X with respect to Y in A at time t is defined as pt = ∂f

∂yt
/ ∂f∂xt .

We assume that at time t, a trader swaps δx X to δy Y. Following the conservation
function, δx and δy should satisfy f(xt, yt,~k) = 0 and f(xt+ δx, yt− δy,~k) = 0.

Liquidity providers (LPs) provide liquidity to A by depositing asset X and Y.
Due to the price movement between X and Y, xt and yt may change over time.
Hence, the amount of X and Y that a LP is allowed to redeem varies with respect
to pt, denoted by gXt (pt) and gYt (pt).
Constant Product AMMs. For a constant product AMM A, the conservation
function is f(xt, yt, k) = xt · yt − k = 0, which stipulates that the product of
xt and yt remains constant after an asset exchange and generally defines the
AMM’s bonding curve. The spot price in A is derived with pt = yt

xt
.

Exchange. When a trader purchases Y from A with δx X, we can derive the
output amount of Y with δy = yt − xt·yt

xt+δx
. Note that the realized exchange rate

δy
δx is lower than the spot price pt, as the executed price depends on the trade
volume along the AMM bonding curve. We refer to the difference between the
expected price (i.e., the spot price) and the actual exchange rate as slippage [35].

Liquidity Supply. Liquidity providers supply X and Y to a pool A while
typically not changing the pool’s spot price. The ratio between the supplied X
and Y in a single deposit at time t therefore follows ∆y

∆x = yt
xt
.

4 Analytical Evaluation

While leverage is a speculative tool to increase the borrowers’ profit, this upside
increases the potential monetary risks as we outline in the following. The primary
risks we identify are (i) impermanent loss, (ii) arbitrage and (iii) liquidation.

4.1 Impermanent Loss Risk.

As widely understood, the impermanent loss (IL) [9,6] is caused by diverging
asset prices within a liquidity pool (cf. Section 2.3). In the following, we investi-
gate the financial risks created through the IL. Notably, we find that the return
from margin trading through leverage may positively outweigh IL (cf. Figure 3).

Generic Formulas for IL. We assume that at time t0, the price pB→C
t0 in an

AMM A is p0, i.e., 1 B = p0 C. A borrower supplies gCt0(p0) C + gBt0(p0) B to A.
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Fig. 2. Resulting return from impermanent loss in constant product AMMs and margin
trading in on-chain leverage systems such as Alpha Homora. We find that the return
from margin trading through leverage may positively outweigh the impermanent loss
if the leverage multiplier is sufficiently high. For example, at a leverage of 7×, we find
that upon a price change of 0.64, the return given by margin trading is 94.43%, while
the impermanent loss amounts to −2.44%.

We further assume that, at time t0+∆, the price changes to p and the borrower
removes all supplied tokens from A. Due to the price movement, the assets that
the borrower is allowed to redeem become gCt0+∆(p) C and gBt0+∆(p) B. We can
then derive the borrower’s impermanent loss in A with Equation 1.

LossIL =
gCt0+∆(p) · 1 + gBt0+∆(p) · p
gCt0(p0) · 1 + gBt0(p0) · p

− 1 (1)

IL in constant product AMMs. We assume that at time t0, a borrower
collateralizes c C in the leverage platform LV, sets the leverage multiplier as
m to borrow gCt0(p0) C + gBt0(p0) B, and then provides the assets to a constant
product AMM A. Because A typically requires to receive a specific proportion
of supplied assets for returning LP tokens, gCt0(p0) and gBt0(p0) need to satisfy
gCt0

(p0)

gBt0
(p0)

= p0. We can then derive that gCt0(mc, p0) =
mc
2 and gBt0(mc, p0) =

mc
2p0

.
We further assume that the percentage of the total liquidity that the borrower

owns in A is invariant over time. Then at time t0 +∆, the borrower can redeem
gCt0+∆(mc, p) C = mc

2
√
p0

√
p C and gBt0+∆(mc, p) B = mc

2
√
p·p0 B. Then according to

Equation 1, the borrower’s impermanent loss in A is LossILcp =
2
√

p
p0

1+ p
p0

− 1.
Speculation Through Margin Trading. If we only consider the imperma-
nent loss in A, the borrower will always suffer from LossIL. However, a borrower
can choose to mitigate the IL though a margin trading as follows: (1) the bor-
rower collateralizes c C, and sets the leverage multiplier as m(m > 2) to borrow
(m−1)c
p0

B; (2) the borrower then swaps (m2 − 1) cp0 B to (m2 − 1)c C and supplies
mc
2 C + mc

2p0
B into A; (3) the borrower removes all assets in A and repays the
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(1). Collateralize 1 REN + Borrow 5 USDT

(2). Swap 2 USDT to 2 REN

(3). Supply 3 REN + 3 USDT
Uniswap

AH
(6). Repay 5 USDT

(5). Swap 0.8 REN to 1.25 USDT

(4). Remove 2.4 REN + 3.75 USDT
Uniswap

AH

Time

Fig. 3. Example of positive return from margin trading and IL: We assume that, at
time t, the price between two tokens USDT and REN is pUSDT→REN

t = 1 in Uniswap [31],
which is a constant product AMM exchange. A borrower, namely Bob, (1) collateralizes
1 REN in AH and sets a 6× leverage multiplier to borrow 5 USDT. (2) Bob then swaps
2 USDT to 2 REN, and (3) supplies 3 USDT and 3 REN to Uniswap. If at time t +∆, the
price pUSDT→REN

t+∆ becomes 0.64, Bob then holds 2.4 REN and 3.75 USDT in Uniswap. Bob
suffers from an IL of 3.75×0.64+2.4

3×0.64+3
− 1 = −2.44%. (4) Finally, Bob removes all assets

from Uniswap and (5) swaps 0.8 REN to 1.25 USDT (now Bob has 1.25+3.75 = 5 USDT),
and (6) repays the debt with 5 USDT. Bob’s final return is 2.4 − 0.8 − 1 = 0.6 REN, a
profit realized through leverage and margin trading.

debt at time t+∆. Then the borrower’s resulting return from impermanent loss
and margin trading is ReturnIL,Mg

cp = m(
√

p
p0
− p

p0
) + p

p0
− 1 (cf. Equation 4).

We notice that, because the borrower performs a margin trade to swap the
borrowed token B (i.e., shorts the debt B) to the collateralizing token C (i.e.,
longs the collateral C) before supplying assets into A, the decline of p may help
the borrower to increase the financial return. We can further derive the return
from margin trading without IL: ReturnMg

cp = ReturnIL,Mg
cp − LossILcp = m(

√
p
p0
−

p
p0
) + p

p0
−

2
√

p
p0

1+ p
p0

. This return may outweigh the impermanent loss LossILcp, when

the leverage m satisfies m >
1− p

p0√
p
p0
− p
p0

.

In Figure 2, we set the leverage of a position to be 2×, 4× and 7×. We then
visualize the return ReturnIL,Mg

cp of such position by capturing a hypothetical price
change p

p0
in the range of 0 to 3. Under a leverage setting of 4 or 7, we observe

that the borrower may receive a positive return, if 1
9 <

p
p0
< 1. We provide an

example to show our results in practice (cf. Figure 3).

4.2 Arbitrage Risk.

A liquidity pool typically requires receiving a specific proportion of supplied
assets before returning the accounting LP tokens. The LP therefore may need
to exchange parts of its assets prior to providing the liquidity. Because liquidity
provisions may involve significant liquidity amounts, the prior swap of assets
may cause a slippage which can be exploited by DeFi arbitrageurs [10,33,35].
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Although arbitrage is regarded as benign for the whole DeFi ecosystem (cf.
Section 2.3), borrowers on a leverage platform can suffer from a loss when swap-
ping their assets in AMMs, which may generate profitable opportunities for
arbitrageurs (see our example in Appendix C.1). In the following, we formalize
the financial risks originating through arbitrage loss.
Generic Formulas for Arbitrage Loss. We assume that there are two con-
stant product AMMs A1 and A2 allowing exchanges between cryptocurrencies
B and C. At time t, A1 and A2 have the same spot price pB→C

t = pt(xt, yt). A
borrower swaps δx C to δy B in A1. We can then derive that the new spot price
pB→C
t+δ in A1 is pB→C

t+δ = pt+δ(xt + δx, yt − δy + δy).
We assume that the spot price in A2 does not change from time t to t+ δ. If

pB→C
t+δ < pB→C

t , an arbitrageur can undertake the following actions to make profits:
(1) The arbitrageur first swaps δy2 B to δy2 · pB→C

t C in A2; (2) The arbitrageur
then swaps δy2 · pB→C

t C to δy2·pB→C
t

pB→C
t+δ

B in A1. We can then derive the arbitrageur’s

final profits is LossAR = δy2 ·
(
pB→C
t

pB→C
t+δ
− 1
)
B, which also equals to the loss of the

borrower who supplies δx C to A1.
Arbitrage Risk in constant product AMMs. If A1 and A2 are both con-
stant product AMMs, then pB→C

t = yt
xt
. If the borrower performs a margin trad-

ing, then δx = (m2 − 1)c, and pB→C
t+δ = yt−δy+δy

xt+δx
= yt

xt+δx
. We can derive the

arbitrage loss as LossARcp = δy2 ·
(
xt+δx
xt
− 1
)
B =

(m2 −1)c·δy2
xt

B.

We find that the arbitrage loss LossARcp is proportional to δx, the amount of C
supplied by the borrower, and δy2, the amount of B swapped by the arbitrageur.
Hence, to reduce the arbitrage loss LossARcp , the borrower can simply supply assets
to the liquidity pool through multiple (temporally distributed) transactions by
dividing the entire volume into smaller chunks suffering from less slippage. Note
that generating several transactions will involve additional blockchain fees.

4.3 Liquidation Risk.

As discussed in Section 3, a position is liquidatable when the debt becomes
unhealthy, i.e., DebtRatiot+∆(Pid) > 100%, due to a price change of pB→C

t (see
a concrete example in Appendix C.2). In the following, we explore what price
changes may cause liquidations and associated financial risks in leverage systems.

We denote the leverage multiplier at time t as m. To capture how the price
affects a position’s health, we compute the liquidation threshold price p̂lB→C at
which the position is eligible for liquidation (cf. Equation 2).

DebtRatiot+∆(Pid) ≤ 1⇐⇒ p̂l
B→C

pt0
≤ 1

Credit(B, C) · (m− 1)
(2)

In Figure 2, we choose Credit(B, C) = 1.5 and show the liquidation thresholds
of p̂lB→C given a leverage 2×, 4× and 7×. We find that the threshold p̂l

B→C is
inversely proportional to the chosen leverage. Moreover, the threshold p̂lB→C is
unrelated to the resulting return from impermanent loss and margin trading,
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i.e., even if the return is positive under a leverage 4× or 7×, the position can
still be liquidatable when pB→C

t

pt0
> 1

9 .
In addition, according to Section 2.6, the financial loss from a liquidation

for a position Pid at time t can be derived as LossLQ =
Borrt(PB

id)·LS·cl·p
B→C
t

Collt(PC
id)

=

(m− 1) · LS · cl · p
B→C
t

pt0
, where LS ∈ (0, 1] is a parameter for the liquidation spread

set by the leverage platform LV, with which a liquidator can receive profits by
repaying the debt2; cl ∈ (0, 1] is a parameter that the liquidator chooses to
determine what percentage of the debt shall be repaid.

4.4 Maximum Reasonable On-Chain Leverage

In the following, we investigate how to achieve a larger maximum on-chain lever-
age multiplier, by changing the system parameters of a DeFi leverage platform.
Note that the maximum leverage multiplier discussed in this section is limited
to the liquidation risk.

We consider two conditions regarding liquidations: (1) To avoid an instant
liquidation when opening a position, the debt ratio should be less than 1 after
setting the initial leverage, i.e., DebtRatiot(Pid) ≤ 1 (cf. Equation 2); (2) To
incentivize liquidators, a position should have sufficient collateral to repay for a
liquidation, i.e., LossLQ ≤ 1 (cf. Section 4.3). By combining the two conditions,
we derive the maximum leverage multiplier mmax in Equation 3.

mmax =
1

max(LS, Credit(B, C)) ·max( ptpt0
)
+ 1 (3)

We notice that three parameters play herein an important role: (1) Credit(B, C),
a parameter determining the credit that a position gains when collaterizing 1 C
and borrowing 1 B (cf. Section 3.1). (2) LS, the liquidation spread on the sys-
tem (cf. Section 4.3). (3) pt

pt0
, the price change with respect to the initial price

when opening a position, which varies over time. Both Credit(B, C) and LS are
configurable system parameters, while pt

pt0
indicates the price volatility.

Given Credit(B, C), LS and max( ptpt0
), we plot the distribution of mmax in

Figures 4 and 5. We discuss three cases for choosing mmax for stablecoins:

– Case 1: If max( ptpt0
) = 1.1, choosing max(LS, Credit(B, C)) = 0.11, then

mmax = 9.3×. In this case, we assume that the price change pt
pt0

always
remains below 1.1. This is a reasonable assumption for stablecoins in prac-
tice. For instance, the prices of USDT and USDC range between 0.99 USD and
1.01 USD in 2020 [18,24]. Moreover, the two system parameters Credit(B, C)
and LS satisfy the following constraints: (1) Credit(B, C) is less than 0.11,
which is a practical number adopted on AHv2 [3] when B and C are stable-
coins. (2) The liquidation spread LS on the system is at most 11%, which is
larger than the LS on AHv2 (i.e., 5%).

2 For example, in Alpha Homora V2, if a liquidator repays all debt of a position, the
liquidator will receive 5% of debts as rewards, i.e., LS = 5%.
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Fig. 5. Distribution of the maximum leverage multiplier mmax over
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) is fixed.

– Case 2: If max( ptpt0
) = 1.1, choosing max(LS, Credit(B, C)) = 0.05, then

mmax = 19.2×. In this case, Credit(B, C) is equal to the LS on AHv2.
– Case 3: If max( ptpt0

) = 1.1, choosing max(LS, Credit(B, C)) = 0.01, then
mmax = 91.9×. In this case, LS decreases to 1%. However, asmmax increases,
liquidators’ final rewards do not drop (cf. Section 4.3) and they will still be
incentivized to liquidate unhealthy positions in practice.

Furthermore, according to Figures 4 and 5, to achieve a large leverage mul-
tiplier for non-stablecoins (e.g., cryptocurrencies with a high price volatility
pt
pt0

> 1.1), the leverage system needs to choose small Credit(B, C) and LS.

5 Empirical Evaluation

This section outlines our empirical evaluation of user behavior and risks in Alpha
Homora, the biggest leverage platform to date.
Measurement Setup.We crawl the on-chain events of AH’s smart contracts [14]
(e.g., borrow, repay and liquidate events) and related blockchain states (e.g.,
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oracle prices, the supply interest rates of a lending pool on a specific block height,
etc.) from Ethereum block 11,007,158 (7th October, 2020, the inception of AH)
to 13,010,057 (12th August, 2021). We use an Ethereum full archive node, on an
AMD Ryzen Threadripper 3990X with 64 cores, 256 GB of RAM, and 2× 8 TB
NVMe SSD in Raid 0 configuration. Note that we capture both AHv1 [2] and
AHv2 [3], while AHv2 debuted at block 11,515,006 (24th December, 2020).

We observe a total of 5,110 borrow, 3,616 repay, and 122 liquidate events
in AHv2. In AHv1, we find 14,466 work (emitted during borrows and repays)
and 148 kill (liquidation) events. We normalize the prices of different tokens to
ETH by calling the smart contract of the platform’s on-chain price oracles at the
block when an event was triggered. Note that we do not rely on any third-party
API or external oracle for our data, and solely use the publicly available on-chain
data which eases the reproducibility of our results.

5.1 User Behavior in On-Chain Leverage Platforms

We proceed to empirically analyze the user behavior for borrowers and lenders
in Alpha Homora. We identify that 3,800 borrowers opened 10,430 leverage posi-
tions in AH (i.e., 7,081 in AHv1 and 3,349 in AHv2). In addition, because lending
on AH is basically the same as on other lending protocols [4,15,12], which have
been investigated thoroughly in related works [21,25], we focus on AH borrowers
in this section and analyze lenders in Appendix B.1.
Borrower Leverage Multiplier. In AH, borrowers can collateralize their as-
sets and then open a leverage position by setting the leverage multiplier while
borrowing assets from the lending pool. For each leverage position, we crawl the
amount of collateralized and borrowed assets from the transfer and borrow
events in AH, at the time when opening the position. Given a position’ collat-
eral and debt, we can calculate the leverage multiplier (cf. Equation 6).
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We find that 65% of the 3,349 borrower positions in AHv2 select a leverage
multiplier smaller than 3.0, the average leverage multiplier is 3.07×. In AHv1,
the maximum and average leverage multiplier of the 7,071 positions are 3× and
2.01×, respectively.

Contrary to AHv1, which only supports borrowing ETH, in AHv2, a borrower
can collateralize (resp. borrow) 43 (resp. 12) tokens (cf. Table C.2 in Appendix)
and then provide liquidity to Uniswap, Sushiswap, Curve, and Balancer. We plot
the leverages’ distribution when borrowers collateralize stable and non-stable
coins (cf. Figure 6) and when borrowers provide liquidity to the four platforms
(cf. Figure 7). We observe that borrowers in AHv2 tend to choose a high leverage
multiplier while collateralizing stablecoins or providing liquidity to Curve. This
can be explained by the fact that stablecoin pools (which Curve specializes in)
are less volatile and hence less likely to experience a liquidation event. We find
that stablecoin pools are being used with an average leverage of 5.39×, which is
344.70% higher than the average leverage on non-stablecoin pools.

A borrower can choose to dynamically adjust the leverage of a position, by
adding or removing collateral. In Figure 8 we visualize the distribution of 2,581
closed positions in AHv2 over their adjustment frequency and initial leverage
(upon position creation). We find that 348 positions are adjusted more than once
and the higher the initial leverage, the less likely this position will be adjusted.
Moreover, we observe that 67.92% (i.e., 1,753) of the positions are open for less
than two weeks (cf. Figure 9).
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Borrower APY. In the following, we analytically derive the borrower interest
rates on closed debt positions with only 1 adjustment, i.e. which went through
the entire cycle of opening a position with collateral, without modifying the
leverage intermediately, and ultimately closing the debt. By focusing on closed
positions we achieve a holistic image of the borrowers’ return and behavior over
the entire life-cycle of a leveraged debt position.
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Fig. 10. Distribution of debt positions over BorrowAPY and leverage multipliers. The
marker size in the figure is proportional position’s collateral value. The linear regression
lines are for the APY of the positions with the same duration (i.e., the same color).
We find that any leverage setting is prone to negative and positive APY.

To calculate the APY of a borrower, we crawl the initial collateral deposit
and the collateral return amounts, as well as the position opening and closure
timestamps. Given this data, we can infer the financial return or APY of a
closed position (cf. Equation 7). Note that we convert all assets to USD (cf.
Figure 10) at the position opening and closure moments. Beware that we do
ignore the additional potential revenue from Alpha token yield farming, as these
are custom temporary protocol participation incentives (cf. Appendix B.4).

Figures 10 visualizes the relationship between the BorrowAPY and the lever-
age multipliers. The average APY of a maximum of 1-day long positions is
−585.70%. From the regression lines, we infer that the longer a position is open
(i.e., more than 7 days), the more likely the borrower achieves an APY of 0%. By
separating the DeFi platforms to which the borrowers supply borrowed assets,
we observe that BorrowAPY varies across platforms (cf. Appendix B.3).

Notably, we find that for 72.35% of the closed positions, the borrowers achieve
a negative APY, i.e., lose assets despite leverage. Therefore, we can conclude
that, in practice, platform subsidies (i.e., governance token rewards such as Alpha
tokens) are an essential incentive mechanism for borrowers using leverage.

5.2 Empirical Analysis of Risks

In the following, we provide an empirical analysis of three risks for borrowers in
Alpha Homora, and compare our results with Section 4.
Impermanent Loss. We investigate the AH borrowers’ IL when supplying
assets into constant product AMMs. We find that 1,139 closed positions in AHv2
interact with Sushi- or Uniswap. For each position, we crawl the spot price in
the liquidity pool when a borrower deposits and withdraws assets. We observe
that all 1,139 positions suffer from impermanent loss, with a price change p

p0
from 0.63 to 1.62. Interestingly, we find that if the borrowers perform a margin
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Fig. 11. Distribution of IL for AHv2 positions interacting with Uni- and Sushiswap.
The continuous lines show our analytical results, while the points represent the empir-
ical measurements. Note that the difference between our results can be explained by
the fact our analytical results assume a constant leverage factor.

trade (cf. Section 4.1) before supplying assets into the liquidity, 44.95% (i.e.,
512) positions can benefit from a positive return, which compensates IL.

Arbitrage Loss. We find that borrowers suffer an arbitrage loss in 149 AH
positions, when swapping and supplying assets in Uni- or Sushiswap. To further
investigate the arbitrage loss, we crawl the cryptocurrency X’s amount xt in the
pool, the borrowers’ collateral c, and the arbitrageur’s swapped assets δy2. We
find that for the positions in AHv2 suffering from arbitrage losses, the average
leverage multiplier is 5.25±1.95×, and the average collateral is 2.03±4.21M USD,
which are 61.04% and 21.06% higher than the average leverage multiplier and
collateral in AHv2, respectively. Interestingly, we find that the position with id
61 suffered from the most important arbitrage loss, i.e., 81.67% (1.66M USD) of
the collateral was lost due to the arbitrage (cf. Appendix C.1).

To show an arbitrageur’s expected return, given a borrower’s collateral and
leverage, we visualize the relationship between LossARcp

δy2
and c

xt
in Figure 12. We

find that arbitrageurs achieve less profits than our analytical results when the
leverage multiplier is large (i.e., m > 4). This is probably because the borrowers
do not perform a margin trading to swap (m2 − 1)c X (cf. Section 4.2).

Liquidation Loss. We identify 50 unique liquidators performing 270 liquida-
tions in AH to repay 4,352.52 ETH of debt in total. To show the liquidation
loss, we crawl a position’s collateral before and after the liquidation. Figure 13
visualizes the relationship between liquidation loss and the initial leverage mul-
tiplier. We find that the average leverage for the 122 liquidated positions in
AHv2 is 2.01×, and the maximal liquidation loss is 10.63% (cf. Appendix C.2).
We observe that, due to the change of pt, 73.77% positions suffer from a higher
liquidation loss than the analytical results (cf. Section 4.3) when LS = 5%, and
cl = 1 (i.e., the liquidator repays all the debt).
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6 Related Work

In this section, we proceed to discuss existing work related to this paper.
Liquidations in DeFi. A growing body of literature has studied liquidations
on borrowing and lending platforms in DeFi. Qin et al. [25] measure various
risks that liquidation participants are exposed to on four major Ethereum lend-
ing pools (i.e., MakerDAO [16], Aave [4], Compound [15], and dYdX [12]), and
quantify the instabilities of existing lending protocols. Darlin et al. [11] analyze
the optimal bidding strategies for auction liquidations.
Blockchain Extractable Value. Eskandir et al. [13] are the first to propose a
front-running taxonomy for permissionless blockchains. Daian et al. [10] follow up
by introducing the concept of Miner Extractable Value (MEV) on blockchains.
Zhou et al. [35] formalize sandwich attacks on AMM exchanges, which involve
front- and back-running victim transactions on DEXs. Qin et al. [26] quantify
how much value was sourced from blockchain extractable value (BEV), such as
sandwich attacks, liquidations, and decentralized exchange arbitrage [34].

7 Conclusion

In this work, we are to the best of our knowledge the first to provide a deep dive
into under-collateralized DeFi lending protocols. While under-collateralization
reduces the flexibility of the borrowed funds, with up to 8× leverage multipliers,
such designs grant speculators more powerful tools to indulge in riskier on-chain
trading. We qualitatively and quantitatively analyze the risks caused by im-
permanent loss, arbitrage, and liquidation. We find that 72.35% of the closed
debt positions suffer from a negative APY, when ignoring the rewards of Alpha
token in AH. We also find empirical evidence that stablecoin leverage is on av-
erage 344.70% higher than non-stable coin leverage. We finally show that with
reasonable system settings, an on-chain leverage system can achieve a leverage
multiplier of up to 91.9×.
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A Return from Margin Trading Minus Impermanent
Loss

We consider a borrower performs a margin trading as follows: (1) the borrower
collateralizes c C, and sets the leverage multiplier as m to borrow (m−1)c

p0
B; (2)

the borrower then swaps (m2 −1) cp0 B to (m2 −1)c C and supplies mc
2 C+ mc

2p0
B into

A; (3) the borrower removes all assets in A and repays the debt at time t+∆.
We can then derive the borrower’s resulting return from impermanent loss and
margin trading with Equation 4.

ReturnIL,Mg
cp =

mc
2
√
p0

√
p · 1 + mc

2
√
p·p0 · p−

(m−1)c
p0

· p
c

− 1 = m(

√
p

p0
− p

p0
) +

p

p0
− 1

(4)

B Measurement of Alpha Homora

B.1 Lenders
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Fig. 14. Comparison of lenders’ actual (+) and initial (-·-) supply interest per block
for supplying ETH, DAI, USDT and USDC in Alpha Homora’s lending pool.

Lending in AH is similar to other under-collateralized lending protocols, e.g.,
Aave [4], Compound [15] and dYdX [12]. Moreover, AHv2 does not have its
own lending pools. It instead adopts the liquidity provided by Cream Finance’s
IronBank. IronBank is a fork of Compound, which has been studied extensively
in related works [21,25].

Lenders’ APY. To capture the lenders’ behavior, we crawl 5,904 mint, 4,809
redeem and 27,812 transfer events in AH’s lending pool for the four assets
with the highest TVL, specifically, ETH, DAI, USDT, and USDC. We identify 2,364
unique lenders in AHv2’s lending pool, supplying either ETH, DAI, USDT or USDC.
We find that 51.93% (i.e., 1,212) of the lenders withdraw all of their supplied
tokens within our measurement window. For these 1,212 lenders, we compute
their actual supply APY (cf. Equation 5). By calling the lending pool’s smart
contract, we crawl the initial supply interest rate per block, advertised at the
time when the lenders supply assets to the lending pool.

We then compare the initial and actual APY for four assets in AH’s lending
pool (cf. Figure 14). We observe that lenders achieve a higher supply APY than
initially advertised from block 12,000,000 (8th March, 2021) to 12,500,000 (24th
May, 2021). After block 12,600,000 (9th June, 2021); however, the actual and
initial APY for supplying ETH remain nearly identical.

SupplyAPYactual =
Amountwithdraw − Amountsupply

Amountwithdraw · (twithdraw − tsupply)
(5)

https://alphafinancelab.gitbook.io/alpha-homora-v2/lenders/tbd-iron-bank
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Lenders’ Risks. Similar to lenders on Compound [15], AH’s lenders do not
suffer from the three risks discussed in Section 4, i.e., IL, arbitrage, and liq-
uidation risks. Instead, lenders bear the risk of bad debts [25] accumulated by
unclosed positions, when no rational borrowers or liquidators will close or liqui-
date the positions. The accumulation of bad debts will lessen the total liquidity
in a lending pool, and can also lead to lenders being unable to withdraw their
funds.

In the following, we apply the methodology from the related work [25] to
measure the bad debts in AHv2 on block 13,010,057 (12th August, 2021). We
find that, if it costs 100 USD for a borrower to repay its debt (i.e., the transaction
fee is 100 USD), then 66 (9.8%) of the unclosed positions are classified as bad debts
on AHv2, which causes 2,113 USD collateral value to be locked.

B.2 Leverage Multiplier

Given a position’s collateral and debt when the position is open, we then use
Equation 6 to calculate the leverage multiplier of a position. In the following,
we quantify the amount of bad debts present in AH.

LMinitial =

∑
i Amountcolli × Pricecolli +

∑
j Amountborrj × Priceborrj∑

i Amountcolli × Pricecolli

(6)

B.3 Borrowers’ APY

Given the initial collateral deposit and the collateral return amounts, as well as
the position opening and closure timestamps, we use the simple rate model in
traditional finance to compute borrowers’ APY (cf. Equation 7).

BorrowAPY =
Amountreturn − Amountcollateral

Amountcollateral · (treturn − tcollateral)
× 100% (7)

We plot BorrowAPY when a borrower provides the borrowed assets to Curve
(cf. Figure 15), Uniswap (cf. Figure 16), and Sushiswap (cf. Figure 17).

B.4 Alpha Token Rewards

Alpha is the governance token of AH, which is given to borrowers taking debt in
AH. Alpha rewards are exclusively available to positions with a leverage multi-
plier beyond 1×. In our measurements, we do not consider Alpha rewards as the
rewards calculations are done off-chain, not publicly available, nor reproducible.
We find that the rewards are distributed on-chain through a MerkleDistributor
contract. Borrowers can claim their Alpha rewards from the contract at any time
they choose. We attempt to crawl MerkleDistributor contract events to calcu-
late the Alpha rewards received by borrowers; however, this data might not be
accurate as some borrowers might not have yet claimed their rewards. Moreover,
because rewards are given to borrower addresses, we cannot calculate the exact
amount of rewards given to a specific borrower’s position (cf. Figure 18).
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Fig. 15. Distribution of positions interacting with Curve over BorrowAPY and lever-
age multipliers.
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Fig. 16. Distribution of positions interacting with Uniswap over BorrowAPY and
leverage multipliers.
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Fig. 17. Distribution of positions interacting with Sushiswap over BorrowAPY and
leverage multipliers.
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Fig. 18. Distribution of positions over BorrowAPY and leverage multipliers. Alpha
token rewards are included in the BorrowAPY calculations, while we only consider 62
positions for which we can identify the precise Alpha token reward distribution.

C Risk Case Study

C.1 Case for Arbitrage Loss

Interestingly, we find that the position with id 67 suffered from the most im-
portant arbitrage loss, i.e., 81.67% (1.66M USD) of the collateral was lost due
to the arbitrage: (1) a borrower collateralizes 2,041,415 USDC to AH at block
12,429,895, and sets the leverage multiplier as 7.025× to borrow 12,255,715 USDT;
(2) then the borrower swaps 4,527,340 USDT to 3,985,127 USDC, and supplies
6,026,543 USDC and 7,728,375 USDT to Uniswap USDT-USDC pool; (3) following
the borrower’s transaction, an arbitrage borrows 814.73 ETH from dYDX, swaps
to 3,054,851 USDC on Sushiswap, swaps 3,054,851 USDC to 3,603,122 USDT on
Uniswap USDT-USDC pool, swaps 3,603,122 USDT to 918.88 ETH on Sushiswap,
and then finally repays 814.73 ETH to dYDX at block 12,429,895; (4) the bor-
rower repays the debt in AH and closes the position at the same block 12,429,939,
and receives 374,205 USDC, i.e., losing 2,041,415− 374,205 = 1,667,210 USDC.

C.2 Case for Liquidation Loss

We find that the position with id 743 suffered the highest liquidation loss, i.e.,
10.63% (163.72 USD) of the collateral was lost due to the liquidation: (1) a
borrower opens a position at block 11,814,073 by collateralizing 2,081.60 USDC
to AH, and setting the leverage multiplier as 2.54× to borrow 3,206.69 USDC,
and then the borrower supplies 5, 288.29 USDC to the Balancer pool; (2) At block
11,848,639 the position has 0.37 LP tokens (worth 4,772.61 USD) in the Balancer
pool and 3,220.31 USDC (3,233.76 USD) of debt, which means the collateral is
4,772.61−3,233.76 = 1,538.85 USD; (3) At block 11,848,639, an liquidator repays
3,220.315 USDC (3,233.76 USD) of the debt and receives 0.26 LP tokens (3,397.48
USD) gaining 5% bonus; (4) After the liquidation, the position has 0.11 LP tokens

https://etherscan.io/tx/0x62c85789d6777dbda97e6d0f4d22982cf187ff6068200eb970c33cf99fe63306
https://etherscan.io/tx/0xfde2dbef158952f4b20821127c6df95b023976c8839d7e280d9ed8a0afd81fb0
https://etherscan.io/tx/0xcd432f442d5a1e097027bcdbaa8c2f211bae9458e9bd23d6f246e5a58a13886e
https://etherscan.io/tx/0x77a97d40fdbc315a9395586228ec7807424c6321357a16213d326cb688ebe02a
https://etherscan.io/tx/0xafe62a9480deca75d69e103aa5ed2d26f6936e5daf51d4fd4ebe33a5196adf4f
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(1,375.13 USD) left and no debt, i.e., the borrower loses 1,538.85 − 1,375.13 =
163.72 USD worth of the collateral.

Table 2. Supported Tokens in AHv2 (for Collateralizing). AHv2 supports collater-
alizing 43 tokens and borrowing 12 tokens. 4 = can be borrowed, 8 = cannot be
borrowed.

Symbol Token Address Pools Borrow

WETH 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2 Sushiswap, Uniswap 4
USDT 0xdAC17F958D2ee523a2206206994597C13D831ec7 Curve, Sushiswap, Uniswap 4
USDC 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48 Curve, Uniswap, Sushiswap, Balancer 4
DAI 0x6B175474E89094C44Da98b954EedeAC495271d0F Curve, Sushiswap, Uniswap 4
SUSHI 0x6B3595068778DD592e39A122f4f5a5cF09C90fE2 Sushiswap 4
YFI 0x0bc529c00C6401aEF6D220BE8C6Ea1667F6Ad93e Sushiswap, Uniswap 4
DPI 0x1494CA1F11D487c2bBe4543E90080AeBa4BA3C2b Sushiswap, Uniswap 4
UNI 0x1f9840a85d5aF5bf1D1762F925BDADdC4201F984 Uniswap 4
WBTC 0x2260FAC5E5542a773Aa44fBCfeDf7C193bc2C599 Sushiswap, Uniswap 4
LINK 0x514910771AF9Ca656af840dff83E8264EcF986CA Sushiswap, Uniswap 4
sUSD 0x57Ab1ec28D129707052df4dF418D58a2D46d5f51 Sushiswap 4
SNX 0xC011a73ee8576Fb46F5E1c5751cA3B9Fe0af2a6F Sushiswap, Uniswap 4
REN 0x408e41876cCCDC0F92210600ef50372656052a38 Sushiswap 8
AAVE 0x7Fc66500c84A76Ad7e9c93437bFc5Ac33E2DDaE9 Sushiswap, Uniswap 8
MKR 0x9f8F72aA9304c8B593d555F12eF6589cC3A579A2 Sushiswap, Uniswap 8
PERP 0xbC396689893D065F41bc2C6EcbeE5e0085233447 Balancer 8
COMP 0xc00e94Cb662C3520282E6f5717214004A7f26888 Sushiswap 8
CRV 0xD533a949740bb3306d119CC777fa900bA034cd52 Sushiswap, Uniswap 8
3CRV 0x6c3F90f043a72FA612cbac8115EE7e52BDe6E490 Curve 8
UNI-V2 YFI/WETH 0x2fDbAdf3C4D5A8666Bc06645B8358ab803996E28 Uniswap 8
UNI-V2 USDC/USDT 0x3041CbD36888bECc7bbCBc0045E3B1f144466f5f Uniswap 8
UNI-V2 WETH/CRV 0x3dA1313aE46132A397D90d95B1424A9A7e3e0fCE Uniswap 8
UNI-V2 SNX/WETH 0x43AE24960e5534731Fc831386c07755A2dc33D47 Uniswap 8
UNI-V2 DPI/WETH 0x4d5ef58aAc27d99935E5b6B4A6778ff292059991 Uniswap 8
UNI-V2 LINK/WETH 0xa2107FA5B38d9bbd2C461D6EDf11B11A50F6b974 Uniswap 8
UNI-V2 DAI/WETH 0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11 Uniswap 8
UNI-V2 DAI/USDC 0xAE461cA67B15dc8dc81CE7615e0320dA1A9aB8D5 Uniswap 8
UNI-V2 USDC/WETH 0xB4e16d0168e52d35CaCD2c6185b44281Ec28C9Dc Uniswap 8
UNI-V2 WBTC/WETH 0xBb2b8038a1640196FbE3e38816F3e67Cba72D940 Uniswap 8
UNI-V2 UNI/WETH 0xd3d2E2692501A5c9Ca623199D38826e513033a17 Uniswap 8
SLP WETH/CRV 0x58Dc5a51fE44589BEb22E8CE67720B5BC5378009 Sushiswap 8
SLP COMP/WETH 0x31503dcb60119A812feE820bb7042752019F2355 Sushiswap 8
SLP DPI/WETH 0x34b13F8CD184F55d0Bd4Dd1fe6C07D46f245c7eD Sushiswap 8
SLP USDC/WETH 0x397FF1542f962076d0BFE58eA045FfA2d347ACa0 Sushiswap 8
SLP WETH/USDT 0x06da0fd433C1A5d7a4faa01111c044910A184553 Sushiswap 8
SLP YFI/WETH 0x088ee5007C98a9677165D78dD2109AE4a3D04d0C Sushiswap 8
SLP SUSHI/WETH 0x795065dCc9f64b5614C407a6EFDC400DA6221FB0 Sushiswap 8
SLP SNX/WETH 0xA1d7b2d891e3A1f9ef4bBC5be20630C2FEB1c470 Sushiswap 8
SLP MKR/WETH 0xBa13afEcda9beB75De5c56BbAF696b880a5A50dD Sushiswap 8
SLP DAI/WETH 0xC3D03e4F041Fd4cD388c549Ee2A29a9E5075882f Sushiswap 8
SLP LINK/WETH 0xC40D16476380e4037e6b1A2594cAF6a6cc8Da967 Sushiswap 8
SLP WBTC/WETH 0xCEfF51756c56CeFFCA006cD410B03FFC46dd3a58 Sushiswap 8
SLP AAVE/WETH 0xD75EA151a61d06868E31F8988D28DFE5E9df57B4 Sushiswap 8
SLP sUSD/WETH 0xF1F85b2C54a2bD284B1cf4141D64fD171Bd85539 Sushiswap 8
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