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ARTICLE INFO ABSTRACT

Keywords: Disasters can have devastating impacts on communities and economies, underscoring the urgent
Resilience building need for effective strategic disaster risk management (DRM). Although Artificial Intelligence (AI)
Interpretable artificial intelligence holds the potential to enhance DRM through improved decision-making processes, its inherent
Transparency complexity and "black box" nature have led to a growing demand for Explainable AI (XAI)
Hazard and disaster type techniques. These techniques facilitate the interpretation and understanding of decisions made by

Data-driven decision making Al models, promoting transparency and trust. However, the current state of XAI applications in

DRM, their achievements, and the challenges they face remain underexplored. In this systematic
literature review, we delve into the burgeoning domain of XAI-DRM, extracting 195 publications
from the Scopus and ISI Web of Knowledge databases, and selecting 68 for detailed analysis based
on predefined exclusion criteria. Our study addresses pertinent research questions, identifies
various hazard and disaster types, risk components, and Al and XAI methods, uncovers the
inherent challenges and limitations of these approaches, and provides synthesized insights to
enhance their explainability and effectiveness in disaster decision-making. Notably, we observed
a significant increase in the use of XAI techniques for DRM in 2022 and 2023, emphasizing the
growing need for transparency and interpretability. Through a rigorous methodology, we offer
key research directions that can serve as a guide for future studies. Our recommendations
highlight the importance of multi-hazard risk analysis, the integration of XAl in early warning
systems and digital twins, and the incorporation of causal inference methods to enhance DRM
strategy planning and effectiveness. This study serves as a beacon for researchers and practi-
tioners alike, illuminating the intricate interplay between XAI and DRM, and revealing the pro-
found potential of Al solutions in revolutionizing disaster risk management.

1. Introduction

Disasters have increasingly become a significant global challenge, posing threats to lives, infrastructure, and economies. The
growing frequency and severity of natural hazard-induced disasters result from numerous factors, including climate change, urban-
ization, population growth, extensive agglomeration of assets and capital in disaster-prone areas, and environmental degradation.
These catastrophic events often lead to the loss of human lives, economic disruption, and long-term damage to infrastructure, and
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social and ecological systems. The outcomes of global initiatives such as the Sendai Framework [1], Paris Agreement [2], and Sus-
tainable Development Goals [3] underscore the urgent need to address the increasing frequency and intensity of such disasters and
their devastating impact on people, economies, and the environment. Consequently, effective disaster risk management (DRM) has
emerged as a critical component in achieving sustainable development and resilience in the face of evolving risks [4,5].

DRM is the process of identifying, assessing, responding to, recovering from, and mitigating the risks posed by natural hazards,
climate change, conflicts, and other types of emergencies or disasters. It requires collaboration among various stakeholders, including
governments, non-governmental organizations (NGOs), communities, and individuals. It involves a complex decision-making process
that relies on accurate, reliable, and timely information to ensure that appropriate actions are taken to safeguard lives and assets. The
growing availability of data from various sources, such as remote sensing, social media, and Internet of Things (IoT) devices, offers
unprecedented opportunities to improve DRM decision-making through the application of advanced technologies. In this context,
Artificial Intelligence (AI) and Machine Learning (ML) have shown considerable promise in enhancing DRM by providing support in
decision-making processes [6-9].

The application of Al in DRM has provided opportunities for more efficient, precise, and effective responses to disasters and
emergencies [10-12]. Al-powered tools such as predictive analytics, decision support systems [8,13-15], and early warning systems
have enhanced the ability to identify and mitigate potential disasters and their associated risks [8,16,17]. For example, ML algorithms
applied to satellite imagery can predict the spread of wildfires, allowing early warning and rapid response to protect affected areas
[18]. This directly aligns with SDG 15: Life on Land, which aims to protect, restore, and promote the sustainable use of terrestrial
ecosystems. Furthermore, Al can support decision-making by providing real-time, accurate information that can help disaster response
teams prioritize actions and allocate resources efficiently [19]. For instance, the use of Al to analyse geospatial data can help au-
thorities identify the extent of damages after a disaster [20] and assess infrastructure risks to design sustainable infrastructure solutions
that support SDG 11: Sustainable Cities and Communities [21]. In addition to improving disaster recovery efforts, Al can also
contribute to long-term resilience building by identifying areas of vulnerability and recommending sustainable solutions [22,23]. As
an example, Al-powered climate modelling can help identify areas at risk of sea-level rise and inform coastal zone management plans to
enhance resilience [24,25], aligning with SDG 13: Climate Action.

However, the increasing complexity of Al systems has raised concerns about the interpretability and accountability of the decisions
made by these systems in general [26-28] as well as in the DRM field [29]. These concerns stem from the inherent "black box" nature of
many Al models, which can make it difficult for users to understand the underlying processes and reasoning behind the model outputs.
As the use of Alin DRM continues to grow, the need for transparency and accountability becomes increasingly important [30]. This has
led to the development of explainable AI (XAI), which allows for the interpretation and understanding of decisions made by Al models
[31,32]. XAI offers transparency, interpretability, and accountability in the application of AI models, which is crucial for their
acceptance and adoption. By elucidating the relationships between input data and model outputs, XAl can help decision-makers better
understand the reasoning behind model predictions, enhancing their confidence in the AI model and its recommendations [33].

In the context of disaster management, XAl has the potential to improve the effectiveness and efficiency of disaster response and
recovery operations [34,35], and support informed decision-making by disaster management authorities ([36-38]. It provides insights
into the factors driving disaster risks and the effectiveness of various DRM strategies. This leads to increased trust among stakeholders
in Al-based decision support systems and improves their acceptability and adoption [29,39].

Despite the potential benefits of XAl-based DRM (XAI-DRM), the current state of XAI applications, their achievements, and the
challenges they face remain underexplored. Recent literature reviews have extensively studied the use of Al, including ML and deep
learning methods, in DRM [8,11,12]. However, XAI methods for DRM have yet to be reviewed through this lens. In response to this gap
in the literature, this study aims to provide a comprehensive review of the achievements and challenges in XAI-DRM, offer insightful
recommendations, and uncover prospective directions for further research.

Our study adopts a well-established systematic literature review approach to review the literature published in online databases to
answer predefined research questions and achieve our main objective. This process involved the extraction of 195 publications from
the Scopus and ISI Web of Knowledge databases. Out of these, 68 were selected for detailed analysis based on predefined exclusion
criteria. Through a rigorous examination of the selected papers, we extracted current trends in publications, applications, lessons
learned, weaknesses, and open problems. We examine different risk components, risk measurements, disaster types, the geography of
case studies, and AI/XAI methods used or developed in this field. To the best of our knowledge, this is the first review study on the use
of XAI methods for DRM.

The study is structured as follows. Section 2 defines fundamental concepts and terms related to DRM, Al, and XAI, providing
relevant background information. Section 3 explains the methodology used in conducting and synthesizing the literature review.
Section 4 presents and discusses the results, while Section 5 highlights achievements, challenges, recommendations, and future di-
rections in the field. Finally, Sections 6 and 7 outline the study’s limitations and conclusions, respectively.

2. Background

2.1. Disaster risk management

Risk as a fundamental concept in disaster management is defined as the likelihood of adverse events occurring and their potential
impact on critical outcomes. Adverse outcomes from disasters can have devastating consequences, including significant losses and
impacts on human lives, infrastructure, economies, and the environment [40]. A disaster occurs when hazards, vulnerability, and an
inability to mitigate potential negative consequences intersect [41]. To avoid, lessen, and transfer the adverse effects of hazards, DRM
implements activities and measures for prevention, mitigation, and preparedness [40].
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The DRM cycle is a continuous process that is independent of the type of hazard, as depicted in Fig. 1 [3]. The cycle comprises four
main phases: prevention-mitigation, preparedness, response, and recovery. Prevention-mitigation aims to prevent or reduce the
likelihood of a disaster occurring and to limit its adverse impacts. Preparedness involves developing plans and capacities to anticipate
and enhance the response to likely, imminent, or current disasters. Response activities aim to reduce the immediate impact of a
disaster, saving lives and properties. Recovery involves actions to restore the community or affected area to normal or improved
conditions. The DRM cycle encompasses pre-event and post-event activities, with prevention-mitigation and preparedness being
pre-event phases, and response and recovery being post-event phases. Effective DRM requires the integration of all four phases of the
cycle, emphasizing the importance of proactive measures, such as prevention and mitigation, rather than reactive measures, such as
response and recovery.

In the aftermath of a disaster, the primary goal is to evaluate the impact and damage caused by the event to inform effective
decision-making during the response phase and prevent further impact. The recovery process can be lengthy, with its duration
dependent on the severity of the damage, as well as the types of hazards and risks present. Therefore, continuous monitoring of the
recovery process is essential to ensure successful plan implementation. To effectively mitigate risks and prepare for future disasters, it
is critical to assess the vulnerability and resilience of a given area, such as a city. These assessments can provide valuable insights for
developing strategies aimed at reducing risks and improving preparedness. Additionally, predictive and exploratory modelling can be
utilized to identify potential risks and anticipate associated damages, enabling better preparation for future disasters [42,43,44]. In
this context, impact, vulnerability, and resilience assessments, as well as predictive models, are indispensable components of DRM.

XAI methods have significant potential to contribute to various phases of the DRM cycle. For example, they can be employed to
automate the processing of data for impact and damage assessment [45,46], providing detailed explanations regarding the features
utilized [47]. Additionally, they can be used to extract relevant indicators for assessing resilience and vulnerability [36,37,48,49] and
evacuation behavioural modelling [38,50]. Furthermore, predictive models that incorporate various data sources, such as climate
data, can be used to map out building and infrastructure damage associated with different types of disaster risks [45,51-53].

2.2. Explainable artificial intelligence

In this study, we primarily discuss ML, a subset of Al that enables computers to learn and improve without being explicitly pro-
grammed. ML algorithms employ statistical models to analyse vast amounts of data, identifying patterns, trends, and associations
within the data. As they receive more data and feedback, these algorithms improve their performance in terms of accuracy. They help
automate repetitive tasks and detect anomalies in data, making ML a powerful tool for businesses and organizations seeking insights
from large datasets [54,55,56].

There are four main categories of ML (Fig. 2), including.

@ Supervised Learning: The machine is trained on labelled data, which means that the data is already classified. The goal of su-
pervised learning is to learn a function that can map input data to the correct output data. The machine is provided with input data
and corresponding labels during the training phase. It learns from the labelled data and can then predict the output for new,
unlabelled data. There are primarily two categories of supervised learning, which are:

o Classification: The output variable is a categorical or discrete variable. The goal of classification is to build a model that can
accurately predict the class of a new observation based on a set of input variables. There are many different classification al-
gorithms, including logistic regression, support vector machines (SVM) [57], decision trees (DT) [58], random forest (RF) [59],
and Extreme/Light Gradient Boosting (XGBoost/LGBoost) [60,61].

o Regression: The output variable is a continuous variable. The goal of regression is to build a model that can accurately predict the
value of a new observation based on a set of input variables. There are many different regression algorithms, including linear
regression [62], polynomial regression [63], K-nearest neighbours (KNN) [64], and neural networks (NN) [65].

@ Unsupervised Learning: The machine is trained on unlabelled data, meaning that the data is not pre-classified. The goal of un-
supervised learning is to discover patterns and relationships in the data without prior knowledge of what the data represents [66].
The machine is presented with data and must identify patterns independently. The discovered patterns can then be employed to
classify new data. Unsupervised learning can be further divided into three subcategories:

Vulnerability assessment Disaster Risk
Resilience assessment Management

Damage/impact prediction

Fig. 1. DRM cycle and associated assessment types in which XAI methods can be used.
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Fig. 2. An overview of the main categories of ML algorithms, explainability, and XAIL

o Clustering: The objective is to group similar data points together into clusters. Clustering algorithms do not rely on labelled data
but instead identify patterns and structures within the data. Some prevalent clustering algorithms include k-means [67], hier-
archical clustering [68], and density-based clustering, such as DBSCAN [69].

o Dimensionality Reduction: The aim is to decrease the number of variables in a dataset while preserving the most crucial in-
formation. This process involves identifying the underlying structure of the data and pinpointing the most significant features.
Common dimensionality reduction algorithms include Principal Component Analysis (PCA) [70], t-distributed Stochastic
Neighbours Embedding (t-SNE) [71], and Autoencoders [66].

o Association Rule Mining: The goal is to identify interesting relationships or patterns within a dataset. This is accomplished by
detecting items that frequently co-occur in the dataset. Some common association rule mining algorithms include Apriori [72],
Eclat [73], and FP-Growth [74].

@ Semi-supervised learning: This type of ML utilizes a combination of labelled and unlabelled data to train a model. In semi-
supervised learning, the model is provided with a small amount of labelled data and a large quantity of unlabelled data,
leveraging the unlabelled data to enhance its performance on the task [75]. There are primarily two categories of semi-supervised
learning, which are:

o Self-training: The algorithm employs the labelled data to make predictions on the unlabelled data, and subsequently adds high-
confidence predictions to the labelled data. This process is carried out iteratively, with the model being retrained on the updated
labelled data [76].

o Co-training: The algorithm trains two distinct models on separate sets of features, and then utilizes the unlabelled data to
facilitate learning for both models [77]. Each model employs the labelled data to make predictions on the unlabelled data, and
these predictions are used to improve the performance of both models.

® Reinforcement Learning (RL): is a domain within machine learning where an agent learns by interacting with an environment. In
this process, the agent receives rewards for making correct decisions and faces penalties for making incorrect ones. The goal of RL is
to learn a strategy or policy that optimizes the cumulative rewards from the environment [78]. The machine learns by taking
actions and observing the rewards or penalties it receives for each action. It then adjusts its policy based on the rewards and
penalties received. Reinforcement learning can be divided into two main categories:

o Model-based RL: The agent learns a model of the environment, which it can then use to plan future actions. This involves learning
the transition probabilities between states and the reward function, and using these to make decisions [79]. It is often more
sample-efficient than model-free RL but can be more computationally expensive.

o Model-free RL: The agent learns a policy directly, without first learning a model of the environment. These algorithms employ
trial-and-error learning to update the policy, based on the rewards received by the agent [80]. There are two main types of
model-free RL: value-based and policy-based.

Explainability (also known as interpretability) in the context of ML refers to a model’s ability to elucidate the reasons behind its
decisions and recommendations in a manner that humans can comprehend. It is important to note that in this study interpretability is
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one facet of explainability. While ’interpretability’ pertains to the degree to which humans can understand the algorithm’s processes or
outcomes, ‘explainability’ encompasses a broader concept. It includes not only the understanding of the inner workings of the model,
but also its relationship with the real world, its reliability, and its implications. Therefore, while all interpretable models are
explainable, not all explainable models are inherently interpretable. This viewpoint aligns with those of scholars such as Doshi-Velez
[81], and Gilpin [31], who proposed that interpretability should be seen as a subset of explainability. Explainability is essential for
fostering trust with users and enhancing their confidence in a system [31]. Besides trust, explainability yields other benefits, such as
humanizing the system, increasing the justifiability of decisions, enhancing transparency, improving accuracy and efficiency, and
facilitating the extraction of novel knowledge [26].
Various attributes, types, and structures related to explainability in Al have been proposed by scholars.

@ Attributes of explainability pertain to the criteria and characteristics used to define the concept. Despite its importance, there is
no universal, objective criterion for constructing and validating explanations.

o Transparency is a primary criterion for defining explainability, aiming to achieve simulatability, decomposability, and algo-
rithmic transparency [82]. Simulatability refers to a model’s ability to enable users to thoroughly understand its structure and
functioning. Decomposability refers to the extent to which a model can be dissected into its individual components, such as input,
parameters, and output, and the comprehensibility of these components. Algorithmic transparency denotes the level of confi-
dence in a learning algorithm’s sensible behaviour.

o Interpretability is another criterion, referring to the degree to which a human observer can understand the rationale behind a
decision or prediction made by the model [83]. An explanation consists of the features that contributed to a prediction. Re-
quirements for interpretability include fidelity, diversity, and grounding. These requirements have been expanded to encompass
the contrastive nature of explanations, selectivity of explanations, social nature of explanations, and irrelevance of probabilities
to explanations [84].

® Types of explanation refer to the various ways scholars have presented explanations for their ad-hoc applications, as well as the
information included or excluded. The most common questions that an explainability method should address are "why" and "how"
the model generates its predictions. However, additional questions may necessitate different types of explanations, and factors such
as the user type or the problem being solved can influence the required explanation type [84].

o Trace-based explanations are designed for system designers and illustrate the reasoning within a model. Reconstructive expla-
nations, on the other hand, are intended for end-users and strive to construct a narrative that elucidates the input features
contributing to a prediction [85]. These can also be classified as mechanistic explanations (trace-based), ontological explanations
(reconstructive), and operational explanations.

o Reasoning domain knowledge, communication domain knowledge, and domain communication knowledge are classifications
based on the intrinsic knowledge embedded in an explanation [86]. They focus on communication within a specific domain while
considering the recipient’s prior knowledge and cognitive state.

@ The structure of explanation encompasses components such as causes, context, and consequences of a model’s prediction and
their arrangement [85]. Two properties of an explanation’s structure can significantly impact learning: the ability to accommodate
new information and promote generalization. For instance, in a study examining textual explanations in a conversation between
end-users and an explanatory tool, the most suitable and effective structures involved dividing the dialogue into three stages
(opening, explanation, and closing) and adhering to a set of rules to ensure successful knowledge transfer [87]. However, in task
planning systems, information should be provided about why a specific action was chosen, why other actions were not, and why the
planner’s decisions are the best among the alternatives [88].

There are several methods to achieve explainability in Al, which can be broadly classified, according to their stage, into ante-hoc
(model-based or white-box models), post-hoc (model-agnostic and model-specific), and mixed approaches.

@ Ante-hoc approaches to XAl aim to build AI systems that are inherently interpretable and transparent. Designed to create an
explainable ML model from the start of the training process, they strive to achieve high accuracy or low error [89]. These ap-
proaches often rely on simple, interpretable models such as DTs or rule-based systems, which can provide clear explanations for
their decisions. Referred to as "white-box models," these models’ output format depends on their architecture and input format.
Designed to be easily interpretable, their primary goal is to make the decision-making process transparent. Examples include
Bayesian Case Models (BCMs), Gaussian Process Regression (GPR), Generalized Additive Models (GAMs), and Mind the Gap Models
(MGMs) [90].

@ Post-hoc approaches to XAl on the other hand, aim to provide explanations for the decisions made by existing Al systems that are
not inherently interpretable or transparent. They leave the trained model unchanged and instead use an external tool to mimic or
explain the model behaviour during testing. These methods do not attempt to build explainability into the model itself but rather
provide a way to understand the model’s decisions after training [91]. These approaches often rely on techniques such as sensitivity
analysis or visualization techniques like saliency maps and layer-wise relevance propagation. Post-hoc methods can be further
divided into model-agnostic and model-specific methods.

o Model-agnostic methods do not consider the internal details of a model and can be applied to any black-box model [92]. There is
arange of model-agnostic methods for explainability that generate numerical, visual, rule-based, and mixed outputs in global and
local scopes for different input types in both classification and regression problems, including numerical, pictorial, textual, and
time series data.
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o Model-specific methods, on the other hand, are limited to certain types of models and may only work with specific types of
interpretation, such as the weights of a linear regression model or the interpretation of NNs [93]. In contrast, ante-hoc methods
are designed to make the functioning of a model transparent, and as a result, they are often model-specific. Many studies about
model-specific methods for explainability focus on interpreting NNs at global and local scope for various input types. This is not
unexpected given the widespread use of deep neural networks (DNN) in different fields [94]. These methods often produce visual
explanations, such as salient masks, scatter plots, and other visual aids. Some methods also produce rules, textual and numerical
explanations, or a combination of these different types of explanations.

@ Hybrid approaches to XAI combine elements of both ante-hoc and post-hoc approaches, aiming to provide transparent and
interpretable models as well as post-hoc explanations for the Al system’s decisions. These approaches seek to merge the benefits of
both by incorporating some level of explainability into the model itself while also offering a means to understand the model’s
decisions after training [26]. For example, a hybrid approach might involve training a NN with a particular type of architecture that
is inherently more interpretable, such as a DT or a rule-based system [94]. The model could then be further enhanced with the use
of post-hoc techniques, such as feature importance or sensitivity analysis, to better understand its decision-making process [91].

Another hybrid approach might involve using an ante-hoc technique, such as a relevance propagation method, to train a NN with

a more interpretable structure [95]. Subsequently, a post-hoc technique, such as a local surrogate model, can be employed to

further explain the model’s decisions [92]. Some emerging hybrid methods include the use of modular NNs, where a model consists

of multiple smaller, interpretable NNs combined in a hierarchical structure [96]. Another promising hybrid approach is the

combination of feature selection and feature engineering techniques with post-hoc explanation methods [97].

3. Methodology

We employed a systematic review process to identify and evaluate the literature on XAI-DRM, which was adapted from Ref. [98] to
ensure a rigorous review. The process begins by defining a set of research questions aligned with the objective of our study: reviewing
and investigating XAI-DRM. We then formulated a search scope and strategy to create a search string for finding relevant papers. This
string was refined through iterative trial and error to ensure its accuracy and effectiveness in producing appropriate search results. We
selected the final set of papers based on specific exclusion criteria used to determine the quality and relevance of the studies concerning
the study’s objective. A well-designed search strategy is essential for obtaining suitable search results that meet both sensitivity and
precision criteria.

We chose the final set of papers for the systematic review based on predefined exclusion criteria (EC). We defined these criteria to
identify the most appropriate studies according to their contribution to the study’s objective and their quality. Consequently, we
manually screened the papers to apply these criteria.

We developed a data extraction strategy to elicit the necessary information from each selected paper. The extracted data was then
synthesized into a data extraction form, and the results were presented and discussed. The following sections provide detailed ex-
planations of the steps taken during this review process. By adhering to this systematic review process, we ensured the reliability and
validity of our findings.

3.1. Research questions

We addressed the objective of this study through the identification of five main research questions (RQs). These RQs were carefully
selected to understand the current state of the art and identify notable achievements, open questions, or challenges in this research
domain. Our structured analysis of the SLR is based on the following RQs.

RQ1. What case studies demonstrate the use of explainable Al-based DRM (XAI-DRM)?
RQ2. What specific DRM objectives have been addressed with XAI?

RQ3. What XAl-based approaches have been applied to DRM?

RQ4. What datasets or data types have been used to address XAI-DRM?

RQ5. What are the existing research directions, achievements, and challenges in XAI-DRM?

3.2. Search strategy

This study does not impose a time constraint on the publication date, and the search is conducted on the ISI Web of Knowledge and
Scopus databases, which include a wide range of high-quality publications. The search query targets the title, abstract, and keywords of
the papers. The search is executed automatically by inputting the following search string into the search engine of the platforms:

((disaster OR hazard OR typhoon OR hurricane OR earthquake OR storm OR erosion OR flood OR tsunami OR landslide OR
subsidence OR drought OR tornado OR asteroid OR volcan* OR cyclone OR *fire OR seism* OR "ground deformation" OR "slope
stability" OR rockfall OR "debris flow" OR hydraulic OR hydrological OR drainage OR meteorology* OR "land sink*" OR "subsurface
compaction" OR "groundwater depletion" OR "soil consolidation" OR "land surface deformation") AND ("explainable artificial intel-
ligence" OR "explainable deep learning" OR "explainable machine learning" OR "explainable ai" OR "interpretable artificial intelligence"
OR "interpretable deep learning" OR "interpretable machine learning" OR "interpretable ai" OR xai OR exai OR "Local Interpretable
Model-agnostic Explanations" OR "SHapley Additive exPlanations" OR "contrafactual explanation" OR "explainable boosting machine"
OR "decision tree interpreter" OR "integrated gradients" OR "class activation mapping" OR deeplift OR "occlusion testing" OR "partial
dependence plots" OR "individual conditional expectation" OR "global surrogate models" OR rulefit OR interpretml OR fairml) AND
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(risk OR damage OR recovery OR reconstruction OR relief OR vulnerability OR impact OR "adaptive capacity" OR "coping capacity” OR
resilien* OR susceptibility) NOT (health OR pandem* OR epidem*))

The search string is designed to retrieve as many relevant publications as possible for the defined objective and search scope. It
consists of three primary parts, separated by the term "AND." The first part targets publications relevant to the research subject, using
keywords associated with different types of disasters (e.g., earthquake). The second part targets publications that used relevant
methods, such as "xai." The third part targets publications relevant to the research task, using keywords associated with different
components of risk (e.g., impact).

3.3. Study selection criteria

Initially, the papers resulting from the execution of the search query were manually filtered to select the final list of the most
appropriate papers. Both general and specifically defined exclusion criteria for the study’s objective were employed during this process
(as outlined in Table 1).

3.4. Data extraction

The data extraction step is a vital part of the process, as it gathers the information needed to answer the research questions from the
selected papers. We created a preliminary data extraction form based on the initial screening of the papers to collect all the information
required to address the research questions. This form includes attributes such as the study identification, publisher, and publication
year. After thoroughly reviewing the selected papers, we created and filled out a more detailed final data extraction form, which
includes the specific objectives addressed in the papers and the XAI algorithms used.

3.5. Data synthesis

The synthesis of extracted data from selected papers is a critical step in the systematic literature review process. This step involves
answering the research questions and presenting the extracted data and results. The results are then summarized and visualized, with
the papers grouped into distinct categories for each research question. This approach enables a clear and concise understanding of the
key findings and insights, allowing for a comprehensive analysis of the research area under investigation. Thus, this step is crucial for
deriving meaningful conclusions and recommendations aligned with the study’s objective. Additionally, we discuss the results in
detail, identifying the key points from the selected studies. Finally, we provide the current research directions, achievements, chal-
lenges, and recommendations for future studies.

4. Results and discussion

In total, 196 papers were identified using the search strategy, out of which 68 were selected for detailed review based on the
exclusion criteria. This section presents an overview of the main statistics pertaining to the selected papers, followed by a compre-
hensive discussion of the results associated with each research question in the subsequent sections.

The publisher and journal names, along with the publication years of the selected studies, were extracted. Researchers began using
XAI methods for DRM in 2018, and accordingly, the selected papers were published from 2018 to 2023. Fig. 3 illustrates the year-wise
distribution of the selected papers. There was a significant increase in the number of XAI-DRM papers in 2022, which continued into
2023, especially considering that the search from the online database was conducted in August 2023.

The 68 papers on XAI-DRM considered for detailed review were published in 49 journals. However, as shown in Fig. 4, only 9
journals and 4 publishers published two or more of these papers. The most popular journal is "Remote Sensing" with 6 publications,
followed by “Journal of Hydrology” and “Science of the Total Environment” with 4 publications each. Seven more journals published
two papers (Fig. 4), while the remaining 40 journals only published one of the papers selected for detailed review. These statistics
highlight the diversity of perspectives and research domains tackling and addressing DRM using XAI methods. This also demonstrates
that researchers from various disciplines attempt to address DRM using XAI from multidisciplinary and interdisciplinary perspectives.

RQ1. What case studies demonstrate the use of explainable Al-based DRM (XAI-DRM)?

Fig. 5 displays the global distribution of study areas and their respective countries. The findings indicate that XAI-DRM publications
analysed case studies from 21 countries across 6 continents, while 12 studies did not focus on specific cases and either utilized da-
tabases generated globally [37,48,99] or developed generic methods without focusing on a specific cases study [100,101]. China, with
14 publications, had the highest number of studied disaster cases [102,103], followed by the United States with 12 publications [35,

Table 1
Exclusion criteria (EC) for paper selection in the literature review process.
D Criterion
ECI. Papers with unavailable full text
EC2. Papers not written in English
EC3. Papers not directly contributing to DRM
EC4. Papers not explicitly discussing or connecting the study to DRM
EC5. Papers not directly using XAI or interpretable Al methods
EC6. Papers without validation of the proposed study
EC7. Papers providing a general summary without a clear contribution
EC8. Review and editorial papers
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45]. Notably, XAI-DRM case studies from Italy, Australia, Saudi Arabia, and Turkey were studied in 5, 4, 3, and 3 articles, respectively
[46,104-106]. However, no case studies from the African continent have been included.

RQ2. What specific DRM objectives have been addressed with XAI?

The majority of the selected papers (27 publications) addressed DRM from a general perspective without focusing on a specific
DRM component ([107-109] (Fig. 6). The response component of the DRM cycle was studied in 20 publications [110-112], while the
recovery component was not considered in any of the selected papers. Furthermore, the risk mitigation ([113-115], and preparedness
[36,116,117] components of DRM were addressed in 14 and 8 papers, respectively. In terms of hazard types, floods and landslides were
studied most frequently, with 13 publications each. Earthquake and wildfire followed, with 9 publications each, while drought,
hurricane, soil erosion, and land subsidence were the subject of 7, 4, 3, and 2 publications, respectively. Moreover, cyclone, volcano,
typhoon, tornado, and crown snow hazards were only investigated in one publication each. Overall, the selected papers demonstrate a
strong focus on general disaster risk assessment, mapping and response, particularly for floods, landslides, earthquakes, and wildfires.
However, there is a need for more research on the recovery, risk mitigation, and preparedness components of DRM, as well as on less
frequently studied hazard types such as volcano and wind-borne hazards.

RQ3. What XAl-based approaches have been applied to DRM?
RQ3.1. What type of ML algorithms are used?

As can be seen from the horizonal axis of Fig. 7, a wide range of ML methods have been applied in the selected papers. Supervised
learning is the predominant type of learning utilized in DRM. While multiple algorithms have been employed in some studies, we only
consider those that have demonstrated superior performance over other tested algorithms, which are subsequently used for
interpretation.

Regarding the architecture of ML models, decision tree-based and boosting models are the most commonly adopted. These models
represent decisions and their possible consequences in tree-like structures and frequently undergo boosting (an optimization tech-
nique) to enhance their efficiency and accuracy. RF emerges as the most applied method, being featured in 18 studies for predicting
wildfire susceptibility and threat, evacuation rate during hurricane and cyclone, flood and drought susceptibility, crown snow load
outage risk, spatial landslide susceptibility, soil susceptibility, volunteer rescue requests during hurricanes, mining induced subsi-
dence, and wind property damage caused by tornadoes [34,36,37,105,114,118-128]. Following closely are 11 studies utilizing
XGBoost for predicting landslide events and dam stability, vegetation transpiration variations, turbidity (amount of fine sediment in
water), flood and run-off susceptibility, vulnerability of vegetation during volcano, relief operations during crisis, and species richness
and abundance of post-larval fish affected by storms [102,106,107,109,111,117,129-135]. LGBoost is a similar algorithm that is the
focus of studies by Ref. [136] to assess earthquake spatial probability and [137] to predict landslide susceptibility. CatBoost is used to
develop forest fire risk index [132], and GBoost to assist with predicting flood susceptibility [106].

NN and deep learning models are the second most applied method. These models simulate the human brain and learn from data by
adjusting the weights of connections between neurons. They recognize patterns and interpret sensory data through machine
perception, labelling, and clustering. In this regards, Convolutional Neural Networks (CNN) are the most commonly used method,
appearing in 13 studies, including [51] for spatial drought prediction [138], for hurricane damage estimation [139], for
post-earthquake structural damage assessment [140], for global flood susceptibility mapping [141], for quantifying infrastructure
damage [142], for locating and quantifying the degree of the damage post-events [143], for predicating wildfire response [144], for
flood susceptibility mapping, and [108] for global wildfire susceptibility modelling, while Artificial Neural Networks (ANNs) are used
less extensively for purposes, such as soil erosion probability prediction and drought prediction [50, 142]. Deep Feedforward NN and
Bayesian Regularized NN are used by Ref. [53] for building risk assessment model for proactive hurricane response and [145] to
identify flood classes. Long Short-Term Memory (LSTM) networks feature in 3 studies, including [146] for drought forecasting [147],
to forecast flood risk and [103] for streamflow prediction. Beyond these mainstream algorithms, specialized ML models, such as
Transformers, are explored by Ref. [100] for identifying wildfire ignition points in before the fire spread and ensemble deep learning
models are used by Ref. [148] for mapping land subsidence and [149] for developing a wildfire susceptibility prediction model.
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Examples of other NNs used in risk management include GraphCNN for modelling community resilience to extreme events [113],
Graph wave net for flood risk predication [150], as well as Multi-Layer Perceptron (MLP) for earthquake-induced building-damage
mapping, and disaster relief analysis during natural hazard crises [46,110]. Other supervised algorithms that appear less frequently but
are worth mentioning include K-Nearest Neighbours (KNN) for predicting the impacts of drought, especially crop growth in an un-
certain climate future (refer to Ref. [151], and CoatNet for building damage detection (refer to Ref. [152].

Unsupervised and Semi-supervised learning have been used least in the selected papers, with one study using DBSCAN clustering,
which is an unsupervised algorithm for landslide displacement prediction [116] and one study using a self-supervised attention
foreground-aware pooling algorithm for forest fire segmentation [153].

RQ3.2. Which notions of explainability are addressed?

Regarding the attribute of AI explainability, most studies exhibit a medium level of algorithmic transparency. While ensemble
methods such as RF, XGBoost, and LGBoost fall into the medium category since due to their reliance on decision trees (DTs) that are
generally comprehensible, as noted in almost half of the relevant literature, it is essential to mention that the aggregation techniques in
these ensemble methods can enhance their inherent complexity. Convolutional Neural Networks, LSTM, ANNs, and DFFNN/MLPs are
categorized as having a low level of explainability because their internal mechanisms are complex and not easily understood. In
contrast, the explainability of KNN is classified as high since it makes predictions based on the most similar historical data, rendering
its predictions understandable and transparent. However, this approach was only used in one study.

Studies focusing on transparency, whether predicting wildfire susceptibility in the Mediterranean countries of Southern Europe or
assessing soil erosion probabilities in Saudi Arabia, strive for algorithmic transparency. This ensures stakeholders can trust the model
predictions by understanding the factors it considers, from vegetation dryness to past weather patterns. Post-disaster efforts like
earthquake-induced building damage mapping and damage estimation from aerial imagery require decomposable models. By breaking
down these models, analysts can pinpoint specific model components responsible for damage predictions, aiding timely and effective
interventions. Whether detecting typhoons or assessing hurricane risk, these models emphasize simulatability. Such transparency
ensures that meteorologists and emergency response units understand the factors contributing to the model’s decisions and can thus
prepare and respond effectively. In studies focusing on interpretability such as spatial drought prediction, streamflow prediction, and
soil susceptibility to wind erosion, interpretability ensures that geographical and ecological experts can tie predictions back to familiar
environmental factors, such as rainfall patterns and soil composition. Studies leveraging social media for disaster relief, like sentiment
analysis during the COVID-19 crises and resource management via time series sentiment analysis, thrive on interpretability. Clear
interpretations help response units prioritize areas of intervention based on public sentiment and specific cries for help. Whether
predicting landslide events or assessing slope failure susceptibility, these studies underscore the importance of grounding explanations.
Geologists and urban planners can understand predictions in the context of known geological factors, ensuring safe infrastructural
developments.
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Based on types of explanation, most hazard risk management studies have reported using trace-based explanations for tree-based
algorithms, which fall under mechanistic explanations for wildfire, cyclone, flood, drought, crown snow, landslide, and erosion
predication, as well as damage detection caused by hurricane, and tornado [34,36,111,118,129,130,1541; [35,37,38,47,48,53,99,102,
105-107,109,114,117,119-121,123-128,131-136,155-159]. In the case of predicting events such as landslides, cyclones, or
droughts, decision-makers can easily trace back and understand which factors or conditions led to a particular prediction. This aids in
building trust and facilitating communication with stakeholders. For damage detection after hurricanes or tornadoes, the ease of
visualizing decision trees can help in rapid dissemination and understanding of findings amongst emergency responders. However, in
dynamic environments with many interacting variables, like in the case of predicting cyclone paths or flood intensities, tree-based
models might miss capturing intricate patterns or feature interactions. On the other hand, neural network-based algorithms, such
as CNN and LSTM models which are mainly used for post-crisis damage detection post-crisis and susceptibility predication of wildfire
drought and flood, fall under reconstructive explanations or ontological explanations [51,101,113,138,141]. By understanding which
features or inputs the model deemed significant in predicting hazards, researchers can prioritize collecting relevant data and
fine-tuning their models for better accuracy. Even with trace-based explanations, the complexity of these models can make them
challenging to interpret. In scenarios like flood prediction, while you might know which features influenced a prediction, under-
standing the intricate interactions between those features can be tough.

RQ3.3. Which methods are used for explainability?

As shown in Fig. 7, the post-hoc approach is the only utilized approach for XAI in DRM. This choice aligns with the inherent
complexity of DRM problems, where models often need to be highly accurate and capable of handling a broad range of variables, thus
making the need for transparency and understanding of decisions equally critical. Regarding sub-categories, the use of model-agnostic
methods was predominant with 89 % of studies using them. Given the diversity of modelling techniques employed in DRM—from ML
methods for predicting natural disasters to deep learning algorithms for assessing infrastructure risks—the flexibility offered by model-
agnostic methods becomes an invaluable asset.

Regarding model-agnostic methods, SHAP (SHapley Additive exPlanations) was the most preferred method (used in 43 studies),
followed by LIME (Local Interpretable Model-Agnostic Explanations) (used in 5 studies).

The SHAP method calculates feature importance scores to explain how different features contribute to a prediction. It does so by
approximating the Shapley values from game theory, taking into account all possible combinations of features for assigning impor-
tance, rather than just evaluating each feature in isolation [91,160]. In DRM articles, SHAP identified the most important features in (i)
RF models for predicting wildfire susceptibility and threat, evacuation rate during hurricanes and cyclones, flood and drought sus-
ceptibility, spatial landslide susceptibility, soil susceptibility, volunteer rescue requests during hurricanes, and mining induced sub-
sidence [34,36,37,105,112,118,121,122,125-128,155,1611, (ii) XGBoost for predicting landslide events and dam stability, vegetation
transpiration variations, turbidity, flood and run-off susceptibility, and vulnerability of vegetation to volcanoes [102,107,109,117,
129-131,133-135], (iii) LSTM for drought forecasting [146], (iv) ANN for drought prediction [52], (v) CNN for spatial drought
prediction ([51], (vi) Gboost for predicting flood susceptibility ([106], (vii) LightGboost for landslide susceptibility mapping [137,
158], (viii) LSTM for flood and drought forecasting [147], (ix) BRNN for flood classification [145], (x) CDDM for predicting soil
erosion [115], (xi) DL for wildfire susceptibility prediction [149], (xii) MLP for earthquake-induced building-damage mapping [46],
(xiii) DBSCAN for landslide displacement prediction [116], and (xiv) GBoost for predicting flood susceptibility [162]. This method can
be computationally demanding and may not be ideal for analysing high-dimensional data typical in DRM. While it can identify the
importance of individual features, it may not always accurately represent the intricate dependencies between features, crucial in DRM
scenarios like interdependent factors in landslide or flood susceptibility. In dynamic DRM situations, such as evolving wildfire threats
or cyclone paths, the granular insights SHAP provides for each prediction might be too detailed, potentially obscuring broader trends
or patterns.

LIME is another model-agnostic explanation method that approximates a complex, black-box model with a simple, interpretable
model in the vicinity of the prediction being explained. It provides individualised explanations for predictions and has been used in two
studies on disaster management to improve the transparency of XGboost models for time series analysis for relief operations [111],
MLP models for classification of tweets during earthquakes [110], DFFNN models for building risk assessment in hurricanes [53], RF
models for rescue request prediction [124], and NN models for risk assessment of road networks in earthquakes [163]. However, its
applicability is limited due to certain challenges; for example, approximation relies on linear models. However, many DRM scenarios,
like risk assessment of road networks during earthquakes or building risk during hurricanes, might involve non-linear relationships.
This can result in oversimplified or even misleading explanations. In scenarios such as classification of tweets during earthquakes, the
data might be high-dimensional (e.g., word embeddings). In such high-dimensional spaces, LIME local approximations in such
high-dimensional spaces can sometimes be less precise, possibly overlooking intricate patterns. In addition, the reliance of LIME on
independent perturbations might not capture inter-feature dependencies effectively. In DRM contexts, like rescue request predictions,
where factors are interrelated (e.g., weather conditions and infrastructure damage), this could lead to incomplete or suboptimal
insights.

Other methods such as CE (Counterfactual Explanations), Partial Dependence Plots (PDP), and Permutation Importance (PI),
appeared only in a few studies. CE can be both model-specific and model-agnostic, depending on the approach used for generating the
explanations. This method answers questions about what would have happened if an input feature had a different value, providing
insight into the causal impact of individual features on the model’s prediction. In the reviewed articles, it was used to explain KNN
prediction about factors impacting crop growth in an uncertain climate future [151]. However, the intricacies of climate’s effect on
crop growth often involve cascading impacts, where one factor indirectly affects another. CE, by looking at direct feature
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modifications, might miss these intricate, multi-step causal chains. By focusing on the change in one feature at a time, the method
might give the impression that factors operate in isolation, whereas, in reality, climate factors impacting crop growth are deeply
interconnected. PDP depicts the relationship between a single feature and the model’s prediction. It offers insight into the impact of
changes in a particular feature on the model’s prediction. It was applied to the interpretation of the RF model for landslide space-time
forecasting and evacuation preparation time during a cyclone [105,126]. This method assumes that the distribution of one feature is
independent of that of others. This might not hold true in real-world scenarios like landslides and cyclones, where features often
co-vary. PI works by randomly permuting the value of a single feature and measuring the impact of this permutation on the model’s
performance. This gives an indication of how "important" that particular feature is for accurate prediction. In the studies reviewed, PI
was specifically utilized to explain CNN model predictions of global wildfire susceptibility [108]. It is to be noted that for a CNN,
specific regions (e.g., areas with frequent wildfires) might overly influence the importance score, giving a skewed perspective if not
accounted for properly. However, the method is computationally more efficient compared to techniques like CE, making it relatively
easier to deploy even on large datasets or models with many features. While PI can provide a global understanding of feature
importance, it might not be suitable for local interpretations. Given the spatial and temporal dynamics of wildfires, local variations
might be crucial In a complex scenario like wildfire susceptibility, interactions between features (e.g., temperature, humidity, wind
speed) can be pivotal, and PI might overlook these interactions.

In the sub-category of NN model-specific explanation the GRAD-CAM (Gradient-weighted Class Activation Mapping) was the most
popular method (11 studies). It operates by tracing the gradient of the predicted class score back to the activations in the last con-
volutional layer of a CNN. The activations are then weighted by their corresponding gradients, resulting in a heatmap that highlights
the regions of an input image that had the greatest impact on the model prediction. This approach has been used to explain CNN and
transformer models for wildfire susceptibility prediction, hurricane infrastructure damage estimation, and typhoon detection [100,
138,139,141-143,164,165] in the DRM literature. In images with infrastructure, the surrounding environment (like trees, vehicles,
shadows, etc.) might influence the gradients. This could lead to GRAD-CAM highlighting areas that are not necessarily related to the
damage but had strong activations. It might also not provide the granular detail necessary to pinpoint specific areas of damage,
especially on large structures. Moreover, this method of visualizations highlights only the positive influences on a decision and discards
negative contributions. This can be limiting when trying to understand factors that reduce risks, such as areas that are less susceptible
to wildfires. For events like typhoons which have temporal sequences, capturing the sequence’s importance or changes over time might
not be straightforward with GRAD-CAM, especially if the model is primarily image-based and not sequence-based. Other methods such
as Integrated Gradients (IG), Deep Learning Important FeaTures (DeepLIFT), and Class Activation Mapping (CAM) were among the
least utilized techniques. DeepLIFT, specifically, has been applied to Graph CNNs for understating factors contributing to community
resilience to extreme events [113]. The method quantifies the contribution of each neuron to every other neuron’s output, providing a
more detailed understanding of feature importance within the network. As community resilience often involves multi-faceted factors,
the method might not provide a holistic view of interdependent features, especially when there are non-linear relationships or when
nodes have heterogeneous characteristics. IG is particularly interesting for its application to Graph WaveNet models to identify
spatial-temporal factors influencing flood risk [150]. It assigns an importance score to each feature by integrating the gradients of the
model output with respect to each feature along a straight path from the feature’s baseline value to its actual value. This results in a
more comprehensive understanding of how each feature contributes to the model’s prediction. Nevertheless, flood risk assessments
often require very precise spatial information, and IG might not always be adept at capturing the details of micro-level spatial changes,
especially when gradients are sparse or inconsistent across areas. CAM has seen specific application in self-supervised attention
foreground-aware pooling mechanisms in Ref. [153] to explain the segmentation of forest fire. However, this method might not
capture the subtle variances of forest terrains and fire intensities. Forest fires have complex propagation patterns influenced by factors
like wind, humidity, and vegetation type and CAM may not adapt well to these rapidly changing conditions. Being designed specif-
ically for architectures with a global average pooling layer before the fully connected layer, its adaptability can be questioned.
Nevertheless, in forest fire contexts, the information heatmaps it produces are instrumental in quickly identifying wildfire hotspots.

In the sub-category focusing on tree-based model-specific explanation, Explainable Boosting Machines (EBM), Global Tree Sur-
rogate Models, and GAMI-Net (Generalized Additive Models with Interactions Network) stand out for their application to explain RF
models. EBM has been used to explain a RF model of slope failure predication in landslide events [114]. It is a glass-box model that
combines the interpretability of generalized additive models (GAMs) with the performance of gradient-boosted machines. As EBM tries
to maintain a balance between interpretability and performance, it might sometimes sacrifice some predictive power in favour of
clarity. Additionally, capturing all the intricate details of slope failures, which can be influenced by various unpredictable factors,
might be challenging. Similarly, a Global Tree Surrogate Model has been used to explain a predictive model of wind property damages
caused by tornado [123]. It serves as an approximation of the more complex model it seeks to explain—in this case RF. By generating a
simplified, single decision tree that closely mimics the behaviour of the RF, it offers a more understandable representation of the
underlying model. However, it is worth noting that this simplification can come at the cost of granularity. By reducing the complex RF
model into a single decision tree, some details are inevitably lost. This can result in the model overlooking subtle patterns or re-
lationships in the data that might be crucial in predicting the specific damages caused by tornadoes, especially in regions with varied
infrastructure and building practices. Finally, GAMI-Net has been used to interpret an RF model for spatial landslide susceptibility
prediction in Karst mining areas [120]. This approach adds a layer of complexity by incorporating interaction terms to generalized
additive models. This allows for capturing more complex relationships among features and produces highly interpretable models.
However, in Karst mining areas, where data might be scarce or inconsistent, GAMI-Net might become too sensitive to noise or outliers,
potentially reducing its predictive accuracy.

This snapshot of XAI techniques in DRM provided above reveals a strong lean towards post-hoc and model-agnostic methods. This is
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likely driven by the need for both flexibility and depth in explanations, as DRM involves a multitude of complex, interdependent
variables that require nuanced interpretation for effective decision-making.

RQ4. What datasets or data types have been used to address XAI-DRM?

Remote sensing data including multi-spectral satellite images [34,129], SAR data [36,154], and drone images [45], are the most
frequently used data sets in XAI-DRM studies, with 45 papers utilizing them (Fig. 8). For example [100], developed a
Transformer-based model to detect fire flames from images and combined with Grad-CAM to find the causes of the object detection
results [46]. developed a ML-based method to detect earthquake-induced building damages from post-event satellite images. They
used the SHAP method to reveal the impact of each feature descriptor included in the model for building-damage assessment and to
examine the reliability of the model. Earth data, including geological [130], geomorphological [99], and rainfall data [51], are the
second most common dataset, with 36 papers employing them in their studies. As an example [166], processed soil data using ML and
SHAP methods to identify the best soil erodibility indices. Climate and weather data [52], geographical information systems (GIS)
[129], IoT [104], socio-economic data (e.g., demographic data) [38], and social media (e.g., tweets) [111], traffic data [163], and
simulated data [123] are other data sources used in the selected papers. For instance Ref. [121], produced a wildfire susceptibility map
for Turkey using ML and GIS data, and further, demonstrated that elevation, temperature, and slope factors were the most contributing
factors as the result of IG and SHAP methods.

RQ5. What are the existing research directions, achievements, and challenges in XAI-DRM?

XAI-DRM is an emerging field experiencing rapid growth, encompassing a diverse array of research directions, accomplishments,
and challenges. Although still in its infancy, significant progress has been made in developing XAI techniques. However, their
application in DRM remains limited. Consequently, it is crucial for researchers and practitioners to collaborate, tackle challenges, and
seize the opportunities that XAl offers. This continuous process of learning and improvement will enable the DRM community to stay
ahead of the curve and effectively manage evolving risks associated with disasters.

Table 2 summarizes the Al methods used, insights extracted, and gaps identified in the reviewed publications. XAI methods are
primarily employed to identify the most contributing factors, such as those affecting susceptibility to various disasters, and to enhance
result accuracy, as exemplified in object detection from images. The reliability of the developed Al methods was analysed in only one
study, which was also based on ranking contributing factors. Nevertheless, one of the primary contributions of XAI methods is to
enhance transparency in developed Al methods, by assessing their reliability. Thus far, in the DRM field, XAI methods have pre-
dominantly been employed to extract additional insights in DRM field.

In the context of wildfire, volcano, and drought disasters, the current employment of XAI methods exhibits several notable gaps. For
instance, there is a lack of time-series-based models for predicting the progression of these disasters. Furthermore, geospatial-tailored
models, particularly those focused on GIS data, are underrepresented. In studies pertaining to flood, soil erosion, and landslides,
certain key elements are lacking. Specifically, there is an absence of probabilistic models for in-depth uncertainty analysis. The need
for hybrid models that combine multiple techniques is evident and warrants more attention and research. For earthquake risk man-
agement, there is a clear need for the incorporation of ensemble techniques and combined prediction models. In the realm of wind-
borne disasters, the research focus appears to be mainly on predicting the extent of impacts, with no studies addressing the predic-
tion of the path and intensity of these hazards. In a more general context, socio-economic data has yet to be effectively harnessed.
There is a pressing need to leverage this data, with a particular emphasis on its relevance to the business and operational aspects of
DRM.

Most components of DRM have been examined, with the focus predominantly on specific disasters like earthquakes. While the body
of research on the application of XAI in DRM is still growing, preliminary studies suggest potential benefits. However, more
comprehensive evaluations are needed to ascertain the true impact and significance of XAI methods in DRM. Additionally, numerous
disaster types, including tsunamis, typhoons, coastal flooding, and heatwaves, warrant further investigation. It is imperative to assess
the potential and applicability of XAI methods across various disasters and stages of the DRM cycle. Expanding the scope of research to
include a diverse range of disasters is crucial for developing a comprehensive understanding of the effectiveness of XAI methods in
DRM. Moreover, exploring the application of XAI methods across different earthquake case studies can provide valuable insights into
each region’s unique geophysical characteristics and improve our understanding of disaster and geophysical science.

Although various datasets have been effectively used to address XAI-DRM, there remains significant untapped potential when
compared to the broader applications of Al and XAI capabilities. For example, remote sensing can be employed to study virtually all
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Table 2

AI Methods, Extracted XAl Insights, and Identified Gaps in reviewed publications.
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Disaster

AI Methods Used

Insights from XAI

Identified Gaps

Wildfire, Volcano,
Drought

Flood, Soil erosion, and
Landslide

Earthquake

Cyclone, Typhoon,
Hurricane, and
Tornado

Others

Deep learning, Transformer, RF, CatBoost, CNN, self-
supervised, XGBoost.

GB, ERT, RF, CNN, LSTM, XGBoost, Gboost, Graph wave
net, LightGBoost, ensemble deep learning models, ANN.

MLP, XGBoost, LGBoost, CNN, CoatNet, NN.

RF, CNN, deep feedforward neural network, Random
Forest.

GraphCNN, CNN, RF, Bayesian regularized neural
networks (BRNN), KNN.

Improve result
accuracy.
Identify the most

contributing factors.

- Improve result
accuracy.
- Identify the most

contributing factors.

Reliability analysis.
Improve result
accuracy.

- Identify the most

contributing factors.

Improve result
accuracy.
Identify the most

contributing factors.

Improve result
accuracy.

- Lack of time-series based models for
progression prediction.

No unsupervised models for anomaly
detection.

Absence of geospatial-tailored models.
Absence of probabilistic models for
uncertainty.

- No models for changing environmental
variables due to climate change.

No models considering land use changes
and agricultural practices.

Lack of hybrid models combining
multiple techniques.

Absence of models utilizing seismic
wave data in real-time.

Lack of ensemble techniques for
combined predictions.

- No models predicting secondary effects
like tsunamis or aftershocks.

Lack of models predicting path and
intensity over longer horizons.
Absence of models considering sea
temperature and oceanographic data.
Absence of models considering socio-
economic factors.

Identify the most
contributing factors.

types of disasters. With advancements in big data collection and analysis, there is a growing need to better integrate diverse data types
and leverage AI and XAI methods for processing and elucidating results. Incorporating XAI techniques in the analysis of diverse
datasets can help address challenges posed by the volume, variety, and velocity of data generated during disaster events.

From our analysis (as detailed in Q3.1), decision tree-based models are the predominant model type represented in DRM appli-
cations. While the results of our analysis underscores their frequent use, the underlying reasons for this choice are not explicitly
detailed in the majority of the studies reviewed. It can be speculated that the attributes of interpretability and transparency of DTs
might contribute to their common usage. These characteristics make them more accessible and comprehensible to both domain experts
and non-experts alike, facilitating communication and collaboration among stakeholders. However, they may not always provide the
best predictive performance compared to more complex models like NNs. There is a pressing need for more research on improving the
explainability of complex NN-based models in DRM, as these models become increasingly relevant for handling large-scale, high-
dimensional, and dynamic data generated during disaster events.

Our in-depth analysis of XAI methods reveals a lack of ante-hoc approaches in DRM. While these methods have been frequently
applied to tasks like assessing earthquake damages, predicting typhoons, and evaluating the risks of coastal flooding, our findings
indicate a disparity in their widespread acceptance. Possible reasons for this include a lack of technical capacity, insufficient research,
or inadequate awareness of their potential benefits. Interestingly, despite their widespread use in certain disaster scenarios,
comprehensive evaluations of the success rates and impact of XAI methods in DRM remain sparse. For instance, while decision tree-
based models have been popular due to their inherent transparency, especially in earthquake damage predictions, there is limited
evidence to suggest they consistently outperform other techniques in varied disaster contexts. Additionally, our analysis indicates that
the DRM field may be more focused on using well-established, interpretable models rather than exploring novel, less transparent
models that might require ante-hoc approaches for explainability. However, it is crucial to recognize that model-agnostic methods
might have inherent limitations and may not be universally applicable to all ML systems employed in disaster management. This calls
for further multidisciplinary research and development in XAl specifically targeting DRM applications, to determine not just the most
frequently used, but the most effective methods in real-world disaster scenarios.

One significant challenge faced by the DRM community is the narrow scope of XAI methods in elucidating neural network-based
models. As our analysis has shown, NNs have primarily been employed for tasks such as prediction of flood extents and typhoon
trajectories. However, the inherent opacity of these models poses severe risks in disaster situations, given the potential ramifications of
inaccuracies. For instance, a lack of transparency in predicting flood extents might lead to inadequate evacuation measures, putting
lives at risk. Similarly, misinterpreting a typhoon’s path due to an opaque model could lead to massive infrastructure and economic
losses. The current state of XAI in DRM, with Grad-CAM being the most widely applied method, highlights the urgent need for more
research and development in this area. Failure to address this gap may lead to suboptimal decision-making due to stakeholders’ limited
understanding of the underlying factors influencing the likelihood and potential impact of disasters. This lack of comprehension can, in
turn, result in inappropriate resource allocation, inadequate planning, and ineffective risk management strategies, ultimately exac-
erbating the consequences of disasters. As such, the development of innovative methods to enhance the transparency and
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interpretability of NNs must be considered a top priority for researchers and practitioners in DRM.

The potential advantages of employing hybrid approaches to XAI in DRM are immense. Combining model-specific and model-
agnostic methods allows researchers and practitioners to achieve a more comprehensive and nuanced understanding of the intri-
cate factors that influence disaster risk. This in-depth knowledge can be translated into highly effective, targeted risk management
strategies capable of safeguarding lives and preserving critical infrastructure. Additionally, it is vital to emphasize the need for
continuous evaluation and refinement of hybrid XAI methods as the DRM landscape evolves. By staying abreast of emerging risks,
technological advancements, and lessons learned from past disasters, researchers and practitioners can adapt and optimize these
approaches to remain effective in a rapidly changing world.

5. Synthesized insights for future research

In previous sections, the results are discussed within the context of existing research directions, and the groupings were based on
current literature. However, these groupings do not cover the entire DRM domain’s problems and challenges that can be addressed
using XAI methods. Additionally, they do not encompass all state-of-the-art methods that can be employed for DRM. Hence, in this
subsection, the results are further discussed, and insights from the broader DRM and AI domains are provided to develop guidelines for
future studies.

Recommendation 1: multi-hazard risk analysis for XAI-DRM

Approaching DRM from a multi-hazard risk perspective has gained significant importance due to the complex and interconnected
nature of disasters. Multi-hazard risk management considers the potential impacts of various hazards, such as earthquakes, floods, and
landslides, and their cascading effects within a single framework. This approach allows for a more comprehensive assessment of risk
and can improve the efficiency and effectiveness of disaster risk reduction efforts.

The application of Al and XAI methods in multi-hazard risk management can significantly improve risk assessments by offering
precise predictions and assessments of potential impacts and their underlying factors. For instance, modelling approaches for multi
hazards can be conceptually distinct, making integration challenging. The utilization of Al methods can facilitate an integrated
approach to the development of multi-hazard models, allowing for the exploration and understanding of interactions using XAI
methods. Furthermore, XAI methods can offer transparency and interpretability of model results, which can improve the decision-
making process and the acceptance of the model by stakeholders. For example, XAI methods can be used to develop models that
predict the impact of multiple hazards on infrastructure, such as buildings and transportation systems. These models can be used to
identify the most vulnerable areas and prioritize the allocation of resources for risk reduction measures. XAI methods can also be
applied to optimize the allocation of resources for response and recovery actions in the event of a multi-hazard situation.

However, it is crucial to ensure the explainability, interpretability, accountability, and trustworthiness of the AI models with XAI
techniques used for multi-hazard risk assessment with the aid of XAI techniques. This can be achieved by designing AI/XAI models that
can explain their decisions and by validating the model performance using real-world data. Furthermore, involving stakeholders in the
model development and validation process can increase the acceptance and adoption of XAI methods in multi-hazard risk
management.

Recommendation 2: explainability for disaster early warning systems and digital twins

The DRM field is becoming increasingly reliant on complex models such as Digital Twins and Early Warning Systems (EWS) to
identify and mitigate risks. These models use large amounts of data from various sources to model imminent hazards, elements at risk,
and simulate disaster scenarios and predict potential outcomes. However, these models are often too complex for humans to fully
understand, making it challenging to interpret and act upon the predictions made by these models. This is where XAI comes into play.

XAI techniques can provide insight into how complex models such as Digital Twins and EWS work and can help decision-makers
understand how and why certain predictions are made. This is especially important in DRM, where accurate and timely decisions can
mean the difference between life and death. XAI techniques can also help improve the accuracy and reliability of complex models by
identifying biases and errors in the data used to train them. In addition, they can provide more transparency and accountability in
decision-making, as stakeholders can better understand the reasoning behind certain decisions. The use of XAI in DRM can also lead to
increased public trust and confidence in these systems, which is particularly vital in EWS. When the decision-making process is
transparent and easily understood, people are more likely to trust and accept the recommendations made by these systems.

Recommendation 3: incorporating causal inference methods in DRM decision making

Currently, the use of XAl is gaining traction as a tool to analyse data and support the decision-making process in DRM. However,
XAI may be limited in providing accurate inferences to identify the causal factors of a disaster, which is crucial for effective DRM.
Instead, we suggest incorporating causal inference methods, the process of determining cause-and-effect relationships between
different variables or events. Causal inference can help identify factors contributing to disaster occurrence and guide the development
of effective response, recovery, prevention/mitigation, and preparedness strategies [167].

In the response stage, a causal inference approach can be used to determine the impact of factors such as communication channels,
transportation networks, and medical supplies availability on response times and emergency services’ success. In the recovery stage,
potential causal effects of different recovery interventions [168] can be identified using data on the affected population’s charac-
teristics, the type and severity of the disaster, and the implemented recovery interventions. For instance, causal inference methods
could be employed to determine the impact of interventions like temporary housing, medical care, access to clean water, and mental
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health support services on recovery speed after a flood.

In the prevention/mitigation stage, XAI can identify factors that increase disaster occurrence probability. For example, it can be
used to determine factors contributing to the occurrence and severity of floods in a particular area by analyzing historical data related
to the degree of proximity to rivers or the level of deforestation in the area. In the preparedness/adaptation stage, this information can
be used to inform future planning and preparedness efforts, ensuring that the most effective measures are put in place to minimize the
impact of future disasters. For instance, if an analysis of past disasters reveals that a lack of early warning systems contributed to the
disaster’s severity, then a focus on developing and implementing effective early warning systems would be a key adaptation measure.
For the case of flooding [169], measures such as reforestation, building flood barriers, or relocating populations away from high-risk
areas can be designed.

Causal inference methods can also be used to evaluate the effectiveness of DRM strategies, allowing practitioners to determine
whether a particular strategy has been successful in reducing disaster risk. By incorporating causal inference methods in DRM decision-
making processes, policymakers and practitioners can better understand the complex relationships between various factors and di-
sasters, ultimately leading to more effective and targeted interventions to reduce disaster risk and enhance resilience.

Recommendation 4: exploring the potentials of generative Al for transforming the DRM landscape

Generative Al has the potential to revolutionize DRM by leveraging deep learning capabilities. This technology can generate
synthetic data, simulate disaster scenarios, and propose innovative solutions for disaster response and recovery, significantly
improving our ability to plan for and respond to disasters [170].

For example, generative Al can simulate various disaster scenarios, enabling disaster response teams to test and refine their
strategies in a safe, controlled environment. This can help improve response times and minimize the risk of errors or missteps during
actual disaster events. Moreover, generative Al can propose innovative solutions for disaster response and recovery, such as new
evacuation routes or shelter designs that better meet the needs of disaster victims.

This technology can also generate synthetic data, which can be used to augment existing datasets and improve the accuracy of
predictive models [171]. This can help identify areas at higher risk for disasters, enabling better planning and preparation. Despite
these potential benefits, it is crucial to consider the ethical implications of generative Al There are concerns about using synthetic data
in predictive models, which may not accurately reflect real-world conditions [172]. Furthermore, the applications of generative Al in
disaster response may raise questions around data privacy and security [173].

Recommendation 5: collaborating with domain experts and incorporating their knowledge and expertise

Reliance on ML algorithms alone is insufficient, as they can often lack contextual knowledge and may not capture the nuances of
DRM [31]. Domain experts possess a wealth of knowledge and expertise that can inform and improve the accuracy and explainability
of AI models. One approach involves incorporating domain experts in the design and development of AI models from the outset,
collaborating to identify relevant data sources, select appropriate modelling techniques, and develop necessary algorithms [174]. For
instance, engaging experts from various domains, such as computer science, disaster management, and psychology, will facilitate the
development of XAl methods that are not only technically sound but also user-friendly and contextually relevant. This ensures that the
Al model is tailored to the specific context of DRM and is transparent and understandable to its users.

Another approach employs XAI to highlight areas where domain experts can provide additional insight and expertise [175]. For
example, XAl can identify areas of uncertainty or conflicting data that require further investigation or validation from domain experts.
Domain experts can then provide additional data or input to refine the Al model and improve its accuracy and explainability.

Moreover, involving domain experts in the validation and testing of Al models can help ensure that the models are reliable and
effective within the context of DRM. Domain experts can provide feedback on the relevance and accuracy of the data, as well as the
model’s appropriateness and effectiveness in predicting and mitigating disaster risks. Involving domain experts in Al and XAI system
development and testing can improve acceptance and adoption. When experts see their knowledge and expertise being utilized and
recognize their role in developing the technology, they are more likely to trust and embrace it [176]. This, in turn, can lead to increased
efficiency and effectiveness in DRM decision-making. Integrating domain experts into the development, testing, and validation of Al
and XAI models can substantially improve their performance and trustworthiness in DRM. By leveraging the unique insights and
experience of domain experts, Al models can be tailored to the specific challenges and provide more accurate, transparent, and un-
derstandable predictions and recommendations.

6. Limitations

Limitations that may impact the systematic literature review study include publication bias, data extraction, and classification. In
this study, the main limitations and threats to validity are discussed under four categories: construct, internal, external, and conclusion
validities.

Construct validity concerns the extent to which the study accurately represents the target concept. In this study, only high-quality
studies were selected by employing the ISI Web of Knowledge and Scopus databases as sources to find relevant publications. However,
this approach may lead to missing other pertinent publications not indexed in these databases. Nonetheless, indexing in an ISI journal
and Scopus is an accepted way to find and extract high-quality papers. Although there may be missing terms that could impact the final
results, the search was kept broad, and the search query was refined several times to reduce the possibility of missing any relevant
studies. Therefore, the impact of missing relevant papers in the final results is low.

Internal validity is concerned with the extent to which the study accurately addresses the research questions. The research
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questions in this study were designed to investigate and extract all the necessary information and components for XAI-DRM. The
questions were based on precisely defined hazard and disaster types, risk components, Al and XAI methods, and other relevant in-
formation. Therefore, the findings of this study are well-explained and linked to the extracted results.

External validity is concerned with the extent to which the findings of a study can be generalized to other contexts. In this study,
we reviewed publications that utilized XAI methods for DRM, focusing on various disaster types and risk cycle components. However,
it is important to note that not all existing XAI methods and potential disaster risk types and components are covered in the reviewed
papers. Therefore, the generalizability of the findings to other contexts may be limited. However, we have provided insights from
broader perspectives in the Al and DRM domains in a separate section (Section 5), which may contribute to the external validity of the
study.

Regarding conclusion validity, this review followed the widely accepted structure and protocol for systematic literature reviews
outlined by Ref. [98]. All the steps, including defining research questions, search strategies, exclusion criteria, and synthesizing results,
were performed according to this structure. Furthermore, the search string and data extraction form used in this study are provided in
Appendix A, and a full list of the extracted publications is included in the supplementary materials. Therefore, the results of this study
can be easily reproduced.

7. Conclusions

This review has critically examined the current achievements and challenges in utilizing explainable artificial intelligence (XAI)
techniques for disaster risk management (DRM), with the primary objective of suggesting future research directions. By extracting 195
publications from the Scopus and ISI Web of Knowledge databases and selecting 68 for detailed review based on predefined exclusion
criteria, our study has provided a comprehensive understanding of the applications, challenges, and opportunities of XAl in this crucial
domain. The selected papers were analysed and classified to address our research questions, and additional analyses were conducted to
identify research achievements and challenges in the field. We observed a significant increase in the use of XAI techniques for DRM in
2022, emphasizing the growing importance of explainability and transparency in disaster decision-making.

Our study has synthesized and analysed the existing literature, highlighting the various hazard and disaster types, risk components,
Al and XAI methods, and the inherent challenges and limitations of these approaches in DRM. We have identified key research di-
rections and provided synthesized insights for enhancing explainability and effectiveness in disaster decision-making. Some of the key
recommendations identified in this review include the adoption of multi-hazard risk analysis for XAI-DRM, the incorporation of
explainability in disaster early warning systems and Digital Twins, and the use of causal inference methods in DRM decision-making.
Additionally, this review highlights the potential of generative Al for transforming the DRM landscape and emphasizes the importance
of collaborating with domain experts to incorporate their knowledge and expertise in the development and validation of Al and XAI
models for DRM.

Despite the limitations of this review, our rigorous methodology ensures that the findings are well-explained and linked to the
extracted results. This review has unearthed the intricate interplay between XAI and DRM, revealing the profound potential of Al
solutions and emphasizing the necessity to enhance the transparency, interpretability, and effectiveness of disaster-related predictive
models. By considering the recommendations and insights provided herein, researchers and practitioners can work towards the
development and implementation of innovative XAI solutions that are not only more accurate and reliable but also more under-
standable and trustworthy for stakeholders. Ultimately, the integration of XAI in DRM can lead to more efficient and effective decision-
making, helping to save lives, reduce losses, and build more resilient communities in the face of ever-increasing disaster risks.
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Appendix-A Data Extraction Form

Table A.1
Data extraction form.

# Extraction element Contents

General information

1 ID Unique ID for the study

2 Title Full title of the article

3 Authors The authors of the article

4 Year The publication year

5 Publisher name The publisher name (e.g., Nature)

(continued on next page)
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Table A.1 (continued)

# Extraction element Contents
6 Journal name The journal name (e.g., Nature Communications)
Study description
7 Case Study (study area) The location (country name) of the case study
8 Hazard risk type The natural hazard type (e.g., Earthquake)
9 Main objective of the study (addressed DRM component) OResponse CJRecovery [JRisk mitigation (JPreparedness CGeneral risk
10 Details about the study E.g., any interesting findings or problems
11 Directly address DRM OYes [0 No
12 XAI method/type The name of the used XAI method (e.g., SHAP)
13 Al method/type The name of the used Al method (e.g., Random Forest)
14 Data source/type Data source/type used (e.g., Remote sensing)
15 Additional notes E.g., the opinions of the reviewer about the study
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