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Summary 

Understanding the causes of Alzheimer’s disease and related dementias remains a challenge. 

Observational studies investigating dementia risk factors are limited by the pervasive issues of 

confounding, reverse causation and selection biases. Conducting randomised controlled trials for 

dementia prevention is often impractical due to the long prodromal phase and the inability to 

randomize many potential risk factors. In this Essay, we introduce Mendelian randomization as an 

alternative approach to examine factors that may prevent or delay Alzheimer’s disease. 

Mendelian randomization is a causal inference method that has successfully identified risk factors 

and treatments in various other fields. However, applying this method to dementia risk factors has 

yielded unexpected findings. Here, we consider five potential explanations and provide 

recommendations to enhance causal inference from Mendelian randomization studies on 

dementia. By employing these strategies, we can better understand factors affecting dementia 

risk. 
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Introduction 

Despite significant investments in research of Alzheimer’s disease and related dementias over the 

past decades, the development of effective treatments has been challenging and the underlying 

causes of these diseases remain elusive. Many hypothesised risk factors and biomarkers show 

correlations with the risk of Alzheimer’s disease in observational studies. However, most of the 

randomised controlled trials (RCTs) developed to halt or delay Alzheimer’s disease progression, 

often motivated by this observational evidence, have been unsuccessful.1 Dementia prevention RCTs 

are not always feasible. The extended prodromal phase of dementia, which can last up to 20-30 

years, poses challenges in randomizing participants to interventions before the onset of significant 

neurodegeneration and tracking them until a clinical diagnosis of dementia is made. It is also not 

possible to randomize many exposures (e.g., air pollution and educational attainment). Thus, at 

present, we only have a group of risk factors that associate with dementia; some of which may cause 

dementia, some of which may be caused by dementia or genetic liability to dementia (e.g., APOE), 

and some which may spuriously associate with dementia due to various biases. In this essay, we 

introduce Mendelian randomization (MR) as an alternative approach to examine factors that may 

prevent or delay dementia, discuss the strengths and weaknesses of MR for dementia research, and 

recommend tangible steps to improve our ability to make causal inferences from MR studies of 

dementia. 

 

Mendelian randomization 

Observational epidemiology often faces challenges of confounding and reverse causation, which 

hinder our ability to draw unbiased inferences about whether an exposure causes an outcome. 

Many instances exist where apparently robust associations between various exposures and diseases 

in observational studies have failed to deliver the expected health benefits in RCTs (e.g., beta-

carotene, vitamins and hormone replacement therapy in relation to cardiovascular disease2).  
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MR is a technique that uses genetic variants as instrumental variables, to obtain less biased 

estimates of the causal effects of an exposure on an outcome, including both direction and 

magnitude. MR exploits the random inheritance of genetic variants from parents to offspring that 

occurs during meiosis. This random inheritance means variants should not correlate with potential 

confounders or be influenced by subsequent disease. Three assumptions underlie MR and must be 

satisfied for the causal estimation to be valid (figure 1). First, (IV1) the genetic variants are robustly 

associated with the exposure. Second, (IV2) there is no confounding of the relationship between the 

genetic variant and the outcome (e.g., by population stratification). Third, (IV3) the genetic variants 

should not exert effects on the outcome that do not operate through the exposure (i.e., there is no 

horizontal pleiotropy, explained in detail in section 3 below). The ability to make a causal conclusion 

from an MR analysis depends upon the plausibility of these assumptions. IV1 is the only assumption 

that can be empirically tested. The remaining two assumptions cannot be tested, but can be 

falsified. MR can be performed using individual-level data (sometimes called ‘one-sample MR’), 

where the genotype, risk factor, and disease measurements are taken from the same sample, or 

using summary-level data (sometimes called 'two-sample MR'), relying on summary statistics from 

separate genome-wide association studies for the exposure and the outcome.  

 

MR has already been successfully applied to several other diseases to: (a) confirm known 

epidemiological findings (e.g., the effects of smoking on lung cancer),3 (b) highlight novel causal risk 

factors or biomarkers for disease (e.g., using hypothesis-free phenome-wide approaches for 

Alzheimer’s disease),4 (c) identify drugs for repurposing to reduce risk of diseases other than those 

for which they were originally approved (e.g., IL-6 receptor inhibitors to treat severe COVID-19 

infection)5 6 and (d) challenge observational associations which were previously believed to be 

causal, where emerging evidence from both MR and RCTs has shown them not to be (e.g., the effect 

of C-reactive protein on coronary heart disease7 and selenium supplementation on prostate 

cancer).8  
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Analogies between Mendelian Randomization and RCTs 

MR and RCTs share several similarities (figure 2). The random segregation of alleles at conception, 

which separates a group with the ‘risk’ (or exposure increasing) allele from another group with the 

‘non-risk’ (or reference) allele, is analogous to the randomisation of treatment and placebo in RCTs. 

The randomization aims to ensure that, on average, confounders are balanced between the groups, 

allowing for meaningful outcome comparison. Clearly, MR cannot and should not replace RCTs for 

reasons which have previously been discussed in Swanson et al9. However, MR can offer insights into 

the potential success of an RCT; drugs with genetically supported targets are more than twice as 

likely to be approved10. MR is also not constrained by the logistical challenges that often accompany, 

for example, long-term lifestyle RCTs. This makes it valuable in scenarios where conducting RCTs are 

impractical. As with any other study, however, the validity of an MR study depends on how 

rigorously it has been conducted. Box 1 provides a set of questions that are useful for evaluating the 

robustness of any given MR study.  
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Box 1: Questions to ask when assessing if a MR study is robust 

 

IV1: Genetic variants are robustly associated with the exposure 

1) Do the instruments have biological plausibility? If this is not known, are they robustly associated 

with the exposure in several independent cohorts? 

2) Are the instruments associated with the exposure at the level of genome-wide significance, and 

are they independent (i.e. uncorrelated)?  

3) Are the instruments strong (i.e. is the F statistic above 10, and what is the R2)? 

4) Are the instrument weights taken from a discovery GWAS and therefore at risk of bias due to 

Winner’s curse? Ideally they should be taken from a replication GWAS or a meta-analysis of both 

5) Are any of the instruments outliers and having undue influence on the estimate? This can be 

evaluated using leave-one-out plots or Radial MR  

6) Has a test for genetic colocalization been conducted to test whether there are two distinct 

variants for the exposure and the outcome? 

7) If a one-sample MR, were the weights used in the MR from an external dataset (I.e. was the GWAS 

conducted in a different sample to the MR analysis)? 

8) If a two-sample MR – are the two GWAS datasets capturing the same underlying population? Is 

there any sample overlap between the two GWAS (for example, do they both contain UK Biobank)?. 

Note that bias due to sample overlap is less of a concern with strong instruments.  

9) Are your instruments truly instruments for your exposure and not your outcome (i.e. do they 

explain more variance in your exposure than your outcome)?. This can be examined with Steiger 

testing.  

 

IV2 – No confounding of the genetic variant-outcome relationship 

1) Has the MR been conducted in a homogenous population (e.g. just one ancestral group) to avoid 

bias due to population stratification? 

2) Have principal components been adjusted for to account for population stratification? 

3) Is assortative mating likely to cause bias for this exposure and outcome? If so, has a method that 

reduces bias from for assortative mating been used (e.g. within-family MR)? 

 

IV3 – No effect of the genetic variant on the outcome that does not go through the exposure (i.e. 

no horizontal pleiotropy) 

1) Is there any evidence of heterogeneity across genetic variants (e.g. assessed using I2, Q statistic or 

E-value)? 

2) Have pleiotropy robust sensitivity analyses been conducted (e.g. MR-Egger, weighted median and 

mode, radial MR)?  

3) If MR-Egger has been conducted, is there evidence that the intercept differs from zero? 

4) If there is evidence of pleiotropy, have methods like multivariable MR been used to adjust for the 

pleiotropic pathways? 

 

Other considerations 

1) Is the MR study well powered?  

2) Has multiple testing been accounted for (e.g. using an FDR or Bonferroni correction)?  
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WHO Guidelines and Evidence from Mendelian Randomization Studies of Dementia 

Based on the quality of available observational and interventional evidence, the World Health 

Organization (WHO) provides ‘strong’ recommendations for interventions related to physical 

activity, smoking and dietary intake for dementia prevention.11 Additionally, the WHO gives 

‘conditional’ recommendations for interventions targeting hypertension, diabetes, high alcohol 

intake and adiposity. In their proposed actions for member states, the WHO emphasizes the 

importance of formal education, as low education is considered a potential modifiable risk factor for 

dementia.12 Table 1 presents a summary of MR findings for each of these risk factors (for the 

purpose of this discussion, MR studies on dietary intake were not included due to the broad and 

heterogeneous nature of the literature in this area). On the basis of WHO recommendations – i.e., 

that targeting these risk factors should reduce dementia risk – it would be expected that a significant 

proportion of the published MR studies would fall into the red ‘harmful’ column. However, with the 

exception of low education, most MR studies do not support a causal effect for any of the WHO risk 

factors. Some MR evidence even goes in the opposite direction to what we would expect (figure 2). 

For example, there is evidence from MR studies suggesting that higher levels of physical activity may 

increase the risk of dementia, contrary to the expected protective effect. Additionally, MR evidence 

has suggested a potential protective effect of smoking on dementia risk, which contradicts the well-

established harmful effects of smoking on overall health. This discrepancy is surprising, because for 

many other disease outcomes, MR studies examining these same exposures using the same genetic 

instruments have produced expected associations that align with RCT evidence. For example, MR 

studies support a causal effect of higher systolic blood pressure on greater cardiovascular disease 

risk,13 and of smoking on higher cancer risk.3 Here, we consider five potential explanations for these 

unexpected findings and propose strategies to enhance the reliability of MR studies on dementia risk 

factors moving forwards.  
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Table 1: Summary of Findings from Mendelian Randomization Studies on Alzheimer's Disease Risk 

Factors Recommended by the World Health Organization  

WHO risk factor 
Direction of effect on dementia from MR 

Protective Null Harmful 

High smoking quantity 1, 2, 3 4, 5, 21 – 

Smoking initiation 1, 5 – – 

Physical inactivity 21 3, 5, 6, 7 – 

Hypertension 8, 3 2, 5, 9, 10, 21 – 

Diabetes – 2, 3, 5, 12, 13, 
14 

11 

High alcohol consumption – 2, 3, 5, 15, 16 – 

Adiposity – 1, 2, 3, 5, 18, 
19, 20, 21 

17 

Low education – 1, 3 2, 5, 21, 22, 23, 
24, 25, 26, 27 

Please note that this table does not include MR studies of dietary intake as it is too broad for inclusion. 1- Østergaard et al, 

2015.14 2- Larsson et al, 2017.15 3- Desai et al, 2023.16 4- Nordestgaard et al, 2022.17 5 – Andrews et al, 2021.18 6- Zhang et 

al, 2022.19 7- Baumeister et al, 2020.20 8 – Sproviero et al, 2021.21 9 – Walker et al, 2020.22 10 – Ou et al, 2021.23 11- Meng 

et al, 2022.24 12 – Thomassen et al, 2020.25 13 – Pan et al, 2020.26 14 – Walter et al, 2016.27 15 – Andrews et al, 2020.28 16 – 

Campbell et al, 2022.29 17 – Li et al, 2021.30 18 – Zhuang et al, 2021.31 19 – Zhou et al, 2019.32 20 – Nordestgaard et al, 

2017.33 21 – Korologou-Linden, 2022.4 22 – Anderson et al, 2020.34 23 – Thorp et al, 2022.35 24 – Seyedsalehi et al, 2022.36 

25- Nguyen et al, 2016.37 26 – Raghavan et al, 2019.38 27 – Liu et al, 2022.39 Search strategy and selection criteria. Please 

note that this search was not intended to be a full systematic review of the Mendelian randomization literature dementia 

risk factors, but a comprehensive literature search to inform the table. PubMed was the only database used for the 

literature search. We searched for any paper that had the terms ‘Mendelian randomization’ AND ‘dementia OR Alzheimer’s 

disease’ AND ‘risk factor terms*’ in the title and/or abstract. We also conducted a more general search of ‘risk factors’ to 

identify studies that examined multiple risk factors within the same paper. Abstracts of all papers returned were read to 

determine suitability for inclusion in the figure. No exclusion criteria were applied and there were no date restrictions on 

the search. *For each risk factor the following terms were searched: Smoking – ‘smoking’, ‘cigarettes’. Physical inactivity – 

‘physical activity’, ‘physical inactivity’, ‘accelerometer’. Hypertension – ‘hypertension’, ‘blood pressure’, ‘antihypertensive’. 

Diabetes – ‘diabetes’, ‘glucose’. Alcohol – ‘alcohol’. Adiposity – ‘adiposity’, ‘body mass index’, ‘BMI’, ‘obesity’. Low 

education – ‘education’, ‘educational attainment’, ‘years of schooling’. 
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Addressing Sources of Bias in Mendelian Randomization Studies on Dementia 

 

1. Heterogeneity in the outcome 

Diagnosing the cause of dementia in living patients is challenging and misdiagnosis rates are high. The 

current gold standard method for diagnosis is post-mortem autopsy. Studies have shown that 

between 15-30% of patients diagnosed with Alzheimer’s disease do not have sufficient Alzheimer’s 

pathology at autopsy to account for the presence of dementia.40 Over 70% of patients receiving a 

clinical diagnosis of Alzheimer’s disease will also show significant additional pathology on autopsy (e.g. 

cerebrovascular pathology or Lewy bodies), suggesting that most dementias cases are actually 

mixed.41 This is problematic for MR, as current genome-wide association studies (GWAS) are based on 

cases in whom diagnosis of a specific dementia subtype has been made largely based upon clinical 

signs and symptoms in living patients.42 For example, the published Alzheimer’s disease GWASs42, 

which are used for most two-sample MR studies, include patients who were clinically diagnosed using 

a variety of methods (primarily neuroimaging and cognitive test batteries) that are notoriously 

unreliable for distinguishing underlying causes of dementia. Attempts were made by some cohorts to 

reduce heterogeneity by excluding patients with a history of cardiovascular disease (in whom 

cerebrovascular pathology is more likely). Thus, such GWAS are likely to be enriched for Alzheimer’s 

disease pathology but will inevitably comprise a large proportion of cases with mixed pathology. 

Indeed, the Alzheimer’s disease polygenic risk score generated from the Alzheimer’s disease GWAS 

summary statistics has been shown to be predictive for Alzheimer’s disease, vascular dementia, and 

all-cause dementia.43 More recently, the inherent heterogeneity that is present across cases when 

including clinically diagnosed (rather than neuropathologically diagnosed) patients is exacerbated in 

GWASs that additionally include ‘Alzheimer’s disease by-proxy’ cases. These are UK Biobank 

participants who have not themselves been diagnosed with Alzheimer’s disease, but have reported 

either of their parents to have had ‘dementia’.42 The adverse consequences of heterogeneity in GWAS 

have been described in detail in Escott-Price and Hardy, 2022.44 Briefly, imprecise diagnosis and the 

resulting heterogeneity in the disease outcome are problematic because risk factors and causal 
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pathways may differ for each dementia subtype. If diverse subtypes are grouped into one outcome, 

the direction and magnitude of the estimated causal effect for any given risk factor on dementia will 

depend upon the relative proportions of dementia subtypes included in the study sample. For 

example, it is plausible that high blood pressure causes vascular dementia, but not necessarily 

Alzheimer’s disease. This might explain why we generally obtain null findings for blood pressure MR 

studies, because the outcome GWAS is enriched for Alzheimer’s pathology. For risk factors that affect 

multiple dementia subtypes in the same direction, heterogeneity is less likely to cause bias. In addition, 

heterogeneity in the GWAS samples means that genetic markers with small effect sizes that are 

specific to a single dementia subtype will be harder to detect than variants which affect all causes of 

dementia. Thus, we may currently be examining risk factors for the most common ‘general’ dementia 

pathways in MR studies, rather than risk factors for any specific cause of dementia.  

 

Overcoming this issue at present requires a trade-off between statistical power and precision in the 

outcome. Performing individual-level data MR in samples with better characterisation of the outcome 

(e.g., in post-mortem samples, or samples with more detailed imaging) would enable better 

understanding of risk factors for specific dementia subtypes. However, the availability of these data 

remains limited compared with clinical diagnoses, rendering sample sizes much smaller and critically 

imprecise. That said, efforts are currently underway to increase genotyping of brain bank tissue 

samples to facilitate the examination of any bias introduced by this heterogeneity on both GWAS and 

MR findings.45 

 

2. Survival bias 

Selection bias due to censoring by death (or survival bias) can induce spurious exposure-outcome 

associations that are not due to the causal effect of the exposure on the outcome. It is sometimes 

referred to as collider bias, because the bias arises from conditioning on a collider (i.e., a common 

effect, which in this case is survival/participation in study, figure 3) of both the exposure (dementia 
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risk factor, e.g. smoking) and the outcome (dementia). Indeed, many people do not live old enough 

to know whether they would have received a dementia diagnosis or not, making dementia risk factor 

studies prone to survival bias. There are currently no empirical studies comparing the relative impact 

of survival bias for different diseases, but the average age at diagnosis for dementia is over 80 years, 

which is older than the average life expectancy in the United States. The average age at first 

cardiovascular disease event is around 65 years. Thus, the impact of survival bias is likely to be 

greater for dementia studies than it is for studies of other diseases. It is also likely that pre-clinical 

dementia affects recruitment into studies.46 

 

A known limitation of MR is that it can be affected by collider bias.47 The intuition is simple; for 

example, people with variants pre-disposing them to higher levels of smoking are likely to die 

prematurely, before developing Alzheimer’s disease. Thus, people with variants for heavier smoking 

will appear to have lower risk of disease, and indeed several MR studies to date report this direction 

of effect (table 1). Most MR dementia studies published to date have not examined the effect of 

survival bias, despite the availability of several methods to interrogate this in an MR framework, 

which we will summarise briefly here.  

 

In an individual-level data MR setting, at least the following selection/survival bias checks can be 

applied: 

1) Independent (i.e., uncorrelated) genetic variants, selected from a GWAS of a given risk 

factor, are typically used as instruments in an MR study. Check whether the independent 

genetic variants identified by the GWAS remain uncorrelated within the sample selected for 

MR analysis. If selection bias is present, correlations between otherwise independent 

variants may be found.  

2) In an unselected sample, there should be no associations observed between the genetic 

instruments and age, sex or other predictors of study participation within the selected 
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sample.48 Studies have previously reported many loci to be spuriously associated with sex (a 

non-heritable trait) in in the presence of sex-differential participation bias.49 In cross-

sectional studies, check whether genetic instruments are associated with these variables. 

Any associations observed indicate selection bias may affect the results. 

3) In longitudinal studies, check whether genetic instruments are associated with study 

participation across time, or with survival if those data are available. Any associations 

observed indicate selection bias may affect the results.46 

 

To address any potential selection bias, correction methods are now available. In an individual-level 

data setting, inverse probability weighting can be applied to reweight selected samples back to a 

more representative sampling population, thus reducing selection bias. This has been previously 

applied to the highly selected UK Biobank sample, which was reweighted to UK census data and 

shown to reduce selection bias in risk factor – outcome associations by around 78%. These inverse 

probability weights are publicly available.50  

 

In a summary data MR setting (i.e., when using GWAS summary statistics for the exposure and the 

outcome, rather than individual-level data), relatively simple simulations can be performed to gauge 

the extent to which observational and MR associations could be induced artificially by survival bias. 

It can then be considered whether the estimated magnitude of bias is large enough to fully or 

partially explain the causal effect observed between an exposure and an outcome in the MR 

analysis. This has been done previously for the causal effect of body mass index on Parkinson’s 

disease risk.51  The methods for conducting those simulations are described in detail in that paper.  

 

3. Horizontal pleiotropy 

MR estimates can be biased by horizontal pleiotropy (IV3 in figure 1).52 Horizontal pleiotropy occurs 

when there is at least one causal pathway from the genetic variant to the outcome that does not go 
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via the risk factor of interest. This happens because genes often have multiple functions and can 

simultaneously affect multiple traits. For example, the APOE gene is pleiotropic and has known 

effects on multiple diseases including Alzheimer’s disease, cardiovascular disease and leprosy53. A 

plethora of MR methods now exist to identify and correct for horizontal pleiotropy.52 MR studies can 

seek to interrogate whether pleiotropy is a likely source of bias by reporting Cochran’s Q 

heterogeneity statistics, the MR-Egger intercept, and any pleiotropy-adjusted causal effect 

estimates. Guidance for doing so can be found in the STROBE-MR guidelines.54 In addition to 

checking for horizontal pleiotropy, it is advisable to assess genetic colocalization52. Colocalization is a 

sensitivity analysis aimed at distinguishing between two scenarios: (i) the causal variant for the 

exposure and the outcome are shared (i.e., colocalised) and (ii) the causal variant for the exposure is 

distinct from the causal variant for the outcome, whilst being at the same locus (no colocalization). 

The first scenario is a necessary, but not sufficient condition for establishing a causal relationship. 

Although colocalization helps to rule out the possibility that there are two distinct causal variants in 

the same region, it cannot exclude the presence of horizontal pleiotropy. 

 

4. Statistical power 

 

MR studies typically have much lower statistical power than other observational study designs of a 

similar sample size. For some risk factors, studies report that there is no evidence of a causal effect 

on dementia risk, but with wide confidence intervals which are consistent with a large causal effect 

in either direction. It is important to distinguish between risk factors for which there remains 

uncertainty about their causal effects and for which we may need larger GWAS (or power-boosting 

GWAS and MR methods) – i.e., absence of evidence – versus those risk factors for which precisely 

estimated null effects suggest that they are unlikely to causally affect dementia risk  – i.e., evidence 

of absence. For example, for physical activity, some confidence intervals are very wide and cannot 

exclude large effects in either direction (e.g., Zhang et al, 2022, OR: 0.62, 95% CI: 0.17-2.3219; Desai 
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et al, 2023, OR: 0.48, 95% CI: 0.10-2.3016). Statistical power is particularly critical for detecting small 

effect sizes which may not be important at an individual level, but have wide public health benefits 

at a population level.55  

 

Researchers should take into account the precision with which casual effects are estimated, and 

refrain from concluding that there is no evidence of a causal effect for a particular risk factor when 

confidence intervals are wide. Another method for increasing statistical power is to utilise 

continuous proxies of preclinical disease, such as cerebrospinal fluid levels of beta-amyloid and tau, 

rather than the binary case-control outcomes. GWAS of these biomarkers are increasing in size and 

will hopefully continue to do so. 

 

5. Timing of causal effects 

Some causal effects may be specific to a particular life stage. One example involves blood pressure. 

High blood pressure in midlife is known to accelerate atherosclerosis and arterial stiffening 

increasing risk of non-fatal strokes, microbleeds and infarcts in the brain, which can all cause 

dementia. For this reason, lowering blood pressure in midlife could plausibly reduce dementia risk. 

In old age when atherosclerosis in cerebral arteries is common, any benefits from blood pressure 

lowering may be smaller. This is because low blood pressure can lead to insufficient cerebral 

perfusion and hypoxia in parts of the ageing brain, potentially contributing to decrease in brain 

volume.  

 

At least two MR methods can be used to investigate timing of causal effects. First, using age-

stratified GWAS for the risk factor to estimate the relative effects of the risk factor at different points 

in the life course. This is dependent on the genetic aetiology of the risk factor being sufficiently 

variable to allow the identification of the causal effects of risk factors at different points in the life 

course.56 Recently, this method was applied to identify causal effects of childhood BMI on health 
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outcomes, independently of adult BMI.56 Second, we can investigate the association between 

genetic liability to the disease of interest, such as dementia, in people who have not been clinically 

diagnosed with the disease, and phenotypes and risk factors across the life-course. This phenome-

wide approach may allow identification of risk factors at the earliest manifestations of disease, and 

when these occur.4  

 

Conclusions  

No single study design can claim to reveal the absolute truth, and this applies to MR as well as any 

other approach. To reliably identify modifiable risk factors for dementia, it is imperative to 

triangulate evidence from multiple study designs. MR offers a promising tool to address the 

limitations of observational dementia epidemiology and the practical constrains of conducting RCTs 

for dementia prevention. While MR studies have their own biases, many of these biases have been 

recognized and are increasingly well understood. There are now guidelines (STROBE-MR) for 

designing, conducting and interpreting a robust MR study, which should be adhered to.54 To further 

advance MR studies on dementia risk factors going forward, concerted efforts are needed to 

scrutinize and account for potential distortions in MR findings. Fortunately, as described here, there 

are now a variety of methods available to accomplish this task.  
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Figure Legends 

Figure 1: An illustration of Mendelian randomization including the three core underlying 

assumptions. G represents a genetic variant. X represents an exposure. Y represents an outcome. C 

represents confounders. IV1 assumes genetic variants are robustly associated with the exposure. IV2 

assumes no confounding of the relationship between the genetic variant and the outcome. IV3 

assumes no effect of the genetic variants on the outcome that do not go through the exposure (i.e., 

no horizontal pleiotropy).  

 

Figure 2: A comparison of Mendelian randomization and randomized controlled trials. 

 

Figure 3: DAG representing survival bias. X is an exposure or risk factor. Y is an outcome. 
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