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I N TRODUC TION

The skin acts as a barrier by simultaneously allowing for and 
protecting from environmental exchange.1 The stratum cor-
neum (SC), the outermost epidermal layer, is the principal 
permeability and protective barrier.2 SC limits water loss and 
prevents both infection and contact with potentially harm-
ful exogenous factors.1 The SC mainly consists of terminally 
differentiated keratinocytes called corneocytes, corneodes-
mosomes together with tight junction proteins, protein-
degradation products, such as natural moisturizing factor 
(NMF), and other moisturizing molecules.3 The corneocytes 
closely interact with a continuous bi-lamellar matrix of hexag-
onal and orthorhombically packed lipid lamellae that support 
the epidermal barrier and regulate water-binding homeosta-
sis.3 In addition, a variety of enzymes, protease inhibitors, 
antimicrobial peptides and antimicrobial lipids contribute 

to homeostasis of SC barrier function.1 These components 
interact to maintain SC integrity.2 Although SC protection 
functions consistently across the body, anatomical variations 
do occur; for example, subtle differences have been found in 
measurements of epidermal barrier function, SC hydration 
and surface pH between the arm, forearm and cheek in sub-
jects with normal skin.4,5 Moreover, subtle zonal differences 
in facial transepidermal water loss (TEWL), SC hydration and 
skin surface pH are reported, including differences across 
ethnic groups.6 SC function also depends on the interplay be-
tween the chemosensory barrier, the epidermal microbiome 
and the innate immune system1 and appears to be related to 
epidermal microbiome diversity.7 Dysregulation of skin bar-
rier function can induce an inflammatory cascade and poten-
tially skin disorders,1 such as dry, flaky or sensitive skin.

Dry and sensitive skin phenotypes are distinct 
yet common conditions partially associated with SC 
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Abstract
The stratum corneum (SC)—the outermost layer of the epidermis—is the princi-
pal permeability and protective barrier of the skin. Different components of the SC, 
including corneocytes, natural moisturizing factor, a variety of enzymes and their 
inhibitors, antimicrobial peptides and lipids, work interactively to maintain barrier 
function. The main barrier properties of the SC are the limitation of water loss and 
the prevention of infection and contact with potentially harmful exogenous factors. 
Although the SC functions consistently as a protective barrier throughout the body, 
variations in functions and morphology occur across body sites with age and skin 
type. Healthy SC function also depends on the interplay between the chemosensory 
barrier, the skin's microbiome and the innate immune system. Dysregulation of SC 
barrier function can lead to the development of skin disorders, such as dry, flaky or 
sensitive skin, but the complete underlying pathophysiology of these are not fully 
understood. This review provides insight into the current literature and emerging 
themes related to epidermal barrier changes that occur in the context of dry, flaky 
and sensitive skin. Additional studies are needed to further elucidate the underlying 
aetiology of dry, flaky and sensitive skin and to provide tailored treatment.
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dysfunction.8,9 Although sensitive skin and dry skin are 
related to epidermal functions and can both occur in the 
same individual,9,10 these conditions are defined and dis-
cussed separately in the literature. In this paper, the term 
dry skin is used to describe a spectrum from visually dry 
skin to rough, dry and potentially f laky skin that may also 
have scales or small cracks.

People with dry skin present a range of symptoms from 
mild scaling and acute irritation to severe fissures, pain and 
superinfection.8,11 Between 26% and 60% of adults report dry 
skin,8,11,12 with higher prevalence in individuals with darker 
skin as well as in older individuals.11,13,14 Although dry skin 
can affect the entire body, it is more frequently associated 
with areas containing fewer sebaceous glands (e.g. the lower 
legs, forearms, dorsum of the hands and feet).8 Compared 
with simple dehydrated skin, impaired SC function, spe-
cifically the depletion of SC lipids and protease imbalance, 
contributes to the underlying aetiology of dry skin.8,15,16 
Additionally, skin inflammation, which can be both a cause 
and a consequence of dry skin, often drives a vicious cycle 
of further barrier alteration8,15,17 and can induce pruritus.8

Sensitive skin was defined in 2017 by expert consensus as 
a syndrome characterized by ‘the occurrence of unpleasant 
sensations (stinging, burning, pain, pruritus, and tingling 
sensations) in response to stimuli that normally should not 
provoke such sensations’ and that cannot be explained by le-
sions associated with any skin disease.10 Approximately 50%–
70% of adults report some degree of sensitive skin,18 which 
can affect all body areas, particularly the face.10 Although 
the underlying pathophysiology of sensitive skin has not 
been definitively determined, its origin appears multifacto-
rial, with neurosensory dysfunction (possibly a subtype of 
small-fibre neuropathy) considered a key mechanism.10,19

In this review, we discuss current literature and emerging 
themes related to changes to the SC and the epidermal bar-
rier that occur in the context of dry and/or sensitive skin in 
adults. We also consider important research gaps that, if ad-
dressed, may allow the refinement of treatment options for 
dry and sensitive skin.

SC lipids

The SC has a complex lipid composition of ceramides, cho-
lesterol, fatty acids and cholesterol sulphate.3 These compo-
nents are organized as lamellar gel phases in which the lipid 
chains are orthorhombically or hexagonally packed together 
with amorphous domains, depending on body site and SC 
depth.3,20 SC lipids are formed during keratinocyte differen-
tiation followed by co-secretion of enzymes and other factors 
in lamellar bodies at the stratum granulosum/SC interface.21 
SC ceramides are essential for competent barrier function.22 
Most recently, >1300 unbound ceramide species and >250 
covalently bound species have been described.22 Ceramide 
nomenclature is described in Figure 1.

SC free fatty acids (FFAs) are primarily long-chain fatty 
acids with chain lengths of 22 to 26 carbon atoms; however, 

chain lengths may vary.23,24 Shorter FFA chains may en-
hance conformational disordering of SC FFAs and influence 
epidermal barrier permeability.23 Ultimately, it is a combi-
nation of carbon chain lengths of SC ceramides and FFAs 
as well as the size of polar head groups together with cho-
lesterol that determines the organization of SC lipids and 
thereby epidermal barrier function.3 However, recent ad-
vancements—including more sensitive detection methods—
provide a broader understanding of the role and diversity of 
SC lipids and their functions, particularly in relation to epi-
dermal barrier dysfunction.3,22,25

SC lipid levels vary across anatomical sites and with age.3 
For example, ceramides vary by level and type in the face 
and are higher in the face than in the leg and hand.26–28 
Additionally, SC lipid content and organization change 
with increasing age29; one example is a reduction in cera-
mide EOS (Figure  1).26 Reduced ceramide levels were also 
observed in the winter months.26 Similar changes were de-
tected in corneocyte-bound ceramides.30

SC lipid disorganization and altered epidermal barrier 
function are involved in several skin diseases and disorders, 
including dry skin and sensitive skin.21,31 Common SC lipid 
alterations in several skin diseases include decreases in FFA 
chain length, ceramide composition, ceramide chain lengths 
and total ceramide concentration.3,21 Although our under-
standing of the complexity of changes in intercellular and 
covalently bound SC ceramide composition is more pro-
nounced in dermatological diseases,21,32 changes in lipids 
also occur in dry skin.3 For example, changes in epidermal 
barrier function and lipid organization were observed in 
surfactant and soap-induced dry skin.33,34 Decreased levels 
and specific classes of ceramides are characteristic of dry 
skin.3,35 Sensitive skin is associated with decreased SC ce-
ramide levels in facial skin.4,36 However, differences in the 
complexity of the compositions are not known in sensitive 
skin. Additional research, especially on the composition of 
intercellular and covalently bound ceramides and their mo-
lecular architecture, is needed in sensitive skin.

NMF and endogenous humectants

NMFs include a variety of compounds, in particular free 
amino acids, pyrrolidone carboxylic and urocanic acids, 
hyaluronic acid and glycerol.2 These components support 
epidermal barrier homeostasis by binding and preserving 
water in the SC layer.2,37,38 NMF levels correlate with cor-
neocyte maturation and conformation39,40 and regulate 
Staphylococcus aureus adhesion to the SC in subjects with 
atopic skin conditions.41 The levels of filaggrin and corneo-
cyte maturation are inversely related to greater quantities of 
NMF associated with mature corneocytes.40 The majority of 
amino acid components of NMF are formed by proteolysis 
of filaggrin (Figure 2), a protein encoded by the profilaggrin 
gene, which plays an important role in corneocyte flattening 
and SC barrier formation.42 Urocanic acid is formed by the 
deamination of histidine following filaggrin proteolysis and 
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2-pyrrolidone carboxylic acid is formed from glutamine and 
glutamic acid.42

Reduced levels of NMF may be related to filaggrin syn-
thesis and/or reductions in filaggrinolysis, evidence asso-
ciated with profilaggrin gene copy number variations and 
loss-of-function mutations and skin abnormalities.42–44 The 
human profilaggrin allele contains 10, 11, or 12 profilaggrin 
repeats, each connected by a conserved linker sequence.42,45 
Ginger et  al identified the relationship between increased 
profilaggrin repeats (ie, 12 vs 10 profilaggrin gene repeats) 
and a reduced risk of dry skin.46 A case–control study of 

paediatric subjects found that those with 2 alleles containing 
12 profilaggrin gene repeats had a reduced risk of developing 
atopic dermatitis (AD) compared with subjects with 2 alleles 
containing 10 profilaggrin gene repeats.47 Loss-of-function 
mutations in the profilaggrin gene are recognized as the 
cause of ichthyosis vulgaris and increase the risk of develop-
ing AD and allergies.42,44,48,49

Dry skin is also associated with lower NMF levels.50,51 
Like SC lipids, NMF levels also vary seasonally, with ageing 
and by anatomical region (e.g. NMF levels are reduced in the 
cheek but elevated in the hand during winter).52 Although 

F I G U R E  1   Human ceramide nomenclature according to the structural composition of fatty acids (FAs) and long-chain bases (LCBs). Each 
compound name is listed below each structure, with abbreviations recommended by LIPID MAPS (https://​www.​lipid​maps.​org) under each compound 
name and each number corresponding to an n value of 1 or 15. There are two proposed models for the binding of protein-bound ceramides to corneocyte 
envelope proteins: binding occurs via (1) the ω-hydroxyl group of the fatty acid moiety after release of the modified linoleic acid moiety90 and (2) the 
enone of the modified linoleic acid moiety (dotted box).91 The inset depicts the notation of ceramide classes, which are designated using a combination of 
the abbreviations for fatty acid and long-chain base types. Figure adapted with permission from Suzuki M, et al. J Lipid Res. 2022;63(7):100235.
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evidence suggests an association between NMF levels and 
dry skin, little is known about NMF levels in sensitive skin. 
Only one study showed reduced pyrrolidone carboxylic acid 
levels in capsaicin-sensitive subjects vs a non-capsaicin-
sensitive control group, and the control group demonstrated 
reduced bleomycin hydrolase activities vs the capsaicin-
sensitive group; similar observations were made in dry and 
atopic skin conditions.53 Thus, there is a need for additional 
research on filaggrin, filaggrin metabolism and NMF com-
position in sensitive skin.

Corneocyte maturation, Corneodesmolysis and 
desquamation

The integrity of the SC depends on coordinated and 
tightly regulated differentiation, corneocyte maturation, 
and coordinated corneocyte desquamation (Figure  3).54 
Corneodesmosomes are the major components responsible 
for the cell–cell adhesion and connectivity between corneo-
cytes, supporting the ‘brick-and-mortar’ arrangement of the 
SC.54–56 Non-peripheral corneodesmosomes, those found 

F I G U R E  2   The process of filaggrinolysis during terminal differentiation leading to NMF. BMH, bleomycin hydrolase; KLK, kallikrein-related 
peptidase; NMF, natural moisturizing factor; PAD, peptidylarginine deiminase; PCA, 2-pyrrolidone-5-carboxylic acid; PEP, profilaggrin endopeptidase; 
SASPase, skin aspartic protease; SC, stratum corneum; SG, stratum granulosum; UCA, urocanic acid. Figure adapted with permission from Rawlings AV. 
Br J Dermatol 2014;171(suppl 3):19–28.

Location Filaggrinolysis Process

Nonenzymatic formation of PCA
from glutamate and UCA from
histidine by histidase

Degradation to filaggrin fragments
and amino acids by elastase-2,
calpain-1, caspase-14, and BMH
Deimination of filaggrin monomers
by PAD1 and PAD2

Further proteolysis to filaggrin
monomers by KLK5 and matriptase
and then keratin bundling

Initial proteolysis to trimeric and
dimeric filaggrin intermediates by
furin, PEP1, and SASPase

Dephosphorylation of profilaggrin
by phosphatases

Upper SC layers

Lower SC layers

SG/SC
transition layer

Keratohyaline
granules

Stratum
granulosum

F F

F F F F
F F F

F F F

F F F F F F F F F F
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F I G U R E  3   Schematic depiction of the epidermis showing corneocyte maturation and desquamation. Figure adapted with permission from Rawlings 
AV, et al. J Invest Dermatol. 1994;103(5):731–741 and Harding CR, et al. Int J Cosmet Sci. 2003;25(4):157–167.
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in the central portions of corneocyte surfaces, are present 
in the deeper part of the SC and are degraded toward the 
surface of the SC as corneocytes mature; peripheral cor-
neodesmosomes, those found on the peripheral edges of the 
corneocytes, ultimately are degraded during desquamation, 
except on the face and in plantar tissues, where they both 
degrade simultaneously.55,57

Corneodesmosome abnormalities can result in prema-
ture corneocyte shedding (hyperdesquamation), potentially 
leading to epidermal barrier dysfunction and inflamma-
tion.54 Corneocyte desquamation is an essential component 
of SC homeostasis and is defined by continuous shedding 
at the surface of the skin.54 Regulators of corneocyte des-
quamation include kallikrein-related peptidases (KLKs), 
such as KLK5, KLK7 and KLK14, and cathepsins that are 
controlled by a variety of protease inhibitors.55,58 Frequently, 
increased protease levels are found in the skin of individ-
uals with AD, which has been hypothesized to negatively 
affect barrier function.54 SC trypsin-like enzyme levels and 
tryptase, plasmin and urokinase levels correlated positively 
with increasing TEWL.59 Increases were also observed in ec-
zematous skin and in particular, mass levels of plasmin and 
KLK11.16,60

Alterations in desquamation can lead to the per-
sistence of corneodesmosomes in the outer layer of the SC, 
which is a clinical characteristic of hyperkeratotic and dry 
skin.33,61,62 The number of corneodesmosomes and levels 

of desmoglein-1 and corneodesmosin (modulators of cor-
neodesmosome adhesion) are higher in dry skin than in 
normal skin.33,63 In dry skin, the SC is approximately 30% 
thicker than in healthy skin.64 Levels of other enzymes in-
volved in corneocyte maturation, such as transglutaminase, 
are also decreased in dry skin.65 More recently, additional 
enzymes involved in the final steps of binding ceramides to 
the cornified envelope (Figure 4) have been shown to be re-
duced in dry photodamaged facial skin.66–69

Despite our understanding of corneocyte maturation and 
dry skin, less is known about corneocyte maturation and 
desquamation in sensitive skin. Sensitive skin is associated 
with an increased number of immature fragile envelopes and 
reduced transglutaminase activity.53,70 KLK5, an enzyme in-
volved in desquamation, is also decreased in subjects with 
sensitive skin.71 Together, these data demonstrate a need for 
further research on corneocyte maturation, desquamation 
and the regulation of processing enzymes in sensitive skin.

Immunologic, neurosensory and skin 
microbiome considerations in dry skin and 
sensitive skin

In the past decades, the SC has been recognized as an 
evolving and responsive compartment (Figure 5).65 One of 
the characteristics of the SC is its inherent immunologic 

F I G U R E  4   Schematic of the enzyme cascade involved in cornified envelope formation: (1) oxygenation, (2) isomerization, (3) ester cleavage, (4), 
dehydrogenation, (5) deamidation and (6) protein binding. 12R-LOX, 12R-lipoxygenase; CER, ceramide; CPE, corneocyte protein envelope; eLOX3, 
epidermal lipoxygenase-3; EPHX3, epoxide hydrolase 3; FA, fatty acid; SDR9C7, short-chain dehydrogenase/reductase family 9C member 7; TG1, 
transglutaminase 1. Figure adapted with permission from Rawlings AV, et al. Int J Cosmet Sci. 2022;44(2):166–176.
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competence, which contributes to epidermal barrier repair 
and homeostasis. Resident epidermal immune cells sense 
and induce response signals to external pathogens, partici-
pating in a large feedback network to maintain a functional 
SC.1,72 A dysfunctional epidermal barrier, as seen in adults 
with dry skin and sensitive skin, can facilitate the penetra-
tion of allergens, irritants and pathogens, activating the in-
nate immune response.1,73 Although inflammation may be 
promoted by epidermal barrier impairment, it is not thought 
to be the underlying mechanism of sensitive skin.73 In bi-
opsies from women with sensitive skin, no changes in the 
expression of inflammatory markers (eg, transient receptor 
potential vanilloid subtype 1 [TRPV1] and nuclear factor-κB) 
were detectable vs healthy skin,73 with the exception of in-
creased nerve growth factor74 and prostaglandin E275 levels 
reported in sensitive skin. In an analysis of RNA transcripts 
from sensitive skin, a C-C motif chemokine ligand 17 as well 
as interferon-γ were elevated, whereas genes for the olfactory 
receptor were downregulated.76 Similarly, Yang et al.77 found 
an upregulation of the PI3K-Akt–mTOR signalling pathway 
in subjects with sensitive skin. Lower levels of adiponectin 
and the gene for activin A receptor type 1C were detected in 
subjects with sensitive skin.78,79 These factors may contrib-
ute to altered SC differentiation and response status in sen-
sitive skin. Additional research should explore the immune 
system in individuals with dry skin and sensitive skin.

The epidermis exhibits sensory functions. Epidermal 
nerves are modulated by environmental (e.g. exposure to ir-
ritants), physical, chemical and microbial stimuli.1 Neuronal 
dysfunction is associated with sensitive skin.53 Skin biopsies 

revealed a reduced density of intraepidermal small fibre and 
nerve fibre reactivity to calcitonin gene-related peptides in 
sensitive skin.70,73 Furthermore, a reduced chemosensory 
threshold was found in capsaicin-sensitive subjects.53 Taken 
together, the current data support the hypothesis of sensitive 
skin as a small-fibre neuropathy.19,73

The immune and sensory properties of the epidermal 
barrier are also closely linked to its microbiome. The skin 
microbiome consists of cutaneous bacteria, fungi and vi-
ruses that participate in cross talk with the immune system 
and support functional epidermal homeostasis.1 Similar 
to the epidermal barrier, the broad and balanced skin mi-
crobiome protects against infection and pathogenic inva-
sion from potentially harmful microbes.80 Several factors 
contribute to the stability of the skin microbiome, includ-
ing endogenous factors (e.g. sebum, sweat and hormones), 
age and immunologic factors as well as exogenous factors 
(e.g. environment and lifestyle).80 The epidermal barrier 
is tightly regulated by cross talk among several innate 
systems, including the skin's immune system and micro-
biome.1 Dysfunction in any one of these systems has an in-
fluence on the others and might interfere with the integrity 
of epidermal function.

Although skin microbiome knowledge has advanced in 
recent years for skin diseases,81 little is known of the mi-
crobiome in dry and sensitive skin conditions. However, 
the impact of exogenous factors on the skin microbiome 
is established. The skin microbiome demonstrates specific 
patterns in hydrated areas and regions rich in sebum.82–84 
In the facial region, a specific relationship between sebum, 

F I G U R E  5   Schematic of the cross talk that occurs among innate systems of the epidermis: microbiological, immunological and sensory systems. 
Figure adapted with permission from Lefèvre-Utile A, et al. Int J Mol Sci. 2021;22(21):11676.
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hydration levels and microbiome diversity has been 
shown.85–88 Furthermore, skin care has shown to be of ben-
efit both to microbiome and epidermal barrier function in a 
stress model and dry and flaky skin conditions.7,89

CONCLUSIONS

Healthy epidermal barrier function relies on multiple in-
terconnected processes and components of the SC, includ-
ing lipids, NMF, corneocyte maturation and desquamation, 
enzymatic activity, the immune system, epidermal nerve fi-
bres, antimicrobial peptides/lipids and the skin microbiome. 
When epidermal barrier functions are negatively influenced, 
dry or sensitive skin can be induced or aggravated. The full 
picture of the underlying pathophysiology of sensitive skin 
remains under research. As demonstrated through this re-
view, more is known about dry skin and epidermal barrier 
alterations than sensitive skin. The most recent discovery 
on sensitive and dry skin were related to epidermiological 
findings, microbiome, skin colour and lipid metabolism. 
However, additional studies are needed to enhance the un-
derstanding of the mechanisms behind sensitive skin to 
allow individualized treatment modalities. Furthermore, the 
relationship between sensitive skin and stratum corneum 
hydration homeostasis needs more research.
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