
Exploring Server-Centric Scalability for Social VR
1st Sebastian Friston

Computer Science
University College London

London, UK
sebastian.friston@ucl.ac.uk

2nd Otto Olkkonen
Computer Science

University College London
London, UK

otto.olkkonen.20@alumni.ucl.ac.uk

3rd Ben Congdon
Computer Science

University College London
London, UK

ben.congdon.11@ucl.ac.uk

4th Anthony Steed
Computer Science

University College London
London, UK

a.steed@ucl.ac.uk

Abstract—Social Virtual Reality (SVR) systems are growing
in both popularity and breadth. New systems are attempting to
support a wider range of increasingly large social situations. A key
characteristic of SVR systems is user capacity. Many systems are
designed for small group discussion or team games, and support up
to 20-30 users. Some support larger counts, but via special features
coupled to a specific social situation. As SVR broaches medium to
large gatherings (10s-1000s of people), capacity becomes a major
challenge. Naı̈ve implementations where each user communicates
directly with every other will quickly overwhelm the resources of
the system. The constraints on scalability have been known since
the first SVR systems were created. However, while there are
many systems out there, their scalability mechanisms are often
application specific, and rarely openly discussed. In this paper
we explore scalability in the open-source SVR Ubiq. We consider
two partitioning schemes to increase relay-server capacity. We
examine the current failure modes of the relay-server system,
and demonstrate how these schemes improve capacity by a factor
of 2-3x. We look at the interactions between the schemes and
simulated user behaviour, to see what lessons can be gleaned for
research into scalability for SVR.

I. INTRODUCTION

An increasingly popular use of virtual reality is social virtual
reality (SVR). SVRs have diverse implementations, but a
common subset of features. These include representations of
users as avatars and real-time communication. There are various
successful commercial SVR applications, such as AltSpace [38]
and RecRoom [48], as well as numerous research systems that
implement custom features for scientific investigation, e.g. [32].

However, it is rare to see capacity openly discussed. Some
systems, such as Horizon Venues [15], are built around large-
scale social situations. Others, such as AltSpace, attempt sup-
port for medium-scale situations through special features [39].
Most systems without special features (e.g. RecRoom [48],
Hubs [41]) have capacities of 20-30 users. These capacities
are not explicitly enforced at the platform level, and seem
not to arise from an intentional target, but rather appear
as a consequence of other technical decisions. The number
of collaborating users significantly affects the nature of an
interaction [3], [24] and quality of experience [32], [13], [45].
The types of experience taking place between small groups
[40] and large concert crowds [62] are very different. There
is good reason then to consider user capacity in SVR as a

This work was partly funded by United Kingdom EPSRC project Graphics
Pipelines for Next Generation Mixed Reality Systems (grant reference
EP/T01346X/1) and EU Horizon 2020 project RISE (grant number 739578)

primary technical requirement, which changes with the purpose
of the application.

The biggest challenge in scaling user capacity is the number
of messages that must be exchanged to keep increasing numbers
of peers synchronised. Messages can be made more efficient,
and different topologies can be used to minimise duplication.
Ultimately though, if N peers can all ‘see’ each other, then
an update from one needs to reach, some way or another, N-1
peers, and vice versa.

The bottlenecks of capacity in SVR have been known since
the earliest days, and various schemes have been devised to
help [53], [55]. For example, spatial partitioning schemes [30]
organise the space or the users into small groups to reduce the
total number of messages. Exploring and integrating spatial
schemes is a challenge however for two reasons. First, the
space of social interactions is not continuous [3]. The social
cues exchanged, and the space over which this is done,
change depending on the context and environment. This makes
the goals of a partitioning scheme itself application specific.
Second, the implementation of a scheme is necessarily quite
low level, limiting re-usability and lessons learned between
systems. As such, there are no yet accepted general purpose
solutions to scalability. Further, systems that have functioning
scalability schemes are typically commercial and proprietary,
and so how these schemes are implemented and how they
perform is not common knowledge.

In this paper we explore scalability in the open-source SVR
system Ubiq [17]. Ubiq is designed for research and teaching.
It is a logically peer-to-peer system based on application-layer
multicasting, but with a simple server for rendezvous and relay
over the Internet. Currently, each Ubiq peer in a session sees
all other peers, regardless of the environment size, creating
a bottleneck in the server fan-out. We explore increasing the
capacity of a Ubiq session, and in doing so its potential as a
platform for exploring scalability schemes in general. We profile
the system to identify its primary bottleneck. We implement
two spatial partitioning schemes from the existing literature,
and evaluate them through stress testing with large numbers of
bots. We examine how these schemes increase user capacity,
but also the interactions between the schemes and different bot
behaviours. Our aim is to take the first steps into exploring
how Ubiq could be used to evaluate scalability schemes, and
support a broader set of use cases that exceed the capacity of
most existing applications.



II. PREVIOUS WORKS

A compelling use of immersive VR is to enable collaboration.
The same subsystems designed to facilitate immersion, e.g.
body tracking and spatialised audio, make VR amenable for
sharing social cues by connecting these systems over a network.
Some of the earliest VR systems had social demonstrations
(e.g. Reality Built for Two from VPL Research [4]). There
were many demonstrations in early academic systems [56],
[37], [12], [11], [31], and the resurgence of consumer VR
has led to development of many new commercial applications.
Schulz’s blog about SVR [52] lists over 150 applications or
platforms. Over 250 systems are listed in the XR Collaboration
directory [61].

The networking strategies behind SVR systems vary. Early
networked VR systems, such as DIVE [8], MASSIVE [21] and
Blue-C [42] already supported common SVR features. These
include avatars, action-based interaction, message passing and
spatially-mediated interaction. Different architectures have been
proposed. A common strategy is the manipulation of a shared
scene graph. This strategy is common because a scene-graph is
a common building block of VR software. An important design
decision is how the graph is shared. Scene-synchronisation
often uses the concept of authority to assign ownership over
branches. In client-server systems the server often owns the
graph absolutely and message passing is asymmetric. In peer-to-
peer architectures, nodes are synchronised with approximations
of primitives such as mutexes [14] or message-pumps [51].
Grimstead et al’s review (c.a. 2005) [22] breaks down how
many systems of the time fit into the above categories of access
control, architecture and synchronisation. The review showed a
definite preference for client-server architectures. The authority
model and architecture are not completely dependent however.
Logical peer-to-peer systems may still use a STAR (peer-to-
peer with hub-based distribution) or a client-server connection
architecture. Further, the interaction between authority model
and architecture determine the messaging protocol, and so the
number of messages required to fully synchronise a system.

User capacity is limited by the rate at which a system can
exchange messages. In a naive peer-to-peer implementation,
message rates scale O(N2) with the number of peers (N)
as peers update each other. Synchronisation methods impact
scalability through the amount of data exchanged [60]. Input-
mirroring or other forms of duplicate simulation (e.g. [57], [23],
[18]) can reduce bandwidth requirements. However while these
approaches make messages more efficient, the interactions scale
the same way. Ultimately it is necessary to reduce the number
of interactions, which can be done by partitioning users.

The most popular partitioning approaches are spatial parti-
tionings, where users are grouped by their location. The idea
is that only necessary interactions, e.g. updates about the parts
of the world the user can see, are communicated [7]. In one
implementation the world is partitioned into cells of fixed size
and position. Only users within the same cell interact. Area of
Interest (AOI) methods interact with multiple cells at a time.
There are a many approaches to AOIs. One is to have a fixed

radius [36]. Steed and Angus [54] took advantage of the nature
of dense environments to compute visible peers exactly. In
contrast, Backhaus and Krause [2] ignore the structure of the
environment and used only user location to build a graph of
nearest neighbours.

As the number of these partitions increases, it is necessary
to introduce load balancing to prevent a single server or peer
from being overloaded with the overhead of managing the
partitions. This affects the topology of the network, and is
also dependent on its capabilities. For example, AOIs have
been implemented directly at the network layer using multicast
groups [36], [59], however this is not possible on the public
internet. Second Life [34] allocates resources by 256m2 cells
called regions, but this can leave some regions overloaded if
their computational requirements are more intense. Chertov
and Fahmy [10] resized and reallocated cells dynamically to
balance users between resources. Lake et al [30] and Allard
et al [1] proposed splitting up the simulation at the task level.
Resources can be allocated by an arbitration server or through
methods such as Distributed Hash Tables [26].

At higher levels, hierarchical methods are used to keep the
world persistent across multiple groups [19]. Iimura et al [26]
proposed federations of servers, where changes can be made by
local authoritative nodes but propagated upwards so all players
see a consistent world. Aggregation of this type is often seen in
audio. Audio is highly challenging as each user would ideally
receive a unique mix of streams for accurate spatialisation,
presenting an O(N2) problem again, but with severe latency
requirements. Methods vary between mixing all streams into
one at a server, to creating N unique streams at a server, to
forwarding all streams in a peer-to-peer fashion. By arranging
mixers into a tree, arbitrarily large numbers of peers could
exchange audio at a cost of spatialisation error, and increasing
latency with distance through the tree [5], [6], [47], [43].

The messages exchanged by an SVR depend on the cues it
is designed to transmit, and the necessary cues depend on the
type of social interaction. The space of social interactions is
not uniform or continuous however. For example, interactions
can be distinguished between focused and unfocused [20], and
within focused by how the loci is shared. Common-focused
interactions have a non-reciprocal focus of attention, such
as a lecture, while jointly-focused interactions, such as a
conversation, are more mutual [28]. Sociologists have identified
a number of dimensions on which to categorise interaction.
Importantly, what types of interaction are available depend
on the interaction between these measures [3]. For example,
one measure is group-size. In a large crowd, not all users
will interact reciprocally with the same level of attention, as
users would not be able to share attention between such a
large number of people. The type of interaction and group
configuration affects what cues are transferred [29], [24]. A
joint-focused conversation would entail a rich set of social
cues between all participants. In public unfocused-interaction
such as a queue, individuals must be aware of each others’
locations to avoid colliding, but would not need to speak.
(If they did speak, that would become a different type of



interaction.) Interactions can be locally scoped as well; small
groups could form within an audience, for example. Further,
while direct reciprocity between all audience members may
not occur, audience members do influence each other indirectly
[24], [16], [25].

For SVR, this means that the modality and quality of cues
are highly application - or interaction - specific. Loss of
spatialisation or increased latency due to mixing, for example,
may be inconsequential to some situations but detrimental to
others. While there is a spatial component to this, it is not
sufficiently straightforward to design scalability schemes on
its own. This ambiguity extends to all cues, even those which
may seem straightforward. For example, in very large crowds
seen from a distance, a custom skin for each avatar may be
important, or not, depending on whether large sets of those
avatars were wearing, e.g. uniforms. The taxonomy of social
interactions goes some way towards predicting this, but has not,
as far as we know, yet been sufficiently quantified to design
objectively optimal scalability systems. As a result, different
cues often use different approaches. For example, it may be
expected that the VOIP system would have a different interest
set than the avatar system. Additionally, different systems will
be tuned for specific applications. They may also not be truly
scalable but use illusions to achieve a particular effect. For
example, virtual venues may simulate the majority of attendees
locally, knowing the user would have no way to attempt an
interaction with them.

Commercial systems vary in how they use these techniques
to scale. AltSpace and RecRoom for example have individual
room count limits of ∼40, but FrontRow allows AltSpace to
broadcast activity to multiple rooms to support events with
100’s of viewers [39]. Photon recommends 16-64 players,
but relies on the developer to enforce fair use rather than
setting a limit [46]. Roblox recently added experimental support
for 700 users per room [50]. Voice chat in Roblox is still
experimental however, and only supported in rooms with up to
30 users [49]. Virbela has supported ∼1000 person conferences.
Users experience two types of audio: spatialised, but only
from immediate neighbours, and a flat stream broadcast from
the presenters [58]. Improbable connects servers that each
handle a region of the world (spatial partition), theoretically
scaling infinitely with compute resources [27]. The problem
of scaling is the same as that in many large online games.
However, VR is particularly challenging due to its requirements
of low-level interaction and high responsiveness, required
to maintain believability and presence. Therefore not all
techniques employed by games are applicable. For example,
EVE Online can scale in time to avoid latency spikes [9], a
technique not easily applicable to immersive systems.

As the number of users increases, the number of interaction
messages in an SVR increases geometrically, exhausting the
resources of the systems on which the SVR is built. In
the first case, users must be grouped to reduce the number
of interactions, and in the second case load-balancing and
aggregation used to distribute resources between these groups.
The implementation of these techniques is currently very

application specific, and a lot of the knowledge tied up in
proprietary systems. In this paper we explore the subject of
scalability in Ubiq. We choose this platform because we intend
to use it for future SVR research at scale, but also because it
is distinct in that the connection architecture can be separated
from the message passing, which is logically peer-to-peer. Our
aim is to improve Ubiq’s capacity so it can be used to answer
more questions about social scale in SVR. Also though, to
understand its potential for testing scalability techniques, by
evaluating not just the techniques themselves, but what we can
learn about them and how they interact with the system used
to evaluate them.

III. UBIQ

We evaluate two partitioning schemes by extending the Ubiq
platform [17]. Messaging in Ubiq is logically peer-to-peer,
with the authority scheme decided per object. For example,
Avatars send authoritative updates, while physical objects
could use force-integration. Messages are exchanged using
application-layer multicasting: messages are addressed to an
object, and received by all objects with the same identity. Fan-
out is performed by the messaging layer. For the rest of this
paper we use the term multicasting to mean application-layer
multicasting.

To operate over the public internet Ubiq uses a central server
for rendezvous and matchmaking. Users use pre-shared secrets
to join rooms. A room is effectively a list of peers that should
exchange messages. The server forwards messages between all
peers in a room. This implements the server-based application-
layer multicast. For voice, direct peer-to-peer connections are
established using the server to exchange signalling messages
for bootstrapping. Other messages (which require fan-out)
go through the server. Message exchange is illustrated in
Figure 1. Ubiq is designed to be heavily peer-centric. Ubiq
can function without a server if peers can establish direct
connections between themselves. However the rooms system
assumes a central server. The server can support multiple
rooms. Application behaviour is determined entirely by what
is running on the peers. Peers can run the same Unity scene,
but join different rooms, creating multiple instances or shards
of an application. In Ubiq we consider a shard to be a room
with users using a particular application. A server can support
multiple shards for an application, and multiple applications.
The server performs no simulation. It doesn’t have the concept
of a message loop, but reacts asynchronously to incoming
messages, dispatching copies to all members of the source
peers’ room.

IV. SPATIAL PARTITIONING SCHEMES

A. Procedural Spatial Partition

The first scheme we investigate is an asymmetrical fixed
spatial area-of-interest. The world is divided across its ground
plane into 20m diameter hexagonal cells (Figure 2). As players
move through the world they become members of the one cell
they occupy, but can observe N surrounding cells. Observers see
all peers that are members of the observed cells. This is typical



Fig. 1. Diagram of logical data flow in a typical Ubiq application. Multicast
avatar data fans-out through a central server, while dedicated connections are
established by the voice chat subsystem for each dyad.

behaviour in grid-based systems, such as NPSNET [35], for
example. The partition itself is procedurally-generated based on
the given fixed cell size. The scheme relies on player position
only. Being procedural, it is accessible to all users simply
through specifying a cell size and possibly an origin transform.
The asymmetry works with the multicasting to match expected
interactions: peers that overlap in observation will be aware of
each other and establish VOIP channels, while those with one-
way visibility can be seen, but will not expend resources on
audio. Players move smoothly through the world, with others
appearing or disappearing at the periphery.

To support this scheme, the server must have the concepts of
a member and observer. As a room is effectively a list of peers,
changing membership or observership will change the interest
set. The interest set is all the members in the immediate room,
and all the members in observed rooms. The set is maintained
by the client. The server sends messages to add or remove
peers from this set, as the observed rooms, or the peers within
them, change. Rooms have very little memory overhead, and
no CPU overhead unless they have members. They are created
on demand when a member or observer requests them, and
destroyed when the member and observer counts drop to zero.

Changes in membership or observership should be batched
per client. This is because in a naive sequential implementation,
a peer leaving a room and immediately observing it would see
the other peers in that room disappear and then immediately
reappear as each operation is actioned.

Each peer controls which room it is a member of, and
which others it observes, based on its position. It does this by
mapping locations to unique identifiers. The player position is
considered to be the transform that defines the VR viewpoint.
The server identifies rooms by RFC4122 V5 UUIDs [33]. V5
UUIDs are deterministic, allowing a local identifier to define
a UUID within a namespace. Each shard or instance of the
world has its own UUID which acts as the namespace. As
the player moves, their occupying cell is determined, and its
coordinates form the local identifier. Together these define a
unique procedural room ID.

The partitioning of space is defined per-environment (that
is, per-scene in Unity). The definition is a set of constants
that define the procedural function and its parameters (for
example, the size of a cell, and radius of the AOI). For our

hexagonal partition we use an axial coordinate system [44],
with the AOI radius specified in cells. Peers observe a ring of
one cell in addition to their own. This methodology does not
preclude manual partitioning. Many other partitioning schemes
could be used, so long as they map a location to a GUID
deterministically.

Fig. 2. Peers in a procedural (infinite) hex partition, imposed on a virtual
city. The counts for each Peer are the number of Peers in their interest set.
These include local and observed Peers in their cell and neighbouring cells,
demonstrating the behaviour of the AOI partition.

B. K-Nearest Neighbour

We also consider a k-nearest neighbour (knn) partition. This
defines the interest set based on relative player positions. The
scheme is implemented on the server. All peers within each
shard or instance have their own interest set, from which they
receive messages. Interest sets may be asymmetrical. The server
maintains the interest set for each peer. In our experiments,
the server updates the sets at 5Hz and k is set to 20. Peers are
notified of changes only when peers go in and out of scope.

This scheme requires that each player report its position
in order to calculate the relative distances, compared to the
spatial partition where each peer derived its own cells. The
server must maintain two sets for each connected peer: the
peers it observes, and those that observe it. The observed-by
list determines where messages from that Peer are forwarded,
which is not necessarily the same as the observed set. The 5Hz
update rate limits how often peers can be added or removed,
additionally, removing a peer is gated by a 500ms timeout.
This prevents peers being added or removed at high frequency
if they move around the limit of the Kth nearest distance.

Interest sets are calculated within a shard. In our prototype,
the knn computations are calculated using brute force. This
was to keep our implementation simple as at the peer counts
considered we did not expect knn computation time to affect
the results. If a server started to support 100’s of peers or more
in a shard, an acceleration structure would likely be required.
This would be invisible to the client however.

V. EVALUATION

We evaluate the partitionings by examining how they affect
server capacity. The evaluation is performed for a single
server. Performance is measured by latency, with the framerate



monitored to ensure clients do not become overloaded and
skew the results. Latency is the time taken for two peers to
exchange a message via the server. Framerate is the update
rate of a peer’s main loop. We look for changes in latency to
detect when the server begins to become overloaded.

A. Bots

To get large user counts for the evaluation we created bots.
A bot peer is a process that contains the same components as a
user-facing application, but with their APIs driven procedurally,
rather than via a user interface. The bots interact with the world
in the same way as real users, and generate the same traffic.
They move autonomously through the environment with use
of a nav-mesh. Bots use the same avatars as real users, and
can play and receive pre-recorded audio through synthetic
audio devices. Bots and real users can join the same room and
exchange RTC data. A single process can host multiple bots,
but each bot is a separate peer, with its own connection to the
server and state.

As we suspect user behaviour will significantly affect
scalability schemes, we implement two types of Bot locomotive
behaviour: Randomwalk and Boid. Randomwalk bots pick a
location at random from their navigable area using Unity’s
NavMesh functionality, move to it at 3m/s, and repeat indefi-
nitely. A Randomwalk bot visits an average of 12±2 rooms
every 60 seconds. Boid bots implement flocking behaviour [63]
based on the positions of the other Peers they can see. The
experiments used a 200m2 area with no obstacles to avoid
confounding environmental effects.

In addition to exchanging Avatar pose data, Bots can send
messages of arbitrary size to each other each frame to emulate
additional application specific traffic. We make both bot
implementations available, along with the scalability scheme
implementations.

B. Apparatus

We ran our experiment on a set of AWS (Amazon Web
Services) t2.medium VMs. These VMs had 2 CPUs and 4GB
memory. All VMs were in the same region. Bots were run
on headless Unity processes. Each Unity process can host an
arbitrary number of bots. Within a process, Bots are entirely
independent - sharing a process only serves to reduce memory
overhead. We found each VM could host five processes, each
hosting two Bots, before encountering frame-rate drops. We
had one server VM and ten bot VMs, making a total of 100
bots available per trial.

C. Protocol

After starting a new instance of the server, the Bot processes
were commanded to add a new bot every 1.5 seconds in a
round robin manner until 100 bots had been instantiated in total.
The Bots were then destroyed all at once. The system was then
left to return to a stable condition to ensure all logs had been
written before the processes were destroyed. The data collected
consisted of server throughput measurements, process-wide
fps measurements, and the positions and ping times measured

from each bot. The experiments were run automatically across
a parallel communication system that was not affected by the
Bot Peer traffic.

D. Capacity
We first try to identify the failure mode of the system. We

create a room and add Randomwalk bots until the latency
begins to increase.

Fig. 3. Profile of the baseline capacity test. Each peer sent updates at 60 Hz
with 500 byte padding.

Figure 3 shows the profile of this test in our baseline
condition. This shows how the server fails. The messages
per second and data out (left-axis) are measured at the server.
The number of bots (same left-axis) is the total number of bots
in the system at that time. The number of peers (same left-axis)
is the number of bots that have joined the single room or shard.
The latency scatter plot (right-axis, in milliseconds) shows all
the latency measurements between all bots. In Figure 3 we
see data out and messages per second increase approximately
linearly with the number of bots at the start. The latency is
stable, at less than 100ms. At 55 seconds the latency begins to
fluctuate, and by 70 seconds consistently reaches unacceptable
levels above 400ms. At the same time (70-80 seconds), the
number of peers plateaus and deviates from the total number
of bots in the system. This deviation occurs at the same time
the message processing rate stops increasing. We can infer
from this that at a certain load, the message processing rate
limit is reached and messages begin to queue. So long as the
traffic remains constant, the backlog will grow, until the server
fails completely. However, performance degrades to unusable
levels (latencies in the seconds) long before this happens.

To find out more about this limit, we change traffic patterns
by varying the client update rate (10, 60, 50, 1000 Hz), and
padding messages with arbitrary data (0, 500, 1500 Bytes).
Table I shows metrics about server performance at the point the
latency reaches 500ms. Peers shows the capacity of the server
at this time, for the different combinations of Update Rate and
Padding (message size). There is an inverse relationship with
Update Rate, and a slightly less obvious relationship with MPS.
Row five corresponds to the baseline shown in Figure V-D.

There is no single acceptable latency in an SVR system as
tolerable latency depends on the modality. All profiles begin



with latencies < 100 ms and all were tested to failure. Therefore
500ms is an arbitrary figure that reliably indicates that the server
is beginning to fail. Table I therefore shows the maximum
capacity of the server under different use cases (update rates,
message size). Bots are the number of live processes, and
Peers are the number of successfully connected bots. When
Peers lags Bots, it means the server is becoming unresponsive.
Update Rate is an independent variable. Gain is the bytes out
per input message. It varies with the padding and approximates
the ‘total workload’ of the server. In & Out combined show
the overall bandwidth for the server. The dependent variable of
interest is the number of Peers, as this shows the capacity right
before failure. The bottom row shows the Pearson Correlation
Coefficient of the each column with Peers.

Update Rate is the strongest predictor (of capacity) of all.
Gain and Padding are weak predictors suggesting that it is the
number of messages, and not their size, which is the limiting
factor. MPS is the total number of messages processed per
second. As shown by Figure 3, this limit determines the capacity
of the server. However, we can see that limit it is not constant
between trials. The variation suggests something dependent on
the peer count, possibly the fan-out, affects how efficiently the
server runs.

Bots Peers Update
Rate

Padding MPS In
(MB/s)

Out
(MB/s)

Gain

48 48 10 0 1059 0.07 2.98 2952
48 48 10 500 1677 0.38 18.18 11370
48 48 10 1500 1416 0.82 39.42 29194
39 39 60 0 3752 0.18 6.92 1934
36 36 60 500 3255 0.89 32.99 10629
39 29 60 1500 4445 3.07 119.53 28200
20 19 500 0 9138 0.45 8.99 1031
24 20 500 500 9110 2.52 60.45 6958
16 11 500 1500 10131 7.61 129.34 13388
19 19 1000 0 9425 0.45 8.99 1000
20 17 1000 500 9369 2.58 54.04 6048
18 8 1000 1500 1760 1.12 25.87 15413
r 0.85 0.22 0.71 0.52 0.37 0.17

TABLE I
SERVER PERFORMANCE METRICS AT THE POINT PEER TO PEER LATENCIES
EXCEEDED AN AVERAGE OF 500ms. PEERS IS THE SERVER CAPACITY AT
THIS TIME (HIGHER IS BETTER). ROW r IS THE PEARSON CORRELATION

COEFFICIENT OF EACH METRIC WITH Peers.

1) Hex Grid Partition: The first scheme evaluated was the
Hex grid partition. Figure 4 shows a profile of the simulation
with Randomwalk Bots. We can see the messages per second
and peer-to-peer latencies remain low until over 100 bots were
created. This demonstrates the scheme does allow the server
to scale. However, only in certain conditions. This plot also
shows how the room count increases with the number of bots.
The server connects to 100 bots but the spatial distribution
means peer-to-peer traffic remains low.

Figure 5 shows the same simulation but using Boids Bots.
As these bots flock to the same location the server capacity is
reached far earlier, being only minimally higher than in our
baseline tests. Figure 9 shows an example of the distribution
after one minute for two Hex trials. We see that almost all Boids
are gathered within one cell, whereas a number of Randomwalk
bots are beyond the limits of the plot. The differences are

Fig. 4. Profile of the Hex Randomwalk trial. The latency remains low while
the room count increases as the Bots spread out.

Fig. 5. Profile of the Hex Boids trial. This looks almost identical to the Baseline
as the Boids flock to the center of the environment.

Fig. 6. Profile of the Knn Randomwalk trial. This demonstrates a much higher
capacity than the Hex partition despite the increased computational server load.

Fig. 7. Profile of the Knn Boids trial. This again is markedly different to the
Hex trials, as the capacity is less effected by bot behaviour.



Fig. 8. Comparing objective measures of the Boids flocks when in the Baseline,
Hex or Knn conditions. Values are normalised: polarisation to angle, extension
to 200 m and collisions to the flock size.

Fig. 9. The position of the Bots after 60 seconds, for both the Boids (large
markers) and Randomwalk (small markers) Hex Trials. The Boids bots cluster
around the center cell.

informative, as they provide evidence the limit is in the fan-out
stage, and the server process itself can handle more than 100
connections so long as they are in sufficiently small groups.

We see bot behaviour affect server capacity, but another
question is whether this dependency is two-way. Figure 8
shows three measures of flock behaviour: extension is the
average deviation from the center of the flock, polarisation
is how closely aligned the orientation of the boids are, and
collisions are the proportion of Boids in a collision state at a
given time [63]. For the Baseline condition, the plot shows the
mean and 99% confidence intervals across 7 identical trials.
The Hex grid and Knn show one trial each. We can see the
Hex grid does not affect behaviour for the most part. This
is not surprising as the server shows similar performance in
both cases, due to the flocking behaviour keeping all Bots
predominantly within a handful of cells (rooms).

2) K-Nearest Neighbour: The second scheme evaluated was
the Knn partition. Figure 6 shows the profile of the Randomwalk
trial and Figure 7 for the Boids. We can see a notable increase
in capacity as the latencies only begin to change towards the
end of the trials. This is about 70-80 bots or double the Baseline.
We can also see that the threshold is lower, and MPS higher, for
the Randomwalk compared to Boids. This is likely because the

flocking behaviour results in more consistent interest sets over
time. The differences however are small, especially compared
with the MPS of the Baseline condition.

Considering behaviour, we can see the Knn flock exceeds
the expected range of the measures more often than the Hex
flock. Importantly though, while the extension measure is a
little higher than the mean (and hence the collisions measure
is lower), both remain within the confidence interval.

VI. DISCUSSION

Our ultimate motivation is to improve the capacity of Ubiq
in order to perform experiments with large groups in SVR.
Based on our preliminary tests we hypothesised that the system
bottleneck was the server fan-out. In this respect both schemes
were successful as they allowed the server to handle more
peers than during the baseline tests. They also confirmed that
it is the fan-out workload (as opposed to say, connection count
overhead) that is the limiting factor.

A. Performance

Our baseline evaluation showed a single server could support
approximately 40 peers. Using the Hex grid with a radius of
10m, this increased to 100 Randomwalk peers (our maximum
Bot count) with no sign of degrading. The Knn scheme
increased capacity to 70-80 peers before latency began to
increase. The dominant factor in the message processing limit
appears to be message overhead (that is, the number of copies),
rather than size. This is suggested by the weakness of size as
a performance predictor. By creating interest sets, the fan-out
factor is reduced increasing the overall message rate of the
server, and thus user capacity.

The k of 20 is not arbitrary, but is roughly the limit on
peer-to-peer voice channels we’ve observed empirically on a
number of platforms, including Mozilla Hubs, RecRoom and
Ubiq (Roblox has a similar hard limit of 30). This figure likely
comes from the CPU overhead of WebRTC, the library/standard
that powers the voice chat of many SVR applications.

B. Behaviour

However, both schemes were affected by Peer behaviour.
The Knn scheme was far less susceptible. This is because the
interest sets have a constant size regardless of the total Peer
count. To see the effect of the scheme on Peer behaviour, we
also instrument the Bots, measuring characteristics of the flock
over time.

These results showed minimal deviations from the expected
Baseline behaviour. This was not surprising for the Hex
conditions due to the extension being roughly equivalent to one
cell. It was surprising for the Knn condition however. With a
k of 20, at the end of each trial each Bot would see only 1/5th
of the flock, yet behaved almost identically to when it could
see all of them. As interest sets are asymmetrical what we are
observing are bots influencing each other indirectly. Figure 10
shows the centroids of 100 randomly selected subgroups of
the Boids Knn trial at 60 seconds, along with the extension
plotted as a circle around them. What we see from this is that



Fig. 10. The extension measure of the randomly selected subgroups in the
Boids Knn Trials, compared to the 99% CIs from the Boids Baseline.

each subgroup has similar characteristics as each other, and
the larger flock, irrespective of the group composition. The
largest deviations are seen in the polarisation measure.

It is interesting to see indirect effects in the Knn scheme, and
verify neither scheme undermines bot behaviour. The lessons
from the measures however are limited in that it is not easy
to consider them objectively in the same context as real user
behaviour. We are still left to question whether the three metrics
are not particularly sensitive, or the schemes are particularly
robust to this behaviour. If we were to change the cell size, k,
or the maximum speed of the Bots, we may see different flock
behaviour emerge. In future work however we feel it would
be more worthwhile to consider a larger range of virtual user
behaviour, such as crowd simulations or data-driven behaviour
from real user captures.

C. Integration

Both schemes use only player position, independent of the
environment. The fixed partition scheme performs its work
on the clients. The knn scheme requires more computational
effort from the server. We performed our investigation in Ubiq,
which is highly client-centric. We had to modify both the
client and server. To support observing cells we had to modify
the messaging schema and the server behaviour to support
membership and observation. To support the Knn scheme,
we subclassed the type that handled within-room fan-out and
modified this to maintain the observed and observed-by sets. We
used a general purpose dictionary feature of Ubiq that involved
sending deltas to update the user position, so no schema
changes were required. On the client side we created new
Unity Components to drive the Rooms API. The schemes had
different levels of invasive changes. We feel Ubiq performed
moderately well as a platform for exploring scalability schemes.
The Knn support could be applied without upstream changes,
however cell observation could not and required forking.

To manage the Bots we use Ubiq as well, with an entirely
parallel Peer network (Figure 11). Each Unity process can host
one or more Ubiq Peers. In the Bot processes, one of these
Peers had a Component to manage the bots within the process.
The other Peers were Bots themselves. The two types of Peer
connected to different servers over different connections, but
have a form of communication through direct references in
a shared memory space. We found this to work very well,

Fig. 11. Connection architecture of the experiment, showing two separate
Ubiq Peer networks communicating via references within common processes.

and the ability of Ubiq to function as the control structure
and subject of the experiment at the same time is an unusual
capability.

D. Generalisability and Limitations

A challenge of social VR is that systems implementation
cannot be decoupled from the use case. Technical decisions
derive from the requirements to share certain information with
a certain QoS, and these depend on what cues are exchanged
in what social contexts [3]. Therefore there is no objectively
optimal scalability scheme(s) for all systems. The schemes
considered here are specific to the research and teaching use
cases of Ubiq, with associated constraints. For example, we
cannot take advantage of environmental occluders as done in
Steed and Angus [54]. Our results are meant to be considered
alongside similar experiments on scalability schemes for SVRs.

Our results should generalise to any system that uses server
fan-out, but not to those using peer-to-peer unicasting. Our
experiments are message-content agnostic. In a real system,
cues such as audio or avatar transforms will likely use
aggregation schemes. Our figures do not directly indicate the
user capacity in this case, but are applicable to the message
capacity of the system outside the aggregation.

The biggest limitation in our experiments is the behaviour
of the bots. By using two types of locomotion we have shown
how schemes can be dependent on user behaviour. Neither
type of bot reflects real user behaviour however but we are
not aware of a general purpose simulator either. We expect
that such a simulation would be very difficult to create, due to
the dependence of user behaviour on environment and context.
Accordingly, we expect as work in this area becomes more
advanced, it will become more narrow in its focus and more
application-specific. This suggests a need for flexible and
accessible simulation platforms such as we have used here.

VII. CONCLUSION

In this paper we investigate scalability schemes in the
open-source SVR Ubiq. Social VR covers a broad range of
systems that share a common subset of functionality. In naive
many-to-many arrangements, resources scale geometrically
with user count, quickly exhausting the limits of real sys-
tems. Accordingly, scalability schemes are used to improve



capacity. However these are rarely discussed publicly, and their
application specific nature makes it difficult to generalise the
results we do have.

Our ultimate aim is to support collective-scale social experi-
ences, including large crowds. The first step is to move from
small to medium gatherings. This involves creating interest
sets that are manageable by Ubiq’s client and relay server,
which can eventually be organised into a hierarchy for scaling
at higher levels.

In this paper we explored two schemes: a fixed spatial parti-
tion and knn partition. Each scheme is procedural, supporting
infinitely vast worlds. Both schemes are conceptually simple
and have only one or two tuneable parameters. Both schemes
successfully improve server capacity - with caveats. The knn
scheme doubles capacity from 40 to 80 peers. The hexagonal
grid offers an improvement to over 100, but only when the
peers are spatially well distributed. While both schemes are
effective, they differ in how they interact with other aspects
of the SVR, and user behaviour. The knn scheme requires the
server to actively maintain interest sets. Maintaining the hex
grid groups is distributed between the peers. The server is
more passive in this scheme to the extent it could be replaced
with network-level multicasting. The partition configuration
depends on the expected social situation however, and requires
a partition to be set for each scene, whereas the server based
knn is transparent to the user and may better generalise to
different situations.

Ubiq allowed both schemes to be implemented with minimal
difficulty, while also functioning as the command and control
system for the experiment. Surprisingly, it was the more server-
heavy Knn scheme that was easiest to implement. This is
because constraining the workload to the server meant the
peer-server communication could be simpler, compared to
peer-maintained area-of-interests.

All the extensions to Ubiq described in this paper will
be made open source as part of Ubiq in a separate branch.
As well as the code availability we host example Ubiq relay
servers for testing (see the Ubiq documentation at https://
github.com/UCL-VR/ubiq). Further, as all the code is available
researchers can extend the system and implement a broader
variety of mechanisms. While Ubiq already supports multiple
independent servers, it would be interesting to explore inter-
server mechanisms. We believe that the developments to Ubiq
presented herein offer a useful tool for the community to
explore SVRs in more depth.

REFERENCES

[1] J. Allard, V. Gouranton, L. Lecointre, S. Limet, E. Melin, B. Raffin, and
S. Robert. FlowVR: A Middleware for Large Scale Virtual Reality
Applications. In Parallel Processing. 10th International Euro-Par
Conference, pp. 497–505. Springer Berlin Heidelberg, 2004. doi: 10
.1007/978-3-540-27866-5 65

[2] H. Backhaus and S. Krause. Voronoi-based adaptive scalable transfer
revisited. Proceedings of the 6th ACM SIGCOMM workshop on Network
and system support for games - NetGames ’07, pp. 49–54, 2007. doi:
10.1145/1326257.1326266

[3] C. Bassetti. Social Interaction in Temporary Gatherings. In Group and
Crowd Behavior for Computer Vision, pp. 15–28. Elsevier, 1 ed., 2017.
doi: 10.1016/B978-0-12-809276-7.00003-5

[4] C. Blanchard, S. Burgess, Y. Harvill, J. Lanier, A. Lasko, M. Oberman,
and M. Teitel. Reality Built for Two: A Virtual Reality Tool. In
Proceedings of the 1990 symposium on Interactive 3D graphics, I3D
’90, pp. 35–36. Association for Computing Machinery, New York, NY,
USA, Feb. 1990.

[5] P. Boustead and F. Safaei. Comparison of delivery architectures for
immersive audio in crowded networked games. pp. 22–27, 2004. doi:
10.1145/1005847.1005854

[6] P. Boustead, F. Safaei, and M. Dowlatshahi. DICE: Internet delivery of
immersive voice communication for crowded virtual spaces. Proceedings
- IEEE Virtual Reality, 2005:35–41, 2005. doi: 10.1109/vr.2005.29

[7] E. Buyukkaya, M. Abdallah, and G. Simon. A survey of peer-to-peer
overlay approaches for networked virtual environments. Peer-to-Peer
Networking and Applications, 8(2):276–300, 2013. doi: 10.1007/s12083
-013-0231-5

[8] C. Carlsson and O. Hagsand. DIVE A Multi-User Virtual Reality System.
pp. 394–400, 1993. doi: 10.1109/VRAIS.1993.380753

[9] CCP. Introducing time dilation (tidi). https://www.eveonline.com/news/
view/introducing-time-dilation-tidi, 2011.

[10] R. Chertov and S. Fahmy. Optimistic load balancing in a distributed
virtual environment. In Proceedings of the 2006 international workshop
on Network and operating systems support for digital audio and video -
NOSSDAV ’06. ACM Press, New York, New York, USA, 2006. doi: 10.
1145/1378191.1378208

[11] E. F. Churchill and D. Snowdon. Collaborative Virtual Environments: An
Introductory Review of Issues and Systems. Virtual Reality, 3(1):3–15,
Mar. 1998.

[12] B. Damer. Avatars!; Exploring and Building Virtual Worlds on the
Internet. Peachpit Press, 1997.

[13] P. Dickinson, K. Gerling, K. Hicks, J. Murray, J. Shearer, and J. Green-
wood. Virtual reality crowd simulation: effects of agent density on user
experience and behaviour. Virtual Reality, 23(1):19–32, 2019. doi: 10.
1007/s10055-018-0365-0

[14] F. Drolet, M. Mokhtari, F. Bernier, and D. Laurendeau. A Software
Architecture for Sharing Distributed Virtual Worlds. In Proceedings of
the 2009 IEEE Virtual Reality Conference, pp. 271–272. IEEE, 3 2009.
doi: 10.1109/VR.2009.4811050

[15] Facebook. Horizon Venues, 2022.
[16] I. Farkas, D. Helbing, and T. Vicsek. Mexican waves in an excitable

medium. Nature, 419(6903):131–132, sep 2002. doi: 10.1038/419131a
[17] S. Friston, B. Congdon, D. Swapp, L. Izzouzi, K. Brandstätter, D. Archer,

O. Olkkonen, F. J. Thiel, and A. Steed. UBiQ: A system to build flexible
social virtual reality experiences, vol. 1. Association for Computing
Machinery, 2021. doi: 10.1145/3489849.3489871

[18] S. J. Friston, E. Griffith, D. Swapp, S. Julier, I. C. Irondi, F. Jjunju,
R. Ward, A. Marshall, and A. Steed. Consensus Based Networking of
Distributed Virtual Environments. IEEE Transactions on Visualization
and Computer Graphics, 1:1–1, 2021. doi: 10.1109/TVCG.2021.3052580

[19] T. Funkhouser. Network topologies for scalable multi-user virtual
environments. 1996.

[20] E. Goffman. Behavior in Public Places: Notes on the Social Organization
of Gatherings. Free Press of Glencoe, 1964.

[21] C. Greenhalgh and S. Benford. MASSIVE. ACM Transactions on
Computer-Human Interaction, 2(3):239–261, 9 1995. doi: 10.1145/
210079.210088

[22] I. J. Grimstead, D. W. Walker, and N. J. Avis. Collaborative Visualization:
A Review and Taxonomy. pp. 61–69, 2005. doi: 10.1109/DISTRA.2005
.12

[23] G. Gutmann and A. Konagaya. Predictive Simulation: Using Regression
and Artificial Neural Networks to Negate Latency in Networked
Interactive Virtual Reality. arXiv, oct 2019.

[24] A. P. Hare. Group Size. American Behavioral Scientist, 24(5):695–708,
1981. doi: 10.1177/000276428102400507

[25] J. E. Hocking. Sports and Spectators: Intra-audience Effects. Journal
of Communication, 32(1):100–108, mar 1982. doi: 10.1111/j.1460-2466.
1982.tb00481.x

[26] T. Iimura, H. Hazeyama, and Y. Kadobayashi. Zoned federation of
game servers: A peer-to-peer approach to scalable multi-player online
games. In Proceedings of the ACM SIGCOMM Workshop on Network
and System Support for Games, NetGames’04, pp. 116–120, 2004. doi:
10.1145/1016540.1016549

[27] IMS. Networking for high-scale multiplayer gameplay. https://ims.
improbable.io/products/spatialos, 2021.



[28] A. Kendon. Goffman’s approach to face-to-face interaction. In Goffman:
exploring the interaction order, pp. 14–40. Cambridge: Polity Press,
1988.

[29] A. Kendon. Spacing and Orientation in Co-present Interaction. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 5967:1–15, 2010.

[30] D. Lake, M. Bowman, and H. Liu. Distributed Scene Graph to Enable
Thousands of Interacting Users in a Virtual Environment. In 9th Annual
Workshop on Network and Systems Support for Games, pp. 1–6. IEEE,
11 2010. doi: 10.1109/NETGAMES.2010.5679669

[31] M. E. Latoschik, C. Fröhlich, and A. Wendler. Scene Synchronization in
Close Coupled World Representations using SCIVE. The International
Journal of Virtual Reality, 5(3):47–52, 2006.

[32] M. E. Latoschik, F. Kern, J. P. Stauffert, A. Bartl, M. Botsch, and J. L.
Lugrin. Not Alone Here?! Scalability and User Experience of Embodied
Ambient Crowds in Distributed Social Virtual Reality. IEEE Transactions
on Visualization and Computer Graphics, 25(5):2134–2144, 2019. doi:
10.1109/TVCG.2019.2899250

[33] P. J. Leach, R. Salz, and M. H. Mealling. A Universally Unique IDentifier
(UUID) URN Namespace. RFC 4122, July 2005. doi: 10.17487/RFC4122

[34] Linden Lab. SecondLife. https://secondlife.com/, 2021.
[35] M. R. Macedonia, M. J. Zyda, D. R. Pratt, P. T. Barham, and S. Zeswitz.

NPSNET:A Network Software Architecture for LargeScale Virtual
Environments. Presence: Teleoperators and Virtual Environments,
3(4):265–287, 1994. doi: 10.1162/pres.1994.3.4.265

[36] M. R. Macedonia, M. J. Zyda, D. R. Pratt, D. P. Brutzman, and P. T.
Barham. Exploiting reality with multicast groups. IEEE Computer
Graphics and Applications, 15(5):38–45, 1995. doi: 10.1109/38.403826

[37] G. Mantovani. Virtual Reality as a Communication Environment:
Consensual Hallucination, Fiction, and Possible Selves. Human Relations,
48(6):669–683, 1995.

[38] Microsoft. AltspaceVR. https://altvr.com, 2021.
[39] Microsoft. Scaling your audiences with frontrow feature.

https://docs.microsoft.com/en-us/windows/mixed-reality/altspace-vr/
faqs/scaling-audiences, 2021.

[40] F. Moustafa and A. Steed. A longitudinal study of small group interaction
in social virtual reality. In Proceedings of the ACM Symposium on Virtual
Reality Software and Technology, VRST, 2018. doi: 10.1145/3281505.
3281527

[41] Mozilla Foundation. Mozilla Hubs, 2021.
[42] M. Naef, E. Lamboray, O. Staadt, and M. Gross. The Blue-C Distributed

Scene Graph. In Proceedings of the 2003 IEEE Virtual Reality Conference,
pp. 275–276. IEEE Comput. Soc, 2003. doi: 10.1109/VR.2003.1191157

[43] C. D. Nguyen, F. Safaei, and P. Boustead. A distributed proxy system for
provisioning immersive audio communication to massively multi-player
games. In Proceedings of the ACM SIGCOMM Workshop on Network
and System Support for Games, NetGames’04, p. 166, 2004. doi: 10.
1145/1016540.1016561

[44] A. Patel. Hexagonal Grids, 2020.
[45] N. Pelechano, C. Stocker, J. Allbeck, and N. Badler. Being a part of the

crowd: Towards validating VR crowds using presence. Proceedings of the
International Joint Conference on Autonomous Agents and Multiagent
Systems, AAMAS, 1:135–141, 2008.

[46] Photon. Load balancing. https://doc.photonengine.com/zh-CN/realtime/
current/troubleshooting/faq, 2021.

[47] M. Radenkovic, C. Greenhalgh, and S. Benford. Deployment issues for
multi-user audio support in CVEs. ACM Symposium on Virtual Reality
Software and Technology, Proceedings, VRST, pp. 179–185, 2002. doi:
10.1145/585767.585770

[48] Rec Room Inc. Rec Room, 2021.
[49] Roblox. Spatial voice. https://developer.roblox.com/en-us/articles/

spatial-voice, 2021.
[50] Roblox Wiki. Mega place. https://roblox.fandom.com/wiki/MEGA Place,

2021.
[51] M. Roth, G. Voss, and D. Reiners. Multi-Threading and Clustering for

Scene Graph Systems. Computers and Graphics (Pergamon), 28(1):63–
66, 2004. doi: 10.1016/j.cag.2003.10.004

[52] R. Schulz. Comprehensive List of Social VR Platforms and Virtual
Worlds, 2020.

[53] S. Singhal and M. Zyda. Networked Virtual Environments: Design and
Implementation. Addison Wesley, Reading, MA, Aug. 1999.

[54] A. Steed and C. Angus. Supporting scalable peer to peer virtual
environments using frontier sets. In IEEE Proceedings. VR 2005.

Virtual Reality, 2005., vol. 2005, pp. 27–34, 2005. doi: 10.1109/VR.
2005.1492750

[55] A. Steed and M. F. Oliveira. Networked Graphics: Building Networked
Games and Virtual Environments. Elsevier, Oct. 2009. Google-Books-ID:
76C quJqVXcC.

[56] V. E. Stone. Social Interaction and Social Development in Virtual
Environments. Presence: Teleoperators and Virtual Environments,
2(2):153–161, 1993.

[57] M. Terrano and P. Bettner. 1500 Archers on a 28.8: Network Programming
in Age of Empires and Beyond, 2001.

[58] Virbela. With scalability, close to 1k attend a virtual audito-
rium conference with more possible. https://www.virbela.com/blog/
916-avatars-in-a-virtual-world, 2019.

[59] Z. Wang, X. Jiang, and J. Shi. HIVE: a highly scalable framework for
DVE. IEEE Virtual Reality 2004, pp. 261–262, 2004. doi: 10.1109/VR.
2004.1310099

[60] R. Wolff, D. J. Roberts, and O. Otto. A Study of Event Traffic
During the Shared Manipulation of Objects Within a Collaborative
Virtual Environment. Presence: Teleoperators and Virtual Environments,
13(3):251–262, jun 2004. doi: 10.1162/1054746041422280

[61] XR Ignite. Interactive Directory of XR Collaboration Platforms, 2021.
[62] H. Yakura and M. Goto. Enhancing Participation Experience in VR Live

Concerts by Improving Motions of Virtual Audience Avatars. In Proceed-
ings - 2020 IEEE International Symposium on Mixed and Augmented
Reality, ISMAR 2020, pp. 555–565, 2020. doi: 10.1109/ISMAR50242.
2020.00083

[63] J. L. Zapotecatl, A. Muoz-Melndez, and C. Gershenson. Performance
Metrics of Collective Coordinated Motion in Flocks. In Proceedings of
the Artificial Life Conference 2016, pp. 322–329. MIT Press, Cancun,
Mexico, 2016. doi: 10.7551/978-0-262-33936-0-ch054


