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Abstract

The research described in this work rises from the current challenges in molecular

dynamics (MD) simulations. Although these simulations provide accurate and high-

resolution insights on the dynamics of biomolecular events, the timescales needed to

observe relevant events such as ligand-unbinding, protein-protein interactions and

protein folding, for instance, are not currently reachable for most scientists with

classical MD methods. Additionally, MD simulations are intrinsically complex and

high-dimensional, which makes it often difficult to elucidate and gain insights from.

To tackle the challenges in MD, an iterative protocol for ligand unbinding fol-

lowed by a machine learning (ML) analysis allowed for the investigation of the

unbinding of Cyclin-Dependent Kinase 2 (CDK2) inhibitors and the long-acting

muscarinic antagonists for the human Muscarinic Receptor 3 (hMR3). This ap-

proach allowed a deeper understanding of the unbinding path and the underlying

protein-ligand interactions. This was achieved by obtaining an approximated tran-

sition state (TS) from the unbinding path and generating downhill simulations to

train two ML models to predict the outcome. ML is a powerful tool for learning to

predict from complex data. However, one of the key challenges is that many mod-

els are often considered black boxes. With explainable AI techniques it is possible

to gain insights from models and understand how the relationship between input

features and their predictions. In this work, we developed a protocol for assessing

this in a model-agnostic way and develop a framework to test this for correlated

time-series data with both 1D and 2D analytical datasets.

Additionally, a problem-tailored Hamiltonian replica exchange methodology

was also developed to aid in the research of systems mainly governed by electro-
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static interactions. This is useful especially for phosphate-related enzymes where

metal ions play a role in catalysis and active site geometries. This was tested on

several systems leading to the CRISPR Cas1/Cas2 system. Results on the modelled

complex hinted at a possible two-metal ion coordination in the active site due to

major rearrangements and a K+ ion transitioning from the bulk to form part of the

coordination.



Impact Statement

The methods I have further develop together with my collaborators during the time

up to this thesis have contributed in efforts towards challenges in molecular dynam-

ics. This was done in hopes they become useful for researchers when looking at

protein-ligand interactions, more specifically drug-target interactions.

Having always drug design in mind, the MLTSA is able to give insights in

drug discovery for improving the quality from a hit to lead molecule. Structural

motifs and further mutations are suggested to explore the role of this interactions,

as well as pharmacophores. This method is open sourced and available as a GitHub

repository with Jupyter Notebook tutorials and documentation. We also added new

information to the already increasing pool of knowledge on the unbinding of CDK2

inhibitors for cancer treatment, as well as the bronchodilators for hMR3. All of

this information, with GIF and PDB trajectories including the unbinding for these

systems is available in a GitHub repository.

Additionally, the ACHREMD will also help fundamental science in deepening

the understanding of phosphate-related enzymes which are crucial in life, more im-

portantly in human regulation and downstream signaling. The method will allow to

study them in more detail and validate their conformations and mechanisms. Future

academic output is expected from the unpublished results, as well as further experi-

mentation on CRISPR’s Cas1/Cas2 complex which is often overshadowed by Cas9,

while still being a crucial step on the whole system.

Computational drug discovery is at its peak right now, getting the attention and

trustworthiness it deserves, and hopefully expanding from the funding. Machine

Learning is key to advance this field to the next step and pushing its boundaries is
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important.

Hopefully, both academia and the public can make use of the tools developed

and the knowledge gained during this thesis, as well as pave the way for future

collaborations and studies on these systems. Future efforts on making the MLTSA

and ACHREMD a user-friendly package are also on the way.
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Chapter 1

Introductory Material

Before delving too deep into the material needed to understand the concepts and

background of the different studies within this thesis, I will provide some context to

the reader on the title of the work that will be presented. Developments is referred

to both the advancements proposed in this work as well as the literature review of

the different state-of-the-art methods available mentioned in this work for both en-

hanced sampling methods and machine learning analysis techniques. All of these

methods are outlined within the context of relevant biomolecular events which cor-

respond to the systems used for validation and testing within this work.

In the first chapter, a general introduction to the field of biomolecular simula-

tion, current challenges and future directions can be found. The principles of protein

kinetics will be introduced. The sampling problem derived from the current limita-

tions of computer simulations will be discussed, followed by the current attempts to

solve the problem in the shape of enhanced sampling techniques. After that, a brief

introduction to machine learning, deep learning models, and its usage on molecular

dynamics and its analysis will end the introductory material, hopefully with enough

material to understand the rest of the thesis.

After the introduction, I will present chapters relating to 2 independent

projects: our Machine Learning Transition State Analysis (MLTSA) and the Atom-

Charge Replica Exchange Molecular Dynamics (ACHREMD); that meet at the in-

terface between enhanced sampling and machine learning, all within the field of

molecular dynamics.
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• Chapter 2 will cover the general methodology followed for both projects.

Each of the projects will have a sub-section explaining both data generation

and analysis as well the algorithms involved. Any methodology not included

in this general one will be appended to the result chapters 3,4 and 5 in the

form of Computational Details.

• Chapter 3 will further explore the idea behind MLTSA, its validation and

its functionality in other dynamical contexts, as well as using improved ML

architectures.

• Chapter 4 will present the results of our unbinding-MLTSA original paper on

Cycling-Dependent Kinase 2 (CDK2), which validated its suitability for ob-

taining ligand-unbinding and gaining insights on the unbinding path through

ML techniques.

• Chapter 5 will explore the study of inhibitor ligand unbinding on the human

Muscarinic Receptor 3 (hMR3) and the thorough analysis on the unbinding

through MLTSA as a follow-up of the previous paper.

• Chapter 6 will present the preliminary results of our ACHREMD, developed

to improve the sampling of electrostatic potential-energy relevant events such

as Mg ion coordination and dissociation.
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1.1 Simulating Biomolecular Events

Simulating biomolecular events involves using computer models to simulate the

behavior of molecules and chemical reactions in biological systems. This can in-

clude simulating protein folding, drug-protein interactions, and the dynamics of

large biomolecular complexes [3]. These simulations can be useful in understand-

ing the underlying biochemistry of biological systems and can also be used in drug

discovery and design. Running computer simulations is often more cost-effective

and accessible compared to conducting complex experimental studies. Experimen-

tal techniques involving complex equipment, reagents, and facilities can be expen-

sive and require specialized expertise. Additionally, in simulations, researchers can

control various parameters, such as temperature, pressure, and pH, to explore the

effects of different conditions on biomolecular interactions. This level of control

is often challenging to achieve in experimental settings. The access to molecular

details, controlled environment, the time and length scales they can reach, and the

quantitative data they can provide offer several advantages over real experiments,

although not free of limitations, a combination of experiments and simulations is

often the most powerful approach for gaining a comprehensive understanding of

biomolecular events.

There are various methods and algorithms used in biomolecular simulation,

such as molecular dynamics, Monte Carlo methods, and even computational dock-

ing. These simulations are performed using specialized software and require a good

understanding of the physics and chemistry of biomolecules. An introduction to

concepts such as protein kinetics, their relevance and usage can be found in this

section.
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1.1.1 Overview

Biomolecular simulations are a powerful tool for understanding the behavior of

biological molecules such as proteins, nucleic acids and lipids [4]. It allows the

study of complex interactions and reactions occurring within living systems, which

can lead to new insights into disease mechanisms and drug developments.

There are several different types of biomolecular simulations [3], some of the

most popular for biomolecular events are:

• Molecular Dynamics (MD): MD simulations use the laws of physics to

model the motion of atoms and molecules over time. They can be used to

study in atomic detail the structural and dynamic properties of biomolecules

such as their conformational changes and their interactions with other

molecules. They preserve the kinetics of the system and it is an all-purpose

simulation method, however, it is unable to model the chemical process of

bond-breaking and reactions explicitly and it can be computationally demand-

ing especially for large systems.

• Monte Carlo (MC): MC simulations use random sampling to explore the

possible configurations of a biomolecule. They can be used to study the ther-

modynamics properties of biomolecules such as their stability and binding

affinity. However, they can be less reliable for studying dynamics and they

require large number of simulations to provide accurate results.

• Brownian Dynamics (BD): BD simulations are a type of MD simulation

that models the effects of thermal fluctuations and solvent on biomolecules.

Despite being a simpler version, they can be used to study the diffusion and

transport of biomolecules in solution. Flexible and simple yet they require a

detailed representation of the solvent interaction with the molecules and can

be computationally demanding as well since obtaining accurate results often

require large times.

• Coarse-grained Models (CG): A simplified representation of biomolecules

in a higher level of abstraction, such as the bead-spring model. These are less
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computationally demanding and are suited for large complex biomolecular

systems.They can be less accurate than all-atom models and require develop-

ing detailed representations of the system including the mapping of the atoms

to the CG beads and the potentials between them. There is a lack of standard-

ization in the definition of CG models and accuracy can also depend on the

models.

• Docking: Although they simulate the interaction between two partners, they

do not explore any kinetics. They are used to predict the binding of small

molecules or a protein to another protein. They can be used to study inter-

actions of drugs with targets and identify new drug candidates. They can be

sensitive to the choice of force field and the accuracy of the predictions can

vary depending on the quality of the input structures. They also require a

scoring function which is very challenging to accurately rank drug candidates

with.

Of course, any hybrid methods between the previous types of simulations,

such as hybrid MC and CG-MD can prove useful for detailing structural dynamic

and thermodynamic information, especially in complex environments or macro-

molecules such as polymers, difficult to study with all-atom models.

These are the most common and widely used methods, but note these are

mostly classical methods. Electronic structure methods are sophisticated enough to

describe chemical reactions, although these methods provide much more accurate

results they require challenging computations. However there are many other types

of biomolecular simulations that have been developed for specific applications or to

address specific questions, some other examples include: Continuum solvent mod-

els, without explicit solvent, QM/MM, quantum mechanics/molecular mechanics

simulations to study their electronic structure, Kinetic MC, used to study the kinet-

ics by combining MC sampling with the rate constants of chemical reactions, and

many others. These are just a few examples, the field of biomolecular simulation is

constantly evolving and new methods are being developed constantly.

The scope of biomolecular simulations is broad, they provide a wide range of



1.1. Simulating Biomolecular Events 24

Figure 1.1: Most popular biomolecular simulation methods available for the different
timescales and sizes to study. For the electronic structure methods (blue), DFT
corresponds to density functional theory and HF to Hatree-Fock theory. For
the hybrid methods (aquamarine), QM/MM to quantum mechanics molecular
mechanics and EVB to Empirical Velence Bond methods. For classic methods
(green), BD to Brownian dynamics, MD to molecular dynamics, MC to Monte
Carlo and CG to coarse graining methods. Note that the bigger the size of ob-
servable events, the less accurate the methods can be and the more focus on
sampling.

applications including durg discovery, protein engineering, enzyme design, and the

study of biomolecular interactions. They can be used to predict the binding of small

molecules or proteins to other proteins; enzyme mechanisms, to study enzymatic re-

actions; protein-protein interactions, complexes and their dynamics; to study lipid

bilayers and membrane proteins, their structure and dynamics; nucleic acids, in-

cluding DNA and RNA; polimers; and even biomolecular transport in solution such

as diffusion and transport through complex environments.

Again, when choosing between a classical method or an electronic structure

method the decision often depends on the timescales one wishes to simulate and

the size of the relevant event to study to start with. This idea is illustrated in Fig.1.2

where the different events occurr at different time and scale sizes. In Fig.1.1 the dif-



1.1. Simulating Biomolecular Events 25

Enzymatic Reactions

Ligand binding

Folding

Size scale (atoms)

Ti
m

e 
sc

al
e 

(n
s)

~105 ~106~104~100

~1

~109

~106

~103

Figure 1.2: Diagram illustrating the relationship between the timescales and sizes of differ-
ent biomolecular events of interest. The colours match the different available
methods for electronic structure (blue), hybrid (aquamarine) and classic simu-
lation methods (green).

ferent methods that are available depending on the size and the timescales to study

can be found. Note that there is a relationship between the colours in the first figure

and the former, since to be able to observe reactions one has to go down to the elec-

tronic structure, whereas classical methods can describe folding. One may wish to

explore the affinity of a new protein inhibitor through docking and subsequent MD

simulation, whereas an enzyme design effort might profit more from a QM/MM

calculation in order to see reactivity. Since most of the work in this thesis involves

protein-ligand interactions mostly relevant for drug discovery, MD has proven suf-

ficient for this work. However, geometry and parameter optimizations using higher

level methods have proven useful to improve the accuracy of the results.

1.1.2 Protein Kinetics

Understanding protein kinetics requires a basic understanding of several key con-

cepts, including protein structure, protein dynamics, and the nature of protein inter-

actions [5]. Both experimental and computational techniques can be used to study

protein kinetics, and they provide valuable insights into the behavior of proteins

over time [5].
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Protein structure refers to the three-dimensional arrangement of atoms in a

protein molecule, which determines the protein’s function and stability. Proteins are

made up of a linear sequence of amino acids, which fold into a specific structure

that is stabilized by various types of interactions, including hydrogen bonds, ionic

bonds, and hydrophobic interactions. This specific structure is called the secondary

structure, which is mainly comprised of alpha helices, beta sheets and random

coils. The final three-dimensional arrangement of a protein’s secondary structure

is called tertiary structure including different protein domains, whereas the protein

complex combining several domains from different proteins is called quaternary

structure.

Protein dynamics refers to the movements of individual atoms within a pro-

tein molecule over time. These movements are driven by thermal energy, and they

play a critical role in determining the protein’s stability, function, and interactions

with other molecules. At higher temperatures, the thermal energy of the protein

atoms is increased, leading to increased movements and fluctuations.

The nature of protein interactions is also important for understanding protein

kinetics. Proteins interact with other molecules through a variety of mechanisms, in-

cluding van der Waals interactions, hydrogen bonding, and ionic interactions. These

interactions can either be static or dynamic, and they play a critical role in deter-

mining the stability and function of the protein.

In order to study protein kinetics, a number of experimental and computational

techniques have been developed. Experimental techniques, such as fluorescence

spectroscopy and mass spectrometry, provide valuable insights into the behavior

of proteins over time [6]. Computational techniques, such as molecular dynamics

simulations, provide a complementary approach for studying protein kinetics by

allowing researchers to observe the behavior of proteins at the atomic scale.

Protein-Ligand Complex

A Protein-Ligand Complex is formed when a protein binds to a ligand molecule.

Proteins have specific binding sites where ligands can interact with them, and the

binding process is often highly specific and reversible. The interaction between a
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protein and a ligand is characterized by two key rate constants: the association rate

constant (kon) and the dissociation rate constant (ko f f ). kon is a measure of how

quickly a ligand binds to the protein. It is defined as the rate at which the protein-

ligand complex is formed from the unbound protein and ligand. It is influenced by

factors such as the collision frequency between the protein and ligand and their rel-

ative orientations. ko f f , also known as the dissociation rate constant, is a measure

of how quickly the protein-ligand complex dissociates into the unbound protein and

ligand. It depends on factors like the stability of the protein-ligand interactions and

the energy required for separation. kon and ko f f have units of M−1s−1 and s−1 re-

spectively. When in equilibrium, the binding transition [P]+ [L]−> [PL] should be

balanced by the unbinding transition [PL]−> [P]+ [L], where [P] is the concentra-

tion of unbound free protein receptors, [L] the unbound free ligand concentration

and [PL] the protein-ligand complex concentration. This equilibrium would be rep-

resented as

kon[P][L] = ko f f [PL] (1.1)

This association would be governed by a binding constant Ka defined by

Ka =
kon

ko f f
=

[PL]
[P][L]

(1.2)

Its inverse quantity, the dissociation constant (Kd = 1/Ka) for the formation of the

protein-ligand complex can be calculated from the association and dissociation rate

constants as well

Kd =
ko f f

kon
=

[P][L]
[PL]

(1.3)

Kd is a measure of the strength of the interaction between the protein and the ligand.

A lower Kd indicates a tighter binding between the protein and the ligand, while a

higher Kd indicates a weaker binding.

At equilibrium, the rate of formation of the protein-ligand complex is equal

to the rate of dissociation, and the concentration of the protein-ligand complex re-

mains constant. The equilibrium constant Kd can be used to predict the concen-

tration of the protein-ligand complex at equilibrium for a given concentration of
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protein and ligand. Overall, the association rate constant kon and the dissociation

rate constant ko f f are important parameters that govern the formation and stability

of protein-ligand complexes, and are used to describe the kinetics of ligand binding

to proteins. As seen in Fig.1.3, the free energy profile of an unbinding may not be
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Figure 1.3: Diagram of the complex evolution of the free energy profile from the associ-
ated protein-ligand state [PL], to the dissociated state [P+L], passing through
several intermediates ([PL]’ and [PL]’) and transition states (TS’ and TS”) for
a given reaction coordinate (RC). The dissociation constant Kd for the whole
process is the relation between the equilibrium constants for dissociation ko f f

and association kon. The binding free energies associated (∆Gon and ∆Go f f ) to
both processes relates back to the energy ∆G corresponding to the whole dis-
sociation process.

straight and have several transition states (T S′/T S′′) as well as intermediate states

([PL]′/[PL]′′). This could be related back to major movements of the protein such

as loop movements, pockets opening, helices moving, or even accommodation of

the water molecules. Although ko f f and kon are the kinetic rates, the binding free

energies (∆G) are key to this process.

The binding free energy (∆G) is the change in free energy that occurs when a

ligand binds to a protein. It is defined as the energy difference between the bound

(∆Gon) and completely unbound states (∆Go f f ) (see Fig.1.3). It is the sum of the
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enthalpy change (∆H) and the entropy change (∆S) of the system:

∆G = ∆H −T ∆S (1.4)

where T is the absolute temperature in Kelvin. A negative binding free energy

(∆G< 0) indicates that the binding is thermodynamically favorable, while a positive

binding free energy (∆G > 0) indicates that the binding is unfavorable.

For the binding of protein and ligand molecules in solution, the molar Gibbs

free energy ∆G or binding affinity is related to this constant by

∆G = RT ln
Kd

co (1.5)

where R is the ideal gas constant, T temperature and c0 the standard reference con-

centration (which is 1 mol/L).

However, with the usual free energy calculations done typically in MD, the

binding free energy is obtained from the simulations and can be used to calculate

the dissociation constant (Kd) for the protein-ligand complex:

Kd = e
∆G
RT (1.6)

where R is the gas constant and T is the absolute temperature in Kelvin. A lower

Kd value indicates a stronger binding between the protein and the ligand. ∆Gon and

∆Go f f represent the standard free energy change for both the binding and unbinding

process, respectively. These are related to Kd by

Kd = e
∆G◦

on
RT (1.7)

Kd = e
∆G◦

o f f
RT (1.8)

In summary, the binding free energy (∆G) is a measure of the thermodynamic sta-

bility of the protein-ligand complex, while the on-rate constant (kon) and off-rate

constant (ko f f ) are measures of the kinetic properties of the binding process. The
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dissociation constant (Kd) is a measure of the strength of the interaction between the

protein and the ligand, and can be calculated from the binding free energy, on-rate

constant, and off-rate constant.

Obtaining a free energy profile for an unbinding, one can derive the thermo-

dynamic quantities, such as the ligand’s residence time (the inverse of the kinetic

constant of the drug-target unbinding 1/ko f f ). This is particularly relevant for drug

discovery, when studying protein agonists/antagonists. The concepts of agonist and

antagonist are explored in the next subsection, as well as an overview of relevant

pharmacological concepts to protein kinetics and molecular dynamics.

Agonist, Antagonist and Residence Time

In protein complexes, agonists and antagonists are molecules that interact with the

protein and modulate its activity. Agonists are molecules that bind to a protein and

activate its activity. Agonists can either bind to the same site as an endogenous or

natural ligand, or bind to a different site and induce a conformational change that

promotes the activity of the protein (Allostericity). For example, adrenaline is an

agonist that binds to the beta-adrenergic receptor in the plasma membrane of cells

and activates the G protein-coupled signaling pathway [7]. Antagonists, on the

other hand, are molecules that bind to a protein and inhibit its activity. Antagonists

can either bind to the same site as the natural ligand and compete for binding, or

bind to a different site and inhibit the conformational changes necessary for activity.

For example, beta blockers are antagonists that bind to the same site as adrenaline

in the beta-adrenergic receptor and prevent its activation by the natural ligand [8].

As seen in Fig.1.4, the concentration of the molecule in the body is directly

related to its therapeutic effect and it is decisive on its toxicity as well. The duration

of action of the molecule is influenced by the protein-ligand complex concentration

reaching the necessary value for its effect.

Pharmaco-related quantities, such as the half-life of a drug molecule, are di-

rectly influenced by factors such as the absorption, distribution, metabolism, and

excretion (ADME) of the ligand in the body, however, they can be greatly influ-

enced by the kinetics of a ligand binding and unbinding from its target and even
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Figure 1.4: Evolution of concentration through time and the different effects produced in
organisms. Concentration has to be inside the windows for the different effects.
Red corresponds to the toxic or accentuated side effects window, green is the
therapeutic window required for the maximum therapeutic effect and blue is
the sub-therapeutic level of concentration window. The duration of the action
is considered to be the time (t) spent above the therapeutic window lower limit,
having its peak effect at the highest concentration level recorded.

their specificity. While a greater binding affinity may be desirable when searching

for a drug, a greater residence time often means a longer therapeutic window, thus

reducing the need from the patient to receive multiple doses during the day and

ensuring its effect. It has been previously shown that rather than binding affinity,

residence time is key to the survival rate [9, 10].

1.1.3 Simulating Protein-Ligand Unbinding

Protein-ligand unbinding is a crucial biological process that plays a critical role

in many cellular processes, including signal transduction, catalysis and drug-target

identification. Understanding the kinetics and thermodynamics of protein-ligand

unbinding is of significant interest for both basic research and drug discovery. Sim-

ulating protein-ligand unbinding is a challenging task due to the complex nature of

the process, which involves changes in both protein and ligand conformations and

the release of energy [11]. This makes, in some cases, observing a ligand unbind

from its host a rare event in the sense of requiring a timescale far greater than what
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the current computational power can get efficiently, requiring long computational

time to get it sampled. Not only that but to recover accurate statistical information,

this event has to be observed several times. One of the most successful techniques

for observing this is the combination of MD with other sampling techniques and be

able to obtain any kinetic information [12].

From simulation data, rate constants can be determined by applying the prin-

ciples of transition state theory (TST) and the Arrhenius equation. TST states that

the rate of a reaction is determined by the rate at which reactants cross a transition

state barrier to form products (dissociated complex) or revert to reactants (protein-

ligand complex).In simulations, the probability of observing the system in the tran-

sition state region can be quantified. Using this probability and the frequency of

attempted transitions, the rate constant can be calculated. By extracting the rele-

vant energy barriers and employing statistical mechanics, the rate constant can be

calculated from simulation data, enabling the translation of molecular-level insights

into experimentally relevant kinetics. The Arrhenius equation relates the rate con-

stant (k) to temperature (T ) and the energy barrier (Ea) for the transition state in the

following manner:

Original form:

k = A · e−
Ea
RT (1.9)

Second form:

k =
kBT

h
· e−

Ea
kBT (1.10)

Where k is the rate constant wanted, A is the pre-exponential factor which might re-

quire calibration or theoretical estimates, Ea is the activation energy obtained from

the simulation data, R is the gas constant and T is the temperature in Kelvin for

the simulation. For the second form, kB is the Boltzmann constant and h is the

Planck constant. This second form allows to connect the Arrhenius equation to

the fundamental constants from statistical mechanics. Although useful, it’s impor-

tant to note that estimating rate constants from simulation data using the Arrhenius

equation can have limitations in addition to assuming that the reaction follows an
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Arrhenius-type behavior. The accuracy of the estimates depends on the accuracy

of the energy landscape calculations, the choice of the reaction coordinate, and the

proper determination of transition times. By analyzing the simulated trajectories,

quantities such as residence times, binding rates, and dissociation rates can be ex-

tracted, providing direct information on the kinetics of the interaction. Comparing

these simulation-derived kinetics with experimentally measured (macroscopic) rate

constants allows for validation, enhancement, and a deeper understanding of the

overall reaction kinetics and the interplay between molecular dynamics and macro-

scopic behavior.

Molecular Dynamics

MD is a simulation method involving the calculation of the positions, velocities and

forces of each atom in a molecular system over time and using this information to

predict the behaviour of the system over a range of time scales. Atoms are usu-

ally represented as points in three-dimensional space and bonds are represented as

springs. A typical MD protocol involves the calculation of the initial energy of the

system to compute the new forces and, through numerical integration predict the

next position, velocities and forces in an iterative fashion for a given number of

steps.

MD simulations use the laws of classical mechanics to describe the interactions

between atoms. For example, the bonds between atoms can be represented using a

bond-stretching potential, which describes the energy associated with stretching or

compressing the bond between two atoms Similarly, the angles between bonds can

be represented using a bond-angle bending potential which describes the energy

associated with changing the angle between two bonds. More complex potential

functions can also be used to represent other types of interactions between atoms,

such as hydrogen bonding, Van der Waals interactions and electrostatic interactions.

These potential functions are typically based on empirical or theoretical models of

the interactions. As Fig.2.1 portrays, the combination of potential functions and

parameters assigned to each atom type that describe interactions within the system

is called a force field. Several force fields have been developed for several systems
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that are tuned with specific parameter values or term corrections that suit the needs

for more experimentally accurate results.

The key advantage of MD simulations is that they can provide a detailed, atom-

istic description of complex systems, allowing researchers to study the behaviour of

individual atoms and the interactions between them. This makes them an important

tool for understanding biological and chemical processes as well as designing new

drugs, materials and technologies. While being accurate descriptors for morpholog-

ical features and their dynamics, they allow atomic resolution at bigger timescales.

However, note that MD is generally considered to suffer from three main limita-

tions:

• the interaction models or force field may not be accurate enough to describe

the desired insights, i.e. bond breaking and others.

• the trajectories are high-dimensional, noisy and present challenges in inter-

pretation and simplification for understanding.

• the limitation on the timestep having to be small enough to integrate accu-

rately and stable makes the sampled timescales shorter than the process of

interest.

Simulation protocol

In order to simulate and study a ligand unbinding event, a starting structure is

needed. As shown in Fig.1.5, several experimental techniques such as X-Ray crys-

tallography, cryogenic electron microscopy (Cryo-EM) and nuclear magnetic reso-

nance (NMR) can be used to solve a protein’s three dimensional structure for sim-

ulation purposes. However, often times not all protein sequences are available for

study due to experimental challenges or they posses missing loops not able to be

solved because of their flexibility. In those cases, homology modelling techniques

can aid in modelling missing regions or loops after similar already resolve struc-

tures, e.g. modelling the active site of a human enzyme after a mouse’s. A more

ambitious approach is the modelling of proteins with no experimental data avail-

able. In this case the newly ML-assisted techniques such as AlphaFold, OpenFold,
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RosettaFold, an others have proven to be successful in predicting the structure of

proteins. Once one has a suitable structure to use, if this includes the ligand in the

correct position it can move onto simulation. Otherwise, a docking may be needed

to fit in the molecule or manually placing the small molecule by homology as well.

Starting structure MD technique Analysis
Solved structure

X-Ray Crystallography

Cryo-EM

NMR

Homology Modelling
or
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others

ML-AssistedBy similarity
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Figure 1.5: Diagram of a typical ligand-unbinding MD simulation protocol. Starting with
the left, experimental and computational techniques for obtaining a structure.
Cryo-EM is Cryogenic electron microscopy, NMR is nuclear magnetic reso-
nance. In the middle, MD techniques for trying to observe the dissociation.
Steered MD (sMD) and umbrella sampling (US) are biasing techniques to push
or pull the ligand from the binding pocket. In the far right, the free energy
profile and dynamics are analyzed to obtain insights and quantities from the
obtained trajectories.

After having a suitable structure with a ligand complexed, one has to chose

from the range of MD techniques available. Although the option of plain running

MD is the easiest, the unbinding usually takes long to observe, whereas other tech-

niques involving biasing the interaction directly can be much quicker. Note that

biasing the data may involve misleading results that have to be accounted for. We

will dig deeper into this in the next sections. However, it is not mandatory to bias

the ligand directly, other approaches such as weighted ensemble (WE) and replica

exchange MD (REMD) are capable of better sample the complex landscape without

having to bias the data and obtain unbiased data.

The final step in the protocol is to analyze the obtained trajectories once the un-
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binding has been observed. Analyzing interactions, distances, and other projections

can provide valuable insights onto the mechanisms and pathway the ligand takes on

its way out. Additionally, a free energy profile can also be obtained, allowing to

calculate kinetic rates and affinities.

Although some examples to tackle the lack of resources to simulate this events

have been shown, the sampling problem and the proposed solutions will be explored

in the next sections.

1.2 The Sampling Problem
In MD simulations, one uses computer algorithms to study the motions and inter-

actions of atoms and molecules over time. These simulations can provide insights

into the behavior of complex biological and chemical systems, such as proteins and

drugs, that are difficult or impossible to observe experimentally. However, one of

the major challenges in MD is the sampling problem, which arises from the fact

that the timescale of molecular motion can be much longer than the timescale of

the simulation. This leads to uncertainties in the accuracy of the simulation results,

which can affect our ability to draw meaningful conclusions about the system being

studied [13].

1.2.1 Timescales

The timescale problem refers to the fact that many biologically relevant processes

occur on timescales that are much longer than the timescales accessible to simu-

lation (see Fig.1.6). To illustrate the sampling problem in MD, let’s consider the

example of protein folding. Protein folding is a complex process that involves the

formation of a three-dimensional structure from a linear sequence of amino acids.

This process can take milliseconds or longer, depending on the protein and the en-

vironmental conditions. However, typical molecular dynamics simulations are on

the order of nanoseconds to microseconds. This means that even if one runs a sim-

ulation for a long time, one may not see the relevant events or transitions that occur

in the system. In other words, the simulation may not sample the relevant parts of

the free energy landscape.
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As previously mentioned, one of the advantages of biomolecular simulations

is their quantitative analysis that allows one to obtain kinetic rates from trajectories.

One has to make a key distinction here between macroscopic rates and single-

molecule kinetics.

Macroscopic rates pertain to the overall behavior of a reaction on a larger

scale, involving a large number of molecules. They describe how concentrations of

reactants change over time, giving insights into the reaction’s global kinetics. These

rates are typically obtained from experiments involving bulk measurements and are

governed by rate laws. Macroscopic rates obscure individual molecular details.

Single-molecule kinetics involves studying reactions or processes at the level

of individual molecules. It provides a more detailed and dynamic understanding of

molecular behaviors, such as binding/unbinding events or conformational changes.

Alike simulations, experimental techniques like single-molecule fluorescence or

atomic force microscopy enable the observation of individual molecules, revealing

heterogeneity and stochastic behavior that macroscopic rates might overlook.

Macroscopic rates are averages over a large population of molecules and follow

deterministic reaction kinetics described by rate laws. They represent the collective

behavior of many individual reactions. In contrast, single-molecule kinetics cap-

tures the inherent variability and randomness of individual molecular events, often

following probabilistic behavior. While macroscopic and microscopic rates are re-

lated, they offer distinct perspectives on the same reaction, with single-molecule

kinetics providing insights into heterogeneity, rare events, and molecular mecha-

nisms that contribute to the macroscopic behavior.

MD simulations offer a unique bridge between macroscopic rates and single-

molecule kinetics by allowing researchers to explore the behavior of individual

molecules in a dynamic environment. They capture the stochastic behavior and

dynamic heterogeneity that characterizes single-molecule kinetics, providing in-

sights into the underlying molecular mechanisms. While MD simulations excel

at providing insights into single-molecule kinetics, they can also be used to derive

macroscopic rates indirectly. By aggregating statistical information from multiple
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simulations or trajectories, researchers can calculate ensemble-averaged properties.

These ensemble averages can provide valuable estimates of macroscopic rates that

relate to bulk experimental observations. Thus, observing an event and the number

of times it can be observed is relevant for accurate analysis.

Figure 1.6: Scale of the biomolecular events at the required timescales to observe them.

In the context of protein-ligand unbinding, several steps have to be in place

for the protein to release its ligand, as shown in 1.3, which all contribute to the

overall energy necessary for unbinding. Not only that, but also the contributions

from major protein rearrangements and the total exit of the ligand which may go

through a protein channel or a membrane in the case of a GPCR, for example,

where the residence time of a drug can take up to 24h (tiotropium). Although,

with the fast development of computational sciences towards powerful computa-

tional hardware such as ANTON and graphics processing units (GPU), researchers

have achieved miliseconds-long simulations of proteins of considerable size, these

timescales are far smaller and computationally expensive than the ones needed for

observing ligand-unbinding events (see Fig.1.6).

1.2.2 Uncertainty

The uncertainty problem refers to the fact that MD simulations are stochastic like

nature. This means that the results can vary depending on the initial conditions and

random fluctuations in the system. This can lead to uncertainties in the accuracy of

the simulation results, even if one could simulate the system for an infinite amount

of time. The uncertainty problem can be exacerbated by the timescale problem, as

rare events and transitions may have a large impact on the overall behavior of the

system, but are difficult to sample.

The extent of the uncertainty in a molecular dynamics simulation can depend
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on a number of factors, including the length of the simulation, the force field used to

describe the interactions between the atoms, and the size and complexity of the sys-

tem being studied. For example, simulations of larger systems or longer timescales

are likely to have greater uncertainty due to the increased number of atoms and

longer timescale of the simulation.

To address the uncertainty problem, researchers often perform multiple inde-

pendent simulations, each with slightly different initial conditions, and then analyze

the average behavior of the system. This approach is known as ensemble simula-

tions and can provide a more accurate estimate of the thermodynamic properties of

the system than a single simulation.

1.3 Enhanced Sampling Techniques
To address the sampling problem in molecular dynamics, researchers have devel-

oped a variety of enhanced sampling techniques. These techniques accelerate

phase space sampling to make computed properties more reliable and demonstrate

rapid convergence [14]. They accelerate MD to overcome high energy barriers using

methods biasing, for example, allowing us to improve the sampling of the relevant

parts of the free energy landscape.

Before getting into the classification of these methods, it is key to understand

the concept of biasing and collective variables (CV).

1.3.1 Collective Variables in Molecular Dynamics

In the realm of MD analysis, collective variables (CVs) serve as essential tools for

capturing and simplifying the complex behavior of biomolecular systems. These

variables offer a higher-level perspective that condenses the multi-dimensional dy-

namics of atoms and molecules into a reduced-dimensional space, allowing re-

searchers to extract meaningful insights from simulations.

CVs can be described as mathematical functions that quantify a chosen aspect

of a molecular system’s behavior. Rather than considering each atom’s position and

velocity individually, CVs aggregate information across multiple atoms to represent

specific features, conformations, or interactions within the system. By focusing
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on these collective aspects, CVs provide a streamlined framework for understand-

ing the dynamics and mechanisms governing biomolecular processes. They can be

composed of various mathematical functions that define relevant aspects of the sys-

tem. These functions often involve distances, angles, torsional angles, or combina-

tions thereof. For example, a CV could be the distance between two specific atoms,

representing the opening or closing of a binding site during a ligand-receptor inter-

action. The selection of appropriate CVs depends on the specific scientific question

or process of interest. Careful consideration is given to choosing CVs that capture

the essential dynamics while avoiding overcomplication. By constructing a mini-

mal set of meaningful CVs, the dimensionality of the system can be reduced, aiding

in visualization and analysis.

The primary purpose of CVs is to simplify the analysis and interpretation of

molecular dynamics simulations. They enable researchers to monitor and describe

the progress of specific events, transitions, or conformational changes in a more

intuitive and comprehensible manner. CVs act as bridges between the intricate

atomic-level interactions and the macroscopic observables, facilitating the extrac-

tion of meaningful mechanistic insights and enabling the exploration of rare events

that might otherwise remain elusive. Additionally, some biasing methods allow for

the biasing of a specific CV within a given system, allowing to sample regions pre-

viously hard to explore. By selecting and constructing appropriate CVs, researchers

can uncover hidden insights, unravel dynamic mechanisms, and bridge the gap be-

tween microscopic interactions and macroscopic observables.

1.3.2 Biasing in Molecular Dynamics

A biasing energy is an energetic term Ubias added that enables one to obtain a

potential energy biased to behave a certain way Ũ(x):

Ũ(x) =U(x)+Ubias(x) (1.11)
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In MD, this bias energy translates into a bias force Fbias(x), thus yiedling:

Fbias(x) =−∇xUbias(x) (1.12)

F̃(x) =−∇xŨ(x) = F(x)+Fbias(x) (1.13)

This Ubias(x) is usually a function of a CV describing the system in a lower coordi-

nate, such as a distance, angle, etc. That means one can apply a biasing potential to

force the system to take the desired configuration, i.e. pushing a ligand outside of a

pocket and moving helices and loops to sample the desired rare event. These meth-

ods are called potential-based biasing methods.In the same way, a system under

the influence of a biased potential energy Ũ(x), will sample a biased configurational

distribution γ̃(x). Note that in all biasing methods, this biased distribution cannot be

used for calculating the free energy directly, as the difference between states given

by the biased potential energy has to be computed.

Another set of methods are available in which a separate, distinct probability

distribution (γ̃(x)) from the target one γ(x) is sampled in a way that the ratio of the

two is known or can be estimated numerically. This is done to focus sampling on

regions of importance or to flatten the energy landscape towards a uniform distribu-

tion easier to sample. Some of these methods are part of the non-potential-based

biasing methods, where the bias is not added as an additional term, but instead the

existing ones are modified by some degree.

In the following subsections 1.3.3 and 1.3.4, an attempt to simplify to a bi-

nary classification (see Fig.1.7 top) the immense number of different flavours of

enhanced sampling techniques has been made [15]. Note that some methods do not

fully fall under one category alone and this is in broad terms, additionally many

more methods may fall under the first category rather than the latter. Moreover,

section 1.3.5 includes example of hybrid methods as well.

1.3.3 Biasing methods

Biasing methods introduce an external bias or force to the system to accelerate or

steer the sampling towards certain regions of the phase space. The aim is to over-
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Figure 1.7: Diagram of the attempted binary classification of enhanced sampling tech-
niques. The first dividing section is regarding to biasing the system or not.
Note, however that the ”non-biasing” methods are information biasing in the
sense of biasing the entropy term rather than the enthalpy term. The second
level is dividing between potential and non-potential-based approaches. The
third level divides them regarding the change of bias through the simulation
(adapting or not). Adaptive approaches have a time-dependent feedback be-
tween the bias and the system which makes it adapt and ”learn” in a similar
fashion to ML methods. Non-adaptive methods have a constant or ”static” bias
being applied.

come energy barriers and increase the sampling of rare events or transitions that are

difficult to observe in standard simulations. Biasing methods can be further cate-

gorized into two subcategories: potential-based methods and non-potential-based

methods.

Potential-based biasing methods.These methods add an additional term to the

potential energy of the system that acts as a biasing potential, which is designed to

steer the system towards a particular state or region of the phase space. The biasing

potential is typically a function of a CV that describes the progress of the system

along a reaction coordinate or a particular degree of freedom. These include:

• Non-adaptive methods, which are designed to flatten the energy landscape in

a static way, such as Accelerated MD (aMD) and Gaussian-accelerated MD

(GaMD).
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• Adaptive methods, where the bias is learned during the simulations and

adapted on-the-fly. They include metadynamics and well-tempered metady-

namics as well as its derived methods, such as infrequent, adaptive Gaussian,

etc. Metadynamics methods are based on adding a temporary small bias de-

posited at the current location of the CV. These adaptive methods also include

updating force biases on CVs (Adaptive biasing Force, ABF), cancelling the

ensemble average, such as the ones provided by the Colvars Module. In the

same fashion, standard, multiple-walker and extended-system ABF imple-

mentations are also available.

Non-potential-based biasing methods, on the other hand, do not add an ex-

ternal potential to the system but instead modify the dynamics of the simulation to

enhance the sampling of rare events or transitions. In these methods, the original

configurational distribution is preserved, and the sampling is enhanced by exploiting

transitions to other ensembles. These include generalized ensemble and replica

exchange methods:

• Replica exchange: Multiple coupled simulations are carried out in parallel

and they periodically exchange configurations (structures) in thermodynamic

states with each other. These states include changes in temperature (parallel

tempering), Hamiltonian states (HREMD), etc.

• Expanded ensemble: The states are explored in a single simulation via a based

random walk in state space. For example, climbing through a temperature

ladder.

In both of them, a mixture of thermodynamics states are sampled within the

same simulation framework. Simulations are able to hop between all states through

a hopping process. The criteria for the transition between states is obtained through

sampler algorithms following the Metropolis or Gibbs criteria, for example. The

Metropolis criterion accept exchanges based on the energy difference between repli-

cas while the Gibbs criterion considers both energy and temperature. This enables

more efficient sampling. Both biasing methods, when done correctly, allow the
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estimation of the equilibrium expectations at each state as well as the free energy

differences between the states.

1.3.4 Non-biasing methods

Non-biasing methods. The benefit of non-biasing methods is that they do not re-

quire any prior knowledge of the reaction coordinate or CVs. Additionally, very

little post-processing is needed in order to obtain unbiased data. One example is the

adaptive seeding methods. In these methods, the sampling is enhanced by specify-

ing starting coordinates, in order to focus on sampling on productive or undersam-

pled regions. Simulations are not restricted to regions, but they are initialized and

terminated strategically. They can be divided into:

• Adaptive sampling : these methods search for a more accurate description of

the ensemble and take advantage of Markov State Modelling (MSM) which

are statistical methods that aim to build a model of the system’s dynamics

from a series of short, unbiased simulations.

• Weighted ensemble (WE) methods: also referred to as a splitting/replication

approach, is capable of finding pathways between macrostates and evaluate

transition rates between states. It is based on starting and replicating relatively

short MD simulations towards a target state, while terminating simulations

that are not making progress towards the state of interest or the end state.

Note this target state can also be CV-based.

1.3.5 Hybrid methods

Additional hybrid schemes can be created by combining different principles from

already enhanced sampling methods. One common approach is to combine a

method that focuses on biasing specific degrees of freedom or CVs, with another

one that enhances the sampling in a more general way for a larger number of de-

grees of freedom. This allows for biasing and exploring degrees of freedom that

may be missing in the original biased CV when simulating complex events. Some

examples are:
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• Replica exchange umbrella sampling (REUS), where all replicas are at the

same temperature, but their umbrella potential is centered at different loca-

tions. Thus allowing exchange between umbrella windows and improving

convergence.

• Parallel-tempering metadynamics, that is used for improving the lack of or-

thogonal degrees of freedom that are not included in the biased CV set.

Many more combinations other than these examples exist, including combina-

tions with metadynamics and ABF, path finding methods, etc.

1.3.6 Unbiasing data and free energy estimation

Unbiased properties of the original distribution can be obtained by reweighting the

modified sampled distribution. This involves calculating averaged and free energies

of a distribution using samples from a different one. In order to make use of the

obtained data from biased methods, an unbiasing scheme has to be put in place.

Free energy estimators are central to the enhanced sampling methods. They

allow the calculation of free energy differences between two states without the need

for direct sampling.There are several free energy estimators available, each with its

own advantages and limitations. Some of the strategies for these are:

• Directly measured ratios: This free energy estimator is the simplest and

most straightforward method for calculating free energy differences. It in-

volves calculating the ratio of the probability densities of the two states, typ-

ically through counting the number of configurations in each state. The free

energy difference can be calculated as in: ∆F = −kBT ln(P1/P2), where P1

and P2 are the probabilities of observing the system in the two states.

• Estimations from transition matrices: This involves constructing a transi-

tion matrix from a set of unbiased MD simulations and using it to estimate the

free energy difference between two states. The transition matrix contains the

probabilities of transitioning between different states of the system, and the

free energy difference can be calculated using the ratio of these probabilities.
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• Thermodynamic integration (TI): This free energy estimator involves in-

tegrating the potential energy of the system along a coupling parameter that

gradually turns on or off a perturbation, such as a ligand-protein interaction or

an external field. The difference in free energy between the forward and back-

ward states can be calculated by integrating the potential energy differences

between the two states as a function of the coupling parameter.

• Bennett acceptance ratio (BAR): is a method used to calculate free energy

differences between two states of a system, typically referred to as the for-

ward and backward states. The method involves computing the ratio of the

probability densities of the forward and backward trajectories. The reweight-

ing scheme involves modifying the probability densities of the forward and

backward trajectories by a factor that accounts for the difference in statistical

weights due to the different conditions.

• Multistate Bennett acceptance ratio (MBAR): this is an extension of the

BAR method that allows for the calculation of free energy differences be-

tween multiple states. MBAR involves computing the ratio of the probability

densities of all possible pairwise transitions between the states, and then com-

bining these ratios to obtain the free energy differences between each state.

• Weighted histogram analysis method (WHAM): The method involves con-

structing a histogram of the probability distribution of configurations in each

region and then weighting each histogram by a factor that accounts for the

biasing potential used in that region. The weighted histograms are then com-

bined to obtain an estimate of the free energy difference between the two

states. This method is explained in more detail in the 2.2.1 section.

These are examples of the most common free energy estimators one can use to

unbias data when working with enhanced sampling methods, or to simply construct

back the energy distribution of a given set of simulations.

Now that the idea of the sampling problem, and its proposed solution (en-

hanced sampling) has been stated, another old problem from MD gets even more
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accentuated. As mentioned in section 1.1.3, now that the amount of sampled events

and data is much bigger, it is difficult to interpret its meaning or understand the

underlying dynamics of the processes, specially with no prior information. In the

search of an automated approach to digest this big data, several machine learning

approaches to ML in MD have raised, and not only towards that end. ML in MD

will be explored in the next section, introducing ML, the context of ML for MD

simulations ending with a focus on understanding MD data.

1.4 Machine Learning in Molecular Dynamics
Machine learning has emerged as a powerful tool in chemistry and molecular dy-

namics to predict and analyze molecular properties and behaviors. It involves train-

ing algorithms on large datasets of molecular structures and properties, allowing

for the development of accurate models for predicting properties that are difficult to

measure experimentally. In molecular dynamics, machine learning has been used

to accelerate simulations, develop force fields, and enhance sampling methods. The

application of machine learning in chemistry and molecular dynamics is rapidly ex-

panding and has the potential to revolutionize the field by providing new insights

and enabling the design of novel materials and drugs. Some of the core concepts

and relevant ML methodologies will be explored in the next subsection 1.4.1.

1.4.1 Machine Learning Overview

This subsection will hopefully provide introduction to ML as a field and some key

developments that have recently changed the paradigm and are relevant in this con-

text.

Core Concepts

Machine learning is a type of artificial intelligence that involves training algorithms

on data to make predictions or decisions without being explicitly programmed.

ML involves training algorithms to automatically learn patterns and relationships

in data. The goal of machine learning is to use these learned patterns to make accu-

rate predictions or decisions on new, unseen data [16].

There are several types of machine learning, including:
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• In supervised learning, the algorithm is trained on labeled data, where the

correct output is known, and the goal is to learn a mapping between the input

and output. Examples are: image classification, where the algorithm learns

to identify objects from training with labeled images, and sentiment analysis,

where given a text review, the algorithm classifies the review as positive or

negative.

• In unsupervised learning, the algorithm is trained on unlabeled data, and

the goal is to identify patterns or structure in the data. Examples are: clus-

tering, where from a set of unlabeled data, the similar samples are grouped

and dimensionality reduction, where given a high-dimensional set, the algo-

rithm identifies and extracts the most relevant features capturing the underly-

ing structure of the data.

• Reinforcement learning involves learning through trial and error, where the

algorithm interacts with an environment and receives feedback in the form

of rewards or penalties. For example: game playing, where an agent learns

to play a game by interacting with the environment and receiving rewards or

penalties for its actions, and in robotics, where a robot learns to perform tasks

such as navigating a maze, adjusting its behaviour to maximize its reward.

Examples of algorithms involved in each type of learning can be found in Fig.

1.8, as well as an illustration to further clarify these concepts that classify ML mod-

els by training.

Machine learning models are typically trained using an optimization algo-

rithm that adjusts the model’s parameters to minimize a loss function, which mea-

sures the difference between the model’s predictions and the true output values in

the training data. During training, the model is exposed to a subset of the data,

called the training set, and the goal is to learn a model that generalizes well to

new, unseen data. However, there is a risk of overfitting or underfitting the training

data. Overfitting occurs when the model becomes too complex and fits the noise in

the training data, resulting in poor generalization to new data. Underfitting occurs
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Figure 1.8: Diagram of the three types of ML (supervised, unsupervised and reinforce-
ment) in which most ML models classify. Different types of inputs (red) apply
to different models (shapes) to obtain different outputs (blue). Note that su-
pervised learning has an extra step for calculating the loss to backpropagate
comparing the targets with predictions in a similar way reinforcement learning
evaluates the actions taken to compute the rewards.

when the model is too simple and cannot capture the underlying patterns in the data,

again resulting in poor generalization.

To avoid overfitting or underfitting, hyperparameter optimization is often

used to tune the model’s hyperparameters, which are parameters that are set before

training and cannot be learned from the data. Hyperparameters include things like

the learning rate, the number of hidden layers in a neural network, or the number of

clusters in a clustering algorithm. Hyperparameter optimization involves selecting

the best combination of hyperparameters that result in the best performance on a

validation set, which is a separate subset of the data that is not used for training but

is used to evaluate the model’s performance during training.

Now that the most common concepts of ML have been explained, the next

section will move onto the evolution of the ML models for time series which is

crucial for this work.
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1.4.2 From MLP to Transformers

This section will take the reader on a journey through the evolution of neural net-

work (NN) architectures from simple Multilayer Perceptron (MLP) models and pro-

gressing to more advanced models such as Recurrent Neural Networks (RNNs),

Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) mod-

els, and Gated Recurrent Units (GRUs), and finally, to the Transformer architecture.

A visual summary of the different models is provided in Fig.1.9 to illustrate the main

contributions towards models able to capture time-series relationships.

Multi-Layer Perceptron (MLP)

The MLP is a simple neural network architecture consisting of one or more layers of

neurons, each of which is connected to the next layer. The input layer receives the

input, and the output layer generates the output [17]. The hidden layers in between

can be thought of as intermediate processing layers that transform the input into a

more meaningful representation. MLPs use backpropagation to update the weights

of the neurons during training.

MLPs are limited by their inability to handle sequential data, which means

that they cannot be used for tasks such as natural language processing or speech

recognition.

Recurrent Neural Networks (RNN)

RNNs were developed to address the limitation of MLPs in handling sequential

data [18]. RNNs use a feedback mechanism that allows information to be passed

from one time step to the next, making them ideal for sequential data processing.

Each time step in an RNN processes the input and updates its internal state based

on the current input and its previous state. This allows RNNs to capture temporal

dependencies in the data.

However, RNNs suffer from the vanishing gradient problem, where gradients

become too small to be useful when backpropagating through many time steps. This

limits the ability of RNNs to capture long-term dependencies.
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Figure 1.9: Diagram of the necessary evolution through all different DL models to get from
the simple MLP, to the Transformer architecture with the attention layers. Each
model has a diagram highlighting the contribution they brought to the field.
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Long Short-Term Memory (LSTM)

LSTM is a type of RNN that was developed to address the vanishing gradient prob-

lem [18]. LSTMs use a gating mechanism that allows them to selectively remember

or forget information from previous time steps, making them better at capturing

long-term dependencies. LSTMs have three gates: the input gate, the forget gate,

and the output gate. The input gate controls whether new input is added to the mem-

ory, the forget gate controls whether previous memory is retained, and the output

gate controls what is output from the memory.

LSTMs are able to handle long-term dependencies, but they are computation-

ally expensive and can be difficult to train.

Gated Recurrent Units (GRU)

GRU [19] is another type of gated RNN that is similar to LSTM but has fewer

parameters, making it faster to train. GRUs have two gates: the update gate and the

reset gate. The update gate controls how much of the previous state is retained, and

the reset gate controls how much of the new input is added to the state.

GRUs are faster to train than LSTMs and are better suited for tasks with limited

training data. Although not a breakthrough they are a relevant milestone towards

the development of time dependence models.

Transformer

The Transformer is a neural network architecture that was developed for natural

language processing tasks, such as machine translation. Unlike RNN-based mod-

els, which process input sequentially, the Transformer processes the entire input at

once. The Transformer uses a self-attention mechanism to weigh the importance

of each word in the input based on the other words in the sequence [20]. This al-

lows the Transformer to capture long-range dependencies without suffering from

the vanishing gradient problem. The Transformer consists of an encoder and a de-

coder. The encoder takes the input sequence and generates a set of feature vectors

that represent the input. The decoder then uses these feature vectors to generate the

output sequence.
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The next steps in the development of neural network architectures will likely

involve incorporating attention mechanisms into other types of models, such as

CNNs and LSTMs. Additionally, there is ongoing research into developing more

efficient and effective training methods for neural networks, as well as exploring

other types of neural network architectures that may be better suited for specific

tasks.

1.4.3 Machine Learning in Molecular Dynamics

As mentioned earlier, ML methods can be used for a variety of applications in

MD, such as predicting molecular properties, optimizing force fields, generating

accurate potential energy surfaces, reducing the dimensionality of high-dimensional

data, improving sampling efficiency, and more. By incorporating ML into MD

simulations, researchers can obtain more accurate results, simulate larger systems,

and explore new regions of the phase space [21].

Previous efforts in implementing ML methodologies for improving MD in dif-

ferent directions are:

• Mapping potential Energy Surfaces (PES) as a function of the atomic coor-

dinates to simulate systems efficiently [22], where the Behler-Parrinello faster

than DFT traditional methods, especially for material science.

• Parameterize force fields based on experimental and simulation data and op-

timize them for more accurate MD simulations [23] with NNs such as CGnet.

• Improving reactive molecular dynamics (RMD) and improve accuracy and

efficiency of simulations for reactions at the MD level [24] using NNs for

analysis and classification of local atomic structures.

• Dimensionality reduction of the high-dimensional data from MD simula-

tions [25], using PCA, SketchMaps, t-SNE, etc.

• Improve the efficiency of enhanced sampling schemes such as in REMD

predicting the probability distribution of temperatures of a system [19] using

generative artificial intelligence.
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• Predict molecular properties such as solubility, melting point, reactivity,

even binding affinities [26, 27].

• Generate new configurations and improve sampling of the phase space of a

system [28].

Still, some of the challenges that remain open in ML for MD with room for

improvement are:

1. PES and free energy surfaces (FES) to accurately map and describe the sys-

tem.

2. Coarse graining complex systems while preserving properties of the original

system.

3. Estimating molecular kinetics models for transitions between configurations.

4. Sampling probability distributions to avoid unnecessary sampling.

To fight these challenges, recent efforts with different strategies have been ex-

plored. An improvement over the Behler-Parrinello network for learning and pre-

dicting PES from QM data, is the ANI [29]. While this network has been trained on

QM data as well, it is capable to transfer the predictions to other organic molecules

by developing transferable NN potentials for single atoms (ANI-1). Deep tensor

neural network (DTNN) [30], inspired from language models to learn interactions,

and SchNet [31], a deep convolutional nerual network, both learnt a multiscale rep-

resentation of the molecular properties. They reached highly accurate predictions

across the chemical space and configurations and are becoming popular due to their

scalability. For coarse graining, CGnet [23] make use of constraints and complex

architecture to featurize the cartesian coordinates into internal coordinates. This ap-

proach obtained similar results to that of an all-atom molecular dynamics approach.

VAMPnets [32] automate constructing kinetic models by using an encoder to trans-

form the molecular configuration to a latent space which is trained on pairs sampled

from the MD. Boltzmann generators learnt to sample equilibrium distributions us-

ing a generative model and a reweighting procedure. With this, one is able to learn
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to generate thermodynamics such as the temperature-dependent free energy pro-

files. Although some of these models are transferable and scalable, not all of them

can be applied to complex systems yet and there’s still room for improvement.

ML methods benefit from the Chemistry and Physics knowledge to restrict the

predictions to be meaningful and applicable [21]. Using physical constraints, like

incorporating known physical laws into ML models, ensures that predictions ad-

here to fundamental principles, such as knowing bond lengths, angles and steric

interactions in MD. Physics and Chemistry-informed ML models offer insights into

complex systems that may not be apparent from data alone, such as mechanistic

explanations, path classification, etc. Due to having multiple ways to generate high-

resolution data at the detailed level, some ML methods (PCA, SVM, etc.) benefit

from the high-dimensional accurate description, while others require a larger num-

ber of samples than features to be able to be implemented accurately. Nevertheless,

MD simulations can both provide a lot of data comparable to that of big data with

a great number of features and descriptors, due to the nature of the all-atom inter-

actions. In recent years, ML has emerged as a promising approach for extracting

meaningful insights from MD simulations data [21, 33].

1.4.4 ML for understanding MD

ML methods can be used to analyze various aspects of MD simulations, includ-

ing the conformational space explored by biomolecules, the thermodynamics of

protein-ligand interactions, and the kinetics of protein folding and unfolding [34].

The enormous capacity of the current computational infrastructures is able to gen-

erate milliseconds of biomolecular simulations with high resolution, generating ter-

abytes of data. The automation, reproducibility and scalability of ML methods is

attractive for researchers in this field. By leveraging the power of ML algorithms,

researchers can gain deeper insights into the behavior of biological systems and

identify novel targets for drug discovery such as pockets, regions, etc.

Biomolecular simulations are intrinsically high dimensional and noisy, while

increasing their size with system complexity (domains, units, subunits, etc.). This

fact makes extracting relevant features from data crucial for understanding biophys-
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ML strategies for obtaining molecular insights

Dimensionality 
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Clustering Classifiers

• Reduce the dimensionality 
with minimal input

• Remove noise from data
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• Identify outliers 
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• LDA
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• Hierarchical
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• Autoencoders
• Decision Trees
• Support Vector Machines
• Other NNs

Figure 1.10: Examples of the different strategies already explored for understanding MD
using atomic coordinates or other features derived from trajectories. On the
left, dimensionality reduction algorithms, on the middle, standard clustering
methods, and on the left other ML algorithms for classification.

ical properties of molecular processes. In our case, when working with ligand un-

binding, complex systems may not produce a clear signal for a human mind to

interpret as relevant. Dimensionality reduction models such as PCA have limited

interpretability on their own as shown in [33] on calmodulin and the β2 adrenergic

receptor when using cartesian coordinates from simulation frames. However, their

efforts exploring the applicability of supervised and unsupervised ML methods for

obtaining molecular insights have shown that ML can quickly perform data-driven

analysis of simulations and provide an interpretable overview of the relevant fea-

tures [33] even in a complex case such as the β2 adrenergic receptor.

Some of the strategies that have been explored previous to this work are shown

in Fig.1.10. Some ML models such as decision trees allow the user to obtain the

importance of the different features for their training due to their nature. On NNs,

however, it is more challenging to infer feature importance due to the non-linear

nature of the models.

In decision trees, Gini feature importance measures the total reduction of the

Gini impurity caused by a particular feature. Gini impurity is a measure used in
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decision tree algorithms to quantify the level of impurity or disorder within a set

of data. It calculates how often a randomly chosen element from the set would be

incorrectly classified. Gini impurity is used to guide the splitting of nodes in deci-

sion trees, aiming to minimize impurity and create more homogenous subsets. A

relevant feature will reduce the impurity at large. The features with the highest Gini

importance or mean decrease impurity values then, are considered to be the most

important for the classification task. Thus, features with higher Gini importance

have a larger impact on improving the overall homogeneity of the decision tree. In

a similar way, the layer-wise relevance propagation (LRP) works by propagating

the relevance score backward through the NN, layer by layer, using a set of rules

that ensure that the total relevance is conserved at each layer. The relevance scores

are then visualized to identify which features are important for the prediction and

how they are combined by the network. LRP can help to explain the reasoning be-

hind the network’s prediction and identify potential sources of error or bias. Fleet-

wood, et al. [33] also used this in combination with restricted Boltzmann machines

(RBM), autoencoders and even an MLP classifier by training them to identify states

and later checking their LRP values for each feature. Although these methods have

been able to infer molecular insights from MD data [33] as previously mentioned,

the nature of these datasets used renders the understanding somehow challenging

for the user. When no prior knowledge is available to guide the creation of input

features, the authors recommend using atomic coordinates. Predictions are accurate

when using atomic coordinates, yet they are difficult to interpret and the relation-

ships between the different relevant features are complex and non-linear. Addition-

ally labelled data is also used to train a random forest (RF) classifier to distinguish

between frames from a ligand-bound and ligand-unbound within the same dataset.

The states studied in the study are explored from different trajectories, one of them

using spectral clustering to identify the states. This approach, while still useful, also

adds complexity to the understanding of how the features affect the outcomes.
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1.5 Motivation and Overview
Since this work contains two different projects related, but with different motivation

and output, I will introduce the motivations and an overview of the work for each

of them in the following subsections.

1.5.1 ML for understanding biomolecular events

Reflecting back at the ideas explored during sections 1.4.3 and 1.4.4, there is a

current need for development towards the understanding of high-dimensional

data coming from MD simulations. For instance, in cases where one generates

vast amounts of data, such as macromolecular complexes, making it challenging to

visualize and analyze, making it worse in the case of intrinsically disordered pro-

teins [35]; or cases where one desires to construct accurate predictive models for

certain activity using relevant features [36]. This is of crucial importance in the

context of drug discovery. Recently, there has been a huge increase in the devel-

opment of virtual screening methods, allowing for virtual screenings of thousand

of compounds to study their binding affinity. This situation renders at the highest

priority novel methods for analyzing huge amounts of data in an aoutmated and ro-

bust way, in order to identify patterns and gain insights. Data-driven discovery for

molecular interactions, functional motifs or conformational states can also be sim-

plified [37] using ML methods. Ideally, in all of these cases the end goal would be

to develop an automated analysis that can handle the high-dimensional data as MD

simulations are bound to involve larger and sophisticated systems, and scale up in

the future. All of these require interpretable ML models that offer insights into the

physical or chemical basis of their observed behaviour. Although semi-automated

approaches using atomic coordinates have been developed [33, 37, 38] as a first base

approach, they do not allow to delve in the relevance of the features too deep, due

to their complexity or their nature. Both relevance between features themselves and

within the system are difficult to grasp. There is also a need for fully automated pro-

cedures with higher resolution on the descriptors affecting the system directly, i.e.,

internal coordinates more interpretable such as distances and angles. This is spe-

cially true for protein-ligand complexes, when one wishes to evaluate the relevance
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of the active site’s protein residues interactions with the ligand more effectively and

in a straight-forward way. At the same time, the long-range interactions between

ligand and protein are also known to be relevant during binding/unbinding. Not

only that, but looking only at the active site interactions does not provide a full pic-

ture of the trajectory of the ligand and the major contacts and interactions during

entry or departure from the binding site (namely, loop movements, allosteric effects,

conformational changes, etc).

Consequently, there is still room for developments on the strategies for inter-

preting MD data in a fully automated way despite previous efforts [33, 37, 38].

In this study I attempted to bring forward the field and explore new methodolo-

gies as well as improve upon existing ones (see Fig.1.11). I will explore the usage

of ML models in the interpretation of ligand unbinding trajectories. Moreover, I

will use trajectories starting from the transition state of the unbinding process and

will train the ML methods to classify between the two end states of the simula-

tions (bound and unbound, IN and OUT), but using only early on data near the

transition state, which turns the task into a forecast or prediction problem. That

is, data impossible to classify by simple methods or by manual check. This then

will allow us to identify the crucial steps in guiding the system towards each of the

outcomes. We call this the Machine Learning Transition State Analysis (MLTSA).

The protocol pinpoints the relevant features for classification on the inputted train-

ing dataset, thus, enabling to assess different internal coordinates at different levels

depending on the information used. From atomic distances between protein and

ligand, to protein-protein and even water-ligand distances. This allows for creat-

ing an automated pipeline for screening internal coordinates, which with little to no

prior knowledge of the system under study was able to pinpoint already identified

relevant residues, hint at new ones, suggest relevant atoms of the ligand studied and

even suggest allosteric effects. All of this contributes towards the understanding of

complex protein-inhibitor unbinding events, with focus on the transition state inter-

actions at the molecular level, which are useful in understanding the residence time

of the drug. Understanding the main transition state interactions at the molecular
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level allows researchers to lower or raise the ligand’s unbinding energy barrier by

modifying their chemical properties, thus aiding in drug design efforts.

1.5.2 Problem-tailored replica exchange

Coming back to a much more fundamental problem, a perfect solution for the sam-

pling problem discussed in section 1.2, is not available yet. The amount of flavours

on enhanced sampling techniques reflect back the need for an all-in-one solution to

the sampling problem [14]. However, while that solution has yet to come, and re-

searchers usually pick the most suitable method for the problem at hand. As the

biophysical knowledge grows, additional specific problems arise from the recent

advancements in the field; namely, new available structures for multimeric proteins,

complex pathways and protein-protein relationships, etc. One of these examples is

the relevance of metal ions in metalloproteins, which is irrefutable [39]. More-

over, they are crucial to assemble active site geometries and catalysis [40, 41].

They are necessary for the functioning of the body and are found throughout all of

the phosphate enzymes crucial for life. Although the resolution of crystal structures

is increasing, there is a huge knowledge gap on correct metal ion coordination in ac-

tive sites. Not only that but the correct geometry is often not the one adopted during

crystallization; additionally, the presence of other ligands or allosteric effects may

alter this coordination, rendering docking calculations not so accurate. Moreover,

the ever-changing nature of proteins can also mean metal ions come and go from the

active site (transient ions) and adopt different geometries depending on the state of

the protein. That is, having the possibility to have a different, yet crucial, geometry

arrangement necessary to visit a catalitically competent conformation. Adopting

this conformation, especially for complex systems where many different parts are

involved, such as multimeric enzymes with DNA/RNA and other substrates regu-

lating, may take long timescales up to milliseconds due to major rearrangements.

Most existing force fields are generally incapable of describing the interactions

between metal ions and proteins accurately. Most of the problem comes from the

fact that the ion is treated as a charged ball representation and its interactions with

other molecules are Van der Waals potentials. This has been found problematic,
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for example on studies of a zinc protein when comparing ab initio and force field

based calculations [42]. The force field overestimated the interaction between the

ion and the negatively charged residues in the protein, showing that non-polarizable

force fields cannot reproduce the interactions. Although previous efforts to tackle

this problem have been proposed, most of them are built for specific cases, most

of them involve a specific change in the force field parameters (i.e. Lennard-Jones

potential) or how they are accounted for [43, 44]. Currently, ML methods based

on NN potential models have become increasingly popular due to their efficiency

and accuracy [45]. However, these are still constrained in terms of the training data

which might be scarce for big and unexplored systems such as CRISPR Cas1/Cas2

and they have been applied to smaller protein systems so far.

Having all of this in mind, there is a need for developments in enhanced sam-

pling schemes to aid in the study of metalloproteins and similar systems. In order to

aid in this problem, I developed a novel flavour of replica exchange, more focused

on the atomic charges (Atomic Charge Replica Exchange Molecular Dynamics or

ACHREMD) (see Fig.1.11). While this is less advanced than a NN potential, it is

more general and applicable to any system size and complexity. This method allows

to flatten the free energy landscape by tampering with the atomic charges of relevant

atoms. This can be applied to explore the association/dissociation of complexes and

find stable conformations for active site geometries. It is a unique approach towards

a better utilisation of the current methods while the development of novel methods

is on the way. Its simplicity and scalability allows for quick exploration even in big

protein systems.

Ultimately, Fig.1.11 summarizes the motivations that guided this thesis and

give an overview of the expected projects.
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Figure 1.11: Visual summary of the motivations and overview of this thesis. Although it
is applied on ligand-unbinding, MLTSA is designed to be used in any state-
defined problem, including but not limited to other simulated biomolecular
events. ACHREMD is most useful for electrostatic interactions, best suited
to flatten the profiles and sample rare events such as dissociations and major
rearrangements.



Chapter 2

General Methods

This chapter includes the theoretical/methodological information for the different

techniques applied during the making of this thesis. The first section explains more

in detail the principles of MD simulations, which is at the core of the study, fol-

lowed by the two project’s methods sections. The second section explains the

methods necessary/developed for the MLTSA approach and the third section ex-

plains the methodology behind replica exchange MD and the development behind

our ACHREMD version.

2.1 Molecular Dynamics Simulations
This section will explore the basis of MD and the steps involved in a typical MD

protocol. This will include brief explanation for relevant concepts of the meth-

ods involved. MD is a simulation method involving the calculation of the positions,

velocities and forces of each atom in a molecular system over time and using this in-

formation to predict the behaviour of the system over a range of time scales. Atoms

are usually represented as points in three-dimensional space and bonds are repre-

sented as springs.

2.1.1 Basis of MD

Equations of motion

The Newtonian equations of motion are the cornerstone of MD simulations. These

equations relate the forces acting on a particle to its acceleration, and provide a
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mathematical description of how forces determine the motion of particles in a sys-

tem. The equations are expressed as F = m ∗ a, where F is the force acting on a

particle, m is its mass, and a is its acceleration.

The force F acting on a particle is a vector quantity, meaning it has both mag-

nitude and direction. In the context of molecular dynamics simulations, this force is

the cumulative effect of various interactions that a particle experiences due to other

particles, bonds, electrostatic forces, etc. The force vector represents the combined

influence of all these interactions on the particle. Mass m is a scalar quantity that

represents the amount of matter in the particle. It determines the particle’s resis-

tance to changes in motion (inertia). Heavier particles require more force to achieve

the same acceleration as lighter particles. Acceleration a is a vector quantity that

represents the rate of change of velocity of the particle. It’s the result of dividing the

net force by the particle’s mass (a = F/m). Acceleration determines how quickly

the particle’s velocity changes in response to the applied force.

In MD simulations, the motion of each atom or molecule in a system is de-

scribed using a set of coupled equations of motion. These equations are obtained

by considering the forces acting on each atom due to the intermolecular interactions

present in the system. The forces acting on each atom are calculated using a chosen

potential energy function, which represents the energy of the system as a function

of the atomic coordinates.

Summing up, the interatomic force for particle i would be described as

F⃗ t
i = mi · a⃗i (2.1)

where mi is the mass of particle i, a⃗i is its acceleration, and F⃗ t
i is the total force

acting on it. Then, the total force on particle i is calculated as the sum of all forces

exerted by other particles in the system, for example j. Then, including interatomic

forces and any external forces, the force on i would be

F⃗ t
i = ∑

j
F⃗i j + F⃗ext

i (2.2)
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where F⃗i j is the interatomic force between particles i and j, and F⃗ext
i is any other

external force. The interatomic forces are typically calculated using interatomic

potentials, such as the Lennard-Jones or Coulomb potentials. The specific form of

these potentials depends on the nature of the interactions between the particles (e.g.

van der Waals or electrostatic). The set of equations specifying these interactions is

called a force field.

Force Fields

Force fields can be either empirical or theoretical, meaning they are either derived

from experimentally determined properties or derived from first principles based

on quantum mechanics. Empirical force fields, such as AMBER, CHARMM, and

GROMACS, are based on fitting parameters to experimental data, while theoretical

force fields, such as quantum mechanical force fields, are derived from ab initio

calculations [46]. Examples include ab initio molecular dynamics (AIMD) and

Car-Parrinello molecular dynamics (CPMD).

The potential energy function (ETotal) used in MD simulations typically takes

the form of a sum over all pairs of atoms in the system, with each term repre-

senting the energy of interaction between a given pair of atoms for both bonded

(EBondedTerms) and non-bonded (ENon−BondedTerms) interactions. Fig.2.1 contains the

different terms for the different illustrated interactions that may take place, follow-

ing the same order as in the figure, these are:

Bonded Terms

• Ebonds : To calculate the energy from the bonds, modelled with harmonic

potentials having parameters for the ideal values of bond lengths (req) using

a force constant (kr).

• Eangles : Representing the energy for the ideal angle value (θeq) with a har-

monic potential using a force constant as well (kθ ).

• Edihedrals : Dihedrals are described with a Fourier series, with a force constant

kφ for an angle φ , n for the multiplicity of the potential (depending on their

minima) and γ for the phase offset or angle at which the minimum occurs.
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Figure 2.1: Illustration of the most common interactions between atoms in force fields and
the energy terms describing them. Atoms are represented in green and the
relevant interactions in red. Black arrows represent bonds.

• Eimpropers : Term defined for aromatic and sp2 atoms to maintain their planar

structure. ω is the angle defined for atoms ABCD, where D is in bond with

B not C. These are modelled with a harmonic potential as well and a kω to an

ideal value ωeq.

Non-Bonded Terms

• EV dW : Van der Waals interactions are accounted for with this term, that can

be described by a variety of function forms, the Lennard-Jones is the most
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common one where rm is the optimal distance, ri j the actual distance, and ε

is the depth of the potential energy well.

• ECoulomb : One of the most contributing ones, the electrostatic interaction,

which is accounted for with this term, having qi and q j as the point charges,

ri j representing the distance between the atoms and ε the dielectric constant.

Note that the contemporary versions of force fields may contain more terms

accounting for corrections. The force acting on each atom is then obtained as the

negative gradient of the potential energy function with respect to the atomic coordi-

nates, and the resulting set of equations is solved numerically using an integration

algorithm such as the Verlet or the Leapfrog algorithm. The timescale problem

mentioned in 1.2 arises because processes, like unbinding, biomolecular folding or

large conformational changes, occur on longer timescales than can be directly sim-

ulated due to computational limitations. Short time steps ensure numerical stability

but limit the simulation to short timescales, making it difficult to capture slow pro-

cesses. On the other hand, using larger time steps to simulate longer timescales

risks introducing inaccuracies and destabilizing the simulation.

The numerical solution of the equations of motion allows us to obtain the co-

ordinates of each atom as a function of time, allowing us to study the dynamic

behavior of the molecular system. This includes the calculation of structural and dy-

namical properties such as the time-dependent pair distribution function, the mean

square displacement, and the time correlation functions.

In essence, while force fields provide equations, solving them numerically

encounters timescale limitations. Strategies like enhanced sampling or coarse-

graining help bridge the gap between fast numerical integration and slower pro-

cesses of interest in molecular dynamics simulations. These methods aim to speed

up rare events by biasing simulations or reducing the level of detail, allowing longer

timescales to be explored.
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Temperature and Pressure

In molecular dynamics (MD) simulations, there are three common ensembles used

to control the thermodynamic conditions of the system: NPT, NVT, and NVE [47].

• NVT (Constant Number of Particles, Volume, and Temperature) is an ensem-

ble in which the number of particles, volume, and temperature of the system

are held constant. The temperature is controlled using a thermostat, and the

volume is kept constant by not allowing the simulation box to change size.

• NPT (Constant Number of Particles, Pressure, and Temperature) is an ensem-

ble in which the number of particles, pressure, and temperature of the system

are held constant. The temperature is controlled using a thermostat, and the

pressure is kept constant using a barostat.

• NVE (Constant Number of Particles, Volume, and Energy) is an ensemble in

which the number of particles, volume, and total energy of the system are held

constant. No thermostat or barostat is used in this ensemble, which makes it

ideal for studying systems that are not in thermal and pressure equilibrium.

The choice of ensemble depends on the goals of the simulation and the physical

conditions of the system being studied. For our systems of study, the choice for

simulation ensemble is an NPT, due to the nature of the experiments. One wants

to be able to track the energy through the process to be able to calculate the free

energy profile of the events.

Thermostats . The temperature of the system is a measure of the average kinetic en-

ergy of the particles in the system. In MD simulations, the temperature is controlled

through the use of thermostat algorithms. The most common thermostat algorithms

are the Nosé-Hoover thermostat and the Berendsen thermostat. These algorithms

work by adjusting the velocity of the particles in the system, thus controlling the

temperature of the system [47].

Barostats . The pressure of the system is a measure of the force exerted by the

particles in the system on the walls of the simulation box. In MD simulations, the

pressure is controlled through the use of barostat algorithms. The most common
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barostat algorithms are the Berendsen barostat and the Parrinello-Rahman barostat.

These algorithms work by adjusting the size of the simulation box, thus controlling

the pressure of the system [47].

Thermostat algorithms and barostat algorithms are crucial in MD simulations

as they ensure that the temperature and pressure of the system remain constant and

uniform throughout the simulation. This helps to prevent the system from deviating

from the desired temperature and pressure conditions and ensures that the simula-

tion results are accurate and meaningful [47].

2.1.2 MD Simulation Protocol

In a typical MD protocol, a pipeline of several crucial steps has to be followed in

order to successfully simulate a given system. This usually ranges from the setting-

up step to the production run step. The described protocol here follows that of the

CHARMM-GUI solution builder.

System preparation

To start with, the 3D structure of the protein of interest has to be determined

(through X-ray crystallography, NMR or Cryo-EM), or modelled (through homol-

ogy modelling), obtaining a set of atomic coordinates, usually a .pdb file with the

cartesian coordinates (XYZ).

The next step after reading in the initial coordinates, is solvating the system

with water molecules, which can be placed following different conventions. In the

systems for this study the molecules were placed using a Monte-Carlo placing. In

this step, the salt concentration has to be set as well using different cations and

anions to emulate that of the environment one wishes to simulate, or neutralize the

system [47].

After that, the molecular topology is built which defines the bonded and non-

bonded interactions between the atoms in the system. This involves assigning par-

tial atomic charges, types of bonds and angles and specifying non-bonded interac-

tions.
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Periodic Boundary Conditions

Once the required molecular topology for simulation is built, the periodic bound-

ary conditions (PBCs) are applied based on the system shape and size. PBCs are

used to mimic an infinitely large system by repeating the simulation box in three

dimensions.This creates a seamless environment where molecules can interact with

their own periodic copies, enabling the simulation to explore various configura-

tions and interactions, effectively sampling a broader range of possible molecular

arrangements in space. The creation of PBCs involves defining the dimensions of

the simulation box, which can be either cubic or orthorhombic, and determining the

box vectors. The box vectors define the orientation and size of the simulation box

and must be chosen such that the system fits comfortably within the box while the

interactions between the periodic images are negligible.

Once the box dimensions and vectors have been defined, the atomic coordi-

nates of the system are then wrapped into the simulation box, such that all atoms

are within the simulation box and are separated by a minimum image convention.

This convention ensures that each atom interacts with only one periodic image of

its nearest neighbors, avoiding double counting of interactions.

In order to calculate long-range electrostatic interactions, the particle-mesh

Ewald (PME) method is often used. The fast Fourier transform (FFT) grid infor-

mation is essentially a 3D grid that is used to store the electrostatic potential of the

system. The size of the grid is determined by the number of grid points in each

dimension and is typically chosen such that the grid spacing is smaller than the

cut-off distance of the non-bonded interactions. Thus, the FFT grid information is

then used in the PME method to perform a 3D FFT on the electrostatic potential.

This transforms the data from real space to reciprocal space, where the long-range

interactions can be more efficiently calculated. The result of the FFT is then used

to calculate the interaction energy between the periodic images.

Initialization and Energy Minimization

A typical MD protocol involves the calculation of the initial energy of the system to

compute the new forces and, through numerical integration predict the next position,
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velocities and forces in an iterative fashion for a given number of steps.

Energy minimization is a critical step in many MD simulations, as it helps to

remove any artificial or random fluctuations in the initial atomic positions, and to

prepare the system for the dynamics simulation. The goal of energy minimization

is to generate a stable, representative starting configuration that is consistent with

the conditions specified by the simulation parameters (e.g. temperature, pressure,

etc.). The principle states that the simulation should strive to minimize the potential

energy of the system, with the goal of finding the set of atomic coordinates that re-

sults in the lowest possible value of the potential energy. To achieve this, numerical

optimization algorithms are used to iteratively adjust the atomic coordinates until

the potential energy reaches a minimum value.

The most commonly used algorithm for the minimization of MD simulations

is the steepest descent or gradient descent algorithm. This algorithm involves it-

eratively moving the system towards the direction of the negative gradient of the

potential energy, until a local minimum is found. Another algorithm that is some-

times used is the conjugate gradient algorithm, which is more efficient than the

steepest descent algorithm for systems with large numbers of degrees of freedom.

The choice of minimization algorithm depends on the system being studied and

the computational resources available. In general, the steepest descent algorithm

is sufficient for most systems, but more complex algorithms may be necessary for

systems with large numbers of degrees of freedom or complex energy landscapes.

Equilibration

The equilibration step is a crucial pre-processing step that prepares the system for

the production simulation. The goal of equilibration is to bring the system to a

state of thermodynamic equilibrium, where the temperature, pressure, and particle

distribution have reached their steady-state values. It typically involves two phases:

an initial heating phase and a final equilibration phase.

In the initial heating phase, the system is rapidly brought up to the desired

temperature by applying a thermostat. This phase is usually done rapidly in order

to avoid any long-term effects that could alter the properties of the system.
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In the final equilibration phase, the temperature, pressure, and particle distribu-

tion are allowed to reach their steady-state values over a longer period of time. The

system is subjected to both a thermostat and a barostat to control the temperature

and pressure, respectively. This phase is run for a sufficient duration to ensure that

the simulated system has effectively reached a state of thermodynamic equilibrium,

where its macroscopic properties remain relatively constant over time, reflecting

the conditions under which the system is meant to be studied. This will result in

a state of thermodynamic equilibrium, which is a stable and representative state of

the system to start the simulation from.

Depending on the system, the final equilibration phase may have to be run for

longer steps to ensure the relaxation of the systems. In MD simulations of proteins,

constraints are often applied to the system to prevent bond stretching or bond an-

gle bending that would result in unrealistic deformations of the protein structure.

The deformations can happen in response to the sudden change in temperature or

pressure, or during the rearrangement of the bulk. These constraints can be imple-

mented using algorithms such as the SHAKE or LINCS algorithms, which maintain

the bond lengths and angles within specified limits. Even after running longer equi-

libration steps, the amount of steps to relax the solvent may not be sufficient, it

is usually recommended to follow up equilibrations with unconstrained production

runs to fully relax the system and start considering data after the additional uncon-

strained production and consider it additional equilibration.

Production

The production run in molecular dynamics (MD) simulations is the main simulation

stage. The goal of the production run is to obtain representative and statistically

meaningful data that can be used to study the physical properties of the system being

modeled.During the production run, the system is allowed to evolve over time under

the influence of the forces between the particles, and the temperature and pressure

are maintained using a thermostat and barostat, respectively. The length of the

production run depends on the desired accuracy of the simulation and the physical

properties of the system being studied. Typically, the simulation is run for several
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nanoseconds or longer, with snapshots of the system taken at regular intervals for

analysis.

It is at this stage that most techniques for enhanced sampling and other methods

take place. This is the foundation that ensures a proper simulation experiment

2.2 MLTSA
This section will explain the methodology and techniques necessary to perform the

MLTSA analysis on time data series. This has been applied on both biologically

relevant data and toy model data. Being an analysis, it needs data to be used on

as well as several additional steps to be performed and it can be used on a side as

a complement of other approaches. However, in the context of this thesis, it will

be treated as the main goal and the techniques needed to achieve it are under its

umbrella. In order to successfully use MLTSA it is necessary to have both:

• Several trajectories from a time series that starts in the same state and it leads

to different outcomes or states. This is not restricted to only 2 outcomes, but

2 and 3 outcome states are explored in this study. This could work with both,

physical events or any other time-dependent event which starts at the same

time and ends with a different outcome.

• A way to categorize each outcome to assign a label for each series and build

the training data. This could be either from the input data, or using a different

quantity or non-numerical variable not included in the training data, which is

the most suited to get the most information out of the approach.

In the context of MD simulations, however, this could refer to, but it is not

restricted to, a TS. Having a transition state (TS) structure allows the exploration of

the reactant (A) and product (B) states starting several independent simulations also

called Downhill Simulations. Having both outcomes A and B, and tracking CVs

(see section 1.3.1 for reference) from the downhill trajectories is what is needed for

the approach, which in return yields very insightful information about the internal

coordinates under study, in the form of feature relevance for the outcomes. This en-

ables highlighting the main driving factors at different levels (interatomic distances,
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cartesian coordinates, angles and other features). Although it sounds straightfor-

ward, this approach requires several steps to accomplish this, in specific for our

ligand-unbinding cases of study it involves:

1. Obtain a first unbinding trajectory using our unbinding protocol.

2. Refine and optimize the unbinding path (see section 2.2.1 for the details on

our case).

3. Explore the reconstructed free energy profile structures in order to approxi-

mate the TS of the unbinding (these come from string windows in our case).

4. Generate several downhill simulations starting from the identified TS to sam-

ple well enough.

Having that in mind, this section will focus on the steps necessary for obtaining

the MD simulation data, additionally it includes the ML models used and the feature

analysis techniques needed to perform the full analysis that has been done on all

types of data.

2.2.1 Ligand Unbinding

The approach used in this thesis is described in the unbinding protocol of [1],

published prior to the writing of this thesis. This section will explain the different

parts involved in this protocol, which are necessary to apply MLTSA in ligand-

unbinding downhill trajectories.

Unbinding Protocol

The unbinding protocol is an iterative algorithm that allows one to obtain optimized

ligand unbinding paths from a bound crystal structure, as well as recover the free

energy profile describing it. Note that this has been done in proteins so far but it is

not restricted to them. Following the flowchart in Fig. 2.2, after building the system

from the bound crystal structure, a first exploratory simulation identifies the initial

interactions. These initial interactions, namely interatomic distances, allow us to

define a first set of CVs to bias and start pushing the ligand outside of the pocket.
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Using a din as interaction cut-off, the distances between ligand and protein heavy

atoms smaller than din will generate a single one-dimensional CV as the sum of

these distances. This main CV will be used for iteratively biasing the simulations

until the ligand totally exits the binding pocket. However, as the ligand exits, new

interactions are formed and old interactions vanish and are no longer needed to bias.

To account for it, at the end of each iteration the biased trajectory is analyzed and

novel interactions within din are added, as longer than dout interactions are removed

from the main CV. This provides a more natural approach to ligand dissociation

than other similar methods which constantly bias the interactions between protein

and ligand. Note that din and dout are cutoffs for considering adding or removing

interactions from the main CV, which is used for biasing (V n) as described in eq.2.3.

The bias that is applied to this main CV has the form of a harmonic restraint

V n =
1
2

k(Dn −
Mn

∑
i=1

dn
i )

2 (2.3)

Where Dn = Dn
0 +Mn, Mn is the sum of the number of distances dn

i . Here one aims

to reach the target value Dn for the main CV starting from the initial value Dn
0. The

targeted value will be reached progressively within the given simulated steps with

a k force constant. Note this terms are different than din and dout which are cutoffs

for including distances in the main CV or not.

If a distance during the last 5ns of the trajectory exceeds dout or its variance

exceeds dvar, the distance will be removed from the main CV for the next iteration

and will no longer be biased. Similarly, such loosely interacting atom pairs have

higher distance fluctuations, and thus this weak interaction does not need to be

included in the bias. To reduce the number of interactions between the ligand and

the protein to bias, and to remove redundancies, one has to combine atoms that are

part of an equivalency group where a rotational degree of freedom can interchange

the atoms from one to the other.
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Figure 2.2: Flowchart illustrating the steps for the unbinding protocol.

Finite-Temperature String Method

Once the initial unbinding path has been obtained, a subsequent finite-temperature

string method, also known as string method [48], is run to obtain an optimized free

energy pathway of the mechanism. This method is used for finding the minimum-

energy path (MEP) between two stable states in a multi-dimensional potential en-

ergy surface. It is based on the idea of generating a string (or curve) in the high-

dimensional space that connects the two stable states, and updating the string at

each iteration so that it moves towards the MEP. The MEP is defined as the path of
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minimum energy that connects the two states. The string-like representation of the

molecular configuration evolves towards the global minimum over time. It evolves

according to an iterative minimization scheme that updates the string configurations

using gradient-based optimization techniques. The finite-temperature aspect of the

method refers to the use of MD simulations to sample the energy landscape, allow-

ing the string to escape from local minima and explore the entire energy surface.

The method has been applied to a wide range of molecular systems, including pro-

teins, peptides, and small organic molecules, and has shown great success in finding

the global minimum conformations of complex molecular systems [48, 49].

A string is initialized in the high-dimensional space, connecting the two stable

states. This string is typically represented as a series of discrete points or nodes

(windows). At each iteration, the nodes of the string are updated by moving them

in the direction of the negative gradient of the potential energy surface. This results

in the string gradually moving towards the MEP. After each iteration, the string is

reparameterized to ensure that the nodes are evenly spaced along the path. This

helps to prevent the string from becoming too dense in some regions and too sparse

in others. The method includes a bias correction term to ensure that the string

remains on the MEP even at finite temperatures. This correction term is based on

the concept of force-bias, which is the difference between the force on a particle at

a given point in space and the force that would be expected at that point based on

the potential energy surface.

Applying this method iteratively until convergence can yield back accurate

free energies for the unbinding path. In the context of the unbinding protocol, this

method is applied using the starting bound structure and the final unbound structure

as well as the obtained path during the protocol. This trajectory is then divided

into windows (nodes) for the each of the distances that have been included in the

main CV, building a string in the coordinate space. For each window and each CV a

positional restrain is equidistantly placed along the initial fitted string, using a force

constant. A high order polynomial fitting is applied using the average values for

each CV to build the subsequent set of refined CV positions. This is done iteratively
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until the convergence of the free energy profile. Convergence is verified by ensuring

that the maximal change of each CV between iterations is below 7%.

Free Energy Profiles

After convergence of the string trajectories, the free energy profile from the un-

binding path can be recovered despite the trajectories being biased by using a re-

weighting method. WHAM (Weighted Histogram Analysis Method) is a computa-

tional technique for the determination of free energy profiles and other thermody-

namic properties from MD data [50]. The method allows for the estimation of the

probability distribution of a given system parameter (e.g. the distance between two

residues), taking into account the fluctuations in the simulation trajectory and the ef-

fect of different simulation conditions (e.g. temperature or pressure). The resulting

free energy profile provides insights into the stability, conformations, and energetics

of the system, which can be used to understand the system’s behavior and make pre-

dictions about its behavior under different conditions. WHAM is commonly used in

MD simulations and has been applied to various systems including proteins, lipids,

and nucleic acids [15].

WHAM can handle biased data by weighting each data point in the histogram

according to the bias energy. The bias energy acts as a correction factor that mod-

ulates the observed probability of the system. The corrected probability density

function is then used to calculate the free energy profile. The weighting factor can

be introduced into the WHAM equation in the following way, using the equation

for the probability Pi for a state i

Pi =
ni

N
e−β (Ei−Fi) (2.4)

where ni is the number of observations in bin i, N is the total number of observa-

tions, β = 1
kBT , Ei is the average energy of the bin i, and Fi is the corresponding free

energy. The bias energy is incorporated as a correction factor in the calculation of

the average energy Ei
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Ei =
∑

ni
j=1(E j +Vb(x j))

ni
(2.5)

where E j is the energy of observation j, Vb(x j) is the bias potential for observation

j and x j is the collective variable value of observation j.

The binless implementation of the Weighted Histogram Analysis Method

(WHAM) is an alternative method to the traditional binned implementation. It in-

volves using a mathematical optimization algorithm, such as a maximum likelihood

or minimum free energy approach, to directly determine the density of states with-

out relying on a discretized representation. This can result in a more accurate and

flexible representation of the density of states, as well as a reduced dependence on

the choice of bin sizes and boundaries. However, it can also be computationally

more intensive than the binned approach, and may require a more sophisticated

optimization algorithm.

Transition State Approximation

After recovering the profile for the unbinding path, an approximation of the TS is

possible by interpolating the top of the energy barrier’s reaction coordinate with

the corresponding structure. In theory, a TS should be the configuration with the

highest energy along the reaction coordinate path that has to be crossed in order

to obtain a product from the reactants. Thus, starting new independent simulations

from this high-energy state would yield, in theory, a 50/50 chance of ending in the

reactant (bound) or product (unbound) states.

Following this idea behind the TS, one is able to approximate a TS structure

by starting simulations using configurations from string windows around the cor-

responding high-energy point. Thus starting multiple simulations from string win-

dows I was able to find the one yielding the closest 1:1 probability of going back to

pocket or unbinding. Once the closest one is identified, it can be used to generate

multiple trajectories to build the datasets needed for the MLTSA analysis.
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2.2.2 Protein Datasets

In this sub-section the protocol for the generation of each type of dataset will be

explained. Note that this methodology is shared between all systems studied and

these are just details for the implementations. While it is recommended to follow

the order of this datasets in order to succesfully apply the MLTSA analysis, it is

not restricted to this alone. One may be focusing on the active site alone, or maybe

only an event which is strictly protein-protein related. Additionally other types of

datasets are also encouraged.

Closest Protein-ligand Distance

R1

R2

R3

R5

R6

R4

Closest Ligand-Residue distances

Ligand Ligand

R3

𝑑 𝑐𝑙𝑜
𝑠𝑒

𝑠𝑡

For each frame

Figure 2.3: Illustration of the distances included in the analysis for an example allres dataet
with the closest ligand-residue distances at each frame. Note that for every
frame, the closest interatomic distance for each residue is calculated and added
to the dataset.

To assess all protein-ligand contributions first without having to calculate ev-

ery interatomic distance between them, a first ”closest protein-ligand” dataset is

created, also called allres. This dataset is a coarse picture of all residue distances

with the ligand, by only taking into account the smallest distance between ligand

and residue at each time, reducing this to only contacts. By tracking this through the

trajectory, the allres dataset is created. Note that this is done not only for residues, it

can also be done optionally for water molecules to try to evaluate their role or other
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entities such as ions, other ligands, cofactors, etc.

This is implemented by using mdtraj’s md.compute_contacts and it uses

the closest atom, heavy or not, for distance criteria [51]. That is, recalculating the

closest atomic distance between a given residue and the ligand at each frame, and

recording it’s value to create the coarsed dataset.

Protein-ligand Shell

The Protein-ligand Shell datasets correspond to interatomic distances of all atoms

within a given distance cutoff from the ligand’s atomic positions. That is, for ex-

ample, all interatomic distances between ligand and protein residues within 5Å of

any ligand’s atom. Usually to cut down the number of distances, only distances

between heavy atoms are added to the dataset. This is done by using mdtraj’s

Figure 2.4: Diagram of the protein-ligand shell dataset construction. On the left, the shell
defined by a given distance d cutoff, all protein residue atoms inside this shell
will be used to calculate their interatomic distance to all ligand atoms and build
the protein-ligand shell dataset.

md.compute_neighbours() implementation [51]. Please note that all atoms

within a given d cutoff at the TS structure will be included in the dataset and its
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distance at all times monitored.

XYZ-PCA Features

To be able to assess all residue-residue interactions within the protein, the number

of distances to assess would be overwhelming. As an attempt to identify relevant

conformational changes and assess intraprotein interactions, the XYZ-PCA dataset

was created.

[𝑥1, 𝑥1, 𝑥1]

[𝑥2, 𝑥2, 𝑥2]

[𝑥𝑛, 𝑥𝑛, 𝑥𝑛]

…

Principal Component 
Analysis

XYZ-PCA Dataset 

[𝑥3, 𝑥3, 𝑥3]

Feature 1

Fe
at

u
re

2

Figure 2.5: Atomic cartesian coordinates from the system are used to perform a dimension-
ality reduction with PCA. Then the PCA’s top components are used as input
features to create an XYZ-PCA dataset dataset

Principal Component Analysis (PCA) is a dimensionality reduction tech-

nique that is commonly used to analyze data. The goal of PCA is to transform

the input features into a new coordinate system such that the first coordinate (i.e.

the first principal component) captures the largest amount of variance in the data,

the second coordinate captures the second-largest amount of variance, and so on.

Given a centered data matrix X of size NxD (N being the number of samples

and D the number of features), the PCA algorithm computes the eigenvectors and

eigenvalues of the covariance matrix

Σ =
1
N

XT X (2.6)
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where X is the input data matrix, XT is the transpose of X and Σ is the covariance

matrix.

The eigenvectors are denoted by U and the eigenvalues by λ . The eigenvectors

corresponding to the largest eigenvalues capture the most important patterns in the

data, and thus form the basis of the lower-dimensional subspace.

The projected data matrix Z then is obtained by transforming the data matrix

X using the eigenvectors

Z = XU (2.7)

where Z is the projected data matrix, U is the eigenvectors and X is the original data

matrix.

This projection of the data allows a dimensionality reduction from the original

XYZ (3* natoms) coordinates, much more meaningful and gets rid of the noisy data.

This can create as many projections as original features, however, the explained

variance of each principal component (eigenvectors) is already indicative of the

amount of new projections needed to avoid information loss. Taking just the amount

of projections before the explained variance decays to 0, one can ensure there is no

information being left on the projected data.

Thus, to create the XYZ-PCA dataset, the raw atomic coordinates of the pro-

tein can be concatenated and reduced to 1D projections by PCA to then be used

in the MLTSA as well and gain insight on specific atoms/residues relevant to the

outcomes. This can be done by looking at the specific component scores for each

original input feature (cartesian), thus averaging to get the atomic relevance (XY Z)

and the residue relevance (atoms). Doing this, one can interpolate the relevant fea-

tures out of the MLTSA to the structural changes in the protein. More specifically,

this can be translated to an XYZ movement depending on relevance, to see the most

relevant areas in a more illustrative fashion.

2.2.3 Machine Learning Models

The methods and techniques described within this chapter are the ones used for

the MLTSA analysis, which include neural networks and decision trees so far. A
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brief overview of the three models will be provided including architecture, param-

eters, and training procedure. Software used for training and testing will also be

described.

MLP

A Multi-Layer Perceptron (MLP) is a type of feedforward neural network that

is widely used for supervised learning tasks such as classification, regression, and

prediction. It consists of multiple layers of interconnected neurons, including an

input layer, one or more hidden layers, and an output layer. As described in Fig.2.6

each neuron in the hidden and output layers computes a weighted sum of its in-

puts, passes the result through an activation function, and produces an output that

is propagated to the next layer. In an MLP, the input is fed into the input layer,

and the output is obtained from the output layer, as in Fig.2.7. The input values are

propagated forward through the network, layer by layer, using a set of weights that

are learned during the training process. The weights are updated using a backprop-

agation algorithm, which computes the gradient of the error function with respect

to the weights and adjusts them to minimize the error. Let’s assume that the input

𝒙𝟏
𝑾𝟏

𝒙𝟐

𝒙𝒏

Inputs Single
Neuron

Output

𝑾𝟐

𝑾𝒏

Perceptron Model

𝑓 𝑍1 = max(0,𝑍1)

Ac�va�on Func�on

Summa�on

Figure 2.6: Representation of a simple perceptron diagram. The inputs (X) get multiplied
by a weight (W) and summated in a neuron, then an activation function f() (in
this case ReLU) produces the output value (y).
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layer has n inputs, the hidden layer has m neurons, and the output layer has p out-

puts. The weights between the input layer and the hidden layer are represented by

the matrix W , and the bias term for the hidden layer is represented by the vector b.

Similarly, the weights between the hidden layer and the output layer are represented

by the matrix V , and the bias term for the output layer is represented by the vector

c. The output of the k-th neuron in the hidden layer is denoted by hk, and the output

of the j-th neuron in the output layer is denoted by y j.

The equations for computing the output y of an MLP with three layers are

hk = f (ak) where ak =
n

∑
i=1

Wkixi +bk, for k = 1,2, . . . ,m (2.8)

y j = g(b j) where b j =
m

∑
k=1

Vjkhk + c j, for j = 1,2, . . . , p (2.9)

In these equations, f() and g() are activation functions that are applied to the

weighted sum of the inputs to the hidden and output layers, respectively. Com-

mon activation functions include the sigmoid function, rectified linear unit (ReLU)

function, or hyperbolic tangent function.
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Figure 2.7: Representation of a Multi-Layer Perceptron classifier. This model has an input
layer, a hidden layer and an output layer. The output layer’s output value will
determine how close the sample is to each class ( 0 for the first, or 1 for the
sceond).
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MLPs can be used with various activation functions, such as the sigmoid func-

tion, ReLU (Rectified Linear Unit) function, or the hyperbolic tangent function, and

can have different numbers of neurons in each layer. The architecture of an MLP,

including the number of layers and neurons, can be adjusted based on the com-

plexity of the task and the size of the dataset. As Fig.2.7 represents, in this study,

the MLP Classifier architecture is used for binary classification in most cases, us-

ing always a ReLU function for the hidden layer and having a logistic function in

the only output neuron in the output layer. This is to predict the outcome of each

simulation/data used by using one sample from it.

During training, the weights and biases of the MLP are adjusted to minimize

the error between the predicted outputs and the desired outputs. This is typically

done by using a backpropagation algorithm, which computes the gradient of the

error function with respect to the weights and biases, and updates them using an

optimization algorithm such as stochastic gradient descent. More specifically, for

the optimization of the models used in this study, the Adam solver was used until

convergence or upon reaching the maximum number of iterations. Convergence

is determined by the tolerance and the number of epochs in the training with no

change in loss. When having niter−no−change consecutive epochs with less than tol

improvement on the loss, the training stops, and it is considered that the model has

reached convergence.

In order to use this model, the input data has to have the shape (features, sam-

ples), where the architecture of the MLP has to match the number of features as

well. Then the training is done in batches of samples and updated every epoch

through backpropagation. This architecture was built using both the SCikit-learn

implementation and TensorFlow. The Scikit-learn implementation has early stop-

ping and dropout with a constant learning rate. This was also mimicked in Tensor-

Flow, which allowed faster trainings and a more accurate training on some cases.

LSTM

An LSTM (Long Short-Term Memory) is a type of recurrent neural network (RNN)

that is capable of modeling long-term dependencies in sequential data (i.e. time
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series). Unlike traditional RNNs, which suffer from the vanishing gradient problem

and struggle to remember long-term information, LSTMs use a specialized memory

cell to selectively remember or forget information over time.

The basic building block of an LSTM is the memory cell, which is connected

to the input and output gates and the forget gate. The input gate controls the flow of

information into the memory cell, the output gate controls the flow of information

out of the memory cell, and the forget gate controls which information is retained

in the memory cell. The equations that describe the input gate, forget gate, and

output gate are:

Input gate:

it = σ(Wxixt +Whiht−1 +Wcict−1 +bi) (2.10)

Forget gate:

ft = σ(Wx f xt +Wh f ht−1 +Wc f ct−1 +b f ) (2.11)

Output gate:

ot = σ(Wxoxt +Whoht−1 +Wcoct +bo) (2.12)

And the equations describing the states of the cells updating during training are:

New cell state:

c̃t = tanh(Wxcxt +Whcht−1 +bc) (2.13)

Updated cell state:

ct = ftct−1 + it c̃t (2.14)

Hidden state:

ht = ottanh(ct) (2.15)

Here, xt is the input at time t, ht−1 is the hidden state at time t − 1, ct−1 is

the cell state at time t − 1, it , ft , and ot are the input, forget, and output gates,

respectively, and c̃t is the new candidate cell state. W and b are weight matrices

and bias vectors, respectively, and σ is the sigmoid activation function. The tanh
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activation function is used to compute the new cell state and the hidden state.

During training, the LSTM receives a sequence of inputs and uses the gates

and memory cell to selectively store or discard information at each time step. The

cell state is updated through the input and forget gates, and the output gate produces

the output of the LSTM at each time step.
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Figure 2.8: Diagram of an LSTM block (left), an LSTM network (middle) and the memory
cell of an LSTM block (right). Note that for the left and middle diagrams, the
output is in yellow, the memory cell in blue and the input in green. For the
memory cell diagram, σ is a sigmoid layer, tanh a tanh layer, X is a scaling
of information, ht is the current output’s hidden state and ht−1 the previous
LSTM’s block output, Ct is the cell state and Ct−1 the previous cell state, and
lastly Xt is the current input.

Regarding the specifics for the purpose of this study, the LSTM model was

used as a classifier capable of forecasting the outcome state using either a portion

of the data or all data. For this, the data had to be in the form of (samples, fea-

tures, time) or more specifically for simulations (simulations, features, frames), thus

meaning that for each independent sample belonging to a class, there is a number of

features for each data point in the time series. In contrast to MLP, this model allows

the context of the series to be taken into account in the learning. This model was

only implemented in TensorFlow in Python, having dropout and early stopping.
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GBDT

Gradient Boosting Decision Tree (GBDT) is an ensemble learning method that

combines multiple decision trees to create a powerful predictive model. The basic

idea behind GBDT is to iteratively add decision trees to the model in a way that

corrects the errors of the previous trees. This is done by training each subsequent

tree to predict the residual errors of the previous trees. The GBDT algorithm can be

summarized in the following steps:

Initialize the model with a constant value:

f0(x) =
1
N

N

∑
i=1

yi (2.16)

For each iteration m = 1,2, ...,M:

• Compute the pseudo-residuals:

rim = yi − fm−1(xi) (2.17)

• Fit a decision tree to the pseudo-residuals: hm(x)

• Update the model by adding the decision tree:

fm(x) = fm−1(x)+ γhm(x) (2.18)

Here, yi is the true label for the ith example in the training set, fm(x) is the

predicted output of the model at iteration m for input x, hm(x) is the decision tree

added at iteration m, and γ is the learning rate, which controls the contribution of

each decision tree.

The GBDT algorithm is essentially a gradient descent method that minimizes

the loss function by iteratively adding decision trees that correct the errors of the

previous trees. The loss function can be any differentiable function, but the most

common choice is the mean squared error (MSE), which is given by:
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Figure 2.9: Diagram of a decision tree and the gradient boosting decision tree (GBDT)
strategy. The left diagram shows the decision tree’s splitting of features based
on a threshold for feature values bigger than (>, in red) or smaller/equal than
(<=, in blue). For the GBDT on the right, an initialized tree is subsequently
assessed, and the next tree is built improving over the previous for a number of
iterations (n). Then the bag of fitted models is used for ensemble prediction,
resulting in a forest predictor.

L(y, f (x)) =
1
2
(y− f (x))2 (2.19)

The pseudo-residuals are computed as the negative gradient of the loss function

with respect to the predicted output of the model:

rim =−∂L(yi, fm−1(xi))

∂ fm−1(xi)
(2.20)

The decision tree added at each iteration is trained to fit the pseudo-residuals,

using a standard tree-building algorithm such as CART. The tree is then added to

the model, with its predictions weighted by the learning rate γ .

The learning rate γ is an important hyperparameter in GBDT that controls the

contribution of each decision tree to the final model. A smaller value of γ results in

a more conservative model that takes longer to converge, while a larger value of γ

results in a more aggressive model that may overfit the training data.
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For the use case in this study, GBDT is used as a classifier following the Scikit-

learn implementation in Python. In the same fashion as the previous models, the

model is trained with a part of the data to predict each of the classes the time series

ends in later on. All models minimize with a logistic loss function using the MSE

to asses the split of the internal nodes.

2.2.4 Feature Analysis

For assessing the relevance of the different features of the datasets used in this

work, several techniques are available such as feature permutation [52], Gini feature

importance, local interpretable model-agnostic explanations (LIME), and others.

Within this work, due to the nature of the models, only the Gini feature importance

and our version of feature permutation called accuracy drop are used. Additionally

in some parts, the layer-wise relevance propagation (LRP) is also used. Thus, this

three different methodologies for feature analysis will be explained.

Accuracy Drop

Feature permutation is a technique used to measure the importance of features in

a predictive model. The basic idea is to randomly permute the values of a single

feature in the test set, re-evaluate the model on the permuted set, and measure the

change in performance. If the performance decreases significantly when a feature

is permuted, it suggests that the feature is important for the model’s predictions.

The feature permutation importance score for a feature i can be defined as the

decrease in performance when the feature is permuted [52]. Let X be the original

test set, y be the true labels, and f (X) be the predicted outputs of the model on the

test set. The performance measure can be any metric that evaluates the quality of

the predictions, such as the mean squared error (MSE) or the mean absolute error

(MAE).

The feature permutation importance score for feature i is then given by

Importance(i) =
1
n

n

∑
j=1

( f (Xπi j)− f (X))2 (2.21)

here, n is the number of samples in the test set, πi j is a permutation of the jth sample
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in which the value of feature i is randomly shuffled, and Xπi j is the permuted test

set.

To compute the feature permutation importance score, I need to generate mul-

tiple permutations of each sample in the test set, and average the decrease in perfor-

mance over all permutations. This ensures that the score is robust to the particular

order in which the permutations are applied.

In a similar way, the Accuracy Drop used in this work, is inspired from both

feature permutation and the previous efforts on doing feature selection with neural

networks [53]. In these previous networks, an MLP (three-layered feed-forward

neural network) was trained for a classification task in order to select a subset of

features from a high-dimensional feature space that is most informative for a neural

network model. They propose a feature quality index homologous to the accuracy

drop used here, where the features are ranked after ”removal” of the feature, i.e.

modifying the original feature for each training data point to zero, and subsequently

predicting again. This is done on the premise that the output sensitivity to the in-

put is high, thus using a similar value for each feature removed. Depending on the

difference between the original prediction score and the modified data point predic-

tion score, the original feature was relevant or not to begin with. That means that

a higher drop in accuracy suggests a strong relevance for the model to predict the

classes. In the original implementation, a randomly initialized set of networks is

then trained and the features are eliminated one by one by setting their value to 0.

Then the re-predicted accuracy for each model is calculated, and the feature ranking

is obtained.

The methodology for the accuracy drop (AD) used in the present work is highly

homologous to the previous, although in this case the difference is mostly in the way

of eliminating the features one by one. Instead of setting their value to 0, the total

average of each feature across time, also called global mean (GM), for the training

data is used. This allows the elimination of the features by cancelling out their

variance. This GM value is kept constant through all data points, i.e. time, denying

the variance of the feature. This results in a decrease in accuracy for the features
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Algorithm 1 Accuracy Drop Calculation in MLTSA
ADtotal = 0
for model (mi) in models do

Split original Data in test (Dt) and validation (Dv)
Train predictive mi with Dt
Asses accuracy of mi with Dv
ADi = 0
for feature ( f j) in Dt do

Calculate the global mean GM j of f j
Swap f j for GM j in Dt to create Dswapped
Predict accuracy (AD j) of mi with Dswapped
Append AD j to ADi

end for
Append AD j to ADtotal

end for
Average ADtotal over models
return ADtotal

whose variance was relevant to predict the outcomes. This provides a more clear

and straight-forward relationship for the features found relevant by AD.

The protocol for calculating AD across the desired number of replicas is de-

scribed in Algorithm 1. Where, over a given number of models, each model mi

is trained, its accuracy assessed, then the training data is iterated to be swapped

with its GM each time and re-predicted and recorded. That is then averaged over

the number of models to get the final ADtotal . Plotting this value for each of the

features allows one to assess the importance.

Layer-wise Relevance Propagation

Layer-wise relevance propagation (LRP) is a method for explaining the predic-

tions of a neural network by attributing a relevance score to each input feature. LRP

can be used to understand how the network arrived at its prediction, and to identify

the most important features that contributed to the prediction.

The basic idea of LRP is to propagate the output of the network back to the

input layer, assigning relevance scores to each neuron along the way. The relevance

scores represent the contribution of each neuron to the output of the network, and

are computed based on the activations and connections between neurons.
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The LRP algorithm can be described in the following steps:

• Forward pass: Run the input data through the neural network and compute

the activations of all neurons in each layer.

• Output relevance: Set the relevance of the output layer to be the target output

of the network, i.e., the predicted class probabilities.

• Relevance propagation: Starting from the output layer and moving back-

wards through the layers, propagate the relevance of each neuron to the neu-

rons in the previous layer based on the connections between them. The rel-

evance of a neuron in a given layer is distributed among the neurons in the

previous layer based on the strength of their connections, and the relevance is

multiplied by the activation of the neuron in the previous layer.

• Normalization: After propagating the relevance scores backwards through

the network, normalize the scores so that they sum to the original prediction

score of the input data.

The LRP algorithm can be written mathematically using the following equation

for relevance propagation from layer k+1 to layer k:

Rk = ∑
j

a jw jk + εsign(a jw jk)

∑i aiwik + εsign(∑i aiwik)
Rk+1, j (2.22)

where Rk represents the relevance of layer k, a j represents the activation of

neuron j in layer k+ 1, w jk represents the weight between neuron j in layer k+ 1

and neuron k in layer k, and Rk+1, j represents the relevance of neuron j in layer

k+1. The parameter ε is a small positive constant used for numerical stability.

The numerator of the equation represents the relevance score assigned to neu-

ron j in layer k+ 1 based on its activation and connection to neuron k in layer k.

The denominator represents the normalization factor that scales the relevance score

to account for the contributions of all neurons in layer k+1. The relevance score is

then multiplied by the activation of neuron k in layer k to propagate the relevance

backwards to layer k.
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The relevance scores obtained from LRP can be used to identify the most im-

portant input features for a given prediction. Features with high relevance scores are

considered more important, while features with low or negative relevance scores are

considered less important or even detrimental to the prediction.

The LRP algorithm can be applied to a neural network by modifying the for-

ward and backward passes of the network to compute and propagate the relevance

scores. The specific implementation details of LRP depend on the architecture of

the network and the type of task it is trained to perform.

Once the LRP algorithm is applied to a network and the relevance scores are

obtained for each input feature, further analysis and interpretation may be necessary

to draw meaningful conclusions about the importance of the features. Techniques

such as visualization, feature selection, or regression analysis can be used to further

analyze and interpret the relevance scores obtained from LRP. Thus, for some of

the work on this thesis, the LRP has been used to validate the results from the AD.

Note that although originally LRP is used in simple architectures such as MLPs, it

has been proved useful in LSTM and RNN as well.

Gini Feature Importance

In a GBDT, the Gini importance is a popular method for feature importance analy-

sis. It is a measure of the total reduction in impurity achieved by each feature across

all trees in the ensemble.

The impurity reduction of a feature j at a given tree is defined as:

∆i( j) = iparent −
nleft

n
ileft −

nright

n
iright (2.23)

where iparent is the impurity of the parent node, nleft and nright are the number of

samples in the left and right child nodes, respectively, and ileft and iright are the

impurities of the left and right child nodes, respectively.

The Gini importance of a feature j is then defined as the sum of the impurity

reductions achieved by j across all trees in the ensemble, normalized by the total
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number of trees:

Gini importance( j) =
∑

T
t=1 ∆i( j)t

T
(2.24)

where T is the total number of trees in the ensemble.

The Gini importance provides a ranking of the features based on their contribu-

tion to the impurity reduction achieved by the GBDT model. Features with higher

Gini importance values are considered more important in the prediction task, while

features with lower values can be considered less important or redundant. How-

ever, it should be noted that the Gini importance is not always a reliable measure of

feature importance, especially in the presence of correlated features or interactions

with other features. Thus, with the training of the GBDT model, one can obtain the

Gini feature importances straight away.

2.2.5 Protocol Summary

To sum up the MLTSA’s protocol, it can be divided in three parts:

• Dataset Creation: Independently from the type of data, any time series data

be used. Recommended a system where different features can be extracted

from.

• Model Training: Models have to be trained at different times throughout the

trajectory. Depending on the trend of the test/validation accuracy a specific

time is chosen.

• Feature Analysis: After successfully training the models, different strategies

for pinpointing relevant residues are used depending on the model.

Fig. 2.10 summarizes the standard approach used in this work by a combina-

tion of the GBDT and MLP to investigate the different protein datasets as well as

validation datasets with the 1D/2D models. Note that the data, model and feature

analysis depicted are only examples.
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Figure 2.10: Diagram of the typical MLTSA protocol from the dataset creation to model
training and subsequent feature analysis. The features extracted from the tra-
jectories and their outcomes are used to train ML models to predict the final
outcome, then, analysis is performed on the models to obtain the relevant fea-
tures. The datasets, methods and models are examples used in this work.

2.3 ACHREMD

This section is a walk-through of the methodology that leads up to the ACHREMD,

passing through HREMD and REMD, the original methodology that these are based

off.

2.3.1 REMD

Replica exchange molecular dynamics (REMD) is a computational technique

used to enhance the exploration of conformational space in molecular simula-

tions [54]. The method involves running multiple replicas of a system at differ-

ent temperatures and periodically exchanging the temperatures of adjacent replicas

(see Fig.2.11). This allows replicas to explore regions of conformational space that

would be inaccessible at a single temperature.

The exchange of temperatures is usually governed by a Metropolis criterion

that ensures detailed balance is maintained between the replicas. Specifically, the
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probability of exchanging temperatures between two replicas i and j is given by:

Pi→ j = min
(

1,e−(βi−β j)(E j−Ei)
)

(2.25)

where βi = 1/kBTi is the inverse temperature of replica i, Ei is the energy of replica

i, and kB is the Boltzmann constant. The probability of exchanging temperatures

from replica j to replica i is given by:

Pj→i = min
(

1,e−(β j−βi)(Ei−E j)
)

(2.26)

In practice, the exchange attempts are made periodically during the simulation, and

the frequency of exchange attempts can be adjusted to optimize the efficiency of the

method. Overall, replica exchange molecular dynamics is a powerful technique for

enhancing the sampling of conformational space in molecular simulations and has

been used to study a wide range of biological and chemical systems [55].

Replica Exchange Molecular Dynamics (REMD)

Time steps

Replicas

𝑇1

𝑇2

𝑇3

𝑇4

Swap 
configurations

Swap

Swap

Swap

Swap

𝑅1, 𝑅2 → (෪𝑅2, ෪𝑅1)

Figure 2.11: Protocol illustration of the temperature (T ) replica exchange molecular dy-
namics (REMD) approach. Replicas run at different T are attempted to ex-
change neighbouring temperatures at a given frequency. When an exchange
is accepted, configurations are swapped and the replica continues to run at the
same T with the new configuration.
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Figure 2.12: Protocol illustration for the Hamiltonian replica exchange molecular dynam-
ics (HREMD) approach. A given parameter d′ governing different Hamilto-
nians is used in each replica. In a similar way to REMD, trajectories are run
for a given number of steps and then attempted to exchange configuration. A
successful swap will exchange configuration of neighbouring replicas, while
a failed swap will have them remain unchanged.

Hamiltonian Replica Exchange Molecular Dynamics (HREMD) is a variant of

REMD in which replicas are simulated at different Hamiltonians (H) or potential

energy functions containing a given parameter to tweak with different values in each

replica [56]. In Fig.2.12 an illustration of a typical HREMD protocol can be found.

The probability of exchanging configurations between two replicas i and j is given

by:

Pi→ j = min
(

1,e−(βi−β j)(Hi−H j)
)

(2.27)

where βi = 1/kBTi is the inverse temperature of replica i, Hi is the Hamiltonian

energy of replica i and kB is the Boltzmann constant. The probability of exchanging

configurations from replica j to replica i is given by:

Pj→i = min
(

1,e−(β j−βi)(H j−Hi)
)

(2.28)
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In these equations, the exchange of configurations is governed by a Metropolis

criterion, and the probability of exchange is influenced by both the energy dif-

ference between the replicas and the difference in their respective Hamiltonians.

HREMD is a powerful technique for exploring the conformational space of com-

plex biomolecules, including protein-ligand interactions and protein folding [56].

2.3.3 ACHREMD

The Atomic Charge Hamiltonian Replica Exchange Molecular Dynamics

(ACHREMD) is another flavour of REMD derived directly from the HREMD. In

this case, the parameter to modify specifically is the atomic charge of an atom

(qatom). To ensure detailed balance is kept, the original system and the replicas

at different q maintain the same charge overall. For example, a Mg+2 ion may have

been reduced from a +2 Charge to a +1 charge. To balance out the loss of charge

and have the system with the same charge, two relevant atoms such as Cl−1 will

have their charge changed to -0.5. Thus, Mg+2 + 2Cl−1 = Mg+1 + 2Cl−0.5.

In this work, this idea has been explored with the change of atomic charges,

either by modifying relevant interacting atoms or adding dummy atoms that have

their charge acting as a buffer to balance out the charge. An illustration of one of

the examples reported in this work can be found at Fig.2.13 for 4 replicas from +2.0

to +0.4 on an active site’s Mg.

This methodology allows for the flattening of the free energy landscape, fo-

cusing specially on problems where the electrostatic interactions of a complexed

system do not allow one to observe the dissociation in a reasonable timescale. It

becomes very useful for problems like ligand-unbinding, molecule complexation,

and complex active site rearrangements.
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Figure 2.13: Illustration of the atomic charge hamiltonian replica exchange molecular dy-
namics (ACHREMD) protocol. In this system, a Mg+2 ion has its charge
modified across 4 replicas down to +0.4. Every number of given simulation
steps for sampling, an evaluation decides whether exchanges between neigh-
bouring windows happen or not. If an exchange is accepted, the configurations
between upper and lower charge replicas are swapped and another round of
sampling begins.



Chapter 3

Machine Learning Transition State

Analysis (MLTSA)

This chapter is partially extracted from our previous published applied method [1].

Here I collected the analytical model validation from the first paper and continued

the investigation towards exploring MLTSA’s capabilities and its validation on other

dynamical models, such as the 2D models we created.

3.1 Introduction
Machine learning for molecular dynamics analysis. MD data is intrinsically

high-dimensional, which makes it difficult for researchers to understand complex

biological processes. Not only that, but also smaller details can be brushed off

while looking at other major rearrangements during trajectory analysis. In addition,

many long-timescale events such as ligand unbinding an be a combination of mul-

tiple small steps with many intermediates requiring smaller rearrangements, similar

to a checkpoint. These smaller steps are also difficult to notice, fast-changing in-

teractions can also be overlooked or they are simply too noisy to correlate with the

main event taking place.

Current challenges. ML models are well-suited for learning to predict or clas-

sify atomic structures [24], moreover protein conformations and their different

states [57], however, the non-linearity of some of these methods can make them

hard to interpret. Although ML methods have proven useful in the interpretation of
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MD data [33], there is still a need for further development, enabling strategies and

validation as well as improving interpretability of the models. Recent efforts have

made use of autoencoders and variational autoencoders for representation learning

of molecules, however, their representation is not intrinsically related to the internal

coordinates of the system and simple relations such as distances, angles or interac-

tions cannot be derived easily [34, 58].

In order to contribute towards the ML-aided interpretability of MD, I have

developed the machine learning transition state analysis (MLTSA) which has

originally been used to predict the outcome of downhill simulations started at the

TS to pinpoint relevant interactions near the TS [1, 2]. Although it has proven useful

for ligand-unbinding, it is not limited to MD data only. To validate the methodology

and explore its usage, I developed a one-dimensional-based analytical model to

assess MLTSA’s ability to pinpoint correlated features from time series. I tested two

ML models, two MLP and GBDT classifiers tasked to predict the outcome.

Although our approach has shown to work for this one-dimensional analytical

model [1], its feature relevance remains the same during the duration of the trajec-

tories, i.e. time series. Thus, a more complex potential surface validation model

was designed. I implemented a framework to both simulate two-dimensional trajec-

tories in langevin dynamics and generate one-dimensional projected features from

a given 2D potential surface.

Spiral datasets are a type of synthetic dataset often used in ML to illustrate

and test the capabilities of the models. These datasets are often used to test model

performance, especially for classification and pattern recognition tasks. They con-

sist of points that are arranged in a spiral pattern in a two-dimensional space.

They are particularly interesting because they challenge algorithms to learn

complex and nonlinear decision boundaries. These datasets can’t be effectively

separated using simple linear classifiers, making them a good benchmark for test-

ing the capabilities of more advanced algorithms.They highlight the strengths and

weaknesses of different algorithms and help researchers and practitioners make in-

formed choices about which methods to use for different types of tasks.
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There are generally two main types of spiral datasets, single-armed and dual-

armed. In the first one the points form a single spiral arm that starts from the center

and spirals outwards, which would end following only one path to one end point. In

the latter one, the points form two spiral arms, usually winding around each other in

opposite directions, this one is often considered more challenging because the two

arms may intertwine at some points making the decision boundary more complex.

Thiss allows us to get a validation framework representation closer to that of a real-

world problem such as a ligand- unbinding event.

Thus, taking advantage of the higher complexity of the data, a spiral poten-

tial surface was used to generate a spiral dataset. Despite this being a more com-

plex task, it was still reasonably easy for a time-series to predict the corresponding

class/state by looking at which arm the class went through. Thus, with a bit of

feature engineering, one-dimensional projections of the original 2D data were cre-

ated as features for training, distributing the information among multiple features.

All of this was done for a more detailed benchmark on the MLTSA analysis. This

dataset allowed for assessing both the capability of the ML models and the MLTSA

protocol to pinpoint relevant features and how their importance changes at different

times throughout the trajectory.

A summary of the data, approaches, feature generation and evaluation in this

work can be found in Table 3.1.

3.2 Applied Methodology

3.2.1 Analytical Datasets

In order to validate MLTSA’s ability to pinpoint relevant CVs, two different ana-

lytical toy models were developed. The first one and simplest is based off a set of

one-dimensional potentials (1D Analytical Model) that are used to simulate particle

motion on, thus generating different 1D coordinates. The trajectories are started

from the same point each time, resembling a TS, and its coordinates are stored as if

they were coming from the same system and as a unique trajectory, emulating the

different coordinates one would obtain in a complex system. Coordinates are then
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mixed with each other within a trajectory to distort them and make them correlated

with each other. Then only one of the original potentials is used for labelling its

outcome, using its original coordinate values. This is done to resemble a real-life

situation where the deciding potential for an event might not be able to be directly

sampled, but different variables that are highly correlated to it can be sampled.

Another model based on two-dimensional potentials of different shapes was also

created. This time only one 2D potential is simulated starting at the same point for

each trajectory, emulating a TS or saddle point. In this case the final coordinates

used for prediction are lower-dimensional projections of the original 2D coordinates

of the trajectory on different axes, i.e. one-dimensional coordinates projected from

the original. This emulates a situation where only lower-dimensional projections

(distances/angles/dihedrals/etc. for MD) are available from the experiments. Addi-

tionally, the same information is degenerated on multiple coordinates, thus making

its importance through time change as the trajectory advances.

1D Analytical Model

In Fig.3.1 a visual summary of the whole methodology for generating curated the

1D analytical datasets can be found. From a series of potentials, features are gener-

ated in random linear combination of the different potential’s coordinates, resulting

in correlated and uncorrelated features to the labelled outcomes (IN/OUT).

Defining the potentials. The data in this model is first generated in one-dimensional

potentials of two different shapes depending on the number of minima they have:

Single-Well potentials with one minima at 0 (SW, ySW ); and Double-Well potentials

(DW, yDW ) with two symmetrical minima and a saddle point placed at 0.5. The

equation describing the shape of the potentials is

y = k1

(
x− 1

2

)4

+ k2
1

σ
√

2π
e
(
− 1

2(
x−µ

σ )
2
)

(3.1)

Where k1 = 100, µ = 1
2 and ω = 0.01. To generate a SW k2 = 0, and for a DW

k2 = 1.
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Figure 3.1: Illustration of the 1D analytical model dataset creation starting from the defined
potential, trajectory generation and linear combination to generate a dataset
with both correlated and uncorrelated data. Note that data in this context refers
to the final usable features created coming from combinations of the coordi-
nates y sampled. The relevant potential (y∗DW )is the one used to compute the
labels for training.

Trajectory generation. With the shape of the potentials, the ySW and yDW coordi-

nates are calculated along the potentials using the overdamped Langevin equation,

dx(t)
dt

=
F(x(t))

γ
+

√
2kBT

γ
ξ (t) (3.2)

Where x(t) is the position of the particle at time t, F(x(t)) is the force on the particle

at position x(t), γ is the friction coefficient, kB is the Boltzmann constant, T is the

temperature, and ξ (t) is a random noise term with zero mean and unit variance that

models the thermal fluctuations in the system.

This equation describes the motion of a particle in a medium with friction,

where the particle experiences both a deterministic force, given by F(x(t)), and a

random thermal force, modeled by the noise term ξ (t). The term
√

2kBT/γ repre-

sents the strength of the thermal force, and the friction coefficient γ determines the

rate at which the particle loses energy to the medium.

For the simulations in this work, I used a simplified 1D version where 2kBT =
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1, the coefficient γ = 0.01 is constant and the force F = y(x(t)), ξ (t) is a num-

ber randomly sampled from a normal (Gaussian) distribution centered at 0 and the

spread is 1.0.

Using this I can generate downhill simulations and calculate the coordinates

started from y = 0.5 for both SW and DW trajectories for the desired number of

steps, which depending on the friction and the timestep will be noisy for SW and

end up in one of the two minima for DW.

Dataset creation. To create the datasets, I simulate downhill trajectories in parallel

for each potential starting at y = 0.5 for a given number of SW and DW potentials.

Taking a look at the final coordinate value of each of the DW potentials, after a

reasonable number of simulation steps, one can classify them in two different states

(see left panel Fig.3.2), left potential at < 0.3 and right potential at > 0.8. I call

the lower value IN and the bigger value OUT to resemble that of the two states rep-

resenting the unbinding event. The starting point (0.5) would be then representing

the TS of the unbinding. In this manner, one can obtain labels for each simulated

DW potential for each trajectory. However, I will only use one of the DW poten-

tials, called relevant DW (y∗SW ), to label the system’s outcome, while using all of

the potentials to generate the features for the datasets. This way the data becomes

complex and it is more challenging for the ML models to predict the outcome from

early times as seen in Fig.3.2.

Using the trajectories generated I defined input features (y f eature) by combining

the coordinates from two different potentials (ypot1 and ypot2) as

y f eature = αypot1 +(1−α)ypot2 (3.3)

Where α is the mixing coefficient which decides the contribution of each of the

ypot to the resulting feature y f eature. This linear combination allows one to have the

knowledge of the correlation for the new feature to each of the original potentials,

thus tracing back the correlation to the relevant DW (y∗DW ) potential. This becomes

useful for validation purposes later on in the feature analysis when looking at the

ML identified relevant input features. In this way, many input features can be gen-
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erated from multiple potentials by randomly picking two of them and assigning a

random mixing coefficient. Note the resulting data will have both correlated and

uncorrelated data, resulting of a mixture of both SW and DW potentials, adding

complexity to this model (see Fig.3.2). Additionally, this mixing can be done as

well for the wanted degree of mixing n, using n potentials to create a feature.

Original DW Combination with SW Combination with DW

Figure 3.2: Illustration of an example of combinations with a relevant DW (y∗dw). Left is
the original y∗dw, middle is the resulting combination with a SW (ysw) and right
is another combination with a non-relevant DW (ydW ).

In summary, one trajectory run with nsteps in each potential is considered to

be from the same sample/simulation and when mixed n f eatures times, it forms one

independent trajectory with n f eatures. Following this methodology, the dataset is

created, having the the shape of (nsimulations, n f eatures, nsteps).

Computational Details for the 1D Datasets

Trajectory generation. Trajectories were generated following the methodology in

section 3.2.1, using the Overdamped Langevin Dynamics Equation (Eq. 3.2). 200

independent trajectories were generated for 500 steps on different potentials (24

SW and 1 DW). This set of data will be called 1-DW. An additional 2nd dataset

including 20 SW and 5 DW potentials (with only 1 decisive DW as mentioned in

section 3.2.1) was also created and will be referred to as multi-DW.
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Dataset creation Both 1-DW and multi-DW sets were used to create two experi-

mental datasets of the same name. These consist of 180 features newly generated

from the obtained trajectories. Before that, a DW potential is chosen to be the rel-

evant potential and its value at the end of the trajectory will determine the label or

class it will have (similar to an IN/OUT). The features are generated by randomly

selecting two potentials and combining them to generate a new coordinate/feature

as a linear combination with a random mixing coefficient ( 0 < α < 1 ) per feature

as described in section 3.2.1. For the features that are mixed the chosen DW po-

tential coordinates, their correlation will directly be affected by the value of their

α , having no correlation for a value of 0 and a total correlation for 1. The mixing

coefficients for both datasets can be found in the SI section. Thus, the two datasets

with the features and labels are created for training.

2D-based Analytical model

The need for a more challenging example, which includes time-dependency on

the feature importance and allows for a better assessment of the model perfor-

mance, prompted the development of a 2D analytical model potential. Although

the pipeline for this is highly customizable, the shape chosen for the experiments

was that of the spiral, where particles have the highest energy at the chosen TS point

and advance downhill quickly through the different arms (see Fig.3.3). This is used

to resemble the downhill simulations of an actual TS structure from an unbinding

profile, which can be noisy around the TS and it quickly goes through one direction

or the other despite having very close values in one dimension (the X axis in this

case), and moving only on the other dimension (large values on the Y).

Defining the potential surface functions. The potential surface is shaped with val-

leys and barriers so the downhill simulations run through the correct paths for each.

Additionally, trajectories will start from the origin (0,0) and will be simulated to

go down two paths for the Spiral Dataset as shown in Fig. 3.3, where the TS is the

origin.

Langevin Dynamics. In two dimensions, the position of the particle can be rep-

resented as a vector r = (x,y), and the potential surface can be represented as a
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Figure 3.3: Illustration of the spiral potential surface and the generated trajectories from
the started transition state point.

function V (x,y). The Langevin equation for the particle’s position is

m
d2r
dt2 =−∇V (r)− γ

dr
dt

+
√

2mkBT γ,η(t) (3.4)

where m is the mass of the particle, γ is the friction coefficient, kB is the Boltzmann

constant, T is the temperature, and η(t) is a Gaussian random force with zero mean

and autocorrelation ⟨η(t)η(t ′)⟩= δ (t − t ′).

To simulate Langevin dynamics in a 2D potential surface, one can discretize

the equation using the Euler-Maruyama method. One first defines a time step ∆t,

and then updates the position and velocity of the particle at each time step.

Then, at each time step, one would calculate the gradient of the potential using

finite differences, update the velocity and position using the equations, and record

the new position of the particle. One would repeat this process for a specified num-

ber of time steps to simulate the dynamics of the particle in the potential surface.

Dataset Creation. After labelling the outcomes of the Spiral trajectories, their X ,Y

coordinates are transformed and rotated following the equation:

(Xrotated = cos(θ)∗Xpriginal),(Yrotated = sin(θ)∗Yoriginal) (3.5)

Where θ is a given angle to be rotated to. After the rotation, as in the procedure
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in this work, only the coordinate values on the new X axis is kept, thus making

Xpro j = Xrotated being the input feature to use in the dataset. This new coordinate is

the projected coordinate onto one dimension.

In the work portrayed here, this is done for 72 different θ , thus enabling to cap-

ture the one-dimensional projection in all 360 degrees with a spacing of 5 degrees

between them. Note this can be done differently for other approaches.

Computational Details for 2D Dataset

Trajectory Generation. Trajectories are generated using langevin dynamics, start-

ing at (0,0) as the highest energy point. Then in a ”downhill” manner, trajectories

started there will end up in two of the available arms from the spiral.

Labelling. A clustering algorithm (DBSCAN) is used to classify in an automated

fashion the final datapoints in order to label the data with two classes (Left and

Right).

Creating Features. To generate features, a rotation of the data to a given angle is

performed to project it in the X axis. Then the transformed data’s X axis is kept

as an Xpro j. This new projected coordinate is then used as an input feature. This

is performed from 0 to 360 degrees, every given amount, depending on the wanted

number of features. In this work, I used 72 features, which meant projecting every

5 degrees.

3.2.2 Trainings and models

The dataset is split into a training set (70% of all trajectories) and a test set (30%

of all trajectories) for the ML training. In addition, I run additional independent

simulations for a validation set to prevent any overfitting. To ensure significance,

the trainings are replicated 100 times with a random seed for the initialization each

time and a random splitting between the training/test/validation sets.

The models used in this work are the MLP (MLPClassifier) and GBDT

(GradientBoostingClassifier) implementation by Scikit-learn [59]. The

details on the models are:

• The MLP model was setup using 3 layers (input, hidden, output) with as
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many input nodes as features used in the first layer, 100 hidden nodes in the

second layer using the ReLU [60] activation function and 1 output layer made

of 1 node with a logistic activation function (0-IN/label1, 1-OUT/label2). The

model was optimized using the Adam solver [61], with a learning rate of

0.001, iterating over data until convergence or upon reaching the maximum

number of iterations (500 epochs). Convergence is determined by the tol-

erance and the number of epochs with no change in loss. When having 10

consecutive epochs with less than 0.0001 improvement on the loss, the train-

ing stops, and it is considered that the model has reached convergence. All

datasets used the same parameters for training.

• The GBDT model was trained with 500 decision stumps as weak learners

minimizing a logistic loss function, with a learning rate of 0.1. The Friedman

Mean Squared Error (MSE) was used for to assess the split of the internal

nodes, using a minimum of 2 samples to split, and 1 sample required at the

leaf nodes. The maximum depth of the individual estimators was 3, without a

limit on the maximum number of features to consider for the best split or the

leaf nodes. Training was done using a validation fraction of 0.1 internally.

3.2.3 Summary

As shown in Table 3.1, both 1D and 2D analytical models have analogous processes.

The 1D is based on SW and DW potentials, whereas the 2D has a Spiral shaped

potential. They are both simulated starting at the highest energy state (TS) and

go downhill towards one of two outcomes (IN/OUT or Left/Right). Features are

generated afterwards, since using the plain coordinates would be too trivial. In the

1D analytical model, there can be correlated or uncorrelated data, whereas all data

in the 2D is correlated to some degree. However, some correlated data can be more

descriptive of the direction of the trajectory, thus being more ”important”.
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Table 3.1: Summary of the analytical models explored using MLTSA for validation.

Process 1D Analytical Model 2D Analytical Model

Potential SW/DW Spiral
Trajectory Generation Langevin Dynamics Langevin Dynamics
Feature Generation Linear Mixing Coordinate Projection
Analysis AD/FI AD/FI
Evaluation Correlation Score (α) Jaccard Index

Before mixing After mixing

Figure 3.4: Left: simple coordinates generated on the SW and DW potentials.The left plot
represents data generated on a SW and a DW, the trajectories labelled as IN
are in red, whereas the ones labelled as OUT are portrayed in blue. Right: An
example of a resulting feature from a linear combination between SW and DW
for both IN and OUT trajectories.

3.3 1D Analytical Model Results and Discussion

3.3.1 Data generated

Producing features. As mentioned in section 3.2.1, the raw output (1D coordi-

nates) from the one-dimensional potentials is too trivial for the ML models to pre-

dict their trajectory outcome, even at early/short times. Thus, an additional post-

processing step has to be done to generate multiple features, with and without cor-

relation to our decisive potential to be able to detect with the MLTSA if and how

correlated they are. As seen in Fig. 3.4 (left plot), the decisive DW potential has two

classes, one that tends to a lower threshold at the end of the trajectory, which will

be labelled as ”IN” (red), and a higher threshold which will be labelled as ”OUT”

(blue). However, SW potentials (one example in green) are very noisy towards the

end, only having values oscillating around 0.5 as in 0.4 < x < 0.6. All of these
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coordinates represent ”internal coordinates” one can obtain from a real MD sim-

ulation. These coordinates are transformed during the post-processing into a new

input features through the linear combination mentioned in section 3.2.1. The lin-

ear combination done in this step of a SW trajectory coordinate with the decisive

DW* trajectory coordinate, can generate, for example, features similar to feature 1

in Fig. 3.4 (right plot). Note that even in different individual trajectories (Sim.1/IN

and Sim.2/OUT) the correlated feature produces the same trend for two different

outcomes. This step was done for 200 trajectories on two sets of different combi-

nations of SW and DW potentials (1-DW/multi-DW) and new input features (180)

were generated randomly for the analysis, containing both correlated and uncor-

related data. However, when features are highly correlated, one can still visually

discern which is the outcome easily. Thus, a training at different trajectory times

has to be done to be able to asses the accuracy of the models and a visual inspection

are necessary to determine the right time for the given problem.

3.3.2 Training through time

Searching for the right time-frame. ML training on the model potential-derived

trajectories was performed with both MLP and GBDT ML methods. The MLP

training was performed at different time frames and trajectory lengths, from the 0th

time step to the 500th step in intervals ranging from 10 to 150 frames at a time to

assess the accuracy through time (Fig. 3.5).

Figure 3.5: Accuracy of the Multi-Layer Perceptron (MLP) prediction for the dataset with
1 DW and 24 SW potentials at different starting times using 10 frame intervals
(left) and 30 frame intervals (right).

As shown in Fig. 3.5, at times later than 100 steps/frames, the model quickly
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achieves 100% accuracy on both train and test sets, even in the validation in some

cases. This happens when using any amount of values from 10 to 150.

Relevance of the right time-frame. It is important to note that during the explo-

ration of these models for feature analysis purposes, a model (for both MLP and

GBDT as well) that performs over >98% accuracy (on validation) is often rendered

useless for identifying relevant features. This phenomenon involves the model hav-

ing 0 accuracy drop (AD), or having its feature importances (FI) too small to find

any relevant one, thus implying everything is relevant. We have observed this in

biologically-relevant data as well [1]. I think this may happen for two main rea-

sons. The first one is related to the data, the data itself may be too biased already

towards the final outcome, i.e. having big values at a late time which means be-

ing OUT, and may already be giving away too much information. This, however,

would not explain this happening in the analytical model, in which totally uncorre-

lated features should remain non-relevant, while the relevant ones should be picked

up as relevant still. Something I have observed is that greatly increasing the number

of features (up to more than a thousand) has a similar effect where the accuracy is

high (>98%) but no feature analysis can be done and no single features become

important for predicting. I believe this might be due to a similar problem where too

much correlated data is present, but in this case the learning is split between all fea-

tures. Note that when the number of generated features is increased, the number of

features mixed with the relevant trajectory stay the same, while more ”distracting”

uncorrelated features are generated. Thus, the model relies in all features by a small

margin and altering only one at a time has no effect in the accuracy for the MLP,

while the feature importance in the GBDT becomes so divided that no features are

highlighted. We noticed this happening for biologically-relevant data as well [1].

On the other hand, when using models that are underfitted (< 70% accuracy),

the results are not reliable and both relevant and non-relevant features get picked

up by both MLP and GBDT, probably due to stochasticity and wrong learning. On

the same note, an inaccurate model is not reliable for feature analysis, since the

problem has not been learned.
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Therefore, using a suitable time range is of the essence. In this work, I found a

suitable time consisting of the 30th-60th simulation steps for each trajectory. This

is a time frame where it is hard to guess the outcome even for humans (See Fig. 3.2)

using the raw data. In this range, the trained ML methods found the classification

problem accurately solvable, but not too trivial. As shown in Fig. 3.5 this time range

stays below the 98% accuracy for validation.

Table 3.2: Table containing the average accuracies (for training, test and validation) and
number of epochs used for training of GBDT and MLP methods over the 100
independent replicates of our procedure, for both types of datasets (1 DW and
the 5 DW potentials) tested.

Training
Acc. < % >

Test
Acc. < % >

Validation
Acc. < % >

< E pochs >

GBDT (1-DW) 100.00 99.72 91.45 500
MLP (1-DW) 94.83 94.73 93.04 204

GBDT (multi-DW) 100.00 99.80 91.64 500
MLP (multi-DW) 91.85 91.83 89.32 311

Accuracy at the sweet spot. I replicated the complete process 100 times by gener-

ating 200 new independent simulations for each replica and performing the training

afterwards. Training accuracies for both ML models at 1DW and 5DW potentials

can be found in Table 3.2. The MLP achieved an average test accuracy of over 94%

and an average validation accuracy of over 93%, whereas the GBDT achieved over

99% on the test set and 91% on the validation set, suggesting a better generaliza-

tion for the 1-DW set. However, there is a slight drop in validation accuracy for

the MLP when dealing with the multi-DW set compared to the 1-DW set, whereas

the GBDT had a similar accuracy in both cases. This could suggest that it is more

suitable for complex problems, however, no hyperparameter optimization was done

for the models, thus no assumptions can be drawn from this alone. One also has to

consider that the GBDT model takes, on average, 2x the training time of that of the

MLP model. In addition, increasing complexity on the analytical model shows an

overfitting and bad generalization on the GBDT (See A.1).
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3.3.3 Feature Analysis

Validating the feature selection. To identify the selected DW potential and its

highest correlated features from the dataset, I calculated the AD (MLTSA as in

Fig. 2.10 and described in section 2.2.4) using the trained MLP and compared this

approach to the FI using GBDT. Results of both feature analysis methods are found

in Fig. 3 for the 1DW dataset and in Fig. S6 for the 5 DW potentials dataset.

For the 1-DW set, the highest correlated features (colored depending on the

correlation level, color bar in Fig. 3.6.a) were correctly identified by both MLP and

GBDT models. For GBDT, only the top three features show a high FI value (labels

added to datapoints in Fig. 3.6), whereas the rest of the correlated features ranging

from α 34% up to 60% do not show a significant FI value. In addition, despite

three features (# 48, #89 and #136) having 40.34%, 34.80% and 35.48% mixing

coefficients, respectively, GBDT did not capture their correlation, showing values

very close to 0. For the MLP, the top three distances are similarly captured as in the

FI with the highest ADs. Importantly, all correlated features have a non-zero AD,

showing that they are correctly identified.

Using the dataset with increased complexity consisting of 5 DW potentials

producing 15 correlated features, I observed a similar performance of the two ML

methods (Fig. 3.6). GBDT correctly captured and ranked the top three features (#8,

#25 and #35). However, most other important features scored a FI value very close

to 0. Out of 15 correlated features, GBDT did not identify 12 of them with high FI,

whereas the MLP captured all of them. However, the MLP’s AD did not rank the

top four features in the correct order, scoring the 3rd most correlated feature with

the biggest AD.



3.3. 1D Analytical Model Results and Discussion 118

1-DW Set

multi-DW Set

a)

b)

Figure 3.6: Comparison between GBDT (top) and MLTSA with NN (bottom) feature anal-
ysis methods for the 1-DW (left) and multi-DW (right) datasets. Correlated
features are marked from blue (0%) to red (100%) depending on the mixing
coefficient, α (x symbols, color scale on the right, five highest mixing coef-
ficients also displayed for the datapoints). Uncorrelated features (small black
symbols) are at 0 FI for GBDT and show no loss of accuracy for MLTSA with
MLPs. Correlated features all show a significant AD for the MLP, while only
the top correlated features have high FI using GBDT.
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Considering both analytical models, I found that whereas GBDT has a higher

specificity to rank the top correlated features in the correct order, MLP has a higher

sensitivity and captures all correlated features but cannot necessarily identify the

highest ranked ones quantitatively using the AD as the measure. I have observed

this behaviour through the different datasets and tests. Therefore, a combination of

the two ML methods can further help identify the most important features and its

most advised. In more complex systems, this performance might not be directly

generalizable due to the simple linear correlation of the CVs of this model. MLP

might outperform at this task for more complex relationships as seen with a higher

degree of mixing coefficients in Fig. A.1, however, GBDT results show that it fails

at ranking correctly the most correlated feature while MLP ranks it correctly and

highlights more relevant features again. In this case the higher degree of mixing,

i.e. increasing the number of potentials involved, makes the data noisier and less

correlated in the end at it is not reliable enough for validating selecting features

from much more complex data. The lack of current toy models to validate does

not allow for testing this further. In order to overcome this, a more complex model

consisting of a 2D surface potential was created.
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3.4 2D Analytical Model

3.4.1 Dataset generation

a) b)
Left
Right

Figure 3.7: a) Plotted distribution of the values for the trajectories generated on the spiral
potential. b) Labelled classes for the downhill spiral trajectories.

In this dataset, trajectories start from the coordinate origin (0,0) and quickly con-

verge towards one of the arms of the spiral. Even though this spiral can have more

than two arms (see Fig.), for the purpose of this work and to follow the context

within ligand-unbinding, two final outcomes will be assumed similar to a two-state

based process (see Fig. 3.7), in this case being left (IN) and right (OUT). Once the

trajectories are generated and labelled as two different classes, in a similar fashion

to the 1D dataset (see section 3.2.1 and 3.2.1), new input features are generated

from the original data. In this case, the original X ,Y features are projected onto a

new angle-based X axis causing a rotation as in Fig. 3.8. After that, only the Xpro j

is used as a new input feature. This is done for 72 different angles (every 5 de-

grees). Unlike the 1D analytical model dataset where the relevance of a feature is

the same throughout the whole simulation and it is independent of the time, the 2D

has two most describing features (angles) for a period of time that can already sep-

arate the data in two classes. These most describing features change through time,

which adds more complexity and the ability to asses if MLTSA is able to capture

this changes through time i.e. looking at a portion of time shows the relevance of
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that exact moment which leads up to the final outcome.

a) b)
Left
Right

Left
Right

Figure 3.8: a) Generated coordinates (X ,Y ) from the 2D spiral potential. b) New projected
coordinates (Xpro j,Ypro j) after the angle-projection transformation

3.4.2 Search for the right time

In an analogous way to the 1D analytical model, the 2D model also relies on search-

ing for appropriate time ranges where the classification task is not trivial, yet achiev-

able. For that purpose, a preliminary training of 10 independent replicas with both

MLP and GBDT at different time-frames throughout the simulations, allowed us to

highlight the underfitted and overfitted regions (Fig. 3.9) and pinpoint the regions

available for training.

Underfitted region
Overfitted region

Underfitted region
Overfitted region

MLP GBDT

t3
t4
t5

t3
t4

t5

Figure 3.9: MLP (left) and GBDT(right) accuracies at different times (every 50 frames).
The regions where the model is considered to be overfitted and it can no longer
be used for feature analysis is highlighted in red, whereas the underfitted one,
where the model is unreliable is highlighted in blue.
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Similar performance. Overall, both MLP and GBDT performance have a similar

accuracy on the same time-frames. In this setting it is still important to find a

suitable time frame for both. Thus, the following experiments were conducted in

3 time-frames to check if the most relevant features change with time. The time-

frames are the 3rd, 4th and 5th datapoints from Fig. 3.9 which correspond to the

150th-200th (t3), 200th-250th (t4) and 250th-300th (t5) frames.
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RFI

Coordinate Used

Coordinate Used

Coordinate Used

t3

t4
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a)

b)

c)

Top Feature 
Projection

GBDT 

Figure 3.10: Feature Analysis results for GBDT using FI. The polar plots represent the
relevance of the angle projections (as input features) using their relative FI
(RFI) from 0 importance to 1 most-important. In shades, the top 5 relevant
features, the higher the value the darker the shade. On the right, a plot of the
data for Left (blue) and Right (orange) labels on the most relevant projection
for the model. The plots correspond to the time-frames t3 (a), t4 (b) and t5
(c). Note that the X coordinate marked as ”Coordinate Used” is the value of
the represented projection and Y is not used in training, but for visualization
purposes.
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Figure 3.11: Feature Analysis results for MLP using AD. The polar plots represent the
relevance of the angle projections (as input features) using their relative AD
(RAD), re-normalized from 0 (least important) to 1 (most-important). In
shades, the top 5 relevant features, the higher the value the darker the shade.
On the right, a plot of the data for Left (blue) and Right (orange) labels on
the most relevant projection for the model. The plots correspond to the time-
frames t3 (a), t4 (b) and t5 (c).Note that the coordinate used is only the X in
the represented projection.
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3.4.3 Feature Analysis

The resulting feature analysis for both GBDT and MLP at t3, t4 and t5 is portrayed

in Figs. 3.10 and 3.11. Note that only the Xpro j is kept for training, so the most

relevant feature thus, is the one that can best separate the two classes with the most

ease when looking only at that value, i.e. simply a cutoff on the distribution. That

is why the Jaccard Index becomes valuable for evaluating the performance on both

models.

For both models, the most relevant features are different in each time-frame,

which is expected. However, there is a big difference between the pinpointed fea-

tures from GBDT and MLP. GBDT is able to pick up top features clearly whereas

MLP has a very noisy importance polar plot, especially at earlier times like t3

Fig. 3.11.a. On the contrary, GBDT has way less relevant features and they are

highlighted more clearly through all times (See Fig. 3.10. In addition, when look-

ing at the projected top features for both and having in mind that the X coordinate is

the only used for training, GDBT excels at finding the input features which separate

the data in two the most, as seen in Fig. 3.10.

Table 3.3: Resulting Jaccard Indices for the top features selected for each model.

Time-Frame MLP-Top Feat
Jaccard Index

GBDT-Top Feat
Jaccard Index

t3 0.581 0.584
t4 0.535 0.627
t5 0.626 0.662

Who performs best? GBDT seems to be able to capture a feature close to the most

descriptive one, together with the features opposite to the best projected angle,

which are equally descriptive in an inverse relationship. This is noticeable look-

ing at the overlayed plots directly from the data in Fig. 3.12. Keep in mind the

features translate in order directly to projection angles, from 0 to 360. When com-

paring the Jaccard Index for the top features of both MLP and GBDT, however,

MLP’s guesses have a slightly lower value, which means that the feature is better at

separating both distributions. Which of the two model is more suitable for this re-



3.4. 2D Analytical Model 126

mains is still unclear, however GBDT has a more robust and clear feature selection,

which favours it towards real-life applications. Note that the sprial dataset is closer

to a complex problem such as ligand-unbinding since the importance of different

features through time changes and quick oscillations on the same direction between

small values still lead to different outcomes. However, once more, the usage of both

models for analysis is advised, as proven with the 1D analytical model results and

with the protein data applications [1, 2].

a)

b)

c)

t3

t4

t5

Figure 3.12: Results of the MLTSA on the selected time-frames for the Spiral Dataset.
These show the GBDT FI next to the original data and the most relevant fea-
tures (in shades of purple) for the t3 (a), t4 (b) and t5 (c).



3.5. LSTM attempts 127

3.5 LSTM attempts
Once the capabilities and limitations of the GBDT and MLP for the spiral dataset

have been explored, the scope of the project turned towards a more complex neu-

ral network architecture such as the long-short-term memory (LSTM) neural net-

work. LSTM is a powerful approach due to its unique capabilities in handling

sequential data and capturing temporal dependencies. The sequential nature of the

spiral dataset makes this model well-suited for capturing patterns and trends. Also,

the temporal dependency from the spiral dataset, where the current datapoint’s po-

sition is influenced by previous data points, and the complex patterns it can contain

are a good match for the LSTM memory span and generalization capabilities. The

inherent memory and feature extraction mechanisms of an LSTM makes it well-

suited for tackling the challenges posed by spiral datasets, ultimately leading to

improved performance in tasks such as prediction, classification, or pattern recog-

nition. Experimenting with this model would benefit the field by bringing insights

on the MLTSA’s capabilities while being able to assess the capabilities of LSTMs

on spiral datasets.

3.5.1 1D Analysis

Incremental Training

Increase step size = 5

Figure 3.13: Training and testing accuracy for the LSTM Model when increasing the size
by 5 each time until 300 simulation steps.

Incremental Training . Taking advantage of the LSTM’s architecture, I explored

the accuracy of the model training at different times, increasing by a step size of 5

each time up to 300 simulation steps.Note that in this case the test set is a validation
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set with completely new run simulations. The results of this incremental training

can be found in Fig. 3.13. The model struggles to predict the outcome at early times,

with very low accuracy, starting at 55% and staying under 80% up to having data

from the 0th to the 100th step. This is a major difference with simpler models like

GBDT and MLP, where with little data from the 30th to the 60th step the accuracy

was already high. However, as seen in Fig. 3.5, the simpler models are very sensitive

to the amount of data used, and more importantly, the task is hard at times earlier

than 100 simulation steps. All of these facts suggest that the behaviour of this

model is different than that of the simpler models, and its training strategy has to be

different.

a)

b)

Figure 3.14: Evolution of a) testing and training accuracy through epochs and b) training
and testing loss through epochs.

Learning the trajectory. The model was further trained on all of the data from

beginning to end (500 steps). The evolution of the accuracy and loss through the

epochs can be found in Fig. 3.14. The model quickly reached convergence in less

than 100 epochs and was able to perform 100% accuracy on the training data and
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100% accuracy on the test data (new simulations). Although the learning speed was

not expected, having all of the data available makes it easy for the model to learn

to discern one class from the other. However during the training epochs, one steep

decrease/increase in accuracy/loss at around 20 epochs shows us that some steep

barriers can be found in the error landscape, and that possibly a too big learning

rate was being used. Different learning rates should be explored in future works.

Feature Analysis. As seen in Fig. 3.15, unlike the simpler models (MLP/GBDT),

when the LSTM is trained with the full trajectory it is able to pinpoint relevant

features. Although not all picked up features are relevant, its performance is im-

pressive.

Figure 3.15: AD plot of the LSTM model trained on full trajectories. Features correlated
are marked with an X, the color corresponds to the level of correlation. Fea-
tures above 60% correlation have their score written.

Training at the right time? When the model is trained for the same amount of sim-

ulation steps (30 to 60), it takes much longer to train, and it is hard to converge, but

it achieves 87% accuracy on validation. Results for the training attempts are shown

in Fig. A.2, the AD is also shown, which captures very few features. However, this

could mean the model is not converged at all, and further investigation is needed

with this more complex architecture.
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3.6 Conclusions and Future Work
The experiments performed in this work have shown that MLTSA is useful for se-

lecting relevant features at given time-frames. In addition the 1D analytical model

has validated they both are able to select correlated features with ease.

The 1D analytical model has proven useful for assessing time-series classifi-

cation tasks, and its easy implementation and data generation make it suitable as a

validation test for other approaches.

On the same tone, the 2D analytical model, the Spiral implementation in par-

ticular, has proven challenging enough for both ML models. Moreover, it has aided

in exploring the usage of MLTSA for time-changing importances, a much more

closely related case to that of protein data. It has proven a good exercise for vali-

dation, which is advised not only for similar approaches, but for other classification

tasks and time-series approaches, particularly modifying the number of arms, thus

increasing complexity and labels. This is already available in our code implemen-

tation for anyone to test.

From the performed experiments in both 2D and 1D models and their results,

it seems both models (MLP and GBDT) are good for testing other types of fore-

cast and prediction, as well as classifications. Additionally, the ML models perfor-

mances keep suggesting that a combined approach works best for finding relevant

features in complex time series data.The LSTM exploration is still preliminary and

more tests are needed to asses its usage for feature analysis in time-series. There is

an improvement over the simpler methods, where there is no need to find the right

time-frame to train at, which is an improvement over the fully automation of the

protocol.

Regardless, there is till plenty of room for improvement and exploration in this

field, other potential implementations are yet to be explored, as well as other ML

models or deep learning architectures, such as transformers. Further experimenta-

tion is advised as well as improving upon what’s being built.



Chapter 4

Understanding Kinases: Unbinding

CDK2 Inhibitors

This chapter is mostly from our first published work, containing the methodology

for our iterative unbinding protocol as well as the MLTSA protocol for under-

standing unbinding paths from inhibitors of Cyclin-dependent kinase 2 (CDK2).

This was the preliminary application of MLTSA and it validated its capability to

detect relevant residues for the unbinding paths of three different ligands. After

this, the follow-up publications optimized the protocol to get the most information

out of the analysis, however, this was the first biologically relevant system it was

applied to. Hence, it is more methodology focused and it doesn’t delve too deep in

the MLTSA results.

4.1 Introduction
Drug-Target residence time and its relevance. In drug design, long residence time

is now considered just as relevant as having a strong binding affinity [62]. The res-

idence time refers to the duration that the ligand stays bound in the binding pocket,

and it is closely related to the overall unbinding process rate. Obtaining information

about the high energy transition states and free energy barriers associated with this

process is difficult [10, 63]. Even if a drug has a high binding affinity, a short res-

idence time can significantly decrease its efficacy [9]. Recent studies have shown

that in some targets, the kinetics of drug-receptor binding may be more important
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than affinity for drug efficacy [10]. The drug-target dissociation process can also

be complex and involve several steps and pathways. As a result, drug candidates

with high affinity but low residence time may be discarded in the drug discovery

process [64, 65].

Experimental determination is challenging. Drug discovery faces the challenge

of predicting kinetics of ligand-protein interactions with a fast and reliable method

[66]. However, before experimental determination of ligand kinetics, ligands first

need to be synthesized, which can be expensive and time-consuming, even for a

moderate number of compounds. To obtain kinetics of ligand-receptor unbind-

ing, various experimental methods have been used, such as radioligand binding

assays, fluorescence methods, chromatography, isothermal titration calorimetry

(ITC), surface plasmon resonance (SPR) spectroscopy, and nuclear magnetic res-

onance (NMR) spectroscopy [65, 67]. However, these methods can suffer from

interference (especially fluorescence), lack of accuracy for short residence times,

and high cost/hazard in the case of radioligands [68]. Among these methods, SPR

is the most widely used to measure rate constants associated with the unbinding of

ligand-receptor (kon and ko f f ). This method is label-free; however, the attachment

of the protein to the probe may influence the activity of the protein, due to con-

formational changes [68]. To overcome these difficulties, various computational

techniques have been proposed as alternatives to estimate the kinetics of unbinding

events, providing a screening approach [69, 70].

Computational Strategies. Molecular dynamics (MD) is a powerful computational

tool used to study biological processes like protein-ligand interactions at an atom-

istic level. [3] Unbiased MD simulations have been successfully used in drug dis-

covery, either with multiple short simulations or specialized computer architecture.

However, due to limited timescales, obtaining sufficient statistical sampling for

accurate calculation of kinetic and thermodynamic properties can be challenging.

Drug-protein unbinding processes occur on long timescales, ranging from millisec-

onds to hours, making it difficult to simulate some drugs with half-lives of hours like

Aclidinium, Deoxyconformycin, or Tiotropium [71]. Enhanced sampling methods



4.1. Introduction 133

are therefore required to accelerate simulations and sample rare events [72].

Attempts at ligand unbinding biasing CVs. Enhanced sampling techniques have

been developed to accelerate simulations and sample rare events, in order to pre-

dict free energy barriers and uncover biological kinetics [73, 74]. These methods

include free-energy perturbation, metadynamics (MetaD), temperature-accelerated

MD (TAMD), steered MD (SMD), and more [12, 54, 75–80]. A key factor in these

methods is the identification of a collective variable (CV) that represents a physical

pathway for the calculation of the free energy profile [81]. However, finding ap-

propriate CVs can be challenging, with few practical ways to build them [54, 55,

82].These techniques have been previously used for ligand unbinding, such as using

MetaD to predict the unbinding of p38 MAP kinase bound to type II inhibitors [83],

and using a combination of MetaD and QM/MM simulations for more accurate

prediction of kinetics [84]. Steered Molecular Dynamics (SMD) was used to cal-

culate the residence times of Sunitinib and Sorafenib in complex with the human

endothelial growth factor receptor 2, and to calculate the unbinding free energy pro-

file for TAK-632 and PLX4720 bound to B-RAF [84, 85]. However, the predicted

free energy barriers for unbinding were significantly lower than experimental data

in both cases. In order to produce accurate free-energy profiles using biased sim-

ulations with important degrees of freedom, one needs to define an ideal set of

collective variables (CVs) that map the full path of the reaction coordinate [86, 87].

Usually, the vectors that describe this manifold are selected based on a priori chemi-

cal/physical intuition, which may neglect essential interactions occurring during the

unbinding process and significantly affect the free energy calculation. Additionally,

resolved structures may not always reflect appropriate conformers for ligand bind-

ing.Note that in pursuit of defining this ideal set of CVs to map the full trajectory,

the unbinding protocol pretends to automate a part of it, while the MLTSA analysis

refines the existing one and aids in discovering new ones.

Our approach for obtaining unbinding profiles. In this work, a novel enhanced

sampling method to obtain accurate free energy barriers for ligand-protein unbind-

ing and identify key molecular features determining the unbinding kinetics is pro-
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posed. The proposed iterative method assigns CVs during the unbinding trajectory,

and then uses these CVs as the driving force to pull the ligand out from the pocket

and perform the sampling for accurate free energy calculations. Unlike existing

methods, such as τ −RAMD, there is no need to a priori select CVs or decide what

to bias; these naturally arise from the unbinding trajectories that take the flexibility

and dynamics of the system into consideration.

The CVs extracted from the trajectories sufficiently describe a full pathway for

the unbinding process, and are subsequently optimized in the space of the identified

CVs to obtain a minimum free energy profile using the finite temperature string

method [41]. While different unbinding trajectories may lead to slightly different

variations due to multiple local minima along the paths, the main transition state

ensembles are typically captured by all of these paths similarly after convergence

to the minimum free energy pathway [19, 49] The results show little variation in

the unbinding free energy barriers using different starting pathways for free energy

calculations.

Machine Learning methods to understand unbinding processes. In addition to

determining unbinding rates, the work aimed to identify key molecular descriptors

that provide guidance for further drug design based on improved residence times.

A systematic approach to identify key low-dimensional sets of internal coordinates

using machine learning (ML) approaches was also proposed. Machine learning

methods have been widely successful in multidimensional data-driven problems,

and they are also applied to biomolecular simulations to determine key CVs [88–

90]. In this work, I developed a novel approach that makes use of the obtained string

unbinding path and taking advantage of that, its transition state (TS) ensemble. I ex-

plored two different ML methods in this study: Neural Networks (NN) [91], which

provide efficient training on complex high-dimensional data, and Gradient Boosting

Decision Trees (GBDT) [92], which allow straightforward evaluation of feature im-

portances (FI) [93]. I generated unbiased ”downhill” trajectories initiated at the TS

and used these to train a ML model that predicts the fate of binding or unbinding.

In order to demonstrate the accuracy and effectiveness of our approach on com-



4.2. Computational Details 135

plex biomolecular systems, the free energy barriers for two ligands were calculated.

The ligands bind to Cyclin Dependent Kinase 2 (CDK2) with PDB IDs of 3sw4

(18K) and 4fkw (62K) (as shown in Fig. 4.1) [94]. CDK2 is a vital regulator in

the growth of eukaryotic cells, and the deregulation of CDK2 has been linked to

unscheduled cell proliferation, leading to the progression and aggressiveness of

cancer [95, 96]. Therefore, CDK2 is an appealing target for treating specific tu-

mors of particular genotypes [97]. Various molecules, including AT759 [97], AG-

024322 [98], Dinaciclib [99], Roniciclib [100], and Milciclib [101], are currently

being clinically evaluated as CDK2 inhibitors for cancer treatment. In addition,

CDK2 is an excellent benchmark system due to its small size and well-documented

kinetic data for binding different molecules [94]. There were no previous computa-

tional studies on the kinetics of ligand unbinding on CDK2 prior to its publication

date, although up to this thesis one study has been published [102]. This study is

based on the MM-GBSA approach, and studies different inhibitors than our paper.

4.2 Computational Details

4.2.1 Simulating CDK2

All MD simulations were carried out in NAMD 2.12 [103], using the AMBER

ff14SB force field for the protein [104], and using the general Amber force field

(GAFF) for the ligands[105].

Our unbinding method is illustrated algorithmically in Fig. 2.2. More details on

how the protocol is applied can be found at section 2.2.1. An explorational unbiased

MD simulation of at least 20 ns was performed to identify the initial interactions

between the protein and the ligand in the bound state. These initial simulations al-

lowed to define the first set of CVs describing all distances between the heavy atoms

of the ligand and the heavy atoms of the protein smaller than din = 3.5Å, the inter-

action cut-off. The identified interactions will generate a single one-dimensional

CV as the sum of these M distances, di, and will be used for iteratively biasing the

simulations to observe an unbinding trajectory.

At every iteration, the bias is defined as a harmonic restraint, such as 2.3, where
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Figure 4.1: Illustration of the simulation system, a CDK2 complex bound to two different
ligands: b thiazolyl-pyrimidine derivative (18K) and c carboxylate oxindole
derivative (62K), originated from PDB structures 3sw4 and 4fkw, respectively.
Structural details of the ATP pockets are shown for the two systems (bottom),
with the ligands in the bound (green sticks), unbound (red sticks), and transition
states (grey sticks). Dashed lines depict key interactions.

D=D0+(Mdtar). Here, one aims to reach the target value D for the 1D CV starting

from the initial value at the beginning of the nth iteration D0. dtar is the incremental

factor, set to 1 Å, representing the average increase one aims to achieve per distance

for the next iteration. The targeted D value will be reached progressively within the

next 10 ns long MD simulation for every iteration. The force constant, k, was set to

20kcal/mol/Å2.

At the end of each iteration, the biased trajectory was analyzed, and novel

interactions were identified, within din of the ligand, that are present for more than

half of the total simulation time (i.e., 5 ns). These novel interactions are then added

to the list of interactions that define the main CV for the next iteration. Additionally,

it also re-evaluates existing interactions. If a distance during the last 5 ns of the

trajectory exceeds dout = 6 Å or its variance exceeds dvar = 1Å, then the distance is

removed from the main CV in the next iteration. This exclusion factor will ensure

that once a protein-ligand atom pair distance has exceeded dout , and therefore there

is no significant interaction between these atoms, this interaction is no longer biased.

Similarly, loosely interacting atom pairs have higher distance fluctuations, and thus

the corresponding weak interaction does not need to be included in the bias.
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To reduce the number of interactions between the ligand and the protein and

to remove redundancies, one combines atoms that are part of an equivalent group

where a rotational degree of freedom can interconvert the atoms from one to the

other (for example, benzene ring or carboxylic groups). Here, I considered the

centre of mass of that functional group and not the individual atoms.

The iterative process will end when no more distances are present in the main

CV from the last iteration n, thus there are no more stable interactions between the

ligand and the protein, suggesting that the ligand is outside the binding pocket.

4.2.2 Free Energy Calculations

Once the ligand is outside of the binding pocket, to determine the minimum free

energy path for the unbinding trajectory, the finite-temperature string method was

used [41]. The initial path and the full set of distances (CVs) are taken from the

obtained unbinding trajectory [41, 106]. The CV values were extracted for each

interatomic distance along the initial unbinding path to construct the minimum free

energy unbinding pathway iteratively, building a string of 100 windows in the co-

ordinate space. For each window and each CV, a positional restrain equidistantly

along the initial fitted string was applied, using a force constant of 20 kcal/mol/Å2.

Biased simulations were performed using these restraints for a total time of 5 ns per

window. From the obtained set of trajectories, a high-order (8) polynomial fitting is

applied using the average values for each collective coordinate to build the subse-

quent set of refined CV positions. The procedure is carried out iteratively until the

convergence of the free energy profiles and the unbinding pathway. This is verified

by ensuring that the maximal change of each CV between subsequent iterations is

below 7% (or 0.3 Å) from the previous iteration. By adding multiple overlapping

biasing potentials along the dissociation pathways which are parametrized via the

identified CVs, the string simulations can sufficiently sample the high dimensional

path describing the full unbinding trajectory in detail. The combination of the novel

identified CVs with the finite temperature string method allow to fully describe the

pathway and recover the free energy profile thus contributing towards an almost

fully automated protocol for ligand unbinding. Finally, to obtain the corresponding
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potential of mean force (PMF), the simulations were unbiased using the binless im-

plementation [41] of the weighted histogram analysis method (WHAM) [50]. See

section 2.2.1 for a more detailed description.

Note that the method does not aim to calculate binding free energies or kon

rates. These would require simulations of a completely dissociated ligand and pro-

tein system, for which the string method is not an efficient algorithm. To this aim,

routinely used efficient and accurate FEP76,77 calculations can be combined with

our method to determine binding free energies and ko f f rates, respectively, from

which the kon rates can be derived.

4.2.3 MLTSA

We developed a Machine Learning Transition State Analysis (MLTSA) method to

identify novel refined descriptors that determine the fate of a trajectory from the TS,

which is applicable to unbinding simulations, but also suitable for other applications

as a low-dimensional feature selection method for highly complex processes where

a TS region is identified. In this case, the novel molecular interactions between the

drug molecule and the protein for unbinding provide key signatures that determine

the unbinding kinetics.

I trained the MLP to analyze the model datasets of the downhill trajectories

and predict their possible outcome from early on data. The training was performed

using the Scikit-learn library [59]. I trained a simple model with an MLP Classifier

architecture, using three main layers (input, hidden, and output) with as many in-

put nodes as input features depending on the system of study, fully connected to a

hidden layer with 100 hidden neurons and ending in an output layer with one out-

put node each for IN or OUT classifications. The model was optimized using the

Adam solver [36] and using the ReLu [107] function as an activation function for

the hidden layer. The training was done with a learning rate of 0.001, iterating over

data until convergence or upon reaching the maximum number of iterations (500

epochs). Convergence is determined by the tolerance and the number of epochs

with no change in loss. When there are 10 consecutive epochs with less than 0.0001

improvement on the given loss, the training stops, and convergence is reached. The
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same parameters were used for both the analytical model and CDK2 data.

I also tested the GBDT model using the Scikit-learn library as a comparison

to the MLP approach. This method provides feature importances (FI) that enable

the ranking and identification of relevant features. I trained 500 decision stumps as

weak learners for GBDT minimizing a logistic loss function, with a learning rate of

0.1. The criterion for the quality of the splits was the Friedman Mean Squared Error

(MSE), with a minimum of 2 samples to split an internal node, and a minimum of

1 sample to be at a leaf node. The maximum depth of the individual regression

estimators was 3, without a limit on the maximum number of features to consider

as the best split, without maximum on leaf nodes and using a validation fraction of

0.1. The same parameters were used for both the analytical model system and the

CDK2 simulations.

For the application of the MLTSA on CDK2, first I identified the approximate

TS location by selecting the last simulation frames from the five windows with the

highest energy near the TS point of the obtained PMF. From each of these five

starting coordinates, I then ran 50 independent unbiased MD simulations, each 5 ns

long. I classified and labelled these short ‘downhill’ trajectories by considering a

combination of two key distances (Table B.1), to identify which simulations finish

either in a ligand bound position (IN) or in a ligand unbound position (OUT). I then

selected the starting structure (i.e., the TS) that provides the closest to a 1:1 ratio of

IN and OUT events amongst these trajectories, and I ran 200 additional 5 ns-long

unbiased MD simulations with this starting point. I considered all interatomic dis-

tances (heavy atoms only) between the ligand and the protein within 6 Å at the TS

starting position and determined the values of these distances along downhill tra-

jectories. These constitute a dataset of distances for each simulation trajectory, and

I aimed to select the most important features from these with our MLTSA method.

The number of epochs and convergence of the loss function for each model can

be found in Tables B.3, B.2 and Fig. B.3. Thus, using the frames coming from the

multiple short unbiased MD simulation trajectories starting from the TS, I provided

a dataset of distances extracted along the trajectory, as well as the future outcome
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of the IN or OUT events as the desired answer/classification. I performed the ML

training at several different time ranges of the trajectories (Fig. B.2), to observe

the predicted accuracy at different time ranges along the simulations. From all the

available trajectories for each system I reserve a part for further validation to avoid

the overfitting of the model. The rest is used for training, with all frames from the

trajectories concatenated and randomly mixed, then split in different fractions as

training (0.7) and test (0.3) sets. The trained model is additionally verified to have

a similar prediction accuracy on the unseen trajectories.

Using the trained model, one can assess which features are the most impor-

tant for the model to predict whether the simulation is classified as bound (IN) or

unbound (OUT). To do so, we apply our own feature reduction approach (FR), in

which every single distance (i.e., feature) is excluded one-by-one from the analysis,

and I calculate the drop in accuracy compared to the full set of distances present.

Differently from the standard approach [53], where the real value of each excluded

feature is replaced with a zero, here one replaces the value for each excluded feature

with the global mean of that selected feature across the simulations, thus cancelling

the variance of the aforementioned feature. This approach is more in line with the

input values explored by the trained model, whereas a 0, specially in physical quan-

tities might be really exceptional and make the model perform in unexpected ways.

4.3 Results and Discussion

4.3.1 Unbinding CDK2 Inhibitors

For each system, I performed three independent simulation replicas starting from

the respective equilibrated system. For each replica, I performed the initial unbiased

MD simulation, followed by our unbinding trajectory procedure and subsequently

calculated the minimum free energy path and the corresponding free energy profile

using the finite temperature string method (Fig. 4.4).

Fig. 4.2 shows a representative result of the unbinding process for selected in-

teractions. The first distance (blue line) is identified from the initial unbiased bound

simulation as being shorter than 3.5 Å. Later during the biased unbinding process at
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Figure 4.2: a) Unbinding trajectory of ligand 62K represented as selected snapshots along
the trajectory at 0, 70, 141, and 219 ns from left to right, respectively. Repre-
sentative distances used for the bias are shown as colored dashed lines. Some of
the representative distances included in the CV along the unbinding trajectory
are shown in (b), the corresponding distance values to these are plotted in (c).
The lower dashed line at 3.5 Å is the cut-off value below which an interaction
is included in the main CV, the upper cut-off at 6 Å is the value above which
the distance is excluded from the CV.

30 ns a new interaction is found (orange line) and at 90, 120 and 130 ns more dis-

tances are included in the main CV (green, red, purple, and brown). Additionally,

interactions are progressively being removed as they are breaking (above 6 Å).

Overall, while the identified CVs in different replicas vary, a few common key

CVs are present in all unbinding trajectories within all replicas (Fig. 4.3). Even if

the actual unbinding pathways have differences amongst the replicas, as seen by

looking at the distances found along the paths, they are all expected to pass through

the same TS ensemble and show generally the same mechanism. This can also

be confirmed from the consistent free energy profiles (See Fig. B.7, also for the

60K/4FKU system).
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Figure 4.3: CVs obtained from the unbinding of 18K (a), and 62K (b); representative dis-
tances shown in dashed lines (yellow: interaction from the initial structure,
cyan: interaction found during the unbinding trajectory), red sticks represent
the coordinate of the ligand when it is outside the pocket. These distances ap-
pear in each of the three replicas for each system.

Table 4.1: Ligand binding kinetic and thermodynamic values of 3sw4 and 4fkw sys-
tems from Dunbar et al. [94] and calculated results obtained from the simu-
lations. ∆Gcalc was calculated using the Eyring-Polanyi equation: k = kBT/h
exp(−∆G/kBT ) at 298 K. [108]

PDB Ligand KD(M)
kon

[M-1s-1]

ko f f

[s-1]

∆Gexp

(kcal/mol)

∆Gcalc

(kcal/mol)
3sw4 18K 9.61E-07 1.00E+05 0.0823 18.93(±0.17) 16.29(±0.21)
4fkw 62K 4.73E-08 6.49E+04 0.00261 20.97(±0.05) 20.27(±1.06)

Additionally, I also performed the unbinding calculations for a third ligand,

60K, that is analogous to 62K (Fig. B.8). Interestingly, I identified that all three

replicate string pathways originating from three distinct unbinding simulations

present a rotation of the hydrazineyl N=C bond, leading to a cis(Z)-trans(E) iso-

merisation of the ligand near the TS (Figs. B.9 and B.10). This is due to, on one

hand, the initial strong forces in the string simulations that could be avoided in the

future, and, on the other hand, to force field inaccuracies with a too low energy of

the transform and too low barrier for the related dihedral angle rotation as deter-
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mined by DFT calculations (Fig. B.11). When compared with 62K, which does not

exhibit this behavior in any of the three replicas, one can observe a lower energy for

the 60K trans state, that enables it to avoid the TS bottleneck. Correspondingly, all

three distinct replicas result in a consistently too low unbinding free energy barrier

when compared with experiment (Fig. B.7).

4.3.2 Recovering the Free Energy Profiles for the Unbinding

The energy barrier extracted from the PMF of the simulations agrees closely with

the experimental ko f f rates and are very well reproducible within the same system

(Table 4.1 and Fig. B.7). The shape of the free energy profiles is also consistent

amongst the replicas, however the exact shape depends on the CVs identified in

that replica (Fig. B.7 and Table B.4). Generally, a higher number of CVs results

in a broader TS region (e.g., Fig. B.7, ligand 62K). In addition, results for the third

ligand, 60K is also presented, demonstrating a consistent underestimation of the free

energy barrier due to the discontinuity of the dihedral angle along the minimum free

energy paths [109].

Figure 4.4: PMF of the unbinding path for 18K (a) and 62K (b). The free energy profile
is obtained from a representative replica, the standard error, shown as a shaded
area, was obtained by dividing the full dataset into 4 subgroups and recovering
the PMF.

Importantly, comparing the same ligand within the three different replicas in
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all systems provide very similar free energy barriers, expressed with a low standard

error. The energy barriers consistently reproduce the high energy barriers also seen

experimentally thanks to the introduction of numerous key CVs that are not only

taken from the initial ligand-bound conformation but, instead, introduced along the

unbinding paths (Fig. 4.2).

IN OUT

TS
0

5

2. 5

1

Figure 4.5: Representation of the PMF of ligand 62K along the string coordinate and the
path of multiple downhill trajectories started at the TS (in green) for further
analysis. Note that this string coordinate is the sum of the different distances
included in the biased CV. From the TS coordinate as a starting point, a set of
simulations leading to both an IN position (blue) and an OUT position (red) are
represented as lines. The green dots illustrate the free energy profile datapoints
obtained from the WHAM calculation using the string window as string coor-
dinate. The green line represents the fitting obtained from the green dots. The
yellow shade represents the simulation time portion used for analysis during
our machine learning-based approach.

Only one main barrier is observed, corresponding to the breaking of the drugs

with the His84 H-bonding contact (Fig. 4.4) [94], suggesting that the different repli-

cas do indeed share the same TS ensemble, despite the slightly varying pathways
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and identified CVs along the path. This H-bond was reported as a key interaction

in many ligands in complex with CDK2/CDK5 [110, 111]. This interaction was

included in the initial unbiased simulation in the bound systems at the beginning

of the unbinding procedure. However, during the unbinding trajectories, once this

important H-bond between His84 and the ligand is broken, new interactions are

formed, for varying time scales. For 18K, in all the three replicas, H-bonds are

formed with the exocyclic amino group of the ligand (N5) and the backbone oxy-

gen of Glu81 and subsequently with the backbone oxygen of His84. 62K presents

a sulphonamide terminal group, which, during the trajectory, interacts with Val163

and His84 of CDK2.

4.3.3 Analyzing and Understanding the Unbinding paths

To analyze which distances are the most important at the TS region, I implemented

our MLTSA method. Starting with two datasets of 139 (62K) and 148 (18K) inde-

pendent downhill trajectories for each system, and initial set of CVs of over 170,

I obtained key distances for each system that are major determinants for the pre-

diction of whether a molecule ends up in the bound or unbound states (Fig. 4.5).

By training with trajectory data from up to 0.3 ns of each downhill simulation, the

model can predict with high accuracy the IN or OUT outcome of the trajectories,

more specifically: 80.11% for 18K and 93.83% for 62K. To confirm the effective-

ness of the ML training, I compared the ML prediction accuracy with using optimal

thresholds of the main string CVs (Fig. 4.5) to determine the outcome at 5 ns of

downhill simulations (Figs. B.4, B.5 and B.6). Importantly, the ML model pre-

dicts the outcome more accurately at early times (before 0.3 ns), than using the

best possible prediction via the string reaction coordinate: with above around 80%

to 94% accuracy versus 55-to 61%, respectively for the ML and the main CV

(Figs. B.4, B.5 and B.6).

Using the trained model, I then performed a feature reduction analysis to iden-

tify which CV features affect the overall prediction ability of the ML model the

most. For both molecules I was able to select the most important structural features

(Fig. 4.6), that lead to the significant reduction of the prediction accuracy, when
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Figure 4.6: Identification of the key distances (Feature Reduction) from the largest accu-
racy drop using the last 50% (yellow), 25% (red), and 10% (blue) of the frames
up to the first 0.3 ns of the simulations for a: 18K and c: 62K. The different
shades in the background group the different features according to the atom of
the ligand involved. Features presenting significant decrease in accuracy are
labelled and portrayed as a 3D representation on the right side of each plot:
b:18K and d:62K.

such features were eliminated (these were kept as a constant value and fed to the

ML, see section 2.2.5 for details), while other features did not affect the overall

accuracy of the predictions.

I also compared the validity of the feature reduction approach with GBDT to

identify FIs from the GBDT model. The results obtained show broad similarity

with the main MLTSA approach (Figs. B.12- B.13) and they both outperform the

baseline approach without ML. This suggests that alternative ML models may also

be used successfully and further validate the results.

While some of the highlighted interactions with the ligands were already iden-

tified for the bound state (such as His84) other interactions were previously sug-
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gested (Asp86 and Asp145) and new ones have been identified by the MLTSA

(Lys89, Gln131), and suggested as possibly relevant. Note that the highlighted

residues in this work are tightly bound to the TS crossing rather than the bound

state, and thus, their interactions are meaningful in such context. For example,

62K-Lys89 interaction makes sense when exiting the pocket due to its negatively

charged end, whereas Gln131 has more weight in 18K’s case than in 62K’s due

to it’s positively charged end. These interactions appear relevant for the ligand’s

unbinding mechanism, and as such should be studied by other means and further

validated as crucial. Doing so would provide more ground for drug designers to

improve on potentially improving CDK2’s inhibitors with longer residence times,

by tuning down these polar interactions.

The MLTSA is significantly less computationally intensive than either the un-

binding simulations or the string calculations. The trainings were optimized up to

2min per training on 24 CPUs. The short downhill trajectories ( 5ns) can be triv-

ially parallelized, which constitute the main cost of the MLTSA analysis (< 4h on a

standard GPU). The ML training and accuracy drop calculations have a negligible

cost compared to these, therefore MLTSA could be a quick and effective approach

to understand key CVs at the TS.

4.4 Conclusions and Further Work

Optimizing ligand unbinding kinetics is a very challenging problem for small

molecule drug discovery and design, that can lead to the development of drugs with

superior efficacy. To tackle this, we have developed a new method, which allows

us to calculate the free energy barrier for the ligand unbinding process, therefore

providing quantitative information about the residence time of a specific ligand.

Our method involves an exploration step, where a ligand unbinding path is deter-

mined together with key collective variables that describe this path. Subsequently, I

performed accurate free energy calculations using the complete set of identified in-

teractions as CVs along the unbinding path via the finite temperature string method.

This provides us with the free energy barriers and an ensemble of structures at the
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transition state of the ligand unbinding process. The novelty of the method lies

in the combination of automated iterative addition and removal of the collective

variables determining an unbinding trajectory, which allows us to discover novel

interactions not available a priori, based on the interactions from the bound struc-

ture. I found that while the unbinding trajectories show different paths between

different replicas for the same system, our method nevertheless identifies the key

interactions important during the unbinding process and provides consistent free

energy barriers. The combination of generating an initial path and identifying the

important CVs for the unbinding process with the string method for accurate free

energy calculations using high dimensional reaction coordinates provide an efficient

way to obtain quantitative kinetics of ligand unbinding.

I tested this method using a well-studied cancer drug target, CDK2, using two

drug molecules with measured kinetic profiles. I obtained energy barriers in agree-

ment with experiments using our method, which demonstrates the fundamental im-

portance of determining a well-selected, high-dimensional set of CVs for the correct

description of the process and kinetics results. Although I previously showed stud-

ies in which a bad selection of CVs leads to poor results, in this case, no results

for a poor CV on CDK2 unbining have been done or published previously, however

kinase ligand unbinding is challenging on its own.

To aid the kinetics-based design of novel compounds, we also developed a

novel method, MLTSA, that allows us to identify the most important features in-

volved at the TS of the unbinding. I generated multiple trajectories initiated at the

TS, which either terminated in the bound state or in the unbound state. I then trained

an MLP to predict the outcome of the trajectories by using a set of CVs and data

drawn from the initial segment of the trajectories only. By doing so, I were able

to demonstrate that the ML was able to predict the trajectory outcomes with much

higher accuracy than using the original set of CVs used for the free energy calcu-

lations. A feature importance analysis was further employed to then identify the

key CVs and the corresponding structural features that determined the fate of the

trajectories, which therefore are the most important descriptors of the TS.
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The average training time using a single core was around 3.5 minutes/model to

converge, whereas the GBDT training took about 5 minutes/model. Thus, it is sug-

gested that a joint approach with both models which may complement one another,

could be used to identify relevant CVs. Nonetheless, future studies with non-linear

correlated time series can further help to explore the performances of these and

other ML methods. Importantly, analogous analysis can be performed for various

complex processes, including ones with multiple states as possible outcomes.

In addition to binding rates, I also aimed to identify specific molecular features

and interactions with the target protein that allows us to design kinetic properties of

the ligand. Using our ML methods, I identified multiple interactions between the

protein and specific parts of the ligands that were of major importance for the trajec-

tories to cross the TS. Important protein-ligand interactions at the TS-bound poses

for CDK2 correspond to functional groups of the distal ends of the ligands. Besides

His84, a known key residue for interaction with multiple CDK2/4 inhibitors, here I

also identified additional common interactions within CDK2 across the ligands, for

example between Lys89 and the sulfonamide groups or between Asp145 and the

carboxylic group and the ester group for 62K, respectively. Importantly, to perform

this analysis, one requires the approximate knowledge of the TS structures as well

as the MLTSA approach generating a set of downhill unbiased trajectories from

these starting points. Our algorithms enable us to uncover novel design objectives

for a kinetics-based lead optimization process.



Chapter 5

Understanding GPCRs: Unbinding

Muscarinic Antagonists from the

hMR3 Receptor

This chapter is the work from our latest paper [2], where we applied the unbinding

protocol and the MLTSA approach to a much more complex system, a transmem-

brane protein with long-action inhibitors, the human Muscarinic receptor 3 (hMR3).

This work is much more data-driven and results focused than the previous. The

methodology was applied very similarly to the previous chapter, and in this one we

were more confident using the MLTSA to focus the research. It is an unpublished

paper, but it is available as a preprint in biorXiv.

5.1 Introduction
Muscarinic receptors (MR) are a five-membered subtype group of transmembrane

receptors, which form an important part of the parasympathetic nervous system.

They are activated by neurotransmitters such as acetylcholine and muscarine [112],

and transmit extracellular signals to the cell interior, which makes them attractive

drug targets [113].

The sequence identity between the five MR isoforms is low, except between

the transmembrane regions [114, 115]. This region contains seven alpha helix sub-

structures, which anchor the protein in the outer membrane of the cell [116]. On
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the cytoplasmic side, the receptor is bound to a GTP-binding protein, which is re-

sponsible for the subsequent signal transduction. Therefore, MRs are part of the

G-protein coupled receptor (GPCR) superfamily.

Downstream signaling can be spontaneously induced when MRs bind to GTP-

binding protein, even in the absence of the corresponding agonist [117]. Activation,

as well as the downstream signaling can be suppressed when suitable antagonists

are bound to MRs. This can be exploited pharmacologically, and several important

muscarinic antagonists were developed and used for instance, as bronchodilators in

the treatment of asthma or chronic obstructive pulmonary disease (COPD) [118–

121].

Human MRs (hMRs) are expressed in a variety of tissue in the human body,

therefore a drug with low selectivity may cause severe complications and side ef-

fects [122]. While the hMR3 isoform — which controls the tension of the smooth

muscle tissue in the bronchial tubes — is the actual target of bronchodilators, the

off-target binding to the highly homologous transmembrane region of hMR2 is re-

sponsible for serious side effects, especially in the cardiovascular system [122–

125]. Due to the high homology between the two isoforms, the binding affinity of

most muscarinic antagonists is very similar. For example, the pKi value of the phar-

macologically widely used tiotropium for hMR2 is 10.7 and for hMR3 11.0 [122].

Nevertheless, tiotropium shows a high selectivity because the dissociation rate from

hMR2 is significantly higher compared to that from hMR3 by about one order of

magnitude [122, 126, 127]. As a consequence, the residence time of tiotropium in

the hMR3 isoform is very long and the binding was considered to be kinetically

irreversible [122, 128].

As in general, the drug unbinding process is a rare event, it is highly challeng-

ing to study it experimentally and the detailed mechanism is still mostly unknown.

However, there are several computational studies available that attempt to approach

this problem via molecular dynamics (MD) simulations [3, 129].

Simulations on the beta-2 adrenergic receptor using RAMD found two dif-

ferent types of pathways for the unbinding of the beta blocker carazolol. One of
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them along the long axis directly into the extracellular space and one laterally into

the membrane [130]. Recently, it was shown that the path leading directly into

the membrane is probably an artefact caused by the force constants of the biasing

potentials being too high [131]. For the same receptor, binding paths for several an-

tagonists and agonists could be identified by conventional MD [132]. A free energy

profile (FEP) was also presented, which is characterized by two barriers. The first

barrier describes the process of docking of the ligand from the solution to the tunnel

entrance of the receptor (the extracellular vestibule). The second barrier is on the

way of the ligand from the extracellular vestibule to the orthosteric binding site.

Later works using metadynamics and Markov State Models (MSMs) found the

resting state in the extracellular vestibule to be very shallow and a significant barrier

for the desolvation process could not be found [63]. It is now largely consensus in

the available literature that the rate determining step is indeed on the way from the

vestibule to the binding site [133, 134].

Previous studies on the unbinding path of the hMR2 receptor and its agonist

iperoxo have also shown that the process encompasses two steps. In these unbind-

ing processes the rate limiting step was found to correspond to the ligand exiting

from the orthosteric binding site to extracellular vestibule [135, 136]. Two differ-

ent exiting pathways are suggested, the first one (and more favorable) involves the

rotation of the ligand and its exit through the extracellular vestibule, while the sec-

ond one is characterized by the rearrangement of the extracellular loop 2 (ECL2)

limiting the ligand from fully entering the solvated state, i.e. leaving the protein

completely. Free energy profiles for the unbinding were estimated using metady-

namics, however, calculations of the free energy barrier or unbinding rates proved

to be challenging due to force field inaccuracies [136]. Given the homology be-

tween hMR2 and hMR3 similar limitations are expected to arise, which have been

considered for this study.

In this work, I applied our recently developed unbinding algorithm [1] to

hMR3, to investigate the dissociation of tiotropium (1) and two structurally similar

ligands, N-methylscopolamin (2) and homatropine methylbromide (3) (Fig. 5.1).
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The obtained unbinding pathways were refined using an adaptation of the finite

temperature string method [137] (Please see 2.2.1 for details). Finally, the transi-

tion state (TS) of the tiotropium unbinding was detailed and analyzed with the aid

of machine learning (ML) to identify prominent interaction pairs of the ligand and

the receptor at different levels. Additionally, I also revealed key conformational

changes of the protein that define the downhill trajectory outcomes.

5.2 Computational Details

5.2.1 Building hMR3

Starting Structure. The starting coordinates for hMR3 were obtained using a rat

MR3 crystallographic structure, PDB ID 4U14 [138], with a resolution of 3.57 Å

and with tiotropium bound in the orthosteric site. The structural model was trun-

cated to the transmembrane helices and the extracellular loops, which are highly

conserved between human and rat (91.85% homology) and contain the necessary

and sufficient domains for ligand unbinding [114].

Parameterization and System Building. The protein was inserted into a mem-

brane using the membrane builder [139–141] of the CHARMM-GUI web

server [142–144]. and then solvated in water [145] with 150 mM KCl. The mem-

brane consists of POPC : DMPC : PY PE : DMPE in the ratio of 1 : 2 : 3 : 4, chosen

on the basis of earlier studies of hMR3 and on tracheal membrane tissue [146].

The ligands (Fig.5.1) were geometry optimized at the B3LYP/6 31G** level of

theory [147] applying the ORCA 4.1 software suite [148–150]. With the optimized

structures, force field parameters for the ligand were defined using the CHARMM-

GUI ligand reader [151].

The all-atom CHARMM36m force field was used for the protein [152–154]

and the lipids [155, 156], and the TIP3P model [145] for the water. Simulations

were carried out with the NAMD software package [103] using input generated by

the CHARMM-Input generator [157]. The cutoff for non-bonded interaction was

kept at 12 Å, the switch distance at 10 Å. Electrostatic interactions were handled

by a particle-mesh Ewald solver with a grid spacing of 1 Å. The temperature was
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1,2,3

Figure 5.1: 2D molecular representation of the pattern structure (top) shared between all
three ligands (bottom) and their distinct radicals (R). Numbers correspond to
tiotropium (1), N-methylscopolamin (2), and homatropine methylbromide (3).

kept at 310.15 K using Langevin dynamics. Pressure was kept at 1.013 bar by

Nosé-Hoover Langevin piston pressure control [158, 159]. The structures were

first energy minimized according to the CHARMM-GUI scheme and subsequently

equilibrated for 50 ns.

5.2.2 MD Simulations of hMR3 Inhibitors

Unbinding Simulations. The unbinding procedure was followed as described in

section 2.2.1. After the equilibration, a 20 ns production run without any restraints

was performed. During this production run all interacting pairs of heavy atoms –

one in the ligand and one in the protein – were identified. Thereby, a pair is defined

as “interacting” if the distance between the atoms is below 3.5 Å for more than 50%

of the simulation time. Based on the sum of these interacting distances, a collective

variable (CV) is defined and restrained harmonically [1] (See section 2.2.1). Dur-

ing an iterative process, subsequent simulations of 10 ns use this biasing CV with

a force constant of 10 kcal mol−1Å−2. The constraint position (i.e., the length) of

the CV is monotonically increased. In the next iteration, new interaction sites are
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identified in the same way as before and these are added to the CV. Interactions

are discarded and removed from the CV, if the distance between the atoms is larger

than 11 Å. A shorter cutoff distance results in the ligand falling back into the orig-

inal binding position after a few iterations. This is possibly due to the long range

interactions still acting on the ligand and prompting its return back to the bound

state. The procedure is repeated until the ligand is displaced out of the receptor.

The unbinding simulations were run for 25 iterations, adding up to a total of

240 ns simulation length. Thereby, a total of 52, 50, and 44 interacting protein-

ligand distances were identified by our unbinding method along the paths for ligands

1, 2, and 3, respectively.

Refinement of the path using the string method. The unbinding path was used

as a starting point for the subsequent refinement using the finite temperature string

method [48] as described in section 2.2.1. Since the string iterations are computa-

tionally expensive and the convergence is slow due to the high-dimensional nature

of the system, only 20 iterations were calculated.

Approximation of the TS region. To approximate a TS structure from the string

windows, I identified a set of structures from the string windows, which are very

similar in the unbinding paths of all three investigated ligands ( comparison in

Fig. 5.3). I selected five string windows as starting points around the window with

these distinct structures for ligand 1 and performed 50 independent unbiased (down-

hill) MD simulations with 5 ns lengths each. Thereby, I was able to identify the

structure that provided the closest 1:1 ratio of a binding (IN) or unbinding (OUT)

events, which I considered to be the TS of the unbinding process.

5.2.3 MLTSA Protocol

To aid in the identification of the main CVs driving the system across the TS and to

pinpoint novel descriptors that determine the fate of a binding/unbinding events, I

used our MLTSA analysis (section 2.2.5). In this approach, a ML model is trained to

predict the outcome of downhill simulations with data close to the TS. Subsequently,

the trained models are used to discover the key TS-defining features of the system.
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Creating the datasets. Using ligand 1’s identified TS structure as the starting point,

multiple 5 ns long unbiased simulations were run. 149 downhill trajectories were

classified and labelled by considering a linear combination of 52 distances to iden-

tify which simulations arrived to an IN or an OUT state. A minority of additional

trajectories not reaching clearly either the IN or the OUT states after 5 ns were

discarded. To train ML models, several sets (see Fig. 5.2) of features containing

different distances (CVs) along the simulation frames were created, following the

methodologies described in section 2.2.2:

• To assess intra-protein interactions, a first dataset (XYZ-PCA set) included

the Cartesian coordinates of all protein atoms ( 6K, not including hydrogens).

To reduce the dimensionality, PCA analysis was applied as described in sec-

tion 2.2.2 and only the top 100 components were used as input features.

Please see section 2.2.2 and C.2.1 for further details on the methodology

applied. However this dataset is complex to interpret.

• To enable more interpretable localized features, additional datasets contain-

ing ligand-protein distances were created. The first such set (3Å set) contained

all interatomic distances between the ligand and the protein within 3 Å of the

ligand at the starting TS position, excluding hydrogens. The second dataset

of this type (6Å set) was created in a similar fashion to the previous one, but

with a cutoff of 6 Å instead. These datasets followed the protein-ligand shell

methodology described in section 2.2.2. These datasets enabled for a better

understading of the relevance of features near the active site of the protein.

• For the fourth dataset (3Å+ECL2/TM5 set), the same data within 3 Å of the

ligand was used, with the addition of the interatomic ligand-protein distances

of the extracellular loop 2 (ECL2) and the transmembrane region 5 (TM5), in-

cluding residues from I222 to T231. These datasets were created to assess the

importance of the different loops, when compared to the active site residues

themselves.

• An additional fifth dataset, to assess overall ligand-protein contributions,
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was also created (allres set), which considers all residues and includes the

closest distance between the residue and the ligand at each simulation frame

(see section 2.2.2 for clarification). This allowed for a more broad view of

what parts of the protein are relevant and it was easier to implement than

single-atom distances, which would have been computationally expensive

to screen. This dataset was also later amended with the closest 8 water

molecules, their distances to the ligand (allres+wat set) was included to en-

able the assessment of the role of water molecules.
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Figure 5.2: Diagram showing the unbindings of ligands 1 (cyan, TTP) 2 (green, NMS) and
3 (orange, CPD2) of the different datasets derived from 1’s downhill trajecto-
ries.

A visual summary of all datasets created can be found in Fig. 5.2.

Machine Learning models and training. I used two different ML models: a Multi-

Layer Perceptron (MLP) neural network classifier [160], and a Gradient Boosting

Decision Tree (GBDT) classifier [161]. Both models were trained to predict the

outcome (IN/OUT) of the simulations from early on data at the time range from

0.05 ns to 0.1 ns, totaling 2500 frames per simulation. I trained 100 independent
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MLP and GBDT models randomly assigning the 149 simulations into training data

(70%) and validation data (30%). Details on the trainings and hyperparameters can

be found at section C.3.

Feature Analysis. Following the methodology in section 2.2.4, I used the Gini fea-

ture importance [162] to evaluate the relevance of the features from the GBDT mod-

els, averaged across the 100 trainings to calculate their relative feature importance

(RFI). To identify key features in MLP models, I removed the variance from each

feature one-by-one [1] (with the algorithm in section 1) and assessed the accuracy

drop when predicting outcomes with the altered dataset on the trained models. If

the accuracy of the prediction is greatly reduced when a feature is altered, the fea-

ture is considered important for the description of the TS. I identified the overall top

features averaging the relative accuracy drop (RAD) from all 100 trainings on all

datasets used (Figs. 5.6 to 5.7).

5.3 Results and Discussion

5.3.1 Unbinding the Bronchodilators

Bound state in the orthosteric site. In all three ligands, the initial ligand positions

in the unbinding simulations are close to the starting bound pose: the charged end

of the molecule is nestled in an aromatic cavity, which is formed by the residues

W503, Y148, Y506, and Y529. The tyrosines form a cap around the ligand. Simul-

taneously, the S151 residue coordinates the epoxide group via a hydrogen bond and

the negatively charged residue D147 neutralizes the positive charge of the ligand.

At the opposite end of the molecule, the N507 residue stabilizes the molecule by a

hydrogen bond with the OH group. The same binding mode was also described in

recent works [128, 133, 138, 163].

Departing from the binding site. As illustrated in Fig. 5.3 and 5.4, the first move-

ment from the binding state (Fig. 5.4.A) is a rotation of the charged end of the

molecule. Thereby, the hydrogen bond of the epoxide group with S151 is broken

and the ligand slightly gains flexibility. Apart from that, the ligand’s position in

the binding site remains nearly unchanged (Fig. 5.4.B). This first movement is most
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Figure 5.3: a: Overlay of ligand 1’s (tiotropium) structures during the unbinding path from
bound state (BS) to unbound state (US) passing through a transition state bot-
tleneck (TS) similar in all three ligands. BS and TS comparisons for ligands 1
(b and c), ligand 2 (d and e) and ligand 3 (f and g)

pronounced for ligand 1, which follows a helical motion along its longitudinal axis

and thus it detaches itself from the aromatic cavity.

This shift is present, but less pronounced for ligand 2 (Fig.5.4.A). Subse-

quently, ligand 2 breaks through the tyrosine-formed ceiling via a path associated

with significantly more dislocation of the residues Y148, Y506, and Y529.

In the path of ligand 3, the entire molecule does not shift, instead mainly the

end of the ligand with the thiophene ring moves (Fig. C.1). This allows the charged

end to slip outwards the aromatic cage in a rolling motion.

Through the bottleneck. The new position after the shift, allows the molecules

to rotate their charged end by 90° towards the direction of the receptor tunnel’s

exit (counterclockwise), without exerting a lot of tension on the tyrosine residues

forming the aromatic cap. During this rotation, all three paths pass through a state

(Fig. 5.4.D), which is highly similar in all unbinding trajectories. Interestingly, this
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Figure 5.4: Key frames of the unbinding path of ligands 1 (left, cyan), 2 (middle, green) and
3 (right, orange) in sticks. hMR3 is represented as cartoon, residues forming
the aromatic cage of the orthosteric binding site are also represented as sticks
(in purple). Frames start from being bound in A, to different points in the
unbinding process for each ligand, finishing with the ligand on its way to the
extracellular vestibule in frame E, this point is considered to be the TS of the
whole process.

rotation was observed to proceed clockwise for the iperoxo ligand unbinding path in

hMR2 [136]. This movement positioned the charged end of the molecule pointing

towards the membrane in these previous simulations, and not to the extracellular

vestibule observed by us. I subsequently found by unbiased simulations starting

from this structure that either the ligand is led back into the binding site, or it moves

along the exit tunnel towards the extracellular vestibule (Fig. 5.4.E). Therefore, this

position can be identified as a TS of the unbinding from the orthosteric site. The
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pathway is also similar to the previously reported forced dissociation with acetyl-

choline as well as tiotropium (1) on hMR3, and with a slightly tilted orientation on

hMR2 [133].

To the extracellular vestibule. For all ligands the total length of the simulations

was not sufficiently long to observe the complete unbinding of the ligand, rather

the ligand remains in the extracellular vestibule but outside the orthosteric binding

site. However, in line with the consensus literature, it is estimated that the final

unbinding step from the extracellular vestibule has a significantly lower barrier,

therefore it does not likely contribute to the off rate [63, 133].

5.3.2 Understanding Triotropium’s Unbinding

Downhill trajectories from TS structures. I evaluated starting structures from 5

string windows for ligand 1 near the bottleneck conformations that all three shared

(Fig. 5.4). The structure closest to the TS position led to 85 and 64 downhill trajec-

tories of 5 ns reaching the IN and OUT states, respectively (Fig. 5.5). To explore the

time range where the TS is probed, I performed initial ML trainings to identify the

region where the ML method can accurately, but not with full confidence, predict

the final outcomes from as early an timeframe as possible. I found that this was

already possible from the 0.05 to 0.1 ns timeframe. Trainings at different times can

be found in Fig. C.3, final accuracies for all datasets in Table C.1.

Assessing contributions from protein conformational changes. To consider

changes in the protein structure affecting the unbinding, I analyzed the protein

Cartesian coordinates via their top 100 PCA components (Fig. C.2). I was able

to predict the outcome very accurately, obtaining average test accuracies of 100%

(MLP) and 93% (GBDT). Out of the 100 components, the first two PCA compo-

nents were important both for RFI and for RAD. Additionally, PCA23 and PCA59

were important for RFI (see section C). The main PCA component represents large-

scale movements from the TM2, TM3, and TM6 to TM7 helices, including some

ECL1 residues (Fig. C.4 and C.5). The residues that contributed the most are from

the middle of TM6, close to the ligand. The second main PCA component (top

RAD feature) represents motions from the rest of the protein, mostly from TM4 to
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TS

IN OUT

Figure 5.5: String coordinate value evolution during the downhill simulations started from
triotropium’s TS (value in green). Simulations ending in IN are blue and red
for the ones ending in OUT.

TM5, with the ECL2 loop being especially relevant. The largest contributions come

from residues (W206, Q207, I222 and Q223) that belong to ECL2/TM5 junction,

some from TM4 that are close to the ligand (I194 and V193). However, due to the

broad distribution present in the PCA components, their interpretability is limited.

Therefore, I focused next on feature sets that are precisely localized and able to

assess specific ligand–protein atomic distances instead.

Key feature identification from the 3Å dataset. I created a high-resolution

dataset, which contained atomic distances between the ligand and protein residues

within 3 Å of the TS structure of the ligand. Using the 3Å dataset, I achieved a

prediction accuracy of 78% with MLP and 77% with GBDT, and obtained con-

sistently similar key features by RAD and RFI (Fig. 5.6). Both models (MLP and

GBDT) agreed on the importance of four out of six top residues: D147, W199,

T231 and Y529.
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Figure 5.6: Relative feature importance (RFI, top) and relative accuracy drop (RAD, bot-
tom) shown for every interatomic distance between ligand 1 and hMR3 in the
3Å dataset. Distances are ordered and clustered by residue number. Residues
with the top six distances (red symbols) are highlighted.

Three of these key residues were previously known to play important roles in

the unbinding process. D147, as mentioned earlier, interacts with the charged amine

moiety in the bound form. Similarly, Y529 is part of the aromatic cage around the

ligand. Additionally, the aromatic substructures of the ligand are known to interact

with a hydrophobic region close to W199. Mutational studies show an accelerated

dissociation (lower Ki beyond the expected) for Y529A and reduction of the half-

life for both W199A and D147A, further suggesting their involvement [128].

Interestingly, T231 was not previously reported and validated as relevant for

ligand interactions in the bound state. Even though there are no experimental stud-

ies, it was previously identified computationally to form relevant contacts during

the forced dissociation of tiotropium [133].

Contribution of the extracellular vestibule within 6 Å. To assess the contri-

butions from more distant atoms beyond 3 Å, I also analyzed results from a dataset

that includes 5000 interatomic distances within a range of 6 Å from the ligand at the

TS. In this dataset, I analyzed both individual feature importances, and average im-

portance values for each residue (Fig. 5.7). Accordingly, D147 and T231 are again

part of the top 6 key residues both measured by RAD or RFI. Newly identified key

distances include I222, and T234, which were not part of the previous dataset, as

well as additional heavy atom distances from L225 and N507. L225 was previously
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reported relevant for the binding/unbinding kinetics in hMR2/hMR3 experimen-

tal studies, but insufficient alone to explain the difference between both receptors.

N507 is a previously validated relevant interaction that accelerated the dissociation

of tiotropium when mutated to Ala (N507A) [128, 133].

Figure 5.7: Average RAD (from MLP) and RFI (from GBDT) of the interatomic distances
of the ligand 1 per protein residue for the 6Å dataset. In red, the top 6 residues
detected by both approaches. Note the Y scale goes from 0 to 1.

Interestingly, the residue with the most relevant interactions is I222 and it was

not described previously. Together with L225 and T231, I222 forms a hydropho-

bic cluster on the extracellular vestibule (Fig. 5.9 and 5.10a, b and i). The fact

that the most relevant residues (I222, L225, T231, T234) are close together in an

extra-cellular loop (ECL2) may be indicative of the importance of this loop for the

unbinding. When aligning hMR2 and hMR3 protein sequences, most of the se-

quence is identical, but the region prior to T231 (ECL2/TM5) has a high genetic

variability (Fig. 5.11). Interestingly, preceding I222, there is another variation in

the sequence for ECL2: F221 in hMR3 is substituted with Y177 in hMR2. More-

over, this residue is a potential phosphorylation/modulation site for hMR2 [164,

165], thus thought to be not only an important region for allosteric regulation, but it

could alter the observed unbinding kinetics depending on the phosphorylation state

of hMR2. This suggests that the residues between I222 and T231 may be relevant

to the significantly different behavior observed between hMR2 and hMR3 in terms

of residence times [122]. Hence a third dataset (3Å+ECL2/TM5 Loop) was created
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containing all the residues prior to T231, which range from I222 to T231.

Exploring the role of the ECL2/TM5 junction. In the presence of distances from

this region (Fig. 5.11), the top features belong mostly to the ECL2/TM5 junction,

except for W199 when using RAD. In hMR2, L225 corresponds to a Phe residue

(Fig. 5.11), which is bulkier. Interestingly, this change was previously reported to

remove a pocket in hMR2, which is present in hMR3 [133]. The negatively charged

E227 is replaced by a neutral Asn in hMR2. Remarkably, both ML models found

E227 important, despite its longer distance (Fig. 5.10.g). This residue has been

mutated to Ala (E227A) previously, resulting in a slight decrease in the half-life of

tiotropium, 1, from 24.5 h to 20.1 h. The RFI, however, found an additional key

distance involving F224 as one of the most relevant distances. When mutated to

F224A, the half-life of 1 is reduced by 50% to 13.8h [128].

Figure 5.8: Relative feature importance (RFI) (from GBDT model) and relative accuracy
drop (RAD) (from MLP model) values for each interatomic ligand-protein dis-
tance per residue in the ligand 1’s 3Å+ECL2/TM5 dataset. Marked in red are
the top distances for each model. Highlighted, the most important residues for
the ML models.

Additional tests with distances from an alternative loop, ECL3, were also

added to the 3Å dataset and analyzed (Fig. C.6) for comparison. These demon-

strate no significant contributions from this region, thus validating the unique role

of the ECL2/TM5 junction.

Structural spotlights of tiotropium involved in unbinding. The results point to

key atomic contributions from only a few selected atoms of tiotropium (Fig. 5.9.c).
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The most prominent moiety corresponds to the methyl groups (C and C8 atoms) that

are bonded to the charged amine. Of key relevance is also the S1 sulfur atom from

only one of the two thiophene rings, showing key interactions with W199, I222 and

T231 (Fig. 5.9 panels c, b and i, respectively). Finally, the O2 atom from the car-

bonyl oxygen of the ester group is also important, as identified in interactions with

W199, L225 and Y529 (Fig. 5.9 panels c, a and f, respectively). In agreement with

the results, previous studies have shown that the tiotropium analogues with the clos-

est Ki values have a pattern containing all three groups: an amine cap, the carbonyl

group in between, and two aromatic rings (thiophene or not) at the end [128].

Figure 5.9: Front (a) and top (b) view of the M3 receptor at the TS, in sticks the most rel-
evant residues for the unbinding process found by the ML models. In salmon,
the residues belonging to the ECL2 loop, which is found to be the most rel-
evant region. c) Ligand 1’s structural representation with the most relevant
atoms found by the MLTSA, highlighted, and annotated.

Overall residue-ligand contributions. To assess all the residues in the protein, I

decreased the resolution of the feature space, and evaluated only features defined

via the closest distances between each residue and the ligand (allres dataset). This

allows us to evaluate all residues, including the ones far from the ligand, which

can nevertheless have key impact on the simulation outcome. The resulting training

from this dataset yielded 79% for GBDT and 77% for MLP on their test set. T234,

highlighted in the previous results as a key residue in the 6Å set as well, is the most
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Figure 5.10: a) to i) are the top nine residues represented as sticks with their protein-ligand
(hMR3-ligand 1) distances consistently found to be most important through-
out the MLTSA analysis across all datasets. In yellow, the ligand-protein
complex at the TS and their distances, in cyan the ones corresponding to the
complex at the BS. Represented as spheres, the atoms that the interatomic dis-
tances represented correspond to.

important feature for RAD, and second most important for RFI, validating its key

role (Fig. 5.12.a).

A more distant residue that shows key importance is L482, ranked 1st for RFI

and 5th for RAD. This distant residue is at the N-terminal end of the TM6, located

very near the kinase domain of ICL3, at the interface of membrane and the intracel-

lular matrix (Fig. 5.12.c-d). This could signal changes in the ligand-bound state to

the ICL3, which is not modelled in my simulation system. Accordingly, this region

is located between two main binding regions of hMR3 for activation and regula-

tion [166, 167]. Pyrophosphatase-2 (PPase 2A), a transmembrane enzyme which

targets the C terminal region of the ICL3, the “KRKR” motif in (“ITKRKRMS-

LIKEKKAAQ”), is thought to be involved in hMR3 dephosphorylation [168]. Ad-
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ditionally, the muscarinic receptor signaling regulator, SET, a PPase 2A inhibitor,

also binds to the same motif [169]. Furthermore, it was also suggested that pro-

tein kinase G II (PKG-II) activates hMR3 via a cGMP-dependent phosphorylation

at S481 (“MSLIKEKK” motif) [166, 170]. Therefore this region is thought to be

a putative phosphorylation site just preceding L482 [166]. Interestingly, ligand-

dependent phosphorylation of S481 was also connected to enhanced dimerization

and/or oligomerization [171]. This has been suggested previously in conjunction

with homologous GPCRs [172–174], pointing to a general signaling mechanism in

this family of proteins [175, 176]. Homo or hetero dimerization of kinase domains

is often observed functional requirement along with phosphorylation when activat-

ing signaling pathways in general [40, 177]. L482, however, is the first residue in

the simulation model after the missing kinase domain, hence the precise role of sig-

nal transduction from the orthosteric site to the ICL3 kinase domain remains to be

explored in more detail.

W199

N507 Y529

T234T231I222 L225E227

D147 Y147
ECL2 TM5

Figure 5.11: Protein sequence alignment of hMR2 and hMR3 for selected regions involved
in the unbinding process. Key residues identified by MLTSA are distinguished
as conserved (red) or non-conserved (green) between the two receptors. The
ECL2/TM5 region is also highlighted (purple and salmon).

Other key residues also include distant locations that are near the ends of he-

lical domains, similarly to L482: K93, K212, T514, D517, and N561. Some of

these residues were identified as important by mutational studies, such as K212V

and D517A, that decrease the tiotropium residence time in hMR3. Near T514 and

D517, C519 was also previously identified as a key residue for RFI in PCA compo-

nents 23 and 59.
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The ECL2 loop remains key in this dataset as well, besides T234, F224 and

S226 are also highlighted (Fig. 5.12.a). This is validated by the F224A construct,

as mentioned earlier, where the half-life of 1 is halved [128]. In summary, RAD

and RFI show a consistent picture, pointing to the key relevance of the ECL2/TM5

junction, in agreement with the previous results.

N

TM1

TM2

TM3

TM4

TM5

TM6

TM7

K212

K93

L482

N561

D517

T514

S226

F224

T234

c) d)

b)a)

Figure 5.12: a) RFI and RAD for the allres (blue) and allres+wat (orange) datasets, high-
lighted are the top 5 residues for each approach (blue circle and orange di-
amond, respectively). b) TS snapshot showing the top two water molecules
as well as nearby residues as stick in the allres+wat dataset. The blue arrows
highlight the displacement of the water molecules upon re-entering of ligand
1 in the binding site. c) Diagram representation of the sequence of hMR3 por-
traying the different secondary structure motifs. In red, the top residues found
decisive for the outcome by our MLTSA. In grey, the residues (kinase do-
main) not included in the simulation system. d) Top important residues from
MLTSA highlighted in the 3D representation of hMR3, mostly corresponding
to the ECL2/TM5 junction and the different ends of the alpha helices through-
out the receptor.
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Water plays a role in the unbinding path. Solvent molecules are known to play

a crucial role in ligand unbinding kinetics [12, 178–181]. By both enabling the fa-

vorable electrostatic environment and orchestrating movements via hydrogen bond-

ing, water molecules play a role that is often difficult to elucidate. To explore the

role of water during the unbinding process, I included the 8 closest water-ligand

distances together with the allres dataset as additional features. I found a modest

increase in both MLP and GBDT prediction accuracy ( 81% and 79%, respec-

tively). With these additional set of features, both RAD and RFI ranked the same

two water molecules (Fig. 5.12.a-b, labelled 565 and 569) within the top 5 features.

L482 remains ranked 1st for RFI, and it is 5th for RAD. Both approaches consis-

tently find L482, T234, F224 and S226 most relevant together with water molecules

(Fig. 5.12.c-d). This finding suggests that movements of water molecules in the

pocket are also decisive to ligand unbinding in addition to the residues highlighted

previously.

Water 565 is located near the ECL2 residues F221, I222, and forms H-bonds

with Y148 and the backbone of I222, part of the ECL2/TM5 junction I highlighted

throughout this work. Upon analyzing the most likely distances for IN and OUT

trajectories, I observed that this water gets displaced in most of the trajectories as

the ligand enters the orthosteric site. On the other hand, water 569 is on the other

side of the ligand, closer to Tyr533, as well as Tyr529, which also forms the tyrosine

cage. It only partially forms H-bonds with other water molecules, and it is located

near a hydrophobic region of the pocket. While for OUT trajectories this position

is not likely to change significantly, for IN trajectories the water moves deeper into

the binding pocket as the ligand moves down into the orthosteric site.

5.4 Conclusions and Further Work

I generated and obtained consistent unbinding paths from hM3R for three ligands:

tiotropium (1) and its analogues, 2 and 3. All three ligands showed similar un-

binding paths, including a first rotation of the charged end and a movement of the

aromatic rings of the ligand, followed by a dislocation of the tyrosines forming
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the aromatic cage, finishing with a 90° angle rotation corresponding to the bot-

tleneck while moving towards the receptor tunnel. Therefore, all ligands show a

well-defined similar TS position and leave the orthosteric site in a highly homolo-

gous mechanism. The main barrier contribution in the unbinding process is known

to be related to the ligand leaving the orthosteric site [128, 132, 133], therefore I did

not follow up the subsequent full exit out of the vestibule. The obtained paths are

also in agreement with previous studies — using much less resources, in an almost

fully automated approach — on the unbinding paths of tiotropium for both hMR3

and hMR2, where the ligand exits in a similar way [128, 133]. Addtionally this

approach provided more insights due to the ML analysis.

I further validated the TS structures by generating unbiased downhill simula-

tions, which allowed us to further analyze the main events driving the unbinding at

the TS. The first Cartesian coordinate-based (XYZ-PCA) dataset showed a remark-

ably good accuracy at predicting the outcome of the simulation at very early times.

This first analysis suggested relevance of the ECL2 loop and the residues at the ends

of the transmembrane helices but proved hard to interpret. A more local but high-

resolution (3Å) dataset, which included the relevant protein binding pocket – ligand

atomic distances at the TS structure, matched experimentally relevant residues such

as D147, Y148, Y529 and pointed to T231 which is part of the ECL2/TM5 junc-

tion. An increased dataset (6Å) continued to point towards ECL2/TM5 junction

contributions being the most relevant. I further tested the relevance of this region

by augmenting the previous 3A dataset with these residues (3Å+ECL2/TM5). This

further justified the key role of the ECL2/TM5 junction. On the other hand, adding

e.g., ECL3 residues to the 3A dataset instead did not yield relevant distances from

the ECL3 region. This further validated the relevance of the highlighted residues

from ECL2/TM5, which also show differences in the protein sequence compared

with hMR2 (L225/F181 and E227/N192 substitutions), highlighting potential role

in the residence time differences between the two receptors.

Several residues identified by the MLTSA were previously experimentally mu-

tated, further validating their importance in residence time. The available mutations
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show the largest influence for F224A, Y529A and N507A in the unbinding kinet-

ics, while D147A, W199A, E227A, K212V and D517A impact it to a lesser extent.

Additional residues I identified here as highly relevant remain yet to be experimen-

tally probed for their role in ligand unbinding kinetics, such as L482, together with

the preceding S481, as well as T234 remain to be further studied. Other identified

residues that could play a role are: C220, I222, L225, S226, T231.

The results point to the structural importance of key ligand groups and consis-

tently found specific atoms in the amine end, the carboxyl group, and the tiophene

rings, to be highly relevant. All three pharmacophore groups match other variants

of tiotropium that have a charged end, middle carboxyl group and an aromatic ring

at the end, either one or two [128]. This analysis can therefore provide useful infor-

mation to propose pharmacophores in future drug design studies for kinetics-based

ligand optimization.

To account for all residue interactions with the ligand, a dataset with coarser

interaction features (allres) was also used. This confirmed the importance of the

ECL2/TM5 junction, and furthermore pointed to residues at helical ends. Addi-

tionally, when the closest ligand-water distances are added to the previous set (all-

res+wat set), two water molecules also appear at the top. The results suggest an

important role of these molecules, whereby their movement is highly correlated to

the ligand entering the orthosteric binding pocket. Importantly, L482 remains to be

a top-ranked feature, near a phosphorylation site (S481 for PKG II) [166, 170] and

between two specific binding regions for signaling and activating proteins (SET and

PPase 2) [168, 169]. Interestingly, S481 phosphorylation was linked to enhanced

dimerization in an allosteric mechanism upon antagonist binding [171], proposed to

be a general mechanism in GCPR signal transduction [172–174]. This suggests that

the conformational changes of the ECL2/TM5 junction at the TS crossing transduce

a signal across the membrane to the intracellular ICL3 kinase domain of the recep-

tor as the ligand exits or binds the orthosteric site. Our MLTSA analysis appears to

capture and identify allosteric effects, opening up potential avenues in various other

systems and processes as well [182, 183], beyond ligand unbinding. Nevertheless,
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the allosteric signal transduction remains to be studied in more detail, to aid the un-

derstanding of the function and mechanism of this biomedically-relevant receptor

family.



Chapter 6

Atomic Charge Hamiltonian Replica

Exchange

This work is currently under preparation for submission to a journal. It is at the

late research stage, we are still aiming to do some more work which has not been

included here, but the main findings are already mentioned in this chapter.

6.1 Introduction
Metal Ion coordination is crucial for the functioning of enzymes, more importantly

for phosphate-related enzymes, where it is crucial for both recognition, regulation

and catalysis for the active site geometries. Electrostatic interactions are also some

of the major contributors to molecular interactions in biology for recognition, se-

lectivity, dissociations, etc [39].

However, all of the major rearrangements needed to unveil these processes are

also observed at quite long time scales. One example of a family of proteins that

requires to undergo major changes to achieve its catalytically competent conforma-

tion is ribonuclease A (RNase A). This protein needs to undergo a complex series

of changes to properly position its catalytic residues for RNA cleavage [184].The

major changes that occur in the active site of RNase. A during catalysis involve

the precise positioning and orientation of the catalytic residues (His12, His119, and

Lys41) to enable the general acid-base catalytic mechanism. Additionally, confor-

mational changes in surrounding residues help stabilize the substrate and transition
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state, allowing the enzyme to efficiently catalyze the RNA cleavage reaction through

electrostatic interactions and hydrogen bonding [185]. MD is able to take a look at

this interactions at the atomic level, however the time scales needed are much more

than the ones available.

In order to aid in sampling the long timescales, enhanced sampling methods

are being developed. Replica exchange MD (REMD) allowed for lowering the

timescales by flattening the potential surface and observe rare events [54], how-

ever, although different temperatures accelerate the overall sampling, some other

efforts are needed to focus on specific interactions. Hamiltonian replica exchange

MD (HREMD) allowed for the alteration of other simulation parameters, such as

interacting potentials [56]. Due to the relevance of metal ions and their role in

biology, I developed a new flavour of HREMD, named atomic charge hamiltonian

replica exchange MD (ACHREMD) which takes advantage of directly lowering the

atomic charge of specific atoms to flatten the electrostatic potentials and allow for

unbinding or dissociation events to take place much quicker. Major active site re-

arrangements are also relevant, which take long timescales for specifically complex

systems, which is something the ACHREMD can excel at.

6.2 Computational Details

6.2.1 Toy Model trajectories

To be able to asses the possibility of unbiasing the data obtained from all replicas,

a Markov Chain Monte Carlo (MCMC) sampling model potential was used, with a

temperature ladder made of 30 different windows geometrically spaced. This model

is created to imitate the systems described by the MD and validate the unbiasing in

an easier example. The different replicas were run for a total of 105 “temperature”

replica exchange attempts, having a local Monte Carlo (MC) step size of 102 before

attempting an exchange. The model potential (see 6.2 for true potential shape) was

described by the following equation

U(x) = Gsin
(

5
1.195

x+ sin−1(−1)
)
+

Gx
10

+5.8 (6.1)
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Where U(x) is the energy that is assigned to the x coordinate and G acting as a

“temperature” term that changes from 0.1 to 5 between all replicas. The Metropolis-

Hastings (MH) sampling technique was the criteria followed to evaluate exchanging

attempts between replicas.

6.2.2 Hamiltonian Replica Exchange on Atomic Charges

In our implementation, two sets of relevant atoms are drawn from both molecules

i.e. ligand and receptor, or anion and cation. These will have their topology’s

atomic charges tampered through the different replicas. Assuming the ligand’s rel-

evant atomic charges are positive and the receptor’s negative, they will be tampered

with by gradually decreasing the charge in the first group while correspondingly

increasing the second group’s charges to prevent breaking detail balance. For in-

stance, an overall decrease of 0.5 in the first group, will increase the second groups

charge by 0.5. For the MD trajectories, a high frequency of exchanges was achieved

by running a small local sampling trajectory step, which ensured an equal sampling

between charges. At every exchange attempt, the energy of the last frame was

recalculated at every other charge configuration using NAMD [103]. Using the

Metropolis-Hastings criteria, the acceptance/rejection of the configuration swaps

was calculated and a new local sampling trajectory step was started. The energies

of the trajectories at other configurations were also recalculated using the namden-

ergy plugin from VMD [103] which I used in the data analysis for the unbiasing.

6.2.3 Test Systems

NaCl Complex

In order to first evaluate the method on an MD simulation I implemented the

ACHREMD on a system consisting of a Na+ atom as the positive ion and a

Cl- atom acting as a counterion, with both charges being changed accordingly to

maintain charge equilibrium throughout the different replicas. The NaCl com-

plex was solvated in explicit water, in a box of 10 angstroms containing 1698

water molecules. The simulations were run using the NAMD software under the

CHARMM36m [152] force field. As a baseline, I ran a non-biased MD simulation
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of 1.32 µs from the bound state to reconstruct the free energy profile and compare to

classical MD, by extracting the distance between the ions throughout the trajectory

and using them as a Reaction Coordinate (RC). For the ACHREMD procedure I

spaced the replicas over 9 charge windows ranging from +1 to +0.2, with a distance

between replicas of -0.1 on the Na+ charge, tampering the Cl- charge with +0.1 as

a result. The value of the windows for the NaCl system can be found on Fig. 6.3

panel c. I run the simulations with a time step of 2 fs and recorded the coordinates

every 1 ps making an exchange attempt every 10 ps (local sampling step) for 32500

exchanges which sums up 325 ns per replica (totalling 2.95 µs of simulated time).

The same data resolution was used for the non-biased simulation.

EDTA-Mg Complex

For the purpose of simulating a more complex system with higher barriers and more

degrees of freedom while being similar to a ligand-binding system yet still simple

to describe, I applied the ACHREMD to EDTA bound to a Mg2+ ion. The bound

state was obtained from an EDTA-Fe complex found in the 1ZLQ PDB structure

which was later swapped from Fe+2 to Mg+2. This system was solvated in explicit

water as well, with a box of 20 angstroms and 10395 water molecules. Simulations

were run with NAMD and the CHARMM36m force field as well. In this case the

charge replicas were linearly spaced from +2.0 to +0.4 over 31 replicas. The charge

on the Mg+2 was reduced across replicas while the difference was being distributed

equally towards the ligand’s (EDTA) N and O initially bound to the ion (2 N and 4 O

from the carboxylates). A non-biased simulation starting from the bound state was

run for 6.18 µs as a baseline comparison. The replica exchange simulations were

run for exchanges (5000) every picosecond, totalling 150ns of total simulation time.

The reaction coordinate in this case was the log of the sum of distances between the

4 carboxylate atoms (C1, C4, C5 and C6), the 2 N (N1 and N2) atoms and the Mg

ion. Simulations were run at a resolution of 2 fs per step, 0.6 ps of local sampling

were run before attempting a replica exchange. I recorded the coordinates of the

system along with the RC every 0.06 ps. Since there is a long range of values for

the RC to take, but the most relevant ones are at the beginning, the logarithm of the
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RC will be used.

6.2.4 CRISPR Cas1/Cas2 Complex

After exploring the available high-resolution Cas1-Cas2 integration complex PDB

structures, no single model contained a full integration complex with all 4 Cas1

monomers, Cas2, the protospacer double-stranded DNA, and the target host DNA

all unzipped and ready for catalysis. The available PDB crystal structures have

either no metal ions resolved (PDB: 4QDL), a zipped DNA strand bound and no

metal ions resolved in the active site (PDB:5VVJ, 5VVK ), the metal ions are just

to stabilize the DNA itself (PDB:5XVP, 5VVL), or the DNA strands don’t meet at

the active site (PDB: 5XVN, 5XVO). Additionally, no structures contain both the

protein complex with all 4 Cas1 monomers and the cas2, and the protospacer DNA

strands, plus the target DNA all unzipped as reactants. Thus, an effort for combining

several structures and coming up with a suitable model (see Fig. 6.1) was done. This

required a chimeric model, comprised of different subunits and structures, which is

a combination of PDBs 5VVJ and 5VVL. Due to the difficulties in bending the

target DNA they could not be connected among the two active sites.

Cas1 

Cas1 

Cas1 

Cas1 

Cas2

Protospace
r DNA 

Repeat

His200 Glu141

Arg123

Mg2+

Figure 6.1: Chimeric model and active site of the proposed model for the CRISPR
Cas1/Cas2 Complex

Taking into account the previously mentioned sampling problem, for a sys-

tem this big (around 350000 atoms), the chances of witnessing a rare event, or

even a big conformational change are low. By lowering the value of the divalent



6.3. Results and Discussion 179

metal charge from +2 to values around 0, one lowers the energetic barrier around

the residues involved in coordinating the substrate. This allows for more frequent

crossing between high energy barriers and explore other conformations. By looking

at the most stable conformations, one can find a more desirable arrangement of the

active site than the one started with. After adding dummy K+ atoms for counter-

ing the ion charge lowered on the Mg2+ and thus preserve detail balance among

all replicas. The framework had 72 windows ranging from values of +2.00 (upper

limit) to +0.4 (lower limit). The ACHREMD was run for more than 30 exchange

attempts, sampling for 0.5 ns per step and totalling an approximate of 1.2 µs in an

attempt to sample alternate active site geometries.

6.3 Results and Discussion

6.3.1 Toy Model Validation

After running the replica exchange for the toy model, the PMF can be recovered

from every single window alone and all windows give back the correct values.

Fig 6.2 shows the recovered profile from using data from all the different repli-

cas. During a replica exchange or parallel tempering the original methodology calls

for disregarding the data that is not run in the original conditions, i.e., the base

temperature or unbiased state, and the exchanges are only useful for getting new

configurations in the unbiased state and sample in an unbiased way. This is very

inefficient specially for a big number of temperatures or charges, in this case. Now

that I showed this is possible using free energy estimators such as WHAM/DHAM

or MBAR, we will move to try it in a more complex system.

6.3.2 NaCl Dissociation

After running the NaCl system during several steps, for both a biased an unbi-

ased state, it is advised to check first that there is overlapping between replicas.

Fig. 6.3.a shows the histograms of the energies found during the simulated trajecto-

ries for each replica in each charge/state. A shift in the mean of each distribution is

easily noticeable since the electrostatic potential is directly affected. There is good

overlap, which ensures for a good exchange probability for sampling. Additionally,
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Figure 6.2: Free energy profile recovered using all replicas in the temperature ladder of
the toy model potential. The original theoretical potential profile is shown in
black, the recovered profiles using both MBAR and DHAM are shown in red
and blue, respectively.

when looking at the sampled reaction coordinate (distance between the ions). one

can also notice both overlapping and the changes in the distributions (Fig. 6.3.c).

The free energy profile of the NaCl complex can be easily described by a one-

dimensional representation, such as the interatomic distance between both atoms.

Using the data produced on the unbiased MD simulation started from a bound state,

I was able to produce an accurate free energy profile to use as a theoretical value.

For this, I used both the multistate Bennet acceptance ratio (MBAR) analysis and the

general transition-based reweighting analysis method (TRAM) with 0 bias, which

produced similar profiles shown in Fig. 6.4. For the ACHREMD simulations, using

the same analysis methods as previously described I unbiased the data produced on

the different replicas, obtaining an accurate profile as shown in Figure 6.4. This

is consistent with previous studies [186].

6.3.3 EDTA-Mg Dissociation

For the EDTA-Mg case, the approach proved to be very useful to observe the dis-

sociation and sample the rare event, whereas a long unbiased MD simulation was

never able to sample the unbound state or see the dissociation event. However,
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b)

c)

d)

Figure 6.3
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Figure 6.4: Reconstructed free energy profile for the unbiased MD data and the achremd
replica exchange.

the reconstruction of the profile was not as accurate. I believe this is due to the low

likelihood of this dissociation to happen, the barrier is so high that it is very difficult

to elucidate the probability of transition, is also not sampled as it is very unlikely.

However this transition has been observed for several replicas, but it is very fast,
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Figure 6.5: Recovered free energy profile from the unbiased MD (red, dashed) and the
ACHREMD run (blue) for the EDTA-Mg Complex. MBAR was used for the
unbiased MD and WHAM for the replica exchange.

thus having a very high energy barrier to cross (see Fig. 6.5). The reaction coor-

dinate used for this is described in the computational details, section 6.2.3. I also

attempted to reproduce the experiment using Umbrella Sampling directly and recov-

ering the profile. After having to use a very big force constant and properly placing

50 windows (see Fig. D.1), I could ensure overlapping between the windows. After

sampling for 200 ns, the obtained profile was not yet properly recovered, as seen in

Fig. D.2. However, when US is compared to the bound states sampled by the long

unbiased MD, the profile is totally off from the original for the states between 2.5Å

and 3Å, which are the only value sampled in unbiased MD.

6.3.4 CRISPR-Cas1/Cas2 Active Site Rearrangement

After running 1.2 µs, it was observed in several windows at different charges, a

reorganization of the active site residues which enabled a transient potassium

ion entering the active site to coordinate nearby residues and complex itself with

the substrate and the other metal ion. This fact suggested that a reorganization of

the active site was indeed needed and suggested that there is the possibility for

this active site to coordinate 2 metal ions, involved as well in catalysis of the

DNA phosphate, which is common among NTP enzymes. Some examples of the

snapshots found in these windows is available in Fig. 6.6. Of all different binding
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Figure 6.6: Different active site geometries after the transition of a K+ (purple) at different
trajectories during the enhanced sampling. Glu141 in yellow, Asp221 in deep
blue, His208 in light green. (A) Shows the transient ion entering from the right
side and coordinating Glu141 while His208 coordinates the Mg2+(in Green)
and Asp221 isn’t interacting at all. Guanine base from the DNA (GUA) is
coordinating the Mg2+. (B) Shows a transition from the right side again, coor-
dinating both Glu141 and Asp221 but moving away His208. GUA is not coor-
dinated. (C) Shows the best candidate coordinating all three residues (His208,
Asp221 and Glu141) and both the GUA and the CYT (Cytosine) coordinated
by both metal ions.

modes found, the most suitable one (Fig. 6.6.C), contained distances chemically

relevant for the reaction and was selected to do further calculations and validate this

geometry.

Using the aforementioned structure from the enhanced sampling and replacing

the K+ atom with a Mg2+ and swapping the charges back to normal (+2.0) , 2

constrained MD replicas were run for several nanoseconds while slowly releasing

the constraint to allow for the solvent and nearby residues to accommodate to the

sudden change of metal ion charge. From 20 Kcal/mol to 0 Kcal/mol during a

100 ns run, the active site did not rearrange and the distance between both Mg2+

and between CYT:O and GUA:P remained constant and close to standard 2 metal

coordinated distances. The evolution of these distances is portrayed in Figure 6.7.

6.4 Conclusions and Further Work
This work has shown that the ACHREMD framework works good for both the toy

model and the NaCl complex, while having a sub-optimal profile for the EDTA-Mg.

However, it has proven useful to sample the desired event easily, and outperform

umbrella sampling at obtaining a path with intermediates. It is advised to use this

for specific systems where the electrostatic are key to flatten the landscape that
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Figure 6.7: (a) Plots of the evolution of distances during the two replicas of constrained
MD ran from the previously mentioned best candidate for active site geometry
shown in (b). Top: Evolution of the distance between magnesium ions during
the slow constraint release. Bottom: Evolution of the distance between the Cy-
tosine’s Oxygen (O) and Guanine’s Phosphate group (P). (b) Pymol represen-
tation of the active site geometries used to run. Same geometry as previously
shown in Figure 13C but the K+ is changed to a Mg2+.

otherwise are hard to be sampled.

Regarding the CRISPR model, the achremd has allowed for the reorganization,

which allowed for further hypothesizing the active site’s geometry. The proposed

geometry and the idea of having a two-metal ion-based catalysis is not new for a

CRISPR complex. A previous study has shown the DNA cleavage in CRISPR-Cas9

to be a two-metal based mechanism [187], having a water-assisted catalysis. How-

ever, more investigation is needed to confirm a similar mechanism occurs for the

Cas1/Cas2. Further improved resolved structures/models and more experimenta-

tion are needed as well to study its catalysis and dynamics.

Further experimentation on other systems with ACHREMD is required. I hope

this work further pinpoints the current challenge that the EDTA-Mg presents. While

being a simple system, it’s high energy barriers are difficult to sample and have

enough transitions between to be able to properly describe its kinetics. When at-

tempting to use a one-dimensional collective variable to describe it, one is unable to
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properly capture high energy barriers, mainly to the high-dimensionality that gov-

erns this transition, which gets lost in hysteresis.

Hysteresis, in the context of protein conformational dynamics, refers to the ob-

servation that the pathway taken to reach a certain structural state affects the ease

with which the protein can return to its initial state. This means that the energy

barriers for transitioning between different conformations can vary depending on

the direction of the transition. In essence, the protein’s behavior can show memory

of its past states and transitions, leading to a non-reversible or asymmetric response

in its conformational changes. In the scenario where the chosen CV is inadequate

or insufficient to accurately capture the true pathway connecting two distinct states

of a system, hysteresis can manifest as an artificial delay or inconsistency in the

transitions observed during molecular simulations. The system might exhibit con-

formational changes that appear sluggish or biased due to the limitations of the

selected collective variable. This discrepancy can hinder the simulation’s ability to

accurately model the actual dynamics and hinder the identification of valid transi-

tion pathways between states. Additional efforts to solve this problem and more

refined free energy estimators should be developed in order to tackle these chal-

lenges, this being a relevant problem in the MD field. Once again, ML can bring

forth the field with either connecting the states with generative models [188, 189],

or by learning new reaction coordinates [190] that allow for better more detailed

transitions.



Chapter 7

General Conclusions

To provide some successfull conclusions, I will revise first some of the main contri-

butions of this work:

• A computational protocol for ligand unbinding has been used succesfully

and validated for both a kinase domain and a transmembrane protein.

• A framework for analyzing relevant interactions in molecular dynamics

has been explored and validated.

• Testing analytical models for assessing feature analysis techniques with

time-series with time-dependent and independent relevance have been devel-

oped.

• A protocol for enhanced sampling simulations on systems with electrostatic-

relevant interactions has been established.

After revising the main contributions I will break these points down and pro-

vide a more conclusive note.

Ligand unbinding paths were obtained for both CDK2 and hMR3 for three dif-

ferent inhibitors each. Unbiased simulations for observing the unbinding of these

systems is out of the timescales one can currently achieve easily. This is true espe-

cially for tioropium and hMR3 which has a 24h residence time. Not only it was

able to observe this events, but in the case of CDK2 recover the kinetics of the

unbinding. In the case of hMR3, such a complex transition, especially with so
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many different degrees of freedom can be highly degenerated and prove difficult to

observe consistently, making it hard for the free energy estimators to recover their

PMF. This is even more pronounced for the second barrier (complete exit of the lig-

and), where it has multiple allowed paths to cross from the extracellular vestibule

to the bulk. Additionally, by identifying the transition state, the exiting was sam-

pled thoroughly and analyzed in more detail. This allowed for gaining insights on

the tendency of the ligands, their exiting contacts, major rearrangements, etc. This

information is invaluable for drug design efforts, and if its speed and accuracy are

improved, it could lead to a protocol for virtual screening of drug molecules and

determination of residence time. This should be compared with other similar meth-

ods for obtaining ligand-unbinding, such as number of contacts metadynamics, or

any other method that can achieve this. Although metadynamics may take long to

converge, the string method used in our protocol is quite slow and computationally

expensive, whereas the ”unbinding protocol” itself is quite fast. This first protocol

could be followed by another optimization instead of the string method for instance.

The development of any combination of our method is encouraged and more exper-

imentation is needed to improve the method. Currently, the optimization of the path

is both too slow, and computationally demanding, especially for big systems and in

complex cases, it proves difficult to converged to a refined unbinding path. Thus, a

more scalable and efficient path refinement method is advised. There is a need for

improvement in this field towards more affordable computational protocols for drug

discovery.

The MLTSA is able to predict the outcome at very early times, in a matter of

picoseconds (less than 1 ns) with very different sets of data. Being the dataset made

from active site distances, or simply XYZ coordinates, the models are still able to

forecast the outcome. As shown in this work, although both MLP and GBDT do

not differ a lot in performance, in some cases complex input data works better with

MLP, whereas sometimes GDBT is better at ranking and detecting relevant features.

Other advanced architectures may be able to capture the time-dependent relevance

differently, transformers, for example, would be a good candidate for testing both
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the ability to predict from early times and its attention mechanism allows for the

visualization of the weights to each feature. This is probably the rational next step to

go towards in the hopes of further developing the ML approaches to understanding

MD data. Combining the MLTSA and the unbinding could provide, with slight

improvements, a near fully automated framework for the assessment of ligand

molecules and the understanding of residence times.

Validation, of course is still in need when working with ML. The analytical

models developed in this thesis aim to create a dataset that closely resembles a

complex time series derived from a real-world problem, exhibiting both complexity

and time-dependency, similar to the challenges faced when working with protein

data from MD simulations. As mentioned in this work, spiral datasets are one of

the most challenging datasets for classification tasks. Although both the 1D and

2D analytical model were designed with the MLTSA analysis in mind, they are

still useful for testing other approaches in a computationally cheap fashion.

They can both pave the ground for more time-series related testing with room for

customization and problem-tailoring. In the 1D model, the number of input features

can grow as much as needed, and its degree of mixing as well. In the 2D model, the

framework is already prepared for using custom potential shapes, there is already

a Z-shaped potential available. Additionally, other projections/transformations to

the original data con be done in order to add complexity to the predictions. On the

spiral shape, one can also increase the number of outcomes/classes with a parameter,

similar to a case where a protein has several microstates, leaving the ground for

potential methodologies able to characterise states in complex MD systems.

The ACHREMD successfully dissociated complex stable systems such as

EDTA-MG, and allowed for major rearrangements even in big complex systems

such as CRISPR Cas1/Cas2. Although I was able to recover the free energy profile

for NaCl and the toy model, in the case of the EDTA-Mg complex this was not

possible. It remains unclear if this is because of the complexity of the system or

the high energy barrier, since the produced profile using US was still noisy and

inaccurate. However, observing the dissociation was fast using ACHREMD without
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the need of strong force constants that could lead to inaccuracies and artifacts, which

is favourable in this context. This protocol was problem-tailored and hopefully will

enable researchers to observe rare events closely bound to electrostatic interactions.

Regarding the more complex system, Cas1/Cas2, note this is preliminary and there

is still room for improvement and further validation. The idea of having a 2 metal

ion based catalysis has to be further explored and tested, as well as an updated

model of the complex. Hopefully the proposed model will set the challenge for

other experimental groups to structurally resolve both reactant and product states,

and hopefully an intermediate.

Overall, this thesis has contributed towards challenges in molecular dynam-

ics by both developing and exploring methods to sample rare events (unbinding

protocol and ACHREMD), and making use of the high-dimensional data these sim-

ulations produce to gain molecular insights (MLTSA). This will allow for further

progress towards drug discovery and enzyme design. Not only that, but the com-

plementary tools and methodologies (MLTSA and analytical models) will also aid

the data analysis community towards the development of explainable AI, which will

hopefully bloom soon.



Appendix A

MLTSA Supplemetary Information

A.1 Additional Trainings

1D Analytical Model

Table A.1: Average training accuracy for a higher complexity (higher degree of mixing
between potentials) for the GBDT and MLP).

Model Train Acc. <%> Test Acc. <%> Validation Acc. <%>

GBDT 100 100 90.53
MLP 92.80 91.60 93.33
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A.2 Higher complexity/Degree of mixing

Figure A.1: Comparison between GBDT (top) and MLTSA with MLP (bottom) feature
analysis methods for the higher complexity and degree of mixing datasets.
Correlated features are marked from blue (0%) to red (100%) depending on
the mixing coefficient, α (x symbols, color scale on the right, five highest
mixing coefficients also displayed for the datapoints). Uncorrelated features
(small black symbols) are at 0 FI for GBDT and show no loss of accuracy
for MLTSA with MLPs. Correlated features all show a significant AD for the
MLP, while only the top correlated features have high FI using GBDT.
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A.3 LSTM Training on 1D

a)

c)

b)

Figure A.2: a) shows training evolution through epochs for test and training sets. b) shows
the evolution of the loss as well for both sets. c) is the resulting accuracy drop
results.



Appendix B

CDK2 Supplementary Information

B.1 MD Details

The initial atom coordinates for the three systems were built using high resolu-

tion crystal structures with the following PDB codes: 3SW4 (Resolution=1.7 Å),

4FKU (Resolution=1.47 Å), and 4FKW (Resolution=1.8 Å). I present the results

for 4KFU in the SI Section. The systems were modelled using the AMBER ff14SB

force field, and the ligands using the general Amber force field (GAFF). The lig-

and’s atomic partial charges were obtained using density functional theory (DFT)

ωB97X-D/def2TZVPP3 as implemented in Gaussian 09 Revision E. The full sys-

tem was solvated with 12,000-14,000 TIP3P water molecules. Na+ and C1− ions

were added to neutralize the system and set a salt concentration of 0.14 M. All the

MD simulations were performed using NAMD 2.12.

The three systems were first minimized using a standard protocol via the steep-

est descent algorithm for a total of 150,000 steps followed by the equilibration of

the restrained protein (1 kcalmol−1Å−2 force applied to each heavy atom of the

protein) for 10 ns in NVT ensemble at 300 K via a standard MD procedure. All

the production runs were performed with the NPT ensemble with a time step of 2fs.

Pressure was maintained at 1atm by a Nosé-Hoover Langevin piston. Temperature

was maintained at 298 K using Langevin dynamics with a damping coefficient γ of

0.5 ps−1 applied to all atoms. SHAKE was applied to all bonds involving hydrogen

and nonbonded interactions were calculated with a cutoff of 12 Å, and a switch-
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ing distance of 10 Å. The particle mesh Ewald method was used for long-range

electrostatic calculations with a grid density of > 1 Å−3.

An initial unbiased simulation of 20 ns was performed for each ligand. This

initial simulation allows the system to equilibrate and gives us an initial trajectory

to calculate the first CVs.

B.2 Atom Clustering
Residues with atoms that have a rotational degree of freedom with multiple equiva-

lent positions are clustered together. During the unbinding process, if a new contact

is found with one atom belonging to the cluster, then the harmonic restraint will be

applied to the centre of mass of the selected clustered atoms. The use of clustered

atoms reduces the fluctuation caused by the rotation of such bonds, affecting the

overall harmonic restraint.

Figure B.1: Chemical structures of the residues with clustered atoms, highlighted in red; a
for the amino acids and b for the ligands.
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B.3 Labeling and Input Features
The classification of the ligand in the bound position (IN) and unbound position

(OUT) is calculated by analyzing the last 250 ps of the downhill trajectories. For

each frame I extracted and sum two key distances between the ligand and the protein

(see Table B.1) and average these for all the frames of the last 250 ps. If the sum of

these distances is below a given IN-threshold the trajectory is classified as IN, if the

value is above the OUT-threshold then is classified as OUT (see Table B.1).

Table B.1: Key distances used to automate the IN/OUT labelling of the 5 ns-long downhill
trajectories. These are used to create a dataset suitable for the ML algorithm
to learn the classification with the selected CVs as inputs (X) and the labels
IN/OUT as targets (Y).

System Distances IN-threshold OUT-threshold
3sw4 LIG(N9)-LEU83(O) - LIG(N7)-LEU83(N) 10 12
4fkw LIG(N3)-LEU83(O) - LIG(O9)-LEU83(N) 11 13

B.4 ML Training
To understand the relationship between the accuracy of predictions and the data

used to make those predictions, I trained the MLP with several different datasets.

As described in the main text, each trajectory provided a set of distances from the

simulated trajectory at particular timeframes, and each dataset was made up of a set

of such timeframe elements. The trainings used different timeframes of the trajec-

tories: at 0.3, 0.5, 0.75, 1, 1.5, 3 and 5 ns. For each of these datasets I calculated

the accuracy of the predictions for each of the three systems. The models provide

good accuracy from the very initial frames of the simulations. For example, at 0.1

ns I have an accuracy of 79.5% for ligand 18K and 83.6% for 62K.

Details of the trained models during the MLTSA using 0.1, 0.15, 0.3, 0.5, 0.75,

1, 1.5, 3, and the full 5 ns length of the downhill trajectories for each system (4fkw

and 3sw4) are listed below. In addition to testing the different lengths of trajectories,

the percentage of data to use from the latter end of the trajectory at each time frame

(i.e., the 50% latter end of 0.1 ns would correspond to data from 0.05 ns to 0.1 ns)

was also tested. The number of simulations available and the number of epochs
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Figure B.2: ML accuracy prediction at different time frames using MLP for 18K in red and
62K in green.

until convergence for each model are also listed, as well as their accuracy on a set

of independent simulations (Validation set). This set is comprised of the 25% of

the available data from 4fkw and 3sw4 having 35 and 37 simulations to test the

accuracy, respectively.

The tables below comprise the details of the models tested on 4fkw and 3sw4

data as well as their accuracy on the validation set. The first column corresponds

to the time frame of trajectory data used from the beginning. The data column

corresponds to the percentage of latter simulation time used to train each model.

The third column has the number of epochs until convergence of the model and the

last column shows the accuracy on the validation set.
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Table B.2: Trainings at different time-frames for the 4fkw dataset
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Table B.3: Trainings at different time-frames for the 3sw4 dataset
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For the models used in the study, these are the loss evolutions through time:

Figure B.3: Plots of the loss function evolution through the training epochs at different time
frames with different percentages of data from the end for 3sw4 (18K ligand),
4fkw (62K ligand) and the excluded 4fku (60K ligand) CDK2 systems.

B.5 Validation of ML Analysis
Figures S14.I and S14.II compare the results of the training against a simple binary

classification model which attempts to classify the outcome as IN/OUT based on

the CV values at a specific time (0.15, 0.3 and 0.5 ns). The dots show the CV values

(as a sum of two key distances from Table B.1) and are colored according to their

outcome, red as OUT and green as IN. I then calculated the accuracy of the binary

prediction at different thresholds represented by the black bars to obtain the highest

possible accuracy using a single cutoff value (blue arrow). I compared these with

the values obtained from the MLP (blue data, top of Figs. S14.I-II) and the GBDT

(yellow data, top of Figs. B.4, B.5, B.6).
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18K
82.14% 80.11% 81.12%
81.04% 79.7% 80.93%

MLP
GBDT

Figure B.4: Comparison of the accuracy obtained from the MLTSA training (blue data) and
GBDT (yellow data) with a simple binary classification model for ligand 18K
at 0.15, 0.3 and 0.5 ns. Data points corresponding to different trajectories show
the actual value of the string CV for IN (green) and OUT (red) trajectories.
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62K
89.07% 93.83% 94.13%
80.93% 81.54% 81.33%

MLP
GBDT

Figure B.5: Comparison of the accuracy obtained from the MLTSA training (blue data) and
GBDT (yellow data) with a simple binary classification model for ligand 62K
at 0.15, 0.3 and 0.5 ns. Data points corresponding to different trajectories show
the actual value of the string CV for IN (green) and OUT (red) trajectories.
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60K
84.65% 90.44% 92.22%
79.7
%

81.53% 85.93%
MLP

GBDT

Figure B.6: Comparison of the accuracy obtained from the MLTSA training (blue data) and
GBDT (yellow data) with a simple binary classification model for ligand 60K
at 0.15, 0.3 and 0.5 ns. Data points corresponding to different trajectories show
the actual value of the string CV for IN (green) and OUT (red) trajectories.

B.6 Free Energy Profiles

For each system, I performed three independent replicas. The PMF is plotted along

the string windows. For each replica, the number of distances included in the string

depends on the unbinding trajectory. The number of distances used in each system

are given in Table B.4.
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Figure B.7: PMF of the unbinding path for 18K, 60K and 62K. The standard error shown
as shaded area are obtained by dividing the full dataset into 4 subgroups.

Table B.4: Number of distances included in the RC for each replica.

System Number of distances

18K Replica 1 21
18K Replica 2 38
18K Replica 3 33

62K Replica 1 46
62K Replica 2 38
62K Replica 3 43

B.7 60K/4FKU System
An additional ligand was tested with our unbinding approach, an oxindole car-

boxylic acid derivative (60K) based on the 4fku structure (Fig. B.8). The unbinding

procedure was carried out as described for the other ligands. After performing the

string calculations for the 4fku system, 60K presented a change in conformation,

more specifically, a cis-trans conversion of the hydrazineyl N=C bond (Fig. B.9).
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This conformational change would only be expected at very high energy costs, and

it is a combined artifact of the force field and the biasing procedure. The Z (cis) to E

(trans) conversion allowed the 60K ligand to unbind with a significantly lower free

energy barrier than its analogue, 4fkw (Figs. B.10 and B.11). They both share a di-

hedral angle (φ ), which corresponds to this transformation, defined between atoms

N6-N9-C14-C16 for 60K and N1-N3-C25-C26 for 62K (Fig. B.10). On one hand,

this is partly due to the initially strong constraints from the string method that can

be corrected in the future. On the other hand, this is also due to the too low energy

of the trans form and the too low barrier for the isomerisation as compared to the

DFT calculations (Fig. B.11). Tas a result, the final unbinding free energy barrier

(Fig. B.7, middle, blue) is 10 kcal/mol lower than the experimental (20.01 (±0.12)

kcal mol-1) value for all three replicas (9.96 (±1.5) kcal mol-1).

ba

OUT

IN

TS

Figure B.8: Left (a): CDK2 bound to 60K, the chemical structure of the ligand oxindole
carboxylic acid derivative is drawn in the inset. Bound state (IN) originated
from PDB structure 4fku. Structural details of the ATP pocket are shown with
the ligand in the bound state (green), unbound (red) and transition state (grey).
Right (b): common CVs obtained from the unbinding replicas of 60K, rep-
resentative distances are shown in dashed lines (yellow: interaction from the
initial structure, cyan: interaction found during the unbinding trajectory), red
sticks represent the ligand when it is outside the pocket. The displayed dis-
tances appear in all three replicas for 60K.
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IN

Intermediate

OUT

Figure B.9: 60K ligand structures within the CDK2 binding pocket from three different
umbrella windows portraying the cis-trans conversion through the unbinding
pathway from IN (cis/Z, red circle) via the intermediate (trans/E, red circle,
white sticks) to OUT (cis/Z, red circle) structures.
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cis

trans

Figure B.10: Values of the dihedral angles (φ ) for both 4FKU (60K) and 4FKW (62K)
throughout the umbrella sampling windows of all three replicas. φ is defined
as the dihedral angle between atoms N6-N9-C14-C16 for 60K and C25-C26-
N1-N3 for 62K. The conformations at φ 0° correspond to the cis isomers and
at φ 180° correspond to the trans isomers.
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cis trans

Figure B.11: Relative energy values for 60K and 62K calculated at DFT (dark blue and
dark red circles, respectively) and MM (light blue and pink squares, respec-
tively) levels of theory for the cis-trans interconversion based on DFT opti-
mized geometries along φ . The dihedral angle (φ ) is defined between atoms
N6-N9-C14-C16 for 60K and N1-N3-C25-C26 for 62K. The rotational barri-
ers are lower in the force field (MM) than calculated at the DFT level. Note
that the MM relative energy of the trans isomer with respect to the cis for
62K is about 10 kcal/mol higher than for 60K, contributing to the different
behavior observed between the two similar ligands.

B.8 Gradient Boosting Decision Trees Results
We used GBDT as an alternative approach to the MLP. The model was trained us-

ing the same amount of data fed for the MLP. We compared the results obtained

from the MLTSA against the feature importances given by the GBDT. Overall, fea-

tures resulting important from the MLTSA are also present in the GBDT, however,

depending on the system we analyzed, additional important features were also de-

tected from the GBDT’s important features. This suggests that the more complex

non-linear behavior might lead to different performances for GBDT and the MLP



B.8. Gradient Boosting Decision Trees Results 208

as compared to the analytical model system.

Figure B.12: Comparison between GBDT feature importance (orange) and MLTSA accu-
racy drops (blue) at different times for the three systems for ligand 18K.

Figure B.13: Comparison between GBDT feature importance (orange) and MLTSA accu-
racy drops (blue) at different times for the three systems for ligand 62K.
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B.9 Additional Resources

B.9.1 Animated trajectories

Animated GIF files showing the string trajectories for the three systems (3sw4, 4fku

and 4fkw) of all replicas are available at the GitHub repository:

• https://github.com/pedrojuanbj/MLTSA-V1

B.9.2 Software package

A Python package of the analytical MLTSA example and corresponding Python

code is accessible under the Python Package Index (PyPi) database:

• https://pypi.org/project/MLTSA/

https://github.com/pedrojuanbj/MLTSA-V1
https://pypi.org/project/MLTSA/ 
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hMR3 Supplementary Information

C.1 Unbinding

a) b)

Ligand 2 Ligand 3

Figure C.1: Overlay of structures found throughout the unbinding path of ligands 2 and 3
starting from hMR3’s orthosteric binding site. Ligands, represented as sticks,
start at the BS (red) and move through the TS (white) to reach the US (blue)
on the extracellular vestibule of the receptor (grey, in cartoon).
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C.2 Dataset Creation
All datasets containing interatomic distances were created using mdtraj, the out-

comes of the simulations were assigned using the original biasing CV value from

unbinding. If after 5ns the distance was under XÅ it was assigned IN, otherwise if

bigger than YÅ it was assigned OUT.

C.2.1 XYZ-PCA Dataset

To assess the importance of protein-protein distances, an additional dataset was

created using the XYZ coordinates of all protein atoms (except hydrogens). The

number of protein atoms for the system is 2247, which yields around 6741 coordi-

nates. To be able to reduce this number, a PCA projection was applied to the data.

In Fig. C.2, the resulting explained variance ratio can be found for the different PCA

components resulted from the calculation.

Figure C.2: Explained variance ratio for the fitted PCA from the XYZ-PCA set. Left:
Values of all PCA components projected. Right: Values more in detail for the
selected components which are the first 100 components. The first 100 were
selected because of the rapid decay to 0% explained variance and make sure
no information was lost.

At around 100 components, the explained variance ratio dropped close to 0. I

decided to use these 100 new components as features for training.

C.2.2 3Å and 6Å Datasets

The dataset was created by selecting all protein atoms within 3Å of any of the ligand

atoms in the starting TS structure and defining all interatomic distances between
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ligand atoms and protein heavy atoms.

C.2.3 3Å+Loop Datasets

To assess the importance of particular residues outside the pocket, datasets with all

interatomic distances from ranging from I222 to T231 were added to the previous

3Å set, including the ECL2-TM5 junction region. (ECL2-TM5 dataset). To validate

the relevance of the ECL2-TM5 loop, an additional dataset with residues I501 to

C516 around ECL3 were also tested. However, no distances from this loop were

identified as important either by MLP or GBDT models.

C.3 ML Models

C.3.1 MLP

The MLP model was setup using the MLPClassifier from Scikit-Learn [59], using

3 layers (input, hidden, output) with as many input nodes as features used in the

first layer, 100 hidden nodes in the second layer using the ReLU [60] activation

function and 1 output layer made of 1 node with a logistic activation function (0-

IN,1-OUT). The model was optimized using the Adam solver [61], with a learning

rate of 0.001, iterating over data until convergence or upon reaching the maximum

number of iterations (500 epochs). Convergence is determined by the tolerance

and the number of epochs with no change in loss. When having 10 consecutive

epochs with less than 0.0001 improvement on the loss, the training stops, and it

is considered that the model has reached convergence. All datasets used the same

parameters for training.

C.3.2 GBDT

The GBDT model used was setup using the GradientBoostingClassifier implemen-

tation from Scikit-Learn [59], I trained 500 decision stumps as weak learners min-

imizing a logistic loss function, with a learning rate of 0.1. The Friedman Mean

Squared Error (MSE) was used for to assess the split of the internal nodes, using a

minimum of 2 samples to split, and 1 sample required at the leaf nodes. The max-

imum depth of the individual estimators was 3, without a limit on the maximum
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number of features to consider for the best split or the leaf nodes. Training was

done using a validation fraction of 0.1 internally.

C.4 Trainings

To find the optimum time-range from the downhill trajectories to train the ML mod-

els, a training at different times was performed. Using a time window of 0.05 ns at

a time, I tested from 0.05 ns to 0.5 ns. It was found that between 0.05 ns and 0.1 ns

would be as early as possible without sacrificing reasonable accuracy.

Figure C.3: MLP (Blue) and GBDT (Green) accuracy for the test and train sets at different
times throughout the downhill trajectories using early near-TS data until 0.5
ns. Note the dataset used is the 3Å set.
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Table C.1: Train (70% data) and test (30% data) accuracy for the MLP and GBDT models
on the different datasets.

Dataset MLP (%) GBDT (%)

3Å set Train 77.80 ± 0.32 76.15 ± 0.75
Test 76.34 ± 0.52 75.89 ± 0.74

6Å set Train 75.18 ± 0.23 76.64 ± 0.12
Test 75.71 ± 0.25 76.31 ± 0.11

3Å+ECL2 set Train 76.82 ± 0.95 80.31 ± 0.15
Test 76.27 ± 1.14 80.14 ± 0.12

XYZ-PCA set Train 100 93.42 ± 0.82
Test 100 93.25 ± 0.85

Allres set Train 77.85 ± 0.01 79.27 ± 0.01
Test 77.71 ± 0.01 79.01 ± 0.01

Allres+wat set Train 81.27 ± 0.04 80.22 ± 0.03
Test 81.05 ± 0.04 79.82 ± 0.03
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a)

c) d)

b)D113
L114V101

M156
I115

W206S195
V193 I222

S195

W206

C519N507

S195 I245

V193

T74 F124
S168 I245

D517

Figure C.4: Atomic Cartesian coordinates-feature contributions to the top PCA compo-
nents 1 (b), 2 (b), 23 (c), and 59 (d) selected.
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C.5 PCA

Figure C.5: Protein representation of the average atomic contributions to the PCA compo-
nents 1 (b), 2 (b), 23 (c), and 59 (d) colored by the R-factor (blue to red: 0 to
1). Ligand in white.
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C.6 Additional analysis

Figure C.6: Top: RAD and RFI for the 3Å adding interatomic distances from an alternate
loop ECL3. Residues newly included range from I501 to C516. Top distances
marked in red, top residues highlighted in color. Bottom: Average per residue
RAD and RFI for the 3Å+ECL3. Top residues marked in red.

C.7 Additional Resources
A GitHub repository with the multi-PDB and GIF unbinding trajectories through

the string windows and the PDB TS structures can be found at the project’s GitHub.

https://github.com/pedrojuanbj/hMR3_Unbinding


Appendix D

ACHREMD Supplementary

Information

D.1 Umbrella Sampling EDTA-Mg

Figure D.1: Left: Histograms of each of the 50 windows during the US run for the EDTA-
Mg system. Right: the combined histogram of all of the sampled distances
from all windows.
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Figure D.2: Full free energy profile recovered using WHAM for the umbrella sampling run
on the EDTA-Mg system.



Appendix E

Colophon

This document was set in the Times Roman typeface using LATEX and BibTEX, com-

posed with a text editor.

Molecular representations were done with Pymol and VMD, Microsoft Power-

Point was used for the complex figures and illustrations. Graphs Were created with

matplotlib and seaborn.

https://pymol.org/2/
https://www.ks.uiuc.edu/Research/vmd/
https://matplotlib.org/
https://seaborn.pydata.org/index.html
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(5) Schreiber, G.; Haran, G.; Zhou, H. X. Chemical Reviews 2009, 109, 839–860.

(6) Singh, A. N.; Ramadan, K.; Singh, S., Experimental methods to study the kinetics

of protein-protein interactions; Elsevier Inc.: 2022, pp 115–124.

(7) Wu, Y.; Zeng, L.; Zhao, S. Biomolecules 2021, 11, 1–19.

(8) Chan, H. C.; Filipek, S.; Yuan, S. Scientific Reports 2016, 6, 1–11.

(9) Copeland, R. A.; Pompliano, D. L.; Meek, T. D. Nature Reviews Drug Discovery

2006, 5, 730–739.

(10) Copeland, R. A. The drug-target residence time model: A 10-year retrospective,

2016.

(11) Hollingsworth, S. A.; Dror, R. O. Neuron 2018, 99, 1129–1143.

(12) Tiwary, P.; Limongelli, V.; Salvalaglio, M.; Parrinello, M. Proceedings of the Na-

tional Academy of Sciences of the United States of America 2015, 112, E386–E391.



BIBLIOGRAPHY 222

(13) Grossfield, A.; Patrone, P. N.; Roe, D. R.; Schultz, A. J.; Siderius, D.; Zuckerman,

D. M. Living Journal of Computational Molecular Science 2019, 1, DOI: 10.

33011/livecoms.1.1.5067.

(14) Bernardi, R. C.; Melo, M. C.; Schulten, K. Biochimica et Biophysica Acta - General

Subjects 2015, 1850, 872–877.
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(23) Wang, J.; Olsson, S.; Wehmeyer, C.; Pérez, A.; Charron, N. E.; De Fabritiis, G.;
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(89) Noé, F.; Tkatchenko, A.; Müller, K.-R.; Clementi, C. Annual Review of Physical

Chemistry 2019, 71, 361–390.

(90) Glielmo, A.; Husic, B. E.; Rodriguez, A.; Clementi, C.; Noé, F.; Laio, A. Unsuper-

vised Learning Methods for Molecular Simulation Data, 2021.

(91) Burger, H. C.; Schuler, C. J.; Harmeling, S. In Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, 2012, pp 2392–

2399.

(92) Rao, H.; Shi, X.; Rodrigue, A. K.; Feng, J.; Xia, Y.; Elhoseny, M.; Yuan, X.; Gu, L.

Applied Soft Computing 2019, 74, 634–642.

(93) Hinton, G. E.; Salakhutdinov, R. R. Science 2006, 313, 504–507.

(94) Dunbar, J. B.; Smith, R. D.; Damm-Ganamet, K. L.; Ahmed, A.; Esposito, E. X.;

Delproposto, J.; Chinnaswamy, K.; Kang, Y. N.; Kubish, G.; Gestwicki, J. E.;

Stuckey, J. A.; Carlson, H. A. Journal of Chemical Information and Modeling 2013,

53, 1842–1852.

(95) Malumbres, M.; Barbacid, M. Cell cycle, CDKs and cancer: A changing paradigm,

2009.

(96) Otto, T.; Sicinski, P. Cell cycle proteins as promising targets in cancer therapy,

2017.

(97) Tadesse, S.; Caldon, E. C.; Tilley, W.; Wang, S. Cyclin-Dependent Kinase 2 In-

hibitors in Cancer Therapy: An Update, 2019.



BIBLIOGRAPHY 228

(98) Jessen, B. A.; Lee, L.; Koudriakova, T.; Haines, M.; Lundgren, K.; Price, S.;

Nonomiya, J.; Lewis, C.; Stevens, G. J. Journal of Applied Toxicology 2007, 27,

133–142.

(99) Parry, D.; Guzi, T.; Shanahan, F.; Davis, N.; Prabhavalkar, D.; Wiswell, D.;

Seghezzi, W.; Paruch, K.; Dwyer, M. P.; Doll, R.; Nomeir, A.; Windsor, W.; Fis-

chmann, T.; Wang, Y.; Oft, M.; Chen, T.; Kirschmeier, P.; Lees, E. M. Molecular

Cancer Therapeutics 2010, 9, 2344–2353.

(100) Ayaz, P.; Andres, D.; Kwiatkowski, D. A.; Kolbe, C. C.; Lienau, P.; Siemeister, G.;

L??cking, U.; Stegmann, C. M. ACS Chemical Biology 2016, 11, 1710–1719.

(101) Caporali, S.; Alvino, E.; Starace, G.; Ciomei, M.; Brasca, M. G.; Levati, L.; Garbin,

A.; Castiglia, D.; Covaciu, C.; Bonmassar, E.; D’Atri, S. Pharmacological Re-

search 2010, 61, 437–448.

(102) Wang, L.; Lu, D.; Wang, Y.; Xu, X.; Zhong, P.; Yang, Z. Journal of Enzyme Inhi-

bition and Medicinal Chemistry 2023, 38, 84–99.

(103) Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot,
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