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Abstract

Several bioinformatics genotyping algorithms are now commonly used to characterize antimicrobial resistance (AMR) gene 
profiles in whole-genome sequencing (WGS) data, with a view to understanding AMR epidemiology and developing resist-
ance prediction workflows using WGS in clinical settings. Accurately evaluating AMR in Enterobacterales, particularly Escheri-
chia coli, is of major importance, because this is a common pathogen. However, robust comparisons of different genotyping 
approaches on relevant simulated and large real-life WGS datasets are lacking. Here, we used both simulated datasets and a 
large set of real E. coli WGS data (n=1818 isolates) to systematically investigate genotyping methods in greater detail. Simulated 
constructs and real sequences were processed using four different bioinformatic programs (ABRicate, ARIBA, KmerResistance 
and SRST2, run with the ResFinder database) and their outputs compared. For simulation tests where 3079 AMR gene variants 
were inserted into random sequence constructs, KmerResistance was correct for 3076 (99.9 %) simulations, ABRicate for 3054 
(99.2 %), ARIBA for 2783 (90.4 %) and SRST2 for 2108 (68.5 %). For simulation tests where two closely related gene variants 
were inserted into random sequence constructs, KmerResistance identified the correct alleles in 35 338/46 318 (76.3 %) simu-
lations, ABRicate identified them in 11 842/46 318 (25.6 %) simulations, ARIBA identified them in 1679/46 318 (3.6 %) simula-
tions and SRST2 identified them in 2000/46 318 (4.3 %) simulations. In real data, across all methods, 1392/1818 (76 %) isolates 
had discrepant allele calls for at least 1 gene. In addition to highlighting areas for improvement in challenging scenarios, (e.g. 
identification of AMR genes at <10× coverage, identifying multiple closely related AMR genes present in the same sample), 
our evaluations identified some more systematic errors that could be readily soluble, such as repeated misclassification (i.e. 
naming) of genes as shorter variants of the same gene present within the reference resistance gene database. Such naming 
errors accounted for at least 2530/4321 (59 %) of the discrepancies seen in real data. Moreover, many of the remaining discrep-
ancies were likely ‘artefactual’, with reporting of cut-off differences accounting for at least 1430/4321 (33 %) discrepants. Whilst 
we found that comparing outputs generated by running multiple algorithms on the same dataset could identify and resolve 
these algorithmic artefacts, the results of our evaluations emphasize the need for developing new and more robust genotyping 
algorithms to further improve accuracy and performance.
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DATA SUMMARY
Sequencing data are available at the following NCBI BioProject accession numbers: PRJNA779173, PRJNA540750, PRJNA604975, 
PRJEB26317. For further information see https://doi.org/10.1093/bioinformatics/btr708.

INTRODUCTION
Whole-genome sequencing (WGS) has become a major tool for characterizing the epidemiology of bacterial antimicrobial 
resistance (AMR) genes, representing a potentially highly discriminatory, non-targeted approach with significant advantages over 
other more targeted molecular techniques [1]. In addition, WGS-based antibiotic susceptibility prediction has been successfully 
implemented as part of diagnostic and treatment workflows for Mycobacterium tuberculosis [2] and more recently Salmonella 
species [3]. Accurate WGS-based profiling of complete AMR gene content and prediction of susceptibility phenotypes would 
represent an attractive option for other commonly encountered clinical bacterial pathogens, such as Enterobacterales, including 
Escherichia coli. However, many of these pathogens, together with the antimicrobials commonly used to treat them, have proved 
more challenging, with methods designed for this yet to meet the standards required to be used in clinical practice [4–6].

Several key components are required for WGS-based AMR genotyping and predictions of susceptibility phenotype, including 
a robust AMR gene reference catalogue linking each genetic mechanism/sequence with a given phenotype, and accurate AMR 
gene identification and classification algorithms. Several catalogues and bioinformatics algorithms are now available [7–13], 
but only limited comparative evaluation of their outputs has been undertaken. The genetic mechanisms underpinning AMR in 
Enterobacterales and some other bacteria (e.g. Pseudomonas aeruginosa) are much more complex than those in M. tuberculosis, 
and whilst some studies suggest that WGS-based genotyping holds promise for AMR gene characterization and the prediction 
of antimicrobial susceptibility for several different Enterobacterales species [14–16], the limited reproducibility and reliability of 
such methods in a blinded, head-to-head analysis across nine bioinformatics teams has recently been highlighted [17]. However, 
this study was small (n=10 sequencing datasets, n=7 isolates), encountered a limited set of typing discrepancies and used highly 
selective samples, meaning the impact of these issues on larger, real-world datasets remains unclear.

We therefore used simulations and three large, independent and diverse E. coli sequencing datasets to investigate the robustness 
and reproducibility of four widely used WGS-based AMR genotyping methods (ABRicate, ARIBA, KmerResistance and SRST2) 
at scale, investigating any encountered discrepancies.

METHODS
AMR gene identification methods
We evaluated the impact of different bioinformatics tools using the same AMR gene catalogue, namely the ResFinder database 
(v.29/10/2019). To be included, bioinformatics tools had to: (i) have publicly available code, (ii) run on local computing archi-
tecture without major modification, (iii) accept different AMR gene databases to ensure broad and long-term typing usability 
and (iv) have a command line interface that could enable batch processing of large numbers of samples (Table S1, available in 
the online version of this article).

We identified four publicly available bioinformatic tools that met these criteria and used distinct AMR gene identification 
approaches: ABRicate [18] v0.8.11 (which searches for AMR genes in assemblies using blastn [19] v.2.2.31+), SRST2 [11] 
v.0.2.0 (which maps reads directly onto the formatted AMR gene database using Bowtie 2 [20] v2.2.9), ARIBA [10] v2.11.1 
(which combines these two approaches, first mapping reads to the AMR gene database using minimap, and then creating local 
assemblies of the mapped reads using Fermi-lite) and KmerResistance [12] v2.0 (which analyses shared k-mers between the 

Impact Statement

Whole-genome sequencing is widely used for studying the epidemiology of antimicrobial resistance (AMR) genes in bacteria; 
however, there is some concern that outputs are highly dependent on the bioinformatics methods used. This work evaluates 
these concerns in detail by comparing four different commonly used AMR gene typing methods using large simulated and 
real datasets. The results highlight performance issues for most methods in at least one of several simulated and real-life 
scenarios. However most discrepancies between methods were due to differential labelling of the same sequences related to 
the assumptions made regarding the underlying structure of the reference resistance gene database (i.e. that resistance genes 
can be easily classified in well-defined groups). This study advances our understanding of discrepancies between the outputs of 
different AMR typing algorithms, with relevance for historic and future work using these algorithms. Some of the discrepancies 
can be resolved by choosing methods with fewer assumptions about the reference AMR gene database and manually resolving 
outputs generated using multiple programs. However, ideally new and better methods are needed.
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query sequences and reference sequences in the AMR gene database) (Fig. S1). To mimic broad usability, each program was run 
using default parameters. For ABRicate, assemblies were first produced using SPAdes [21] v3.12.0 run with default parameters.

Simulated data: single and multiple allele identification, and low coverage scenarios
Prior to evaluating real data, we considered the accuracy of each method in identifying known AMR gene alleles ‘inserted’ into 
simulated flanking sequence constructs. For this, each AMR gene variant in the ResFinder database (n=3079) was flanked by 
1 kb of random sequence (using Numpy v1.16.4 [22] and combined using BioPython [23] v1.74) and reads simulated at 40× 
coverage using ART (details and rationale in Supplementary Methods, Figs 1 and S2) [24]. Other ART parameters were: error 
profile=‘HISEQ2500’, mean DNA fragment length (standard deviation)=480 bp (150 bp) and read length=151 bp. As we were 
interested to see how each of the tools performed when given correct and relatively simple sequencing data, we assessed the 
‘recovery’ of each construct (i.e. how well we could recreate constructs from assembling from simulated reads) using quast [25] 
v4.3. This confirmed that all assemblies were a single contig covering >90 % of the original construct, and there were no errors 
(single-nucleotide polymorphisms, insertions or deletions) within the coding regions of the resistance genes. Each bioinformatic 
method was then tested to see if it could correctly identify the AMR gene variant, using default parameters. We repeated this 10 
times to assess variability across repeats.

We also considered two a priori scenarios that are thought to affect AMR genotyping [26], namely a multiple-allele scenario 
in which multiple closely genetically related alleles (see below) of a given AMR gene were present, and a low-quality scenario 
reflected by low sequencing coverage. For the multiple-allele scenario we excluded target AMR gene variants that were incorrectly 
identified individually by any method (see Results), and then calculated pairwise nucleotide similarity between all remaining 
AMR gene variants. To do this, each remaining AMR gene variant was split into 31-mers, which were then compared with 31-mer 
sets from every other non-excluded AMR gene variant using pairwise Jaccard’s similarity indices. AMR gene variant pairs were 
defined as similar if they shared any 31-mer, resulting in a total of 46 318 possible similar AMR gene variant pairs (Figs S3–S5).

For the low-coverage scenario, reads were simulated from 176 blaTEM gene-containing constructs at coverage depths ranging from 
1–50× using ART (n=176×50=8800 simulations), reflecting total blaTEM diversity present in the ResFinder database at the time 
of simulation (aside from those incorrectly identified in the single-allele scenario). Each construct contained a random perfect 
reference blaTEM variant flanked by 1 kb of random sequence on each side produced using Numpy/BioPython as above. Simulated 
reads were then processed by each genotyping method using default settings and the identified variants were compared with 
the known blaTEM variants present in each construct. The measure of performance for this scenario was the proportion of blaTEM 
variants correctly identified by each method at each coverage level.

Real data: isolate selection
To evaluate performance on real data, we then studied a total of 1818 E. coli isolates comprising 3 different WGS datasets in order 
to reflect different strain-level and AMR gene diversity: (i) 984 sequentially collected bloodstream infection isolates at Oxford 
University Hospitals (OUH) NHS Foundation Trust [27] (‘Oxford dataset’); (ii) 497 animal commensal E. coli isolates donated 
by the UK Animal and Plant Health Agency (APHA) [28] (‘APHA dataset’) and (iii) 337 E. coli isolates collected by UK Health 
Security Agency’s (UKHSA’s) Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, which 

Fig. 1. Proportion of correct genotype calls for single AMR gene variants in simulated constructs by coverage depth and bioinformatics method.
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investigates isolates enriched for rare or important resistance genotypes encountered in the UK (sequenced for this study, ‘UKHSA 
dataset’). The ‘APHA dataset’ included five technical repeats (see Supplementary Material)

Isolates were recultured from frozen stocks stored in nutrient broth plus 10 % glycerol at −80 °C. DNA was extracted using the 
QuickGene DNA Tissue kit S (Kurabo Industries, Japan) as per the manufacturer’s instructions, with an additional mechanical lysis 
step (FastPrep, MP Biomedicals, USA) immediately following chemical lysis. A combination of standard Illumina and in-house 
protocols was used to produce multiplexed paired-end libraries, which were sequenced on an Illumina HiSeq 2500, generating 
151 bp paired-end reads. High-quality sequences were de novo-assembled using Velvet [29] v1.0.18 as previously described [30]. 
In silico Achtman [31] multilocus sequence types (MLSTs) were defined using ARIBA [10] v2.11.1.

While this work does not attempt to predict resistance from WGS data, each isolate had linked antimicrobial susceptibility test 
(AST) data (summarized in Table S2, Fig. S6), which we have included as the complexity of resistance genotype identification 
is associated with the phenotype. Isolates had complete AST data available for ampicillin, ceftazidime and one other third-
generation cephalosporin (cefotaxime for the animal commensal isolates, ceftriaxone for all others), gentamicin, ciprofloxacin 
and co-trimoxazole.

We compared the AMR genotypes reported for each isolate by each method, stratified by the antibiotic class to which resistance 
was conferred, as specified in the ResFinder database, namely: beta-lactams, aminoglycosides, quinolones, trimethoprim and 
sulphonamides. Discrepancies were classified according to which of the four bioinformatics methods agreed (Fig. S6). The cause 
of discrepancy was investigated for all beta-lactam resistance genotypes, because these antibiotics are most commonly used for 
clinical E. coli infections, and then for discrepancy patterns occurring in >1.5 % (n=27) of isolates for the other classes.

RESULTS
Simulated scenarios
Accurate identification of single AMR gene variants in simulated sequence constructs
For the 3079 AMR gene variants in the ResFinder database, all four genotyping methods correctly identified those inserted into 
random sequence contexts for all repeats in 1999 (64.9 %) cases. ARIBA was the only tool to intermittently correctly identify 
alleles across repeats [n=42/3079 (1.3%) alleles], being always correct for 2783/3079 (90.4 %) alleles. All other tools were consistent 
across repeats, with KmerResistance being correct for 3076 (99.9 %) simulations, ABRicate for 3054 (99.2 %) and SRST2 for 
2108 (68.5 %) (Fig. 2). For SRST2, most errors were due to its approach of pre-clustering reference sequences into sub-families 
by sequence identity prior to genotyping, thereby essentially excluding a priori the possibility of identifying alleles that were 
not selected as the representative for these sub-family clusters. This error is explained in more detail below, as it also affected 
genotyping in real isolate sequences.

Fig. 2. Identification of known single AMR gene variants in simulated contexts by bioinformatic method. Note only cases where one or more methods 
were incorrect are shown (n=1081). *, genes were variably correctly identified across 10 repeats.
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Impact of the presence of multiple closely related alleles on genotyping calls
The multiple-allele simulation caused problems for all algorithms. Overall, KmerResistance was the most successful, identifying 
both correct genes in 35 338/46 318 (76 %) scenarios (Table 1). By contrast the next most successful was ABRicate, achieving 
this in 11 842/46 318 (26 %) with the remaining tools, with ARIBA and SRST2 only achieving this in 1679 (4 %) and 2000 (4 %) 
scenarios, respectively. In addition, assembly-based algorithms frequently failed to completely assemble genes, with ABRicate 
and ARIBA reporting fragmented/incomplete alleles for 26 848/58 499 (46 %) and 2483/18 830 (13 %) of the correct alleles they 
identified, respectively. SRST2, as expected, found only a single allele in most [33319/46 318 (72 %)] cases, as dictated by its 
clustering parameters. Unsurprisingly all four programs were most likely to make erroneous genotyping calls as the simulated 
pairs of alleles became more closely related (Fig. S7a, b).

Impact of sequencing depth on genotyping calls
KmerResistance was able to identify blaTEM alleles at lower coverage than any of the other methods (Fig. 1). Above 15× depth 
of coverage for the gene, all methods correctly identified blaTEM alleles in simulated constructs in >95 % of cases (Fig. 1). All 
methods were able to identify all of the blaTEM alleles correctly at least once, but examples existed for all methods where the 
allele was correctly identified at low coverage, but then mis-classified at higher coverage. In general, ABRicate and SRST2, while 
requiring greater sequencing depth to correctly identify blaTEM alleles initially, were more accurate at higher coverage depths, 
making erroneous calls for only 1/176 (0.6 %) and 0/176 (0 %) of blaTEM alleles at depths >20×. In contrast, for >20× coverage 
ARIBA and KmerResistance made erroneous allele calls for 23/176 (13 %) and 6/176 (3 %) blaTEM variants respectively. Above 
40× coverage ABRicate was incorrect for one (0.6 %), ARIBA for four (2 %), KmerResistance for one (0.6 %) and SRST2 for zero 
(0 %) simulated blaTEM alleles.

Real data
E. coli isolate diversity, antimicrobial susceptibility phenotypes and antimicrobial resistance genotypes
The 1818 isolates were diverse, representing >260 MLSTs, which were differentially distributed among the datasets. For example, 
although ST131 was the most common [207/1818 (11 %) isolates], this was largely due to the fact it was by far the most common 
in the UKHSA dataset [74/337 (22 %) isolates]. In the Oxford dataset, it was only the second most common MLST [123/984 (13 %) 
isolates] after ST73 [161/984 (16 %) isolates] and it was rare in the APHA isolates [10/497 isolates (2 %)].

Correspondingly, the set also contained a broad range of resistance genes, but the exact number was dependent on the method of 
search. With there being no definitive way to identify the ‘truth’ of the underlying sequence from short-read data alone, we have 
a priori assumed that no one method is more authoritative than the others. However, it is helpful to pick and report the results 
from one method as a baseline, to aid describing the dataset in a clear and succinct way. For legibility, we have included results 
as reported by ABRicate, as this is the most conceptually simple and interrogatable approach (see Table S3 for the results from 
other methods). The most common AMR-associated sequence identified was mdfA. This is known to be universal in E. coli, and 
correspondingly was identified in all 1818 isolates in the dataset. There were no other ubiquitous AMR genes; however, several 
were common across datasets, with blaTEM, aadA, sul, tet and dfr genes occurring in >40 % of the isolates. As expected, more 
UKHSA isolates contained extended-spectrum beta-lactamase (54/337 vs 94/1481) and carbapenemase (18/337 vs 1/1481) genes 
(P=<0.001). Aside from blaTEM, other beta-lactamases were rare among the APHA dataset. Outside of beta-lactam-associated 
AMR genes, the Oxford dataset had the lowest proportion of other AMR genes for all the different gene families encountered 
in this study.

Genotyping discrepancies
Altogether, 10487 different genes (n=15 588 different alleles) were identified in the 1818 isolates by the 4 methods; 1392/1818 (76 %) 
isolates had discrepancies across the 4 bioinformatics methods for at least 1 gene. At the gene level, aside from for the tet, aadA 

Table 1. Performance of genotyping methods in evaluating simulated constructs with two related allelic variants. Percentage reported out of a total of 
46 318 simulations performed for each method

No. of calls (%)

Genotyping call ABRicate ARIBA KmerResistance SRST2

No correct calls 6355 (14 %) 29 571 (64 %)  �  1795 (4 %) 10 298 (22 %)

One correct call but additional incorrect calls 21 012 (45 %) 164 (<1 %)  �  1028 (2 %) 184 (<1 %)

One correct call, no incorrect calls 415 (1 %) 14 500 (31 %)  �  8150 (18 %) 33 319 (72 %)

Two correct calls, but additional incorrect calls 6712 (14 %)  �  404 (1 %)  �  7 (<1 %) 517 (1 %)

Two correct
calls, no incorrect calls

11 842 (26 %) 1679 (4 %) 35 338 (76 %) 2000 (4 %)
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and cat genes, the performance of the bioinformatic tools was similar (Fig. 3a), with tools reporting each gene in approximately 
the same proportion of isolates (within +/−2%). With regard to the three outliers, ABRicate reported tet and aadA genes in 19 
and 10% more isolates, respectively, than the other three tools, and ABRicate and KmerResistance reported cat genes in 5 % 
more isolates than ARIBA and SRST2. By contrast, the alleles reported by each tool were often discrepant, with alleles of some 
genes (e.g. blaSHV, blaCMY) consistently being differentially reported (Fig. 3b). Consequently, pairwise agreement between any two 
different tools was <59 % (n=1065 isolates, Fig. 3c). While unsupported genotype reports (i.e. where the output of one tool was 
not supported by any other) were common for all tools (Fig. 4), KmerResistance reported fewer unsupported genotypes than 
the other three tools (P<0.001).

Causes of genotyping discrepancy
At least 2530/4321 (59 %) of allele-level discrepancies were due to programs naming the same underlying sequence differently 
(allele assignment-related differences). We identified three major causes of differences through investigation of discrepantly 
reported genes: (i) difficulty distinguishing between optimal matches among alleles with nested sequences (n=1737 genes); (ii) 
spurious identification of additional alleles due to reads being multiply mapped to distant variants of the same allelic family (n=547 
genes); and (iii) tools choosing different optimal matches based on DNA sequence alignment when the database only contains 
one sequence per protein (n=197) (Fig. 5). These issues occurred alone in 1944/2530 (77 %) discrepantly reported genes and/or in 
combination in 586/2530 (23 %) cases. In isolation, these errors typically caused only a single method to be discordant, but when 
combined they resulted in more complex patterns of discrepancy and could make all four methods disagree with one another. In 
addition to allele assignment, ABRicate’s more relaxed requirement for complete gene coverage (which aims to mitigate assembly 
errors) caused at least 1430/4321 (33 %) allele-level discrepancies. Discrepancies less easily classified as (but likely related to) allele 
assignment/cut-offs did occur, but only affected 381/10487 (4 %) of reported genotypes.

Fig. 3. Gene identification concordance vs allele identification concordance. (a) The number of isolates containing at least one allele of the name gene 
families (x-axis) stratified by method. (b) The proportion of times a given gene was identified concordantly by all four methods. (c) Pairwise agreement 
between the different methods across all isolates.
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Allele assignment-related discrepancies
The most common type of allele assignment-related discrepancy (n=1737 genes) was the result of tools struggling to choose 
optimal matches where the database contained nested sequences. One such example of this (n=24) was caused by the sequences 
for two different dfrA7 alleles in the October 2019 Resfinder database, dfrA7_1_AB161450 and dfrA7_5_AJ419170. The shorter 
of the two (dfrA7_1_AB161450, 474 bp long) aligns almost perfectly (percentage identity=99 %, 1 single-nucleotide gap) with the 
first 473 bases of dfrA7_5_AJ419170. ARIBA, KmerResistance and SRST2, which look for the best identity sequence matches, 

Fig. 5. Genotyping agreement across all four bioinformatics algorithms, stratified by gene. Colours on the left indicate which methods agreed with 
one another, with circles with the same colour indicating agreement. Colours in the main panel of the figure were used to identify the cause of the 
discrepancy, as denoted in the figure key. Cells (in the figure) were coloured if >90 % of isolates were caused by a given discrepancy. Cells with <10 
isolates were not investigated.

Fig. 4. Genotype calls produced by a single method only, stratified by antibiotic class.



8

Davies et al., Microbial Genomics 2023;9:001151

all report that the sample contains a perfect match for dfrA7_1_AB161450. By contrast, ABRicate, which uses blast to identify 
optimal sequences, reports that the sample contains a near perfect match to dfrA7_5_AJ419170, as with this being a longer match 
it is more statistically significant. Similar errors occurred for several other genes, including sul, tet, aph(6) and aac(3).

The second most common allele assignment-related discrepancy (n=547 genes) represented tools reporting multiple alleles 
due to reads mapping to two or more distant variants of the same allelic family. An example observed was ARIBA and SRST2 
reporting multiple blaSHV alleles. In this instance, ARIBA and SRST2 identified a primary perfect allele and a second allele with a 
lower quality match. These multiple matches, however, were likely spurious, with <10 reads mapping individually to each allele, 
no clear heterozygosity observed in read pileups, and no fragmentation in assembly graphs. This is the result of how mapping 
methods identify optimal matches. Both ARIBA and SRST2 map reads to each sequence in the database, and then compare 
‘closely related’ sequences to decide which mapping is optimal. Defining closely related, however, is not straightforward (Fig. 
S8). Reads mapping to more than one set of closely related sequences can result in tools finding multiple gene variants when the 
isolate only had one gene original

The final common allele assignment-related discrepancy (n=197 genes) was due to allele reporting based on which sequence in 
the database had the optimal DNA alignment with the target resistance gene. Although resistance gene nomenclature is largely 
based on protein sequence, resistance gene databases mostly only catalogue one nucleotide sequence linked to an associated 
protein sequence. Variant alleles with synonymous mutations fail to perfectly match any element, and may have an alternative 
optimal DNA match. We observed this on nine occasions where ABRicate, KmerResistance and SRST2 identified imperfect 
nucleotide-level matches to aph(3″)-Ib_2_AF024602 and ARIBA identified an imperfect match to aph(3″)-Ib_4_AF313472. 
However, the sequence they were matching to in the SPAdes and ARIBA assembly was a 100 % identity and coverage protein 
match to aph(3″)-Ib_5_AF321551.

Non-allele assignment-related discrepancies
In addition to allele assignment-related discrepancies that were caused by bioinformatics algorithms, genotyping calls were also 
affected by partial/low coverage of AMR gene targets and assembly fragmentation, consistent with the results from simulations. 
For some of these, such as the 1430 cut-off-related discrepancies occurring for tet, mfs, aadA and cat genes, each program identi-
fied the same section of sequence, making it clear that the different programs had different thresholds for reporting, but other 
situations were less clear. To investigate this in detail, we examined beta-lactamase matches that were either partial/low coverage 
or occurred across fragmented assemblies.

Partial/low-coverage beta-lactamase genes were discrepantly found in 39 isolates (Fig. S9), particularly affecting blaTEM-like gene calls 
(29/39 cases). KmerResistance reported the presence of a beta-lactamase gene in all 39 of these discrepant cases, with calls supported 
to a varying degree by the other algorithms. However, in all but four cases, KmerResistance reported that the depth of the gene was 
<5×. For the four cases where the gene was present at >5× depth as called by KmerResistance, three (present at depth >100×) were 
omitted from ARIBA reports, as ARIBA assemblies contained mis-sense mutations and the final one (present at depth 17×) also failed 
to assemble for ABRicate.

Assembly fragmentation affected ABRicate and ARIBA beta-lactam resistance gene calls in 24 cases, with 16 of these likely to be due 
to the presence of multiple closely related beta-lactamase alleles affecting assembly integrity. The possibility of heterozygous alleles was 
indicated by the ARIBA flag ‘variants_suggest_collapsed_repeat’, and the SRST2 ‘minor allele frequency value’ was high (>20 %). Kmer-
Resistance reported 2 related alleles in 12/16 cases, 1 with high depth, percentage identity and coverage, and 1 much less accurately. 
This likely reflects KmerResistance’s winner-takes-all strategy, where matching unique k-mers to reference alleles are counted, and 
the reference allele with the most matches is then also assigned all reads with non-unique kmer-matches. This then leaves only reads 
with unique k-mers matching any closely related secondary allele, resulting in poor depth and coverage metrics.

DISCUSSION
We evaluated the impact of bioinformatics approaches to AMR genotyping in E. coli for four commonly used methods and a widely 
used AMR gene database (ResFinder). Using >50 000 simulations and comparing >1800 sequences sampled across human and animal 
reservoirs, thereby capturing common and rare AMR genotypes, we highlight that whilst currently available, widely used genotyping 
methods are useful, their outputs should be carefully considered in light of our findings. Commonly postulated causes of discrepancy, 
such as low-quality sequencing data, appeared to play little role. Instead, discrepancies were primarily artefactual, occurring because 
of different approaches in representing the complexity of the reference AMR gene database. Inconsistent labelling of gene variants will 
also affect the reliability of any catalogue-based methods for phenotypic prediction from WGS-based AMR genotypes. Specifically, 
predicting phenotype based on the presence of specific allelic variants will be problematic without a reliable method of identification.

Our work agrees with previous findings by Doyle et al. on a small and selective dataset [17]; however, we utilized large simulated 
and real-life datasets to identify these significant genotyping discrepancies between methods, and also characterized the underlying 
reasons for these discrepancies. We found that most discrepancies were largely due to allele assignment-related differences, i.e. each 
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method identified the same consensus sequence but then named them differently. Further, many of these discrepancies are caused 
by implicit and frequently incorrect assumptions about database structure and AMR gene diversity, namely: that AMR genes can be 
classified in well-defined families using genetic identity, that different approaches to deciding best-matching alleles are equivalent 
and that isolates will usually not harbour highly genetically related variants of the same AMR gene. Of note, our nomenclature, ‘allele 
assignment-related discrepancies’, suggests that it is primarily the algorithms that are at fault. However, if database structure was 
simpler, for example containing fewer variants and avoiding those that are subsequences of one another, there would be fewer ‘allele 
assignment-related discrepancies’. The assumptions resistance genotypers employ would be less detrimental if database structure was 
less complicated. However, this highlights a disconnect between the aim of many resistance databases, to catalogue known resistance 
mechanisms, the naming of which has often evolved organically over the years, and resistance genotypers, to reliably identify resistance 
gene variants. Sufficiently detailed and standardized curation across resistance databases remains a challenge [32], in part because 
the nomenclature and AMR gene family structure relevant to Enterobacterales are complicated and there are many variants. For 
example, highly diverse genotypes (and sometimes phenotypes) are assigned similar family names (e.g. blaCTX-M, blaOXA) and solitary 
single-nucleotide polymorphisms in some cases lead to different resistance phenotypes [e.g. blaTEM-1 (GenBank: AY458016.1) – beta-
lactamase inhibitor susceptible, i.e. susceptible to amoxicillin-clavulanate, blaTEM-30 (GenBank: AJ437107.1) – beta-lactamase inhibitor 
resistant, i.e. resistant to amoxicillin–clavulanate). Further, given that these databases will need to adapt to catalogue more methods 
of resistance, particularly for the most complex pathogens [33], restricting their scope is not an attractive alternative. Given this, it is 
not surprising that we found methods that make fewer assumptions (e.g. KmerResistance) to be more robust. Based on our findings, 
accurate resistance genotyping may require the use of multiple different methods to cross-check results, and a clear understanding of 
the specific assumptions underlying the methods used, before conclusions about allele presence are drawn. Eventually, the increas-
ingly widespread use of long-read sequencing and the development of new algorithms that cope better with underlying AMR gene 
diversity in these organisms may make things easier. The ever-improving assemblies obtainable from long-read or combined short 
and long read data will make the underlying sequence data simpler to interrogate. While it may not resolve naming differences due 
to the complexity of AMR nomenclature, it may make them substantially easier to identify.

One of the key strengths of this analysis was its combined use of both simulations and real-world data. By using simulations, we 
were able to benchmark methods against a known truth, which is impossible to do with real-world data. Previous studies using only 
real-world data have attempted to overcome the absence of complete knowledge of the underlying genotype by using phenotypic 
data as a reference standard; however genotype–phenotype correlations remain poorly defined [14, 27] By subsequently using a large 
sequencing dataset of isolates obtained across niches, we were then able to assess the extent of discrepancies in real life, replicating 
the problems observed in simulated data.

A limitation of this work is that we chose not to evaluate the impact of database choice, and this will represent future work. Currently, 
as has been highlighted previously [34], there are discrepancies between the AMR databases in common use, with each having a 
slightly different scope and in some cases differential names for different AMR gene variants [e.g. strA vs aph(6)-Ia or aphD and strB 
versus aph(6)-Id]. Comparing databases would have therefore added significant further complexity whilst limiting the generalizability 
of findings. A further limitation stemming from our fixed choice of database is that we have not analysed any methods where the 
bioinformatic method and database are intertwined (e.g. ResFinder/PointFinder or RGI). As the interaction between tool and database 
was the cause of many issues, it is possible that methods that are database-specific will perform better. However, the drawbacks of these 
combined resources are their inflexibility, again limiting generalizability. A further limitation was that these genotyping algorithms 
were compared using an older version of the ResFinder database – the most up to date when this work was originally planned. Since 
this time, 83 changes have been documented on the Resfinder GitHub repository (73 additions, 6 deletions, 4 modifications). The 
additional sequences were rare in our real-world isolates, accounting for only 54 (<1 %) of the genes called. We opted not to reperform 
the analysis due to its manual nature and because most of the discrepancies relate to underlying principles behind the algorithms 
rather than the specific implementation. Finally, we have focused our evaluation on E. coli, but it is likely that these issues will also 
more widely affect AMR genotyping, particularly of similar species with complex genotypes.

While WGS-based approaches are attractive for both characterizing AMR gene epidemiology and as a subsequent tool for resistance 
prediction, this work highlights the need for caution when interpreting resistance genotypes reported by even widely used bioinfor-
matics methods. Before WGS-based approaches can be considered to be reliable for use in E. coli (and likely other Enterobacterales), 
particularly for clinical decision-making or replacing phenotypic data to determine epidemiological trends, database standardization, 
the development of novel genotyping approaches, and improved validation and evaluation will be required.
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