
1 
 

The linear nature of the more-ground-truth effect in explainable 

deep learning optical coherence tomography image 

segmentation 

 
 
Peter M. Maloca*1,2,3, Maximilian Pfau1,2,4, Lucas Janeschitz-Kriegl1,2, Michael Reich5, 
Lukas Goerdt4, Frank G. Holz4, Philipp L. Müller3,4,6, Philippe Valmaggia1,2,3, Katrin 
Fasler7, Pearse A. Keane3, Javier Zarranz-Ventura8, Sandrine Zweifel7, Jonas 
Wiesendanger9, Pascal Kaiser9, Tim J. Enz2, Simon P. Rothenbuehler2, Pascal W. 
Hasler2, Marlene Juedes10, Christian Freichel10, Catherine Egan3, Adnan Tufail3, 
Hendrik P. N. Scholl1,2, Nora Denk1,2,10 

  
1Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, 4031, 
Switzerland  
2Department of Ophthalmology, University Hospital Basel, Basel, 4031, Switzerland 
3Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK 
4Department of Ophthalmology, University of Bonn, Bonn, 53127, Germany 
5Eye Center, Medical Center – University of Freiburg, Faculty of Medicine, University 
of Freiburg, 79106, Germany 
6Makula Center, Suedblick Eye Centers, Augsburg, 86150, Germany  
7Department of Ophthalmology, University Hospital Zurich, University of Zurich, 
Switzerland 
8Hospital Clínic of Barcelona, University of Barcelona, 08036, Spain 
9Supercomputing Systems, Zurich, 8005, Switzerland 
10Pharma Research and Early Development (pRED), Pharmaceutical Sciences (PS), 
Roche, Innovation Center Basel, Basel, 4070, Switzerland 
 
 
*Corresponding Author 
Peter M. Maloca, 
1Institute of Molecular and Clinical Ophthalmology Basel (IOB), 
4031, Basel, 
Switzerland. 
Email: peter.maloca@iob.ch 
Tel: +41 61 265 92 14 
 
  



2 
 

Abstract  

Supervised deep learning algorithms are highly dependent on training data, for which 
human graders annotate the labels. When annotating digital medical images such as 
optical coherence tomography images, accurate analysis is crucial to enable correct 
diagnosis, monitoring, and treatment decisions. These labels, known as ground truth, 
may be inaccurate and/or ambiguous. This OCT imaging study investigates (1) how 
size and ambiguity in large ground truth data sets influence the predictive 
performance of convolutional neural networks (CNNs) and (2) the reproducibility of 
CNN training. Thirty convolutional neural networks were trained separately with 
different combinations of ground truths. The Traceable Relevance Explainability (T-
REX) technique was used to record and display the results in a way suitable for non-
deep learning specialists. The deep learning systems utilized were highly consistent, 
and their efficiency depended on the ground truth combinations used. Furthermore, a 
quantifiable linear relationship between ground truth ambiguity and the beneficial 
effect of having more ground truth (the more-ground-truth effect) was detected. 
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Introduction 
 
 

In optical coherence tomography (OCT) imaging1, a low-coherence laser light is 

applied to acquire cross-sectional images with micrometer resolution from optical 

scattering media. Within the medical field, OCT has greatly enhanced research and 

clinical practice in ophthalmology2. Therefore, many diseases that lead to blindness if 

left untreated, such as glaucoma3, age-related macular degeneration4,5, and diabetic 

retinopathy6,7, can now be detected earlier, more accurately and in real time. The 

widespread adoption of OCT in clinical practice has generated huge quantities of 

OCT data8, making it the standard for ophthalmic imaging2. For example, OCT 

examinations were observed to increase by a factor of 14 at Moorfields Eye Hospital 

in London between 2012 and 20169,10.  

 

Arguably, the sheer volume of high-resolution OCT digital imaging data predestines 

ophthalmology to deep learning algorithms, which have been successfully used to 

deliver valuable clinical information11,12. For example, such algorithms have been 

developed not only to detect specific morphological features of age-related macular 

degeneration13 but also to characterize disease activity of the neovascular 

subphenotypes14.  

 

In the case of supervised deep learning, the ground truth must be annotated, i.e., 

contain labels. However, the limited availability of advanced human expert graders 

for the generation of large ground truth data represents a limitation for the application 

of deep learning algorithms15,16. In addition, we have noticed a certain deep learning 
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paradox whereby only three to five percent of all available ophthalmological data 

were used in some crucial deep learning studies16,17. Another problem is that the 

current understanding of what exactly is going on inside the Deep Learning 

machinery is incomplete which is referred to as the "black box”18 of deep learning. 

This poses a hurdle for doctors to implement deep learning into their clinical practice 

but also for researchers, who would need to better comprehend how a deep learning 

algorithm achieves a result. The lack of deep learning explainability goes along with 

mistrust and represents an obstacle to the adoption of artificial intelligence (AI) in the 

digital medical field. Explainable artificial intelligence (XAI) aims to close this gap by 

explaining and visualizing individual components of the complex deep learning 

process19,20,21. One element in the toolbox of XAI is the methodology of Traceable 

Relevance Explainability (T-REX), which was introduced by our group in a previous 

work22. T-REX has already been successfully applied to evaluate the automated 

segmentation of the ocular compartments including the vitreous, retina, choroid, and 

sclera ocular compartments22. T-REX provides for each individual OCT image a 

visually readily identifiable tag concerning the annotation performance using 

Hamming distances among graders and the machine learning algorithm. In particular, 

T-REX analyzes how uncertainty and ambiguity in the ground truth data affects the 

training outcomes of artificial neural networks.  

 

This study brings T–REX to the next level of digital medical image analysis by 

investigating how ambiguity in various ground truth data sets annotated by a higher 

number of human annotators impacts the predictive performance of convolutional 

neural networks (CNNs). Thus, we investigated how to apply T-REX to a larger batch 

of data by means of tracking 30 different CNNs exposed to a broad range of ten 
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different ambiguous ground truth data sets derived from varying numbers of graders 

and different ground truth sizes. We wanted to probe whether more data and more 

graders would induce better deep learning performance and how many graders 

would be necessary for a particular task.  

In addition, we employed T-REX to answer the question of how consistently the 

performance of a CNN can be reproduced. Hence a reproducible method of deep 

learning data processing and analysis could help eradicate mistrust in this technology. 

This point is particularly important, as data on AI reproducibility in the scientific 

literature are scarce, and many attempts have failed to reproduce a proposed AI 

method in a second attempt23. That is why we decided to reset all parameters after 

each run for each of the ten CNNs and to repeat the experiments three times 

independently.  

 

The contributions of our study are as follows. The proposed T-REX methodology 

could be applied and validated using an extensive number of graders and a variable 

amount of ground truth data. The deep learning systems utilized were well 

reproducible, and their efficiency depended on the particular ground truth set used. A 

previously undiscovered linear relationship between ground truth size, ambiguity in 

the ground truth, and predictive performance of CNNs trained on this ground truth 

was detected. 

Good predictive performance of the CNNs was observed for the relatively easily 

recognizable eye compartments, such as the vitreous and the retina. In contrast, the 

choroid and sclera caused more disagreement, but this could be compensated in part 

by a higher number of ground truth data. 
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Hypothetically, a self-optimizing deep learning system in the future could enrich itself 

and implement an additional learning loop using T-REX to identify problematic 

samples in the ground truth, and thus possible causes for problems when 

generalizing to new data. This would enhance the study of learning machines and 

change their initial learning conditions to reduce further the current limitations of deep 

learning. 

 

Results 
 

Human graders for ground truth annotation 

Out of a total of 10 graders (3 females, 7 males), eight were ophthalmologists, one a 

veterinary physician, and one a neuroscientist. Their average age was 35.7 years 

(ranging from 26 to 55 years) and mean work experience with OCT was 10.5 years 

(ranging from 4 to 24 years). These graders annotated a total of 3200 B-scans (3000 

for the ground truth and 200 for the test set), resulting in a total of 3 three 

segmentation lines per B-scan. This resulted in 3 × 3200 = 9600 line annotations. 

 

Ground truth ambiguity 

The obtained data were used to randomly generate ten different ground truth sets 

(GT sets 1.1, 1.2, 1.3, 2.1, 2.2, 2.3, 3.1, 3.2, 3.3, and 4, referred to as the “ground 

truth bouquet”). All ten ground truth sets generated for deep learning training 

contained a similar degree of ambiguity regarding their pixel-wise ground truth labels. 

The Hamming distance (HD) metric was used to measure the proportion of differently 

labeled pixels from the B-scans; thus, HD corresponds to one minus the pixel 
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accuracy between two sets of markers. This became apparent from the mean inter-

grader HD calculated from the 200 B-scans of the test set (Table 1, 6th column), 

where ambiguity ranged from 0.020 (set 1.1 and 1.3) to 0.027 (set 2.2) mean inter-

grader HD. 

 

Golden ground truth and learning from ambiguous ground truth 

It is quite conceivable that some variation will occur in the annotation of images by 

human reviewers. Therefore, an absolute unambiguous ground truth can never be 

fully achieved. We thus proposed for each pixel a majority vote among the human 

graders, referred to as consensus grade or designated as golden ground truth 

(GGT)24. In this way, each pixel could be assigned to a specific compartment due to 

the vote of the majority of graders In this context, the three CNNs 4.a, 4.b, and 4.c, 

which were trained on GT set 4, the largest of the ground truth sets, learned to 

predict labels that were close to the GGT. The last row of Table 1 shows that the 

mean HD between these three CNNs’ predictions and the GGT (0.011) is smaller 

than the mean HD between graders and the GGT (0.015) and the mean inter-grader 

HD (0.023). All calculated HDs refer to the B-scans of the test set.  

For CNN 4.a, Fig. 1 shows a heatmap plot visualization of the HDs for each of the 

200 B-scans of the test set. The heatmap plot assigns green to small HDs and red to 

large HDs (Supplementary Fig. S1 shows the same plot with a color-blind-friendly 

color map). Hamming distances were calculated across all compartments at once 

(analogous to Table 1 and Fig. 2a). From the color distribution, it is apparent that the 

HDs between CNN 4.a and the GGT are uniformly green (small HD), in contrast to 

the HDs between graders and the GGT, which are more variable and in green, 
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yellow, and orange (larger HD). Heatmap plots for CNNs 4.b and 4.c look similar 

(plots not shown). 

 

Compartment-specific results 

Fig. 2 shows a two-dimensional visualization of the observed HDs on the test set 

between CNN 4.a, the human graders, and the GGT using multidimensional scaling 

(MDS) plots. CNN 4.a’s predictions (yellow dots) are close to the GGT (blue dots) 

when considering all compartments simultaneously (Fig. 2a), the vitreous (Fig. 2b), 

the choroid (Fig. 2d), and the sclera (Fig. 2e). In the case of the retina, CNN 4.a’s 

predictions are not particularly near to the GGT (Fig. 2c). Fig. 2 also shows that mean 

HDs are one order of magnitude larger in the choroid and the sclera (Fig. 2d, 2e) 

than in the vitreous and the retina (Fig. 2b, 2c). MDS plots for CNNs 4.b and 4.c look 

very similar (plots not shown). 

 

Consistency of CNN predictions 

The training of artificial neural networks is generally not deterministic because of the 

randomness associated with the initialization of network weights before training and 

due to the random order in which training data are presented to a network during 

training. This study performed three training runs on each of the ten ground truth data 

sets to investigate the effect of repeated training on the performance of a particular 

CNN.  
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Table S1 indicates that the three CNNs trained on each of the ten ground truth sets 

were relatively consistent in terms of their learned predictions. In average, the 

difference among the CNN-generated predictions is 0.0062 HD (6.2 of 1000 pixel 

labeled differently, Table S1 column 7). This variability is ca. 3.7 times smaller than 

the average variability present among human expert-generated annotations (0.0229 

HD or 22.9 of 1000 pixel labeled differently, Table S1 column 3). Fig. 3 shows 

multidimensional scaling plots based on the data from Table S1. The color map from 

Petroff25 is used to provide a better visual accessibility. Each CNN is represented by 

a triangle, and the triangle’s color indicates the ground truth set on which the 

respective CNN was trained. CNNs that were trained on the same ground truth 

clearly cluster when considering all compartments (Fig. 3a), the choroid (Fig. 3d), and 

the sclera (Fig. 3e). Clusters are less visible for the retina (Fig. 3b) and the sclera 

(Fig. 3c), where HDs are generally smaller.  

 

To facilitate visualization of the reproducibility aspect of this study, we have added 

supplementary Fig. S2. This illustration shows scatter plots of ground truth size 

versus (1) the variability among the predictions of CNNs trained on the same ground 

truth sets and (2) the variability among the human graders’ annotations of the 

respective ground truth sets. 

 

Ground truth size, ambiguity, and CNN predictive performance 

Fig. 4 shows the size of a ground truth set plotted against the predictive performance 

of the CNNs trained on it. The top and bottom of the x-axis indicate ground truth size 

in terms of the number of B-scans and the number of human graders that contributed 
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to generating the ground truth set, respectively. The predictive performance (y-axis) 

is measured as the mean HD between a trained CNN’s predictions and the GGT on 

the test set. The GGT is used as a proxy for the “true” labels and measures the 

quality of a CNN’s predictions. Plots are shown across all compartments (Fig. 4a) 

and separately for the vitreous (Fig. 4b), retina (Fig. 4c), choroid (Fig. 4d), and sclera 

(Fig. 4e) compartments.  

Two linear regression methods were applied to obtain a more reliable assessment. 

Each plot includes two linear regression lines. The solid line was calculated based on 

ordinary least squares (OLS) regression. The dashed line was calculated based on 

robust Huber regression. The regression lines estimated by the latter may be more 

reliable, since the data contained some outliers (e.g., green data points in Fig. 4a). 

The slopes of all regression lines are negative, indicating a possible negative 

relationship between the number of ground truths and the predictive performance 

(mean HD between trained CNNs and the GGT). In other words, the more ground 

truth was used for CNN training, the closer the CNNs’ predictions were to the GGT. 

This effect could be termed the more-ground-truth effect (more-GT effect). 

Interestingly, this slope (i.e., the benefit provided by additional graders) varies 

markedly with the eye compartment. The slope is the flattest for the vitreous and the 

steepest for the choroid. 

Fig. 5 shows a plot of the slopes of the regression lines from Fig. 4 versus the 

ambiguity in the ground truth. The ambiguity in the ground truth is measured by the 

mean HD among the ten human labelings of the test set, and it is used as a proxy for 

the true ambiguity in the ground truth. Ambiguity is calculated across all 

compartments and for each compartment separately (x-axis). Note that the y-axis, 

which plots the more-GT effect, is inverted. This is because large negative values on 
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the y-axis indicate stronger effects. Slopes from OLS and Huber regression from Fig. 

4 are plotted as blue and yellow dots, respectively, in Fig. 5. Two linear regression 

lines fit through the blue and yellow dots (using OLS regression). It is apparent that 

the compartments with higher ambiguity in the ground truth are associated with a 

steeper more-GT effect (i.e., CNN will make better predictions when trained on more 

ground truth). 

Note that Fig. 4 illustrates the more-GT effect; that is, how having more ground truth 

for CNN training affects the CNN’s predictive performance. The linear regression 

lines in Fig. 4 aim to illustrate this effect by assuming a linear relationship. In contrast, 

Fig. 5 illustrates how the more-GT effect relates to the ambiguity in the ground truth 

and that this relationship is a linear one (shown by linear regression lines in Fig. 5). 

 

Discussion 
 
Various studies have shown that deep learning is ideally suited to segment and 

classify OCT data at a level at least similar to that of human examiners26,27. Despite 

its enormous scientific success with more than 20,000 medical publications, deep 

learning has hardly been used in routine clinical practice to date28,29. For physicians 

and practitioners to trust deep learning application, they need to understand how 

deep learning makes predictions. Moreover, only about eight percent of the 

publications reported on the reproducibility30 of the deep learning method used.  

 

In spite of all the deep learning progress, the “black box” nature of deep learning is 

posing an obstacle to the widespread implementation of deep learning in medical 

applications, consequently also for the use in machine learning analysis of OCT 
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images. This is where XAI31,32 comes into play. XAI aims at explaining the decisions 

AI applications make in a way that is comprehensible to humans. One aspect of 

explainability is how deep learning deals with uncertainty and ambiguity in ground 

truth data22. This is an omnipresent deep learning phenomenon since most ground 

truth data sets exhibit some level of uncertainty owing to various reasons like the 

quality of the data to be annotated, the difficulty of the annotation task, or human 

error. To partly open the deep learning “black box,” we proposed a quantitative data 

analytics methodology, marked as T-REX22.  

Hence, to promote the further use of artificial intelligence in health-care, reproducible 

and traceable models could increase trust in these deep learning systems33. This 

would, in turn, lead to trustworthy AI13 and an advance of digital medicine in general.  

Learning behaviour, ground truth size and ground truth ambiguity 

Since the mean HD between the predictions of the CNNs used and the annotations 

of the human graders is smaller than the mean inter-grader HD, it appears that the 

CNNs learned some kind of average among the human graders’ annotations. This 

could be a general trend. When considering all 30 CNNs that were trained in this 

study, 23 showed a mean HD compared to human graders that was smaller than the 

corresponding inter-grader HD (Table S1). This means that compared to the human 

graders, these CNNs exhibited a distinct averaging behavior, which was also 

observed in our previous study22. Thus, the CNNs positioned themselves, in some 

sense, in between the human graders with regard to the predictions they made.  

For unambiguous ground truth, such as the internal limiting membrane (ILM) border, 

more graders and, consequently, more ground truth data appeared to improve the 

predictive performance of the CNN. With enough effort, human graders can 
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determine the ILM almost pixel-perfectly. It is, however, very time-consuming to draw 

the ILM perfectly, so the graders are often a few pixels above or beneath the actual 

line. Therefore, we used the GGT as a proxy for the actual line. With more data, the 

CNN was able to learn the exact location of the ILM better even if the ground truth 

contained some noise. The errors made by the graders were errors that could be 

identified as such. In this case, the ground truth was not ambiguous but just faulty. 

Nevertheless, it was interesting to observe that the CNN was obviously able to learn 

the true objective despite the deviating annotations34. These findings are consistent 

with the results of a previous study22 that also examined the influence of ambiguity in 

ground truth labels on the predictions learnt by a CNN, albeit on a smaller scale. 

 

The situation appeared to be different for ambiguous ground truth, such as with 

regard to the choroid-sclera interface (CSI). We again used the GGT as a proxy for 

the true ground truth line. This time, it was impossible for human experts, based on 

the OCT imagery alone, to determine the “true” border. However, the CNNs were still 

able to learn to predict closer to the GGT with more annotated data (Fig. 4), and they 

learned better with more data for all four compartments. This can be seen from the 

negative slopes of all regression lines in Fig. 4. The steepness of the slopes of the 

regression lines indicates the effect of having more ground truth. The effect is 

strongest in the choroid, which has the highest ambiguity. The slopes of the linear 

regression lines indicate the strength of the more-GT effect. Interestingly, this effect 

appears to be linearly correlated to the ambiguity in the ground truth (Fig. 5). The 

more ambiguous the ground truth is, the more it helps a CNN to have more of it to 

learn better predictions. 
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The relationship between the size of a ground truth data set and the predictive 

performance of a CNN (Fig. 4) is arguably not a linear one. At some moment, the 

predictive performance of a CNN will converge with more ground truth. However, the 

linear approximation in Fig. 4 reveals an interesting link between ground truth size, 

CNN predictive performance, and ground truth ambiguity. In a further step, this 

relationship could be investigated outside the “sweet spot” investigated in this study, 

such as with much smaller or bigger ground truth sets. This could also reveal if there 

is an irreducible error in settings where ambiguous ground truth data are used for 

CNN training. 

Investigating the interaction between ground truth size, ground truth ambiguity, and 

predictive performance of machine learning algorithms also has applications outside 

the field of ophthalmology. In natural language processing, for example, supervised 

machine learning is often applied in automated language translation (e.g., text-to-

text35, speech-to-text36, and speech-to-speech37). Having diverse ground truth sets 

annotated or labeled by numerous people is even desired in these fields, since it 

captures more of the diversity with which a language is used. T-REX can be 

leveraged in these cases to shed light on how machine learning algorithms are 

affected by the number and diversity of human annotators and the size and ambiguity 

of the resulting ground truth sets. 

Reproducibility respectively consistency of CNN training 

An interesting aspect of deep learning algorithms appears to be their ability to perform 

a task comparable to humans even without explicit coding18. This almost "automatic 

execution by a machine" can suggest a rigid and error-free deep learning sequence 

that in part may not exist. Therefore, it was important for us to investigate how deep 

learning algorithms learn and whether their result is repeatable. Although deep learning 
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is full of randomization by means of random initialization, data augmentation, and 

random noise introduction, the experiments performed in this study showed a high 

agreement. In addition, to obtain more confidence, we repeated each experiment for 

each of the ten CNNs not twice but three times, although we did not encounter this 

approach in the current deep learning literature30. The obtained results were robust 

and can be trusted23.  

Because there is no current consensus regarding reproducibility30 as a term in machine 

learning38, we follow the recommendations of the National Academies of Science, 

Engineering, and Medicine39. Therefore, we would rather propose the term 

“consistency of deep learning training,” since the obtained results were similar but not 

identical. This deviation, even if only to a small extent, indicates that the CNN training 

cannot be completely "reproducible". We show this subtle nuance, for example, in Fig 

3, where a small yet measurable variation between the runs is detected, despite 

identical training ground truth data for each run. Hence, in the best case, a deep 

learning algorithm shows a certain degree of “deep learning consistency”, rather than 

reproducibility, in terms of its training process. More specifically, given a ground truth 

set, the average HD among the CNNs trained on that set was 0.006 (mean of 7th 

column of Table S1); thus, training two CNNs on the same ground truth sets leads to 

predictions that differ in six out of 1000 pixels. On the one hand, this shows some level 

of consistency, in comparison to the annotations of two human graders, which differed 

on average in 23 of 1000 pixels (mean of the 3rd column of Table S1). The deep 

learning variability is 3.5 times smaller than the average variability present among 

human expert-generated annotations. See also Fig. S2. On the other hand, this result 

shows that CNN training is not fully reproducible, which to our knowledge has not yet 

been studied systematically with regard to OCT data analysis. However, the 
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inconsistencies of the predictions made by those CNNs are well within the range 

observed in human-generated annotations, which is a good achievement in itself. This 

is also well illustrated in the MDS plots (Fig. 3). The three training runs on the same 

dataset are mostly grouped close to each other. The variations mentioned may not be 

relevant to the clinical use of deep learning, but we add a novel element to better 

understand variations in deep learning performance.  

 

In conclusion, the repeated training process of an artificial neural network for 

semantic image segmentation of OCT images shows a relatively stable convergence 

to an optimum with respect to the predictions made on the test set. This study 

demonstrated that deviations could be detected depending on the task’s difficulty, but 

the overall variations were relatively small (e.g., for the vitreous). Thus, a training 

consistency could be observed, as the CNNs always converged to a certain value. 

Nevertheless, no CNN was able to reach the GGT completely. A further step could 

be to investigate the convergence with respect to artificial neural network weights.  

In machine learning and statistics, it is best practice to investigate how model 

fitting/training is affected by uncertainty arising from the random components of the 

fitting/training process40,41. However, in deep learning these effects are rarely 

considered or studied systematically. This could even lead to a relatively strong 

publication bias since it’s tempting to publish just the model with the best 

performance neglecting training attempts that did not yield quite as good outcomes. 

Regarding the importance, significance, and potential of deep learning in medical 

applications, we suggest including a systematic investigation of the 

repeatability/consistency of deep learning models as a standard procedure in future 

studies. The proposed T-REX approach could be beneficial in this regard, because it 
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allows for a quantitative evaluation of the repeatability/consistency of deep learning 

experiments. This repetition of deep learning experiments might be time consuming, 

but it could help define new deep learning standards and prevent methodological 

pitfalls38. However, we suggest that in the future a similar measurement of the 

repeatability of a deep learning method should be part of an evaluation process to 

confirm its reliability. 

 

There are limits to the current work. In some instances, the intense pigmentation of 

the choroid made it difficult to delineate reliably between the choroid and the sclera. 

This can lead to erroneously large or small compartments and influence the results. 

Nevertheless, the match between the graders was acceptable. Technically, it is 

currently not possible to precisely align the location of a medical image annotation 

with its true anatomical location without biopsy and to injure it in such a way. Another 

weakness is that the graders did not undergo a consensus finding to determine the 

exact boundaries mentioned. Such a consensus finding would probably have led to 

better agreement between the graders and consolidated the results. However, the 

goal of this study was not consolidation; it was to investigate uncertainties and how a 

deep learning system responds to them. Furthermore, only relatively experienced 

graders were involved. Another limitation could be induced by the random selection 

of the individual B-scans. The B-scans were labelled independently, and multiple B-

scans could be present from one eye. Since a volume may contain important 

contextual information compared to an isolated B-scan, inaccuracies are possible. 

This should also be the case for volumes without pathology - for example, the outer 

border of the choroid may be easier to delineate in some scans than others. 



18 
 

In summary, the proposed T-REX methodology was successfully applied to a large 

dataset, and it was not only shown, but also quantified how more data and more 

graders induce a better deep learning learning-performance. It appears from the 

smaller mean HD between the predictions of CNNs and the human graders’ 

annotations that the CNNs learned some average of the human graders’ annotations. 

Also, it was found that the performance of a particular CNN can be reproduced when 

using the identical training data repeatedly. A novel and interesting quantitative 

relationship was identified whereby more uncertainty per grader requires more data 

from more graders for similar results. This relationship appears to be linear; thus, the 

effect can be referred to as the linear more-ground-truth effect in deep learning OCT 

image segmentation. T-REX, in general, is a data analytic methodology that enables 

the quantitative study of (1) ambiguity in the ground truth data and (2) deep learning 

repeatability/consistency. As such, T-REX is applicable to the medical domain but also 

to areas outside the medical field. 

Methods 
 
Animals and husbandry 

Data were retrospectively collected from 44 healthy and untreated cynomolgus 

macaques (17 females, 27 males) of Mauritian genetic background with an age range 

of 30–50 months and weighing between 2.5 kg and 5.5 kg. All animal investigations 

were conducted in strict compliance with the applicable guidelines of the US National 

Research Council and the Canadian Council on Animal Care Studies. Only OCT 

image data from treatment-naïve cynomolgus monkeys of both sexes were 

retrospectively reviewed for the purpose and application in the current study. No 

additional animal experiments were required for the current study. Primary 

experiments were reviewed and approved by the Institutional Animal Care and Use 
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Committee (IACUC) of each institution, namely Charles River Laboratories Montreal, 

ULC Institutional Animal Care and Use Committee (CR-MTL IACUC), IACUC Charles 

River Laboratories Reno (OLAW Assurance No. D16-00594), and the IACUC 

(Covance Laboratories Inc., Madison, WI, USA; OLAW Assurance #D16-00137 

A3218-01). Animals were treated and handled in rigorous compliance with the 

guidelines of the US National Research Council and the Canadian Council on Animal 

Care. Animals were accommodated in groups in stainless steel cages that met the 

European housing standards described in Annex III of Directive 2010/63/EU. Room 

temperature was kept constant between 20 °C and 26 °C; humidity was between 

20% and 70%, and the light–dark cycle was a standard 12:12 hours. Animals were 

fed a standard diet of pellets supplemented with fresh fruits and vegetables. Tap 

water was freely offered through an automatic drinking system after being treated by 

reverse osmosis and ultraviolet irradiation. Psychological and environmental 

enrichment was provided to the animals, except during study procedures and 

activities. 

 

OCT imaging data 

Only macula OCT scans were extracted from the existing data library, acquired with 

Spectralis HRA+OCT- (Heidelberg Engineering, Heidelberg, Germany) with scan 

angle 20 degrees, 25 raster-line B-scans, scan length 5.3 mm, scan depth 1.9 mm, 

512 pixels × 496 pixels, and activated automatic real-time tracking (ART) averaged 

for 30 scans. OCT data from healthy animals were included that showed complete 

visualization of the macula so that all four compartments (vitreous, retina, choroid, 

and sclera) were depicted. The image quality according to the manufacturer’s 

software was required to be a minimum of 25. OCT data were excluded in the 

presence of any retinal or choroidal pathology that could be visualized with OCT. 
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Human expert grading of OCT images 

Ten graders from five different ophthalmic centers (University Basel, Switzerland, 

Roche Basel, Switzerland, University Bonn, Germany, Moorfields Eye Hospital 

London, UK, and University Zurich, Switzerland) contributed to the OCT image 

annotations. Each of the ten human graders independently labelled B-scans out of 12 

OCT volumes derived from healthy eyes using a custom written and password-

protected online annotation tool. Graders 2 and 3 were a veterinarian and a biologist, 

respectively, who worked daily with OCT in preclinical research. All other human 

graders were trained retina specialists (ophthalmologists). The labels generated by 

graders 1, 2, and 3 had already been used in a previous study22. 

Since an OCT volume consisted of 25 B-scans, each grader labelled a total of 300 B-

scans. Therefore, a total of 10 × 25 × 12 = 3000 B-scans were labelled by the human 

expert graders. For each grader, their annotated data were split into a training set 

and a validation set that were later used for CNN training. The training set of each 

grader consisted of nine OCT volumes with a total of 225 images, and the validation 

set consisted of three OCT volumes with a total of 75 B-scans. 

Additionally, all graders labelled the same test set consisting of a total of 200 B-scans 

from eight additional OCT volumes.  

 

Ground truth generation 

This study investigated how the predictive performance of a CNN is affected by the 

size of the ground truth set it was trained on and the number of human graders that 

contributed to that ground truth. For this purpose, ten different ground truth sets were 

created with a varying number of contributing graders and B-scans (Table 1). 

[Insert Table 1 about here] 



21 
 

Each ground truth set was created by randomly selecting the required number of 

human graders (random sampling without replacement, Table 1, column 5). In that 

way, two constraints were satisfied. First, the ground truth datasets 1.1, 1.2, and 1.3 

were mutually exclusive (meaning a grader contributed at most to one of these sets). 

Second, each grader contributed ground truth to at least four and at most six out of 

the ten ground truth sets to ensure a balanced experimental design. The annotation 

process of the ground truth by the human graders was described in detail in a 

previous work22. In short, the human graders annotated each B-scan separately 

using a password-protected web browser-based graphical user interface. Each B-

scan showed the posterior eye pole with the four compartments comprising the 

vitreous, retina, choroid, and sclera. Annotating means pixel-wise drawing of three 

lines on each B-scan with a computer mouse, as follows: (1) the ILM between 

vitreous and retina, (2) the hyporeflective choriocapillaris (CCi) between retina and 

choroid, and (3) the choroid-sclera interface (CCI) between choroid and sclera. 

Subsequently, these annotations were turned into pixel-wise label maps. B-scans 

and label maps were reshaped to a spatial resolution of 512 × 512 pixels, which 

corresponds to the required input format of the CNNs. 

 
 
Definition of golden ground truth  

The human graders generally annotated the B-scans of the test set slightly 

differently. This is because (1) the labeling task is generally difficult (drawing lines on 

images with more than 100,000 pixels) and (2) each grader has a different 

professional background that acts in some sense as prior knowledge of how to draw 

the lines. This means the annotations generated by the human graders can be noisy 

and/or ambiguous. An unambiguous truth for the position of the lines (the labels) may 
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exist, since the borders of the four compartments are physiologically and 

anatomically well-defined. However, it is generally impossible to locate them 

unambiguously on a B-scan without dissecting an eye. Thus, in this setting, a ground 

truth that is unambiguously true cannot be obtained. The best that can be done to 

approximate the “true” labels is possibly to use a majority vote among the human 

graders, assuming that, on average, a human grader’s annotations are unbiased. 

This work thus defined the GGT for the labels of the test set of 200 B-scans as the 

majority vote among the annotations of the ten human graders on a per-pixel basis.  

 

Deep learning 

Each of the ten ground truth sets was used to train three CNNs; thus, a total of 30 

CNNs were trained in this study. All CNNs used the same neural network architecture 

and similar learning settings. The architecture of the CNNs, which was basically a U-

Net42 architecture extended by an additional max-pooling layer to account for the 

large spatial input, was the same as in a previous study22. For all CNNs, a mini-batch 

size of eight and a learning rate of 6 × 10-5 was used. Training was done on an 

NVIDIA GeForce GTX TITAN X GPU using tensorflow v1.14 with python 3.5. For 

more details about the neural network architecture and learning settings, refer to the 

previous study22. Each of the ten ground truth sets used in this study fell into one of 

four size categories (675, 1125, 1575, or 2250 B-scans) in the training set. To ensure 

that each B-scan in the training set was seen approximately the same number of 

times, CNNs trained on bigger ground truth sets were trained for longer than CNNs 

trained on smaller ground truth sets. In each training, each B-scan was seen 

approximately 23.5 times (see Table 2). For each of the 30 trained CNNs, when 

training was stopped, the loss had already reached a plateau. CNN training is usually 

non-deterministic. This is mainly because of the following two factors: a random 
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initialization of weights before training and a random order of mini-batches during 

learning. In this study, each CNN arrived at a different (local) optimum when training 

was finished. 

[Insert Table 2 about here] 

 

T-REX methodology 

This work used the T-REX methodology22 to investigate how ground truth size and 

ground truth ambiguity impact CNNs’ predictive performance. T-REX measures the 

difference between two sets of pixel-wise labels by the HD and visualizes this 

difference by means of MDS and heatmap plots.  

The HD, in short, is a metric that measures the proportion of elements that are 

labeled differently between two sets of labels. For example, if two pixel-wise labelings 

of an image with a resolution of 10 × 10 pixels differ in a single pixel, the HD between 

the two sets of labels would be 0.01. HDs can be calculated across multiple label 

categories at once or for a single label category versus the others. In the latter case, 

a pixel-wise label map is turned into a binary map where a pixel either belongs to the 

respective category or not. Mean HDs were calculated between pairs of test set 

labeling from the human graders, the GGT, and the CNNs’ predictions. The HD is a 

metric by mathematical definition and therefore lends itself to visualizations by means 

of metric MDS. 

 

MDS is a method to visualize the distances among data points by projecting them 

into a two-dimensional, Euclidian coordinate system while preserving the distance 

among the data points as well as possible. In this study, individual data points 

comprised the labeling of the test set. Another way to visualize HDs is through 

heatmap plots. A HD heatmap plot basically visualizes the HD among two or more 
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labelings by using a heatmap. For a detailed description of T-REX, including HD, 

MDS, and heatmap plots, refer to the previous study22. 

  

Reproducibility and consistency after three training runs 

When training the CNNs, there are random elements; that is, the weights are 

initialized randomly and the mini-batch ordering is also random. Therefore, two 

training runs with the same CNN architecture, dataset, and number of training epochs 

will always yield slightly different results. Machine learning models are often retrained 

when new data are available, but in health-care applications, it can be undesirable for 

the models to change their predictions over different training runs. Even if the ground 

truth data were fixed, reproducibility could still be challenging. In this study, we 

wanted to examine how similar the CNNs’ predictions are when they are trained on 

the same datasets and for the same number of epochs. The ten different datasets 

were used to train repeatably the same CNN. We initiated new training with the CNN 

for three training runs for each dataset and deleted all parameters after each run. A 

training run was repeated if it did not converge, it overfitted, or it yielded otherwise 

unsatisfactory results. To compare the training runs, we let the trained CNNs predict 

the labels of the test set to calculate the different HDs from those labels for each run. 

Thus, for each training run, we calculated the mean HD between the graders of the 

dataset, the mean HD between graders and GGT, the mean HD between the trained 

CNN and the graders, the mean HD between the trained CNN and the GGT, and the 

mean HDs between the different training runs on the same ground truth dataset. 

 

Ground truth size, ambiguity, and CNN predictive performance 
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This study investigated how the size of a ground truth data set affects a CNN’s 

predictive performance. For this purpose, the predictive performance was measured 

by calculating the HD between the labels predicted by each of 30 CNNs to the labels 

of the GGT on the test set (the smaller the HD, the better the prediction). The 30 HDs 

obtained were plotted against the size of the respective ground truth sets (and the 

number of contributing graders) in scatter plots. 

Linear regressions were performed to investigate the relationship between ground truth 

size and CNN predictive performance. In addition to the Ordinary Least Squares loss 

function, the robust Huber loss function43 was used to fit linear regression models 

because the data had some outliers. Both Huber and OLS regression were fit for all 

the compartments together and individually for the vitreous, retina, choroid, and sclera 

compartments, whereby steeper linear regression lines indicated stronger effects of 

more ground truth. The effect of the ground truth size on predictive performance could 

be referred to as the more-GT effect. 

The relationship between ambiguity in the ground truth and the more-GT effect was 

investigated by plotting ground truth ambiguity versus the slope of the regression 

lines (the more-GT effect) in scatterplots. Ground truth ambiguity was measured as 

mean HD among the ten annotations of the test set labels generated by the ten 

human graders. Moreover, linear regression lines were fit using OLS loss. 
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Tables  

Table 1. Summary table of the ten ground truth data sets used in this study. 
 

GT 
set 

Number 
of 
human 
graders 

Size 
train 
set 

Size 
val. 
set 

Contributing graders 
Mean 
HD 
inter-
grader 

Mean HD 
grader-
to-
golden 
GT 

Mean 
HD 
CNN-to-
grader 

HD 
CNN-to-
golden 
GT 

1.1 3 675 225 1, 2, 3 0.020 0.016 0.015 0.013 
1.2 3 675 225 4, 5, 9 0.024 0.014 0.020 0.014 
1.3 3 675 225 6, 7, 8 0.020 0.017 0.029 0.038 
2.1 5 1125 375 1, 3, 6, 8, 10 0.023 0.014 0.018 0.012 
2.2 5 1125 375 1, 2, 3, 7, 9 0.027 0.017 0.024 0.020 
2.3 5 1125 375 2, 4, 5, 6, 9 0.023 0.015 0.018 0.010 
3.1 7 1575 525 1, 4, 5, 7, 8, 9, 10 0.025 0.016 0.033 0.030 
3.2 7 1575 525 2, 3, 4, 5, 6, 7, 10 0.022 0.014 0.020 0.014 
3.3 7 1575 525 1, 2, 3, 6, 8, 9, 10 0.023 0.014 0.022 0.016 
4 10 2250 750 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 0.023 0.015 0.019 0.011 

 

Notes: On each ground truth (GT) set, three convolutional neural networks (CNNs) 
were trained. The first column indicates the GT set names. The second column 
indicates the number of human graders who contributed to each GT set’s labels. The 
third and fourth columns indicate training and validation set sizes, respectively. The 
fifth column indicates which graders contributed to each GT set (numbered from 1 to 
10). The sixth column indicates mean Hamming distances (HDs) among the labelings 
of the contributing graders. The seventh column indicates the mean HD between the 
labelings of the contributing graders and the golden GT. The eighth column indicates 
mean HD between the labelings of the contributing graders and those of the three 
CNNs that were trained on the respective GT. The ninth column indicates mean HD 
between the three CNNs trained on the respective GT and the golden GT. All HDs 
were calculated on the test set of 200 B-scans. 

 

Table 2. Summary table of the number of training steps and epochs used in 
convolutional neural network training on the different ground truth data sets. 

Training set Number of 
human graders 

Number of 
B-scans 
(training 
set) 

Number of  
B-scans 
(validation 
set) 

Training 
steps Epochs 

1 × 3 675 225 2000 23.7 
2 × 5 1125 375 3300 23.5 
3 × 7 1575 525 4600 23.4 
4 10 2250 750 6600 23.5 
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Figure captions 

 
Fig. 1. Heatmap plot visualizing the mean Hamming distance (HD) for each of the 
200 B-scans of the test set. HDs were calculated between the predictions of 
convolutional neural network (CNN) 4.a and the labelings of each of the 10 human 
graders (top 10 rows). HDs were also calculated between CNN 4.a’s predictions and 
the golden ground truth (GGT, 11th row) and between the GGT and the labelings of 
each of the 10 human graders (bottom 10 rows). Red indicates large HDs and green 
indicates small HDs. A color-blind-friendly version of this figure is shown in 
Supplementary Fig. S1. 
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Fig. 2. Multidimensional scaling plots visualizing the mean Hamming distance (HD) 
among labelings of the test set by the 10 human graders and the prediction of 
convolutional neural network (CNN) 4.a in two-dimensional coordinate systems. The 
CNN was trained on ground truth annotated by all 10 human graders. Plots show 
mean HD across all compartments (a) and separately for each individual 
compartment, namely (b) vitreous, (c) retina, (d) choroid, and (e) sclera. Note the 
differences in the scale of the axes among the plots. Abbreviations: g = grader, GGT 
= golden ground truth.  
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Fig. 3. Multidimensional scaling plots visualizing the mean Hamming distance (HD) 
among test set labels predicted by the 30 convolutional neural networks (CNNs) 
trained in this study. Each individual CNN (indicated as colored dot in the frame) was 
trained three times with the same training set. Golden ground truth is indicated as a 
black star and placed at the center of the coordinate systems. Plots show HD across 
all compartments (a) and separately for each individual compartment, namely (b) 
vitreous, (c) retina, (d) choroid, and (e) sclera. CNNs trained on the same base 
datasets are shown in the same color. Note the differences in the scale of the axes 
among the plots. Accessible color map from Petroff was used for data visualization. 
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Fig. 4. Scatter plots visualizing the effect of the number of human graders included in 
generating a ground truth set on the predictive performance of a convolutional neural 
network (CNN) trained on this ground truth set. x-axis: the number of human graders 
that contributed to generating a ground truth set (bottom); the number of B-scans 
contained in a ground truth set (top). y-axis: the mean Hamming distance between a 
trained CNN’s predictions on the test set and the golden ground truth (GGT). The 
GGT is used as a proxy for the “true” labels and thus measures how good a CNN’s 
predictions are. Plots are shown across all compartments (a) and separately for 
individual compartments, namely (b) vitreous, (c) retina, (d) choroid, and (e) sclera. 
Each plot shows two linear regression lines, namely Ordinary Least Squares 
regression (solid line) and Huber regression (dashed line), with the regression line’s 
slope indicated in the top-right corner as β (slopes were calculated with regard to the 
number of human graders). CNNs trained on the same ground truth set are shown 
with the same color. Please note that the scaling along the y-axis varies across the 
panels. Accessible color map from Petroff was used for data visualization. 
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Fig. 5. The linear nature of the more-ground-truth effect.” X-axis indicates ground 
truth ambiguity: the mean Hamming distance (HD) among labels generated by the 
ten human graders on the test set of 200 B-scans. . Mean HD was calculated across 
all four compartments (total) and for each of the four compartments separately 
(vitreous, retina, choroid, and sclera). Y-axis indicates slopes (β) of the regression 
lines from Fig. 4. Slopes indicate the strength of the effect of having more ground 
truth for convolutional neural network training. Slopes were calculated with respect to 
the number of human graders. The more negative a slope is, the stronger the effect 
(note that y-axis is mirrored). Yellow and blue points indicate slopes from OLS and 
Huber regressions, respectively. Dashed black lines are linear regressions through 
yellow and blue points, respectively, illustrating the linear nature of the effect.  
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