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1 | INTRODUCTION

Blood transfusion is a routine medical procedure in hospi-
tals with over 2 million blood products transfused in the
UK every year at a cost of over £300 million and a median
national rate of 34 packed red cells per 1000 population in
Europe.1,2 A blood transfusion can be life-saving but can
also cause harm.3 Repeated studies have demonstrated a

gap between recommended blood use and clinical prac-
tice.4,5 National challenges with blood stock shortages high-
light the need to optimize our current approach to identify
who requires and benefits from blood components.6

Recent advances in digital technology offer a wealth
of new tools, which can help improve clinical practice as
well as improving both the equality and equity of health-
care. Patient Public Involvement groups consistently sup-
port better use of data and better understanding of how it
might improve efficiencies, prioritizing the need for
healthcare professionals to engage with research optimiz-
ing use of data. Machine learning (ML) is a subfield of
artificial intelligence (AI), which offers the ability to inte-
grate complex and varied data types and could support
clinician decision-making, aid personalized care, and,
with additional work, improve patient outcomes.7,8 This
field is a rapidly advancing one, which has the potential
to revolutionize patient blood management (PBM).

Abbreviations: AI, artificial intelligence; ATR, acute transfusion
reactions; AUROC, area under the receiver operating characteristic
curve; EHRs, electronic health records; ICU, intensive care unit; LR,
logistic regression; ML, machine learning; MTP, massive transfusion
protocol; NLP, natural language processing; NSQIP, National Surgical
Quality Improvement Program; PBM, patient blood management;
PRBCs, packed red blood cells; SHAP, SHapley Additive exPlanation;
TRALI, transfusion-associated lung injury.
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Successful implementation of ML to support clinical
workflows requires collaboration between computer
scientists and clinicians. Key features of ML have been
described elsewhere, which support informed inter-
pretation of the literature.9,10 The majority of work
applying ML to healthcare uses supervised learning
whereby the model is trained on input features and
labeled output features to enable predictions on unseen
examples (Figure 1).11 Model performance evaluation
uses metrics, which summarize prediction quality, for
example, the area under the receiver operating charac-
teristic curve (AUROC) for classification models. The
two other main categories of ML approaches are unsu-
pervised learning, which identifies patterns in unla-
beled data (e.g., finding clusters of similar patients),
and reinforcement learning, an approach to learning
how to act through trial and error. To be useful in prac-
tice, models need to be validated and integrated into a
clinical workflow, where capacity constraints and users
ignoring alerts may limit the impact of even a perfectly
performing model.12

The purpose of this review is to collate the breadth of
literature of ML in transfusion medicine, describing cur-
rent trends and capturing key methodological approaches,
adding to the recognized need for up-to-date discussion of
the challenges and potential solutions to the prospective
implementation of ML in transfusion medicine.13

2 | METHODS

2.1 | Scope of the review

The review aimed to report on original research articles,
using ML approaches with a focus on transfusion medi-
cine. We followed the approaches of a scoping review
used by Cochrane from the Canadian Institutes of Health
Research, defined as “exploratory projects that systemati-
cally map the literature available on a topic, identifying
key concepts, theories, sources of evidence, and gaps in
the research.”14

2.2 | Eligibility criteria

Eligibility for studies was defined by blood transfusion in
humans (or the support of transfusion) as the main out-
come. There were no restrictions on year of publication,
publication status, or language. We excluded studies
using linear or logistic regression (LR) primarily for sta-
tistical inference and/or to construct a predictive risk
score. This exclusion is consistent with a recent system-
atic review on the impact of ML on patient care.15 When
considering inventory management in a hospital blood
bank, we focused on recent work using patient data
from electronic health records and, therefore, excluded

FIGURE 1 A typical supervised machine learning workflow. Supervised learning requires a labeled dataset in which we already know

the outcome we are trying to predict, the output label, for each example. To estimate how well the model will perform on future, unseen,

examples, we hold back a portion of the data (the test set) from the training process and use this dataset to evaluate the model's

performance. If the test dataset comes from the same site(s) as the training dataset, then it may be described as an internal validation set. If

the test dataset comes from one or more different sites or settings, then it may be described as an external validation set. [Color figure can be

viewed at wileyonlinelibrary.com]
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research that predicted future demand based solely on
historic demand. As it is common in ML and computer
science to submit full-length works to top tier confer-
ences instead of journals, where reports met all other
criteria, conference articles were included as full
text (n = 3).

2.3 | Search strategy

We searched the Clarivate Web of Science database on
January 4, 2023 with the following search terms: [TS =

(machine learning OR artificial intelligence OR forecast*
OR algorithm OR prediction model OR predictive model
OR neural network)] AND TS = {transfus* OR blood
product OR blood bank OR [reaction NEAR (blood OR
transfus*)]}. We reviewed the lists of publications in the
literature and consulted with all authors. Additional cita-
tion search was performed and relevant reports were
added, which were not captured in the initial Web of Sci-
ence search.

2.4 | Data extraction

The title and abstract screen were conducted in duplicate
(SM and JF). Differences were resolved by consensus or
with a third reviewer, to arrive at the final set for full-text
review. Where the same work was published in more
than one journal (i.e., not a true duplicate, but papers
aimed at different audiences), we selected the journal
with a medical focus where possible for inclusion in the
summary tables and figures. Data were extracted in
duplicate (SM and JF), with discrepancies resolved by a
third reviewer.

2.5 | Data analysis

Results were presented descriptively. Initial clinical
categories were defined and agreed based on under-
standing of the literature and were further refined
following title and abstract screening. We extracted
information on clinical applications, data sources, and
ML methods. The research team also predefined a
range of factors identified as important when consider-
ing the methodology and exploring the opportunities
and limitations of translating ML models to a health-
care setting.16–18 Meta-analysis of the results was not
undertaken due to the wide range of different tasks,
variability in definitions for similar tasks, and report-
ing heterogeneity.

3 | RESULTS

3.1 | Search selection

A total of 4504 publications were retrieved using the
described search strategy performed on January 4, 2023
(Figure 2). Initial screening returned 107 citations, and
93 articles were selected for inclusion in the study fol-
lowing full-text review, including the addition of two
articles identified through citation searching. Overall,
16 studies eligible for full-text review were excluded:
Three were duplicates captured through alternative
journal publications, three did not meet ML criteria,
transfusion was not the main outcome for seven, and
the full-text article was not available for two studies.
One article was removed due to subsequent publication
retraction.

3.2 | Temporal distribution and study
categories

The temporal distribution of 93 included publications is
shown in Figure 3. There is a clear trend toward increas-
ing frequency of publications over time with 56% (52/93)
of the articles published in the last 3 years.

3.3 | Clinical setting

The majority of studies were focused on prediction of
transfusion (58%) with other key areas of ML application
identified within transfusion safety (22%), hospital blood
bank (10%), and supporting transfusion decisions (10%)
(Figure 4A). Within prediction of transfusion (Figure 4B),
a significant majority of studies were in the setting of sur-
gery (61% 33/54), followed by trauma (24% 13/54). In the
remaining eight studies, ML was deployed in the setting
of obstetrics, gastrointestinal bleeding, and hemato/
oncology, and in three studies applied more broadly to all
inpatients and intensive care, captured as “other hospital
settings.”

3.4 | Study objectives and findings

The objectives, sample size, and key findings of all stud-
ies within these broad categories of clinical settings are
provided in Table 1 and more detailed methodological
considerations in Table 2. Overall clinical applications,
trends, and a summary of main findings are discussed in
more detail under the relevant subheading below.

MAYNARD ET AL. 3
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3.5 | Baseline features

Overall, the most common countries for identified studies
are the United States (44), followed by China (16),
Europe (12), and Canada (6). The range of sample sizes
reported in the studies varied from 41 to more than 4 mil-
lion (Table 1). Packed red blood cells (PRBCs) were the
focus of approximately half of the studies (46/93), with
most of the remainder considering either multiple blood
products (22%) or not specifying the blood products
(22%). Five studies (5%) considered only platelets, and
two studies (2%) considered only plasma.

3.6 | Predicting transfusion

3.6.1 | Surgery

The majority of identified studies employed ML to predict
transfusion related to a specific specialty or procedure,
notably within orthopedics,19–25 cardiac surgery,26–30 spi-
nal surgery,31–34 and liver transplant,35–37 focusing on a
specific procedure or a variety within that specialty
(Table 2). A small number of studies consider proce-
dures from multiple specialties38–44 with Walczak and
Velanovich43 including 56 different surgeries from the
publicly available United States National Surgical Qual-
ity Improvement Program (NSQIP). Their use of single
models to predict transfusions for a wide variety of
surgical procedures could provide a much simpler
approach rather than individual models for each surgi-
cal procedure.

Some researchers interrogated models to identify fea-
tures to help predict PRBC transfusion22,32,34,36 or the
decision to transfuse44 as examples of hypothesis genera-
tion from ML. Five studies developed online risk calcula-
tors and web apps based on their models.24,30,32,45,46

Gurm et al.30 highlighted that previous simplified non-
computerized tools need no longer be the limit to what
can be utilized in clinical medicine; however, a recent
systematic review concluded that the resultant clinical
prediction models for blood transfusion in elective sur-
gery are of a high risk of bias and often fail to adhere to

FIGURE 2 Modified Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow chart of the search results.112

[Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Histogram with cumulative frequency line of

papers by publication year. [Color figure can be viewed at

wileyonlinelibrary.com]
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reporting standards, emphasizing caution before applica-
tion to clinical practice.47

3.6.2 | Trauma

There is an extensive body of literature developing risk
scores for transfusion in trauma patients, and multiple
reviews suggest further model development and/or vali-
dation is required.48–51 Two key challenges with trauma
are the potentially large requirements of blood for a small
proportion of patients52 and the importance of a fast
response.53 The activation of the massive transfusion pro-
tocol (MTP) is resource intensive and may result in prod-
uct wastage in cases of false positive activation.54 The
ability to predict future transfusion requirements prior to
hospital arrival can support triage decisions and help
to ensure that blood products are available when
required on arrival.55–57 When making predictions using
data collected at the hospital, research has focused on
four related prediction tasks: predicting transfusion,58,59

the number of units transfused,60 activation of the
MTP,54 and/or massive transfusion.58,61–63

The model developed by Mina et al.54 to predict MTP
activation was integrated into a smartphone application,
externally validated and an implementation and prospec-
tive validation study was conducted at the initial site.
Clinicians informed of the model's prediction made better
decisions in the prospective validation study.54,64,65 This is
a key demonstration of how we expect such models will
eventually be used in practice: supplementing rather than
replacing clinical judgment.

3.6.3 | Obstetrics, gastrointestinal bleeding,
and hemato/oncology

Demand for blood components and associated morbidity
and mortality are significant in obstetrics, gastrointestinal

bleeding, and hemato/oncology1,5,66; however, ML for
prediction of transfusion in these settings is underrepre-
sented comprising a total of 5 of 54 studies, none of
which have undergone prospective validation or imple-
mentation at the time of writing. The studies exploring
gastrointestinal bleeding demonstrate benefits of using
large, publicly available data sets, able to externally vali-
date models.67,68 Given the availability of the data, these
tasks could be developed into benchmarks, enabling dif-
ferent research teams to compare the performance of
new approaches. Interestingly, Levi et al.67 apply their
model to support triage: predicting which patients do not
require transfusion (suggesting no ongoing bleeding)
and, therefore, may avoid admission to intensive care
unit (ICU). Shung et al.68 highlight the potential impact
of alert fatigue in the context of repeated predictions on a
problem with relatively low frequency.

3.6.4 | Other hospital settings

Lee et al.69 and Ghassemi et al.70 predict blood transfu-
sion within the ICU, respectively, demonstrating the
inadequacy of hemoglobin measurement alone as a deter-
minate of transfusion and that general patient state rep-
resentations could be used to better predict platelet and
plasma transfusions.

3.6.5 | Findings across all studies predicting
transfusion

Review of all studies suggested that task-specific perfor-
mance of ML for predicting transfusion need is fre-
quently reported with AUROC >0.8 (Table 1). In
13 studies that reported a direct task-matched compari-
son of ML to LR models, LR matched or outperformed
ML in 54% (Table 1). However, in additional seven stud-
ies, ML was reported to demonstrate measurable clinical

FIGURE 4 Bar charts of papers included after full-text review: (A) split by group and (B) split by subgroup within predicting

transfusion. [Color figure can be viewed at wileyonlinelibrary.com]
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TABLE 1 Summary of objectives and key findings of machine learning (ML) in transfusion.

Reference Objectives as stated Sample size n Key findings as reported

Predicting transfusion

GI bleeding

Levi et al. (2021)67 Predict transfusions in patients
admitted to ICU with GI bleed as
surrogate for rebleeding

14,853 Ensemble method achieved AUROC
greater than 0.8 and achieved
similar performance on both ICU
databases

Shung et al. (2021)68 Predict need for PRBC transfusion
within 24 h from ICU admission
for GI bleeding

4,050 LSTM performed best, AUROC 0.81
on internal validation and 0.65 on
external validation set

Hemato/oncology

Ho and Chang
(2011)113

Predict platelet requirements in
acute myeloid leukemia

744 FCNN trained with genetic
algorithm outperforms FCNN
trained using conventional
backpropagation (accuracy 78.1%–
88.6% vs. 53.3%–68.2%,
respectively)

Obstetrics

Aldaghi et al. (2020)114 Data mining to develop a new
system for inpatient preoperative
ordering of PRBCs in obstetrics
and gynecology

1,097 DT achieved accuracy 96.1%, cross-
matched units reduced by 71.5%
compared to historical practice

Pressly et al. (2021)110 Predict transfusion risk anti-peri-
and postpartum in obstetrics

63,973 ML did not improve on logistic
regression (LR). Need for
improved data collection and
curation in obstetrics.

Other hospital settings

Ghassemi et al.
(2017)70

Use ICU patient state to predict the
onset of interventions including
PRBC, plt, and plasma transfusion

36,050 Features from unsupervised ML
improved classification
performance for predicting all
interventions except PRBC
transfusion

Lee et al. (2022)69 Predict PRBC transfusion for ICU
patients within 24 h of admission

16,222 A LightGBM model achieved the
best AUROC 0.91

Mitterecker et al.
(2020)115

Predict transfusion requirements for
all hospital admissions

206,271 LR and ML models performed
similarly, AUROC 0.97 for
predicting PRBC transfusion

Surgery (Orthopedic)

Chang et al. (2018)19 Predict transfusion requirements
within 48 h of orthopedic surgery

1,396 LR outperformed ML models
(AUROC 0.79)

Cohen-Levy et al.
(2022)20

Predict transfusion rates following
primary total hip arthroplasty

7,265 FCNN achieved the best predictive
performance (AUROC 0.82)

Gowd et al. (2019)21 Demonstrate that supervised ML
models can better predict
postoperative complications after
total shoulder arthroplasty (TSA)
than comorbidity indices

17,119 GBM and LR both achieved AUROC
0.77, compared to AUROC 0.64 for
baseline model using ASA
classification

Huang et al. (2018)22 Identify the predictors of need for
blood transfusion in primary lower
limb total joint arthroplasty

15,187 Risk factors identified and RF
outperformed LR (AUROC 0.84 vs.
0.77)

6 MAYNARD ET AL.
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TABLE 1 (Continued)

Reference Objectives as stated Sample size n Key findings as reported

Huang et al. (2021)23 Identify predictors of postoperative
transfusion in elective hip and
knee total joint arthroplasty and
compare performance of ML
predicting transfusion

12,642 RF achieved the highest AUROC
(0.86) compared to 0.75 for LR

Huang et al. (2021)102 Perioperative PRBC transfusion
prediction model in pelvic surgery

510 XGBoost achieved the best predictive
performance. The model
outperformed blood preparation
based on surgeons' experience.
Prospective accuracy 81.8%.

Jo et al. (2020)24 Identify preoperative variables to
predict transfusion after total knee
arthroplasty

2,096 GBM achieved an AUROC of 0.842
on the internal validation and
0.880 on external validation

Mohammed et al.
(2022)25

Prediction of blood transfusion after
TKA

636,062 All ML models performed better
than LR. GBM performed best,
with AUROC 0.797.

Surgery (cardiac)

Cevenini et al. (2013)26 Develop a locally customized model
for planning transfusion
requirements in cardiac surgery

3,182 Binary classification using naïve
Bayes achieved 71.2% sensitivity
and 78.4% specificity but
multiclass performance was poor

Gurm et al. (2014)30 Predicting blood transfusion in
patients undergoing contemporary
PCI

103,294 Random forest model achieved
AUROC 0.89 with all features and
0.88 with fewer variables for ease
of use

Liu et al. (2021)27 Predict PRBC transfusion during
mitral valve surgery

698 CatBoost achieved the highest
AUROC, at 0.888

Tschoellitsch et al.
(2022)28

Predict massive perioperative
allogenic blood transfusion in
cardiac surgery

3,782 RF achieved AUROC 0.81 and
outperformed predictions of expert
clinicians

Wang et al. (2022)29 Use preoperative variables to predict
intraoperative blood use in
cardiothoracic surgery

2,847 Final model combines Gaussian
process classification for >3 PRBCs
(AUROC 0.826) and regression 0–3
PRBCs (RMSE 0.117 for 0 units,
1.705 for 1–3 units)

Surgery (spinal)

Dong et al. (2021)32 Develop a prediction model to
evaluate blood transfusion risk
after spinal fusion for spinal
tuberculosis

152 Nomogram based on LR achieved
best performance (AUROC 0.75)

Durand et al. (2018)33 Predict blood transfusion during, or
in the first 72 h after, ASD surgery

1,029 CART model selected due to ease of
implementation despite and
AUROC not significantly lower
than with RF (0.79 vs. 0.85)

Raman et al. (2020)34 Predict variables, which best predict
perioperative blood transfusion
requirements in ASD surgery

909 ML identified variables associated
with perioperative PRBC
transfusion

Ramos et al. (2022)31 Predict the need to PRBC transfusion
after ASD surgery

1,173 The best FCNN model achieved an
AUROC of 0.84

(Continues)
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TABLE 1 (Continued)

Reference Objectives as stated Sample size n Key findings as reported

Surgery (liver transplant)

Chen et al. (2022)35 Predict intraoperative massive blood
transfusion in liver transplantation

1,239 CatBoost performed best on internal
and prospective validation data
(AUROC 0.81 and 0.75,
respectively)

Cywinski et al.
(2014)36

Determine patient variables to
predict recipient risk for large
blood transfusion requirements
during OLT

804 Models were unable to reliably
predict which patients might
require the largest amount of
blood during OLT

Liu et al. (2021)37 Identify preoperative variables and
predict PRBC transfusion during
or after liver transplant

1,193 XGBoost achieved best performance
(AUROC 0.813) and performed
well on prospective data (accuracy
76.9%)

Surgery (multiple specialties)

Etchells et al. (2006)44 Determine the rules that staff of a
department of anesthesia use
when deciding to transfuse a
patient perioperatively

209 Rule extraction summarized
decision-making strategies of
clinicians reproduced transfusion
decisions with specificity 0.96 and
sensitivity 0.93

Feng et al. (2021)38 Predict perioperative PRBC
transfusion requirements from
information available
preoperatively

130,996 LightGBM outperformed LR
(AUROC 0.908 vs. 0.868) and
clinicians in predicting if a
transfusion would be required

Hayn et al. (2017)40 Predict transfusion in elective
surgery for data-driven
benchmarking of transfusion
patterns

6,530 RF predicts PRBC transfusion
volume with correlation coefficient
0.61. Significant differences in
feature importance between
hospitals.

Hayn et al. (2016)39 Predict PRBC transfusion
requirements during surgery based
on features available at different
time points

6,530 Use of features available before
surgery versus historic data
improves performance for blood
transfusion (r = 0.45 vs. 0.20)

Lou et al. (2022)41 Predict likelihood of PRBC
transfusion using surgery-specific
and patient-specific variables

4,142,111 GBM performed best achieving PPV
of 0.06 and 0.21 at 96% sensitivity
on internal and external validation
respectively

Ngufor et al. (2015)42 Predict intraoperative PRBC
transfusion, and other surgical
outcomes

1,234 Multitask outperformed single-task
(AUROC 0.86 vs. 0.82) for
intraoperative blood transfusion

Walczak and
Velanovich (2020)43

Predict PRBC and whole blood
transfusions for all inpatient
operations

1,337,777 FCNNs can predict >75% of patients
who will require transfusion and
70% of those who will not
(AUROC 0.85–0.86)

Surgery (other)

Jalali et al. (2021)45 Predict blood transfusion
requirements for pediatric
craniofacial surgery

2,143 GBM performed best at both
predicting transfusion (AUROC
0.87) and number of units ordered
preoperatively (R2 0.73)

Tunthanathip et al.
(2022)46

Identify cost differences between
strategies for preoperative blood
product preparation for patients
with brain tumors

1,681 ML-based strategy predicted cost
savings of USD 93,000 (67.88%)
compared to routine hospital
preparation

8 MAYNARD ET AL.
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TABLE 1 (Continued)

Reference Objectives as stated Sample size n Key findings as reported

Walczak et al.
(2000)116

Predict blood transfusion
requirements for patients
undergoing abdominal surgery

220 (AAA)
c.175 (non-AAA)

Lower CTR was achieved in three of
four procedures using FCNN
compared to MSBOS; however,
FCNN also under-predicted in
individual patients

Walczak et al.
(2000)117

Predict the number of PRBCs
required for transfusion during
AAA operations

109 FCNN saved 16 units below MSBOS
and C/T ratio of 2.71—potential
annual savings of over USD 1000
for AAA operations

Walczak et al.
(2021)118

Predict transfusion requirements
(and estimated blood loss) during
or in the first 24 h after
myomectomy

96 FCNN predicts transfusion with
sensitivity 71.4% and specificity
85.4%

Zhang et al. (2022)119 ML modified nomogram to predict
perioperative transfusion in total
gastrectomy

513 LR outperformed ML with AUROC
0.85 used to build nomogram (C
index 0.83)

Trauma

Avital et al. (2021)55 Identify factors associated with
emergency department transfusion
and use to predict need

2,885 LR achieved AUROC of 0.82, similar
to or better than ML approaches

Christie et al. (2019)58 Predict need for transfusion after
severe injury

1,494 Ensemble method achieved overall
AUROC of 0.87–0.90 across
multiple post-injury timepoints

Dente et al. (2021)65 Implementation of model to predict
activation of massive transfusion
protocol (MTP)

321 Surgeons' decision to activate MTP
improved with information from
model prediction, from AUROC of
0.86–0.93

Feng et al. (2021)59 Assist doctors in quickly making
decisions about need for blood
transfusion after trauma

1,371 XGBoost performs best with all
features (AUROC 0.94), but LR
best with readily available feature
subset (AUROC 0.72)

Hodgman et al.
(2018)64

External validation of model to
predict activation of the MTP

1,245 AUROC 0.694 for predicting MTP
activation and AUROC 0.695–
0.711 for predicting MT
administration compared to 0.96 in
original study

Lammers et al.
(2022)120

Predict patients at the highest risk
for transfusion on the battlefield

22,158 RF achieved the best predictive
performance, AUROC of 0.98

Feng et al. (2021)59 Predict high MT risk to improve
clinical decision-making in
multiple trauma

478 Decision trees help identify risk
factors and achieved AUROC of
0.85

Liu et al. (2015)56 Prehospital vital signs to identify
patients with hemorrhagic injury
who receive PRBC transfusion in
first 24 h

855 Sensitivity 76% for PRBC transfusion
within 24 h of admission, with
specificity 87% for no transfusion.
Prospective performance similar to
retrospective

Mina et al. (2013)54 Predict MT of critically injured
patients

10,900 Mean AUROC of 0.96 and embedded
into smartphone app

Nederpelt et al.
(2021)57

Predict the need for early MT in
truncal gunshot wounds to support
in-field triage

29,816 AUROC 0.86 for prediction of early
massive transfusion, and correct
predictions assigned high
confidence by separate neural
network

(Continues)
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TABLE 1 (Continued)

Reference Objectives as stated Sample size n Key findings as reported

Seheult et al. (2019)61 Predict MT within 24 h of hospital
admission due to trauma

825 Decision tree performed better
compared to previously established
scoring systems, ABC score and
TASH

Shahi et al. (2021)62 Predict MT in pediatric blunt solid
organ injury to help decision-
making

477 Accuracy of prediction of massive
transfusion 90.5% and
outperformed existing approaches
for identifying emergent
intervention such as ABCD

Walczak et al. (2005)60 Predict transfusion for trauma
patients using features available on
entry to ED

1,016 Performance of FCNN to predict
transfusion meets or exceeds LR

Supporting transfusion decisions

Adverse outcome

Bruun-Rasmussen
et al. (2022)75

Investigate the effect of PRBC donor
sex on recipient mortality

90,917 ML to emulate a randomized control
trial identifies sex-matched
transfusion policy may benefit
patients

Ngufor et al. (2015)73 Study the effect of preoperative
plasma transfusion on
perioperative bleeding

14,743 Perioperative plasma transfusion
increases risk of perioperative
bleeding and intraoperative PRBC
transfusion

Ngufor et al. (2018)76 Identify subgroups with differential
effects of plasma transfusion using
unsupervised learning

3,135 Unsupervised RF identified clinically
meaningful subgroups regarding
effect of plasma transfusion on
bleeding and mortality

Nguyen et al. (2020)74 Augment analysis of PROPPR trial to
determine impact of transfusion
ratios on patient outcomes in
trauma

680 Transfusion ratios did not
significantly affect mortality but
did affect hemostasis

Appropriateness

Barbosa et al. (2011)79 Identify variables in trauma
indicating futility of MT (measured
by mortality at 30 days)

704 No variable combinations identified
by ML to predict futility except
patients over 65 with severe head
injuries

McGlothlin et al.
(2017)78

Retrospectively identify clinically
inappropriate transfusions

Not stated Implementation of blood utilization
dashboard reduced inappropriate
red cell transfusion by 10.2%

Yao et al. (2019)77 Efficiently check the appropriateness
of blood transfusion on a large
volume of cases using ML

4,946 ML achieved a 96.8% overall match
rate with human experts

Dose

Epah et al. (2022)71 Predict hemoglobin/iron content of
any given PRBC unit from
routinely collected data

8,695 Linear regression preferred. R2 > 0.9
for predicting both Hb and iron.

Zhang et al. (2019)72 Rapid and nondestructive
quantitative analysis of bagged
liquid products

59 Improved the analysis accuracy of
Hb in blood bags, correlation
coefficient of Hb 0.9915
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TABLE 1 (Continued)

Reference Objectives as stated Sample size n Key findings as reported

Transfusion safety

Hemovigilance

Clifford et al. (2013)82 EHR-based screening algorithms for
improved detection of TRALI/
transfused acute lung injury (tALI)
and TACO

223 ML may improve case identification
because only 14% of TRALI/tALI
and 11% of TACO true positives
identified by the algorithm were
reported

Kim et al. (2015)121 External validation of a previously
developed CART model (Clifford
et al, 201382) to identify TACO and
TRALI

500 Limited diagnostic value due to the
low specificity for detecting TRALI
(57%) and TACO (56%)

Murphree et al.
(2015)122

Predict the risk of TACO and TRALI
for noncardiac surgery patients
prior to transfusion

3,255 AUROC for final models ranges
between 0.72 and 0.84, with a LR
model achieving sensitivity of up
to 93%

Murphree et al.
(2015)123

Deploy previously developed models
(Murphree 2015) for predicting
TACO and TRALI into a
perioperative health information
system

N/A—not developing
models

Prototype model producing live
alerts for review by development
team

Murphree et al.
(2015)124

Ensemble learning to predict TACO
and TRALI pre-transfusion for
noncardiac surgery patients

3,398 Ensemble models did not outperform
the base models, and the mean
AUROC of the top five models was
0.84

Nguyen et al. (2014)84 Predict risk of acute transfusion
reaction (ATRs) following platelet
transfusion modeled on biologic
response modifiers

124 Decision tree models can be used to
understand the relationship
between biologic response
modifiers and ATRs

Ramoa et al. (2021)125 Develop a computer support system
to automatically classify and
validate ATRs

3,829 Ensemble classifier correctly
predicted 823 of 959 reaction types.
Error analysis highlighted
deficiencies in current reporting
system.

Roubinian et al.
(2020)83

Investigate whether NT-proBNP has
utility in the identification and
classification of pulmonary
transfusion reactions

495 CART models using NT-proBNP
(AUROC 0.83) achieved similar
performance to model using
echocardiogram

Torres et al. (2014)85 Identify determining factors
associated with TRALI using an
evolutionary algorithm

174 Previous risk factors including age
and the ratio PaO2/FiO2

confirmed, and identified a novel
link to smoking that surprised
physicians

Tsatsoulis et al.
(2003)80

Identify clusters of similar adverse
transfusion events in large
databases to help determine
patterns, trends, and best practices

c. 600 reports Combining case-based reasoning and
information retrieval produces
clusters that better match expert
judgment compared to either
approach alone

Whitaker et al.
(2022)81

Explore whether machine learning
methods, such as NLP, can identify
and report transfusion allergic
reactions from EHR

751 events/443 patients Model including NLP features
achieved an AUROC of 0.92,
versus 0.89 for a model without
NLP features

(Continues)
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TABLE 1 (Continued)

Reference Objectives as stated Sample size n Key findings as reported

Yamada et al. (2022)86 Identify factors associated with
transfusion-associated
hyperkalemia (TAH) in children

95 The biggest factor in TAH
occurrence was the total
transfused volume within 12 h,
followed by the age of PRBC units

Zhu et al. (2022)87 Understand risk factors for adverse
events during exchange
transfusion in severe neonatal
hyperbilirubinemia

188 XGBoost model achieved a mean
AUROC of 0.71 and revealed
nonlinear relationships potentially
relevant for practice

Laboratory

Borgmann et al.
(2016)126

Identify red cell RhD phenotypes,
including low expressed variants,
to avoid alloimmunization

51 blood samples Ensemble model achieves
classification accuracy of 96%,
minimum recall 92% for low
expressed DEL phenotype

Darlis et al. (2018)127 Hardware implementation of a
neural networks model to identify
human blood type from grayscale
images

Unclear The models achieved classification
accuracy of up to 97.5%

Doan et al. (2020)91 Nonsubjective assessment of blood
storage lesions to predict product
quality

38 bags/�67,500 cells Model trained with storage duration
instead of expert assessment learns
features that predict blood quality
better than morphological
assessment

Ferraz et al. (2017)128 Determine blood type compatibilities
of an individual in an emergency

41 patients Both AdaBoost and SVM models are
able to achieve an F1-score of 1

Kim et al. (2022)92 Novel approach for fast phenotypic
assessment of PRBC storage
lesions

3 donors; 219 images Deep learning achieved classification
accuracy of 95% with a high
throughput (152 cells/s)

Larpant et al. (2022)90 Phenotyping red cell antigens with
deep learning-assisted decision-
making

4,692 Deep learning-assisted human
decision-making resulted in
classification of ambiguous Rh
antigens with 100% accuracy

Rosales et al. (2022)129 Automatically identify individual
blood type using image processing
and machine learning algorithms

Unclear Coarse tree DT outperformed LR and
other ML (performance accuracy
97.77%)

Wu et al. (2022)89 Deep learning for the automated
classification of incomplete
antibody reaction intensity (IARI)
to support hemolytic disease
screening

1,628 Ensemble model achieved accuracy
of 99.8%, immunologist accuracy
improved with model use (average
+6.1%)

Hospital blood bank inventory management

Ordering

Fischer et al. (2010)99 Predict blood requirements to
minimize hospital storage costs
and low stocks

60,784 and 59,968 Better performance when predicting
blood requirements per medical
activity than when predicting
aggregate demand

Guan et al. (2017)94 Forecast future platelet demand to
guide collection from donors and
reduce wastage

30,000 ML model reduced wastage from
10.5% to 3.2% in simulation

Li et al. (2022)96 Develop a data-driven demand
forecasting and inventory

227,944 The STL-XGBoost model reduced
costs by 43% without stock
shortages in simulation

12 MAYNARD ET AL.
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improvements such as cost savings or performance over
current scoring systems (Table 1).

3.7 | Supporting transfusion decisions

Beyond prediction of the likelihood of transfusion,
ML can identify inappropriate transfusions, recognize
patient groups by predicted transfusion outcomes, and
enable precise dosing of blood products in efforts to
reduce iron overload.71,72 Through the analysis of exist-
ing clinical trials data, ML enabled estimates of the
causal effect of preoperative plasma transfusion on peri-
operative bleeding in patients with a high International

Normalized Ratio test result73 and of different ratios of
platelets and plasma relative to PRBC on mortality and
hemostasis in trauma patients.74 Bruun-Rasmussen
et al.75 used ML to emulate a randomized controlled
trial in the context of sex-matched transfusion policy.
Ngufor et al.76 take a key step toward personalized med-
icine, clustering patients using unsupervised ML to
determine whether they will benefit from plasma trans-
fusion. Models to identify inappropriate transfusions
may reduce the labor required for retrospective quality
control77 and support local efforts to reduce unnecessary
orders and transfusions.78 It may also be possible to
identify situations where ongoing transfusion is futile,
but this has proved challenging.79

TABLE 1 (Continued)

Reference Objectives as stated Sample size n Key findings as reported

management strategy for red blood
cells

Mirjalili et al. (2022)95 Predict platelet demand for the
following day with simulator to
evaluate potential to reduce
wastage and shortages

6,220 ML model reduced wastage from
4.01% to 2.54% and shortage from
0.44% to 0.05% in simulation

Quinn et al. (2019)93 Recommend PRBC order quantity
based on admitted patient
characteristics and historic
demand

26,326 Significant reduction in PRBC
outdate rates (1.72%–0.72%) and
daily inventory levels in 12 months
after implementation compared to
preceding 12 months

Schilling et al. (2022)97 Forecast platelet demand and
calculate possible waste reduction
and platelet shortage

45,900 ML models reduced both shortages
(6.5%–2%) and expiries (10%–5%)
in simulation

Sun et al. (2021)98 Predict red blood cell demand on the
following day for each ABO blood
group

1,243 days (transfusions
unclear)

The XGBoost model achieved the
best performance with a mean
absolute error between 5.91 and
11.19

Waste

Rad et al. (2020)100 Predict blood product discard to
reduce wastage and optimize
inventory management

17,108 All-K-order-Markov model achieved
79% accuracy in predicting
discards. Visualizations can help
laboratory managers investigate
the causes of discards.

Xiang et al. (2021)101 Identify patterns associated with
blood product wastage

879,532 Wastage factors included specific
wards, smaller blood banks, and
evening work shifts

Abbreviations: AAA, abdominal aortic aneurysm; ASA, American Society of Anesthesiologists; ASD, adult spinal deformity; ATR, acute transfusion reaction;
AUROC, area under the receiver operating curve; CART, classification and regression tree; CTR, cross-match to transfusion ratio; DT, decision tree; ED,
emergency department; FCNN, fully-connected neural network; FiO2, fraction of inspired oxygen; GBM, gradient boosting machine; GI, gastrointestinal; ICU,
intensive care unit; LR, logistic regression; ML, machine learning; MSBOS, maximal surgical blood ordering schedule; MT, massive transfusion; MTP, massive

transfusion protocol; NLP, natural language processing; NT-proBNP, N-terminal pro-brain natriuretic peptide; OLT, orthotopic liver transplant; PaO2, partial
pressure of oxygen; PBM, patient blood management; PCI, percutaneous coronary intervention; plt, platelets; PPV, positive predictive value; PRBC, packed red
bloods cells; PROPPR, pragmatic, randomized optimal platelet, and plasma ratios; RF, random forest; RMSE, root mean squared error; STL, seasonal and trend
decomposition using loess; SVM, support vector machine; TACO, transfusion-associated circulatory overload; TAH, transfusion-associated hyperkalemia;
TASH, trauma-associated severe hemorrhage; TKA, total knee replacement; TRALI, transfusion-associated lung injury; USD, United States dollar; XGBoost,

eXtreme gradient boosting.
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3.8 | Transfusion safety

Identified studies in this category were divided into
hemovigilance and laboratory support in the Blood Bank.

3.9 | Hemovigilance

ML has been applied primarily to enhance the ability to
detect and predict acute transfusion reactions (ATRs) and
adverse transfusion events. Novel information retrieval
methods, such as natural language processing (NLP),
when applied to electronic health records (EHRs) have
demonstrated underreporting by clinicians and the
potential to improve detection.80–82 Alternatively, Roubi-
nian et al.83 and Nguyen et al.84 incorporated novel bio-
markers into classification models and decision tree
analysis, respectively.

While the focus of ML is on prediction, and a causal
relationship cannot be assumed of the covariates found
to have high predictive value, identification of novel risk
factors for hypothesis generation and further research
can be useful as seen in transfusion-associated lung
injury (TRALI)85 and in pediatric transfusion-associated
hyperkalemia.86 Recognizing that transparency and
accountability are essential for clinicians in generating
hypotheses, Zhu et al.87,88 focus on explainable AI when
presenting adverse events during neonatal hyperbilirubi-
nemia exchange transfusion, particularly through use of
SHapley Additive exPlanation (SHAP).

3.9.1 | Blood group identification and other
laboratory applications

In a laboratory setting, 63% (six of eight) studies investi-
gated the use of ML to assist blood group identification
including two to help classify antibody reactions where
ambiguity in human interpretation exists.89,90 Doan
et al.91 and Kim et al.92 introduced image-based deep
learning as a novel approach to perform phenotype
assessment of red blood cell storage lesions to predict red
cell quality prior to transfusion.

3.10 | Hospital blood bank inventory
management

The availability of EHRs has supported the development
of models to forecast blood product demand and recom-
mend order quantities, based on aggregated patient data
in addition to historical demand patterns.93–99 A model
implemented in a Canadian hospital for PRBC reducedT

A
B
L
E

2
(C
on

ti
n
u
ed
)

M
ac

h
in
e
le
ar
n
in
g
m
et
h
od

s

T
ra
n
sf
u
si
on

to
p
ic

Su
bg

ro
u
p

N
M
u
lt
is
it
e

(%
)

So
u
rc
e

d
at
a

E
H
R
(%

)

T
re
e-

ba
se
d

(%
)

N
N

(%
)

O
th

er
(%

)

P
ro
sp

ec
ti
ve

ev
al
u
at
io
n

(%
)

O
u
tc
om

e
p
er
fo
rm

an
ce

co
m
p
ar
at
or

(%
)

R
ep

or
ti
n
g

fr
am

ew
or
k

st
at
ed

(%
)

D
at
a

av
ai
la
bl
e

(%
)

C
od

e
av

ai
la
bl
e

(%
)

A
ll

9
4
(4
4)

7
(7
8)

4
(4
4)

2
(2
2)

7
(7
8)

1
(1
1)

6
(6
7)

N
/A

0
(0
)

0
(0
)

T
ot
al

93
38

(4
1)

65
(7
0)

63
(6
8)

40
(4
3)

63
(6
8)

8
(9
)

60
(6
5)

N
/A

26
(2
8)

11
(1
2)

A
bb

re
vi
at
io
n
s:
E
H
R
,e
le
ct
ro
n
ic
h
ea
lt
h
re
co
rd
;G

I,
ga
st
ro
in
te
st
in
al
;N

N
,n

eu
ra
ln

et
w
or
k.

MAYNARD ET AL. 15

 15372995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/trf.17582 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [22/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



wastage and daily stockholding,93 and it is common for
forecasting models to be implemented into simulations to
estimate the potential benefits of deploying them.94–97 In
addition to studies supporting ordering, two studies
investigated the use of ML to directly address wastage in
a hospital blood bank by predicting discards100 and iden-
tifying transaction patterns associated with wastage.101

3.11 | Methodological considerations

Selected characteristics of the methodology of identified
studies are summarized in Table 2.

Only 41% of all studies were multisite. Source data
were derived from EHRs in 70%, defined as hospital
data that were collected routinely without research or
audit intent. Alternative data sources included research
databases and laboratory primary research data.

All but two papers (98%) used supervised learning,
while only four papers (4%) used unsupervised learning
methods. None of the papers used reinforcement learn-
ing. In Table 2, we divide supervised ML methods into
three broad groups: tree-based methods, neural networks,
and other methods. We describe these groups in the
Appendix. If a study used an ensemble of techniques
from more than one of these categories, then the underly-
ing techniques are counted as having been used in that
study. Tree-based models were included in 68% of the
studies and neural networks in 43% of the studies.

A common approach taken by many of the studies is
to compare several different ML methods readily avail-
able in software libraries such as Python's scikit-learn. A
small number of papers investigate novel ML ideas
including the use of a secondary model to provide a con-
fidence level in predictions57 and using weak labels in
the form of age information to train a model to classify
red cell quality without relying on subjective human
expert labels.91

Only eight studies (9%) reported the results of pro-
spective evaluation or deployment. Of these, four evalu-
ated their models on prospectively collected
data,35,37,90,102 one conducted a “shadow test” in which
predictions were generated in real time for evaluation but
not used for decision-making,56 and three describe imple-
mentation as part of live decision-making.65,78,93 A major-
ity of studies (65%) included an outcome performance
comparator, defined as a logistic or linear regression
model, a previously reported method for the same prob-
lem, or a baseline representing current practice.

Where expected, as with individual-level prediction,
reference to a reporting framework was infrequent. Rec-
ognized reporting frameworks including TRIPOD and
STROBE were utilized in only 11/54 studies within

predicting transfusion. None of the work predicts transfu-
sion reactions or adverse events within the transfusion
safety subgroup of hemovigilance reported in accordance
with a recognized framework. Data were stated to be
available in 28% of studies and code in only 12%, which
will limit future researchers' ability to reproduce and
extend the work performed to date. Yamada et al.86 pro-
vided their full data analytic protocol as an electronic
notebook, an example supporting reproducibility and
open science.

4 | DISCUSSION

Research in the field of ML in transfusion is expanding
rapidly with exciting applications as evidenced by the
number of publications. However, our review also high-
lights clear challenges surrounding transparency, inter-
pretability, and generalizability of findings. Most studies
are single center and have no prospective validation or
implementation. ML model code and data are rarely
made available for external validation, and there is lim-
ited justification of methods, with best performing
models often selected from a trial of those commonly
available.

Where ML performance characteristics are often
encouraging, the authors emphasize caution in interpre-
tation of evidence that models can achieve improved per-
formance as compared to current practice. As within
predicting transfusion, ML does not always offer advan-
tage over LR when task-specific performance is compared
and demonstrates the difficultly in interpreting the clini-
cal potential of ML while tasks, reporting measures, and
methodology remain so variable. While challenging, pro-
spective deployment of a model within the clinical work-
flow and subsequent evaluation of changes in key
performance indicators is highly desirable in ML. Our
findings of limited prospective testing and deployment
are consistent with those of the wider field where transla-
tion remains a challenge, and researchers are producing
frameworks103 and sharing case studies104 to help close
this gap. A simulated workflow, as developed in recent
studies,12,105 as a method for evaluating the potential
impact of a model may help to prioritize candidates for
prospective testing.

Data were extracted from EHRs or from medical
devices in three of the four studies where predictions
were made in real time, as part of a live workflow or a
“shadow test,”56,78,93 while the remaining case required
data to be entered manually into a smartphone applica-
tion.65 The latter may face fewer initial barriers to deploy-
ment such challenges involved in integrating different
systems, but there is a risk of manual data entry errors
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and a limit on the quantity and types of data that can be
quickly and accurately entered. Recent developments in
NLP, such as ChatGPT, may lead to the development of
systems that can interactively support decision-making
and integrate structured data from EHRs with clinical
notes, and brief-written (or transcribed verbal) descrip-
tions of the problem at hand.106

Current variation in transfusion practice, particularly
in prediction where the outcome “decision to transfuse”
remains clinician-dependent, could perpetuate subopti-
mal practices. Models may embed class imbalance and
generate predictions enriched by patient episodes, which
are elsewhere considered to be over-transfused. This
problem may be reflected in poor external validation of
pretrained models if the sites use different guidance or
practice.68 Although considered beyond the scope of this
review, it may be of interest to review studies where the
contribution of physicians, for example, surgeons and
anesthesiologists, features as a variable of the model, or
where variables behind physicians' decision-making are
explored in more detail,44 to address reasons for variation
of practice. Such an approach could prompt action to
address discrepancies, particularly as the large, multicen-
ter datasets used for ML are also well suited to address
physician effects while preserving anonymity. Clear key
performance indicators remain an unmet need in transfu-
sion by which to evaluate clinically relevant outcomes
following transfusion in a standardized way.

While practice variation impacts the generalizability
of trained models, underlying methods may still general-
ize to new sites if retrained on local data. Additionally,
successful integration of a model into the workflow may
change patterns that have been learned (e.g., which tests
are ordered and how often). It is crucial to continuously
monitor the predictions of a deployed model to ensure
that its predictions remain valid and useful.107 The ability
to fine-tune and update models using local108 and/or
more recent data109 offers huge potential advantage of
ML-based predictive modeling over historic simplified
scores and static prediction rules in addressing these
challenges, enabling models to accommodate new clini-
cal trends and evaluate performance as compared to cur-
rent practice in an iterative manner.23

To our knowledge, this review is the first attempt to
collate the literature on a wide range of applications of
ML in transfusion medicine. Our analysis extends the
work of Meier and Tschoellitsch13 who describe 47 arti-
cles of ML applied to PBM (including bleeding and ane-
mia) from a 2021 PubMed search. We have captured
information on emerging areas of interest to clinicians
and researchers, and by review of ongoing challenges
faced in the interpretation and translation of ML, we also
offer suggested priorities for future reporting and work.

Our study has a number of limitations. The heteroge-
neity of methods and infrequent use of reporting frame-
works makes synthesis of results and interpretation
challenging, as well as creating barriers for researchers to
build upon and validate outcomes. Researchers should be
encouraged to provide work as an online open-source
repository and share computational tools.30,110 Develop-
ing common task definitions and following established
reporting frameworks would make it easier to compare
methods and identify candidates for prospective valida-
tion and subsequent implementation. Secondly, in setting
out to give an overview of the literature, the volume of
publications captured while maintaining broad search
terms meant it was beyond the scope of this review to
extend to multiple databases and we acknowledge that
relevant studies may have been missed. Citation review
was performed in efforts to minimize this. Further stud-
ies might benefit from more focused reviews on selected
themes in transfusion medicine. Lastly, while we apply
the “main outcome of transfusion” to identify studies to
support PBM, we recognize that the concept of PBM goes
well beyond this such as optimization of anemia
(e.g., erythropoietin therapy and iron therapy) and that
these areas deserve exploration in future studies. As the
body of literature of ML in transfusion and PBM grows,
so will the potential for more focused systematic reviews.
This review adds to the continuously evolving, contempo-
raneous studies and reviews essential to engage clinicians
new to the idea of ML.15,111

5 | CONCLUSION

There has been a major expansion of the literature in
recent years, reflecting the interest and enthusiasm
toward the application of ML in transfusion medicine.
However, many challenges and limitations remain to
include data quality and access, adherence to (and exis-
tence of) appropriate reporting frameworks, and general-
izability of findings. Emphasis should be on consistent
reporting, sharing of code, and prospective validation
with comparison to current practice of future studies.
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APPENDIX

MACHINE LEARNING METHOD
CLASSIFICATION
In Table 2 of the main paper, we divide supervised
machine learning methods into three broad groups:

tree-based methods, neural networks, and other
methods. Tree-based methods include classification and
regression tree (CART), a single decision tree, and
methods that train an ensemble of trees in parallel
(e.g., random forests [RF]) or sequentially (e.g., gradient
boosting machines, XGBoost, and CatBoost). Neural
networks consist of layers of “neurons” inspired by bio-
logic neurons and include fully connected neural net-
works (FCNNs), in which each “neuron” receives input
from every “neuron” in the preceding layer, and alter-
native architectures that have been developed for differ-
ent types of input data including convolutional neural
networks (CNNs) for images and recurrent neural net-
works (e.g., the long short-term memory [LSTM] net-
work) for sequences. Our final category includes any
methods that are not based on decision trees and are not
neural networks including generalized linear models
(e.g., logistic regression and linear regression), support
vector machines, naïve Bayes, K-nearest neighbors, and
Markov chains.
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