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Purpose: To develop an end-to-end deep learning (DL) pipeline for automated ventricular segmentation of cardiac 
MRI data from a multicenter registry of patients with Fontan circulation (FORCE). 

Materials and Methods: This retrospective study used 250 cardiac MRI examinations (November 2007–December 
2022) from 13 institutions for training, validation, and testing. The pipeline contained three DL models: a classifier 
to identify short-axis cine stacks and two UNet 3+ models for image cropping and segmentation. The automated 
segmentations were evaluated on the test set (n = 50) using the Dice score. Volumetric and functional metrics 
derived from DL and ground truth manual segmentations were compared using Bland-Altman and intraclass 
correlation analysis. The pipeline was further qualitatively evaluated on 475 unseen examinations. 

Results: There were acceptable limits of agreement (LOA) and minimal biases between the ground truth and DL 
end-diastolic volume (EDV) (Bias: -0.6 mL/m2, LOA: -20.6–19.5 mL/m2), and end-systolic volume (ESV) (Bias: -
1.1 mL/m2, LOA: -18.1–15.9 mL/m2), with high intraclass correlation coefficients (ICC > 0.97) and Dice scores 
(EDV, 0.91 and ESV, 0.86). There was moderate agreement for ventricular mass (Bias: -1.9 g/m2, LOA: -17.3–13.5 
g/m2) and a ICC (0.94). There was also acceptable agreement for stroke volume (Bias:0.6 mL/m2, LOA: -17.2–18.3 
mL/m2) and ejection fraction (Bias:0.6%, LOA: -12.2%–13.4%), with high ICCs (> 0.81). The pipeline achieved 
satisfactory segmentation in 68% of the 475 unseen examinations, while 26% needed minor adjustments, 5% needed 
major adjustments, and in 0.4%, the cropping model failed. 

Conclusion: The DL pipeline can provide fast standardized segmentation for patients with single ventricle 
physiology across multiple centers. This pipeline can be applied to all cardiac MRI examinations in the FORCE 
registry. 

©RSNA, 2023 

An end-to-end deep learning pipeline was developed to provide automatic segmentation and 
cardiac function metrics for a cardiac MRI registry of patients with single ventricle physiology. 
The pipeline requires no human input and is the first to segment this patient population. 

Abbreviations 
DL = deep learning, EDV = end-diastolic volume, EF = ejection fraction, ESV = end-
systolic volume, SAX = short axis, SV = stroke volume 

Key Points 
The developed deep learning segmentation pipeline can provide automated standardized ‘core-
laboratory’ processing of a registry of patients with single ventricle physiology that is robust to 
highly variable anatomy and heterogeneous data collected from > 10 hospitals. 

The pipeline achieved median Dice scores of 0.91 (IQR: 0.89–0.94) and 0.86 (IQR: 0.82–0.89) 
for the end-diastolic and end-systolic blood pool and 0.74 (IQR: 0.70–0.77) for myocardium; 
there was no evidence of a difference between deep learning and manual measurements for end-
diastolic volume, end-systolic volume, myocardial mass, stroke volume and ejection fraction (all 
P > .05). 
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The pipeline was further tested on 475 unseen patient examinations, with satisfactory 
segmentation in both systole and diastole achieved in 68% of examinations, minor adjustments in 
either systole or diastole needed in 26%, major adjustments needed in 5%, and cropping model 
failure in only 0.4%. 

Author contributions: 
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J.D.R., T.C.S., J.W., R.H.R.; experimental studies, T.Y., N.S.C., G.F.M., J.D.R., J.A.S., 
R.H.R.; statistical analysis, T.Y., G.F.M., V.M.; and manuscript editing, T.Y., N.S.C., 
A.L.D., M.A.F., R.K., C.Z.L., J.D.R., T.C.S., J.A.S., R.H.R., V.M. 

Conflicts of interest are listed at the end of this article. 

Approximately 4–8 in 10000 newborns are born with a functionally single ventricle, and most 
will undergo a total cavopulmonary connection, leaving them with a Fontan circulation (1). 
These patients are at risk for cardiac failure, and cardiac MRI is considered the reference 
standard method of evaluating ventricular size and function. Several small studies have shown 
that cardiac MRI metrics of ventricular function are predictive of outcomes (2,3), but larger 
studies are needed to truly understand the importance of cardiac MRI in this patient group (3). 

The Fontan Outcomes Registry Using CMR Examinations (FORCE) is the first large-
scale (> 4500 cardiac MRI scans in > 3000 unique patients), multicenter cardiac MRI registry of 
patients who have undergone Fontan palliation (4). Although quantitative ventricular volume 
data from the original clinical reports are included in the registry, substantial differences in 
segmentation protocols and interobserver variability make these data unreliable. Unfortunately, 
standardized ‘core-laboratory’ manual segmentation of the whole registry is neither practical nor 
feasible, and therefore automated methods are needed to fully harness its potential. 

Recent innovations in deep learning (DL) have enabled automated cardiac segmentation 
methods to reach human levels of accuracy (5–8). However, most DL models are trained and 
validated on structurally normal hearts (9–11), and automated segmentation in congenital heart 
disease (CHD) poses a much greater challenge (12,13). Deep learning segmentation models have 
been successfully developed for biventricular CHD, but none are currently suitable for 
functionally single ventricles (14,15). 

Therefore, we propose a DL pipeline trained on data from the FORCE registry that 
automatically identifies ventricular short-axis (SAX) cine stacks and crops out the heart and 
segments the ventricles of patients with Fontan circulation. The pipeline approach is vital for use 
in registries; recently, Govil et al have demonstrated that such an end-to-end pipeline is feasible 
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for biventricular CHD (16). Our method extends this approach to complex single ventricular 
anatomy and applies it to a registry that currently contains data from many sites. 

The aims of this study were as follows: i) to develop and validate each section of the 
pipeline on a curated dataset with “ground truth” segmentations and ii) to test the pipeline on 
large amounts of registry data, both in terms of segmentation quality and comparison with 
volumes from the original clinical reports. 

Materials and Methods 
This multicenter retrospective study was approved by the institutional review board (IRB) at 
Boston Children’s Hospital, received waiver of consent and was deemed Health Insurance 
Portability and Accountability Act-compliant (IRB-P00028482). Contributing institutions either 
relied on the Boston Children’s Hospital IRB or gained local IRB/ethics and waiver of consent. 

Pipeline Overview 
The automated pipeline (Fig 1) consists of 4 stages: (1) cine stack extraction, (2) SAX 
identification, (3) heart localization and cropping, and (4) ventricular segmentation and 
derivation of clinical values. DL models were trained using TensorFlow (v2.12.0) and keras 
(v2.8.0), and the code is publicly available at https://github.com/Ti-Yao/Single-Ventricle-
Segmentation-Pipeline. Hyperband optimization was performed for each model to find which 
hyperparameters (including network depth, numbers of filters and specific losses) yielded the 
best validation results (full details in Appendices E2, E3, E4). 

Training Dataset Preparation 
The training dataset for all DL models (used in stages 2–4) consisted of complete cardiac MRI 
examinations of 250 patients from the FORCE registry. This retrospective study was approved 
by each institution’s Committee on Clinical Investigation through a separate application or via 
reliance agreement, with all examinations de-identified on upload. Patients were scanned at 13 
institutions across three countries (USA, UK, Canada) between November 2007 and December 
2022, at both 1.5 and 3.0T, using three MRI manufacturers. The dataset was split 175/25/50 for 
training, validation, and testing. Patients with multiple scans were not split between the training, 
validation, and testing groups. The training patients were stratified such that the proportion of 
patients from each site was approximately the same as in the full database (see Appendix E1). 

A clinical researcher with 3.5 years of cardiac imaging experience (N.S.) segmented the 
SAX data to establish ground truth segmentations, which were considered as ‘core-laboratory’ 
data. Three cardiovascular imaging physicians (S.G., D.S., R.R.), with 6, 8, and 14 years of 
experience, respectively, reviewed and adjusted segmentations in 150 cases. Endocardial and 
epicardial contours at end-systole and end-diastole were manually traced (Circle cvi42 version 
5.14.2, Circle Cardiovascular Imaging, Calgary, Alberta, Canada) with trabeculae and papillary 
muscles included in the blood pool and underdeveloped left or right secondary ventricles 
contoured. For training of DL networks, traced contours were converted into separate binary 
masks for the blood pool (combined if two ventricles were present) and myocardium. 
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Stage 1: Cine Stack Extraction 
Extraction of all cine stacks from each patient study was achieved using Digital Imaging and 
Communications in Medicine, or DICOM, header information (17). Specifically, two-
dimensional (2D) cine data (determined by series with at least 10 frames in the same slice 
location) were designated to belong to the same stack if cines shared the same orientation (Image 
Orientation Patient Attribute), pixel size (Pixel Spacing Attribute), and slice thickness (Spacing 
Between Slices Attribute). Multislice data had to contain at least six slices to be considered a 
stack. 

Stage 2: Short-axis Identification 
A model was trained to select the SAX cine stack from other cine stacks acquired in a single 
examination (eg, 4-chamber, transverse or long-axis stacks). The training data consisted of the 
first phase (assumed to be diastolic) of the central five slices of all the cine stacks in the 175 
training examinations, labeled either SAX or non-SAX. Nonsquare images were zero-padded to 
their largest side, and all images were resized to 128 × 128 pixels. The classifier was a 
convolutional neural network followed by two fully connected dense layers and a sigmoid final 
layer that outputs the probability that the input image is in the SAX orientation (Psax), trained 
with a binary cross-entropy loss (see Appendix E2 for full details). 

At inference, the first phase of the central five slices of each cine stack from each 
examination was input into the classifier. The stack that contained the slice with the highest Psax 
was identified as the SAX orientation. If more than one stack had the same maximum 
probability, then the stack with the highest mean Psax was chosen. For testing (50 examinations), 
accuracy, precision and recall were assessed per image using a threshold of Psax > 0.5 for SAX 
identification. In addition, the ability to correctly identify the SAX stack per examination was 
assessed using the process described above. 

Stage 3: Heart Localization and Cropping 
Cropping the heart is necessary for a robust pipeline performance, as it centers the heart 
regardless of its size or position in the original image (18). Cropping the region of interest 
around the heart was reframed as a simplified segmentation problem. The model was trained to 
predict ground truth binary ‘whole heart’ masks based on the manually segmented epicardial 
border. The model was trained using the segmented end-diastolic frames of all slices in the SAX 
stacks of the 175 training examinations. Nonsquare images were zero-padded to the largest side, 
and all images were resized to 256 × 256 pixels. 

This model was based on a modified UNet 3+ architecture, an improvement on the 
conventional UNet model that utilizes full-scale skip connections and can use deep supervision 
(19). The UNet 3+ was trained using Intersection over Union (IoU) loss with deep supervision 
(the model parameters were determined by Hyperband optimization; see Appendix E3 for full 
details). 

The steps for using the segmentation to crop images at inference are shown in Figure 2. 
In step 1, the model predicts the ‘whole heart’ masks in the first (assumed to be diastolic) phase 
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for all slices in the SAX stack. In step 2, disconnected ‘islands’ in the predicted masks 
(misclassified regions such as the stomach) were removed if they did not overlap with the 
intersection of the masks in the slice direction. In step 3, a preliminary bounding box was defined 
as the minimum square containing the union of all the segmentation masks, which was then 
expanded by 50% for redundancy. In step 4, the bounding box was used to crop all slices and 
frames in the stack. Ground truth bounding boxes were derived from ground truth ‘whole heart’ 
masks as described above and were compared with the predicted bounding boxes in the 50 test 
cases using IoU. 

Stage 4: Ventricle Segmentation 
The final segmentation model also used the UNet 3+ architecture and was trained to predict three 
pixel classes: blood pool, myocardium and background. The model was trained on all the end-
diastolic and end-systolic slices in the SAX stacks of the 175 training examinations (4308 
images). Images that did not contain ventricular structures were labeled as all background. All 
images were cropped using bounding boxes created from the ground truth masks as described 
above and resized to 128 × 128 pixels. The UNet 3+ was trained using Tversky loss, but without 
deep supervision (the model parameters were determined by Hyperband optimization; see 
Appendix E4 for full details). 

At inference, all slices and frames of the SAX stack were segmented. Postprocessing 
included removing any component separate from the heart, where the heart is defined as the 
largest connected component in 3D. From these masks, ventricular volume-time curves were 
created by summing the labeled blood pool voxels (scaled by voxel volume) across all slices for 
all cardiac phases. End systole and diastole were identified as the phases with the smallest and 
largest volumes using the volume time curve, constrained to the middle five slices (to lessen any 
effect of poor segmentation at the base or apex). End-systolic volume (ESV) and end-diastolic 
volume (EDV) were then defined as the volume (assessed over all slices) at these timepoints. 
Stroke volume (SV) was EDV–ESV, and ejection fraction (EF) was SV/EDV. Myocardial mass 
was the sum of the myocardial voxels (scaled by voxel volume and myocardial density) in the 
end-diastolic phase. All volumes and mass were indexed to body surface area (BSA). 

For testing (50 examinations), the DL-predicted and ground truth blood pool and 
myocardial masks were compared per slice using Dice at end-diastole and end-systole. DL-
derived ESV, EDV, SV and EF were compared with the results from manual core-laboratory 
segmentation using Bland Altman and correlation analysis. Additionally, we calculated the 
sensitivity and specificity of identifying a dilated ventricle (defined as BSA-indexed EDV ≥ 156 
mL/BSA1.3 (3)) using DL volumes, with the volumes derived from manual segmentation serving 
as the ground truth. 

Pipeline Performance 
The performance of the whole pipeline was tested by processing 475 unseen examinations (not 
used for previous training or testing)-including data from six sites not represented in the training 
data (site breakdown in Appendix E1). All end-diastolic and end-systolic segmentations were 
examined by the clinical researcher, and the pipeline results were rated as follows: i) satisfactory 
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segmentation (appropriate for use in a clinical context), ii) segmentation requiring minor 
adjustments (small adjustment required in 1–2 slices), iii) segmentation requiring major 
adjustment (significant failure in > 2 slices), and iv) crop failure (part or all of the heart missing 
from cropped images). In addition, subjective image quality was rated as satisfactory or 
suboptimal depending on the presence of artifacts, poor contrast, or very high noise See 
Appendix E5 for examples of segmentation and subjective image quality ratings. In those studies 
deemed to have satisfactory segmentation or only requiring minor adjustment, DL-derived 
volumetric data were compared with the clinical report data entered into the FORCE registry by 
each contributing site. Clinical report data were also compared with the manual core-laboratory-
derived volumes and EF in the training dataset to evaluate reliability. 

Statistical Analysis 
Continuous variables are expressed as median (interquartile range-IQR), as most variables were 
not normally distributed. Bland-Altman and intraclass correlation (reported with 95% confidence 
intervals-CI) were used to assess agreement between DL, manual core-laboratory and clinical 
report volumetric data. As the differences between the manual and DL measurements were 
normally distributed (evaluated using Shapiro-Wilk test), paired t tests were used to assess 
significance. Comparison of pipeline results for different ventricular morphologies, pediatric 
versus adult, magnetic field strengths (1.5T versus 3T), dilated versus smaller ventricles (defined 
as above (3)) and scans periods (pre-2015 versus post-2015, where 2015 is the midpoint of the 
scan time range), was performed using the χ2 test. Statistical analyses were performed using the 
scipy library (v1.9.1) in Python and in R, and P < .05 was considered statistically significant. 

Results 

Dataset Characteristics 
Training of models was successfully completed for all stages of the pipeline. Table 1 presents the 
demographics for the 250 (median [IQR] age: 16 [11–22], 154 male, 97 female) patients in the 
training and validation sets and the 475 patients (median [IQR] age: 14 [9–19], 276 male, 202 
female) in the external test set. There was no evidence of differences in age, BSA or ventricular 
morphology between the training, validation, or test datasets (see Appendix E6). 

Short-axis Identification Classifier and Heart Localization Model 
The accuracy for SAX identification per slice was 96.1%, precision was 98.0%, and recall was 
94.4%. However, because all slices are evaluated to make a final decision, the classifier was able 
to correctly identify the short-axis stack in all 50 test examinations. 

For heart localization, the median IoU between the ground truth and predicted bounding 
boxes per examination was 0.94 (IQR: 0.92–0.96). More importantly, the calculated bounding 
box contained the whole heart for all 50 test examinations. 

Ventricle Segmentation Model 
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Figure 3 shows examples of DL ventricular segmentation for the best, median and worst cases 
(regardless of systolic or diastolic phase) based on Dice score (see Appendix E7 for movies of all 
frames). 

There were acceptable limits of agreement and high levels of intraclass correlation 
between DL and manual core-laboratory segmented EDV and ESV (Table 2, Fig 4). EDV and 
ESV were slightly higher with DL segmentation, but the biases were not clinically important (-
0.6 mL/m2 and-1.1 mL/m2 respectively) and did not reach statistical significance (P ≥  0.56). 
There was also acceptable agreement for SV and EF and moderate agreement for ventricular 
mass (Table 2, Fig 5), with small biases that did not reach statistical significance (P ≥ .12). The 
sensitivity and specificity for detecting a dilated ventricle was 94% (137/145) and 79% 
(262/330) respectively. The median Dice scores for the blood pool (diastolic and systolic) and 
myocardial masks were 0.91 (IQR: 0.89–0.94), 0.86 (IQR: 0.82–0.89) and 0.74 (IQR: 0.70–0.77) 
respectively (Table 2). 

Pipeline Performance 
Pipeline processing was feasible in all 475 new examinations, with all SAX stacks correctly 
identified. Table 3 shows the time taken and the number of images processed at each stage. The 
average time to process a patient examination through the pipeline was 26s (range: 21–32s). 

For all examinations, end-diastolic and end-systolic frames were successfully extracted, 
totaling 950 volumes. Of these, 767 frames (81%) met the criteria for satisfactory segmentation 
quality. At the examination level, out of a total of 475 examinations, 323 (68%) exhibited 
satisfactory segmentation for both end-systolic and end-diastolic volumes. Minor adjustments 
were required for 124 (26%) examinations, major adjustments for 26 (5%) examinations, and the 
cropping model failed in 2 (0.4%) examinations (see Appendix E5 for examples). 

Approximately 35% of SAX stacks were identified as having suboptimal image quality, 
and there was a statistically lower (P < .001) proportion of satisfactory segmentations in this 
group (Table 4). Segmentation was also more successful in 1.5T images compared with 3.0T (P 
< .001). We found no evidence of a difference between segmentation success for different 
ventricular morphologies (P = .11), different vendors (P = .13), pediatric versus adult patients (P 
= .36), dilated versus smaller ventricles (P = .56) or pre-2015 versus post-2015 (P = .13). 

In the 475 patients, there was only moderate agreement between DL-generated volumes 
and EF and clinical report data (Fig 6), with DL volumes being significantly higher (P < .001), 
particularly at higher volumes. It should be noted that in the training data (n = 250), we observed 
similar results for the levels of agreement and biases (P < .001) between manual core-laboratory 
and clinical report volumes and EF (Fig 6). 

Discussion 
To our knowledge, this study is the first description of DL automated segmentation of single 
ventricles. The main findings were as follows: i) It is feasible to create an end-to-end deep 
learning pipeline that automatically takes cardiac MRI examinations, extracts SAX cines, 
performs cropping, and segments the ventricles; ii) There was acceptable agreement between DL 
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and manual segmentation of functional single ventricles in terms of volumes and mass; iii) The 
pipeline can rapidly and accurately segment large numbers of unseen cases with a high degree of 
success; and iv) There was only moderate agreement between volumetric data from clinical 
reports and both DL and manually segmented core-laboratory data, implying that data from 
clinical reports is highly variable. Our framework processes images straight from the image 
registry (16) and could process the whole FORCE registry (> 4500 examinations) in < 40 hours. 

Although the use of DL for ventricular segmentation in cardiac MRI is well described, its 
use in CHD is much more limited, mainly due to less access to large training datasets and more 
complex anatomy (13). Nevertheless, successful models have been produced (12,14–16) for 
biventricular CHD, including pipeline frameworks for Tetralogy of Fallot (16). However, 
creating a pipeline that is capable of segmenting extremely heterogeneous single ventricular 
anatomy from a large number of institutions with a wide range of protocols, scanners, and field 
strengths is substantially more difficult. The size of the FORCE registry allowed for creation of a 
large training dataset collected from 13 different hospitals, aiding generalizability. Furthermore, 
we choose to use the UNet 3+ architecture, which has been shown to improve segmentation 
accuracy over simpler UNet architectures. 

Our DL segmentation pipeline demonstrated acceptable agreement with manual 
segmentation for ventricular volumes, mass, and EF, with results comparable to other DL models 
for cardiac MRI segmentation in patients with CHD (12,14–16). Importantly, DL always 
produces the same result, which is highly desirable, as it has been shown that there can be 
significant interobserver variability of cardiac MRI metrics in patients with Fontan circulation 
(20). 

When applied to 475 unseen cases from 16 institutions (including data from 6 sites not 
included in training), our end-to-end pipeline was successful in 68% of cases, with only a minor 
proportion requiring full resegmentation. This means that if our pipeline was applied across the 
whole FORCE registry, > 4500 examinations could be robustly processed without any user input. 
Unsurprisingly, DL performance was lower in studies with poor image quality, but human 
segmentation would also be affected in these cases. In addition, performance was slightly lower 
at 3T, likely due to different signal characteristics, increased artifact, and the lower proportion of 
3T studies in the training data. 

Further improvements could be achieved by fine-tuning the UNet 3+ with manually 
segmented images from studies where the DL model has failed (including poor image quality 
and 3T studies). Such an approach would benefit from automated quality assurance, which could 
determine segmentation accuracy (21,22) and automatically identify data that require 
resegmentation. 

It should be noted that the agreement between the DL-derived and clinical report volumes 
was only moderate, with DL volumes being higher than those entered by the site. However, these 
differences were also present between manually segmented core-laboratory data and the clinical 
report volumes. This suggests that differences in segmentation between sites (eg, inclusion of 
papillary muscle in blood pool and segmentation of underdeveloped ventricle), as well as 
interobserver variability, were the main causes of disagreement. 
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The main limitation of this study was that manual segmentations and qualitative 
assessment were performed by a single operator. This was done to ensure consistency of 
segmentation and assessment but could result in biases in the models. However, we believe that 
the benefit of having a single adequately trained observer (with expert review when necessary) is 
that the DL model is trained on highly homogeneous data and results are evaluated in a 
consistent manner. A further limitation of our study is the lack of normal biventricular controls. 
However, it has been shown previously that models trained on congenital biventricular data 
struggle to robustly segment single ventricle data (14). Consequently, we expect the opposite to 
be true with our model. 

To conclude, we have demonstrated a pipeline for automated segmentation of ventricular 
volumes from cardiac MRI scans of patients with Fontan circulation. We believe that combining 
the FORCE registry’s clinical data with these automatically derived cardiac metrics will give 
researchers and clinicians new insights into the role of cardiac MRI in the management of 
patients with Fontan circulation. Future work will include developing DL models to evaluate 
strain, which has also been found to be predictive of outcome (3). 
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Figure 1: Outline of the 4 stages involved in the deep learning pipeline. DICOM = 
Digital Imaging and Communications in Medicine, FORCE = Fontan Outcomes Registry 
Using CMR Examinations, SAX = short-axis. 
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Figure 2: Schematic of the image cropping process. Step 1: Predicted segmentation 
mask based on epicardial border (green). Step 2: Removal of misclassified ‘islands’ 
(blue) that do not overlap with the intersection of all segmentations throughout the stack 
(red). Step 3: Creation of a box (solid yellow line) that bounds the union of all 
segmentations throughout the stack (yellow) and creation of the final bounding box 
(dashed yellow line). Step 4: Final cropped images using the bounding box from Step 3. 
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Figure 3: Deep learning (DL) segmentations versus ground truth segmentations for 
the best, median and worst test cases based on Dice score. Blood pool is shown in red 
and myocardium in blue. 
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Figure 4: Bland-Altman plots and line of equality plots with intraclass correlation 
coefficients (ICC) comparing the manually-derived versus deep learning (DL)-derived 
end-diastolic volume (EDV) and end-systolic volume (ESV). BSA = body surface area. 
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Figure 5: Bland-Altman plots and line of equality plots with intraclass correlation 
coefficients (ICC) comparing the manually-derived versus deep learning (DL)-derived 
ventricular mass, stroke volume and ejection fraction. BSA = body surface area. 
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Figure 6: Bland-Altman plots comparing ventricular volume and ejection fraction. (left) 
Comparison between volumes ejections fraction from clinical reports entered by the 
contributing sites versus manual core laboratory calculated volumes and ejection 
fractions for 250 test patients. (right) Comparison between site-entered volumes and 
ejection fractions versus deep learning (DL)-derived volumes and ejection fractions for 
475 test patients. BSA = body surface area. 

Table 1 

Demographics of the 250 Patients Used for Training and Validation of the Deep 
Learning Models and the 475 Patients Used for Testing the Deep Learning 
Pipeline 
 Number of Patients in the 

Manually Segmented 
Dataset (%) 
n = 250 

Number of Patients in the 
External Pipeline Test Set 
(%) 
n = 475 

Age 
 Adult 137 (55%) 212 (45%) 

Child (< 16 years) 113 (45%) 263 (55%) 
Median (IRQ), y 16 (11–22) 15 (9–19)    

Sex 
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 Male 154 (61%) 276 (58%) 
Female 97 (39%) 202 (42%) 

Ventricle Systemic Circulation 
 Both 133 (55%) 238 (50%) 

RV Only 64 (26%) 137 (29%) 
LV Only 47 (19%) 100 (21%) 

Scanner Field Strength 
 1.5 T 237 (95%) 458 (96%) 

3.0 T 13 (5%) 17 (4%) 

Note.—Unless otherwise indicated, data are presented as number of patients (percentage). LV = left ventricle, RV = 
right ventricle. 

Table 2 

Results for Body Surface Area-indexed End-diastolic Volume, End-systolic 
Volume, Ventricular Mass, Stroke Volume, and Ejection Fraction Obtained 
through the Deep Learning Pipeline and Manual Measurements for 50 Test Patient 
Examinations 
 Bias Limits of Agreement P Value Intraclass Correlation Coefficient Dice Score 
End-Diastolic Volume (mL/m2) −0.6 −20.6–19.5 0.75 0.98 

(95% CI: 0.96, 0.99) 
0.91 (IQR, 0.89–0.94) 

End-Systolic Volume (mL/m2) −1.1 −18.1–15.9 0.56 0.97 
(95% CI: 0.95, 0.99) 

0.86 (IQR, 0.82–0.89) 

Ventricular Mass (g/m2) −1.9 −17.3–13.5 0.12 0.94 
(95% CI: 0.89, 0.96) 

0.74 (IQR, 0.70–0.77) 

Stroke Volume (mL/m2) 0.6 −17.2–18.3 0.85 0.88 
(95% CI: 0.80, 0.93) 

— 

Ejection Fraction (%) 0.6 −12.2–13.4 0.52 0.81 
(95% CI: 0.69, 0.89) 

— 

Note.—Comparative evaluation using Bland-Altman, paired t test, intraclass correlation coefficient (95% CI), and 
Dice score (IQR). 

Table 3 

Median, IQR, and Range of the Time Taken and Number of Images Processed for 
Each Stage of the Deep Learning Pipeline for the Test Set (n = 475) Using One 
NVIDIA GeForce RTX 3090 GPU 
Stage Variable Median (IQR) Range 
1: Extract Cine Stacks 
 Number of files 3300 (1900–7100) 460–21,000 

Number of series 35 (23–58) 5–290 
Number of stacks 2 (1–3) 1–16 
Time Taken (s) 9 (5–12) 1–73 

2: Identify SAX 
 Number of images classified 10 (5–15) 5–80 

Time Taken (s) 0.40 (0.20–0.48) 0.030–1.45 
Time per image (s) 0.080 (0.040–0.096) 0.0060–0.2900 

3: Heart Localization 
 Number of images used for 12 (12–14) 7–25 
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localization 
Time Taken (s) 1.5 (1.4–1.7) 1.2–5.7 
Time per image (s) 0.12 (0.11–0.13) 0.073–2.200 

4: Ventricle Segmentation 
 Number of images segmented 340 (240–360) 100–1600 

Time taken (s) 11 (9–12) 4–61 
Time per image (s) 0.032 (0.031–0.034) 0.028–0.068 

Total time taken (s) 26 (21–32) 13–110 

Note.—Values are rounded to 2 significant figures. 

Table 4 

Labels Given to the End-diastolic and End-systolic Segmentation Outputs of the 
Deep Learning Pipeline for the Test Set (n = 475) 
  Contains Artifact and/or Has Poor 

Image Quality 
Segmentation Quality Label All No Yes 
Satisfactory 323 (68%) 230 (74%) 93 (57%) 
Minor adjustments 124 (26%) 73 (23%) 51 (31%) 
Major adjustments 26 (5%) 8 (3%) 18 (11%) 
Crop fail 2 (0.4%) 0 (0%) 2 (1%) 
Total number 475 311 164 

Note.—Data are presented as number (percentage). 

 

Appendix E1. Distribution of Patients by Site Hospital 

Table E1 

Distribution of the 250 Patient Examinations by Site Hospital from the FORCE 
Registry Used in the Training, Validation and Testing of the Deep Learning 
Models in the Pipeline 
Hospital Name Number of Patients (%), n = 250 

All Training Validation Test 
Boston Children’s Hospital 73 65 (89%) 3 (4%) 5 (7%) 
Children’s Healthcare of Atlanta 10 4 (40%) 2 (20%) 4 (40%) 
Children’s Hospital of Philadelphia 23 16 (70%) 3 (13%) 4 (17%) 
Children’s Hospital of Pittsburgh 32 25 (78%) 3 (9%) 4 (12%) 
Columbia University Irving Medical Center 6 2 (33%) 0 (0%) 4 (67%) 
Great Ormond Street Hospital 1 1 (100%) 0 (0%) 0 (0%) 
Lurie Children’s Hospital 16 10 (62%) 2 (12%) 4 (25%) 
Mott’s Children’s Hospital 14 8 (57%) 2 (14%) 4 (29%) 
Nationwide Children’s Hospital 15 9 (60%) 2 (13%) 4 (27%) 
Stollery Children’s Hospital 9 2 (22%) 3 (33%) 4 (44%) 
Texas Children’s Hospital 33 25 (76%) 3 (9%) 5 (15%) 
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Toronto Sick Kids 12 6 (50%) 2 (17%) 4 (33%) 
Yale New Haven Children’s Hospital 6 2 (33%) 0 (0%) 4 (67%) 

Table E2 

Distribution of the Patient Examinations by Site Hospital from the FORCE 
Registry 
Hospital Name Number of Patients (%) 

n = 250 n = 475 
Arkansas Children’s Hospital — 1 (0%) 
Boston Children’s Hospital 73 (29%) 100 (40%) 
Children’s Healthcare of Atlanta 10 (4%) 54 (22%) 
Children’s Hospital of Philadelphia 23 (9%) 141 (56%) 
Children’s Hospital of Pittsburgh 32 (13%) 14 (6%) 
Children’s National Hospital — 1 (0%) 
Columbia University Irving Medical Center 6 (2%) — 
Great Ormond Street Hospital 1 (< 1%) 31 (12%) 
Lurie Children’s Hospital 16 (6%) 3 (1%) 
Mott’s Children’s Hospital 14 (6%) — 
Mount Sinai Medical Center — 10 (4%) 
Nationwide Children’s Hospital 15 (6%) 29 (12%) 
Oklahoma University Health Sciences Center — 2 (1%) 
Seattle Children’s Hospital — 1 (0%) 
Stollery Children’s Hospital 9 (4%) — 
Texas Children’s Hospital 33 (13%) 36 (14%) 
Toronto Sick Kids 12 (5%) 47 (19%) 
Vanderbilt University Medical Center — 2 (1%) 
Yale New Haven Children’s Hospital 6 (2%) 3 (1%) 

n = 250 is the dataset used for the deep learning models. n = 475 is the external unseen test set. 

Appendix E2. SAX Identification Model 

Image Preprocessing 
For the best classification performance, we ensured that the training data for the classifier was 
balanced between the non-SAX and SAX cines. The non-SAX cines were selected at random for 
a given examination providing a mix of different types of image views. 

Images were resized to 128 × 128 using nearest-neighbor interpolation. Images were 
randomly augmented and then standardized such that, for each image, the mean was 0 and the 
standard deviation was 1. 

The number of images used in total was 2500, split between training/validation/testing as 
1750/250/500. 

Hyperparameter Optimization 



 
 

Page 22 of 30 
 

The hyperband optimization was set to find the minimum binary cross-entropy loss. The 
following hyperparameters were optimized where the values in the brackets were the trial 
parameters, and the values in bold were the optimized parameter: 

• Base Filters = [16,32,64] 

• Kernel Size = [3,5] 

• Dropout Rate = 0.0 - 0.5 (0.2) 

• Second Dropout Layer = True or False 

• Depth = [1,2,3] 

• Layers = [2,3] 

Network Architecture 
The SAX ID model was a CNN classifier that consisted of a stack of three 2D convolution and 
maxpooling layers, followed by two fully connected layers with a dropout layer following each 
fully connected layer and, finally, a sigmoid activation. 

The three convolution layers used 64, 128 and 256 filters, respectively. The two fully 
connected layers had 256 and 128 nodes. The two dropout layers had a probability of 0.2. The 
final sigmoid activation layer outputted a probability of whether the input image was a SAX 
orientation image. 

Training Parameters 
The classifier was trained with a binary cross-entropy loss. The model was trained with an Adam 
optimizer at a learning rate of 0.0001. The model was trained with a batch size of 128 until the 
loss stopped decreasing for 10 epochs. 

Appendix E3. Heart Localization Model 

Image Preprocessing 
Images were resized such that their longest side was 256 pixels. Any nonsquare images were 
then zero-padded to a square such that all the input images were 256 × 256. Images were 
randomly augmented and then standardized. 

The number of images used in total was 3303, split between training/validation/testing as 
2312/331/660. 

Data Augmentation 
Images were randomly augmented “on-the-fly” during the training using the Albumentations 
Python library. 

• Random brightness between -10 - 10% of the image, with 30% probability 
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• Random contrast between -50 - 50% of the image, with 30% probability 

• Random scaling between -30 - 30% of the image, with 100% probability 

• Random translation between -10 and 10% of the image, with 100% probability 

• Random rotation between -45 and 45 degrees, with 30% probability 

• Random 90-degree rotation, with 20% probability 

• One of: 

◦ Random image compression, with 80% as the lower bound for image quality and 100% as the upper bound, 
with 70% probability 

◦ Gaussian noise, with 10% probability 

◦ Motion blur, with 30% probability 

Hyperparameter Optimization 
The objective of the hyperband optimization for this model was set to minimize the “blood pool 
pixel difference,” which is a proxy for the volume. The blood pool pixel difference is the 
absolute difference between the number of pixels labeled as blood pool between the ground truth 
and the prediction. 

• Loss = [IoU, Dice, Focal Tversky, Tversky, Categorical Crossentropy] 

• Weighted Loss = True/False 

• Deep supervision = True/False 

• Dropout Rate = 0.0 - 0.5 (0.5) 

• Depth = [2, 3] 

• Kernel Size = [3, 5] 

• Base Filters = [16, 32, 64] 

Network Architecture 
The heart localization model used the UNet 3+ architecture with 16 base filters, a weighted loss, 
deep supervision, a dropout rate of 0.5 and a final softmax layer. 

Deep supervision is when segmentation masks are created at each decoding level, and 
Loss is calculated at each level. Weighted loss is how much each decoding level contributes to 
the total Loss. The weighted loss for the UNet 3+ was [0.25, 0.25, 0.25, 0.25, 1] for the decoding 
levels. 

Training Parameters 
The classifier was trained with an IoU loss. The model was trained with an Adam optimizer at a 
learning rate of 0.0001. The model was trained with a batch size of 8 until the loss stopped 
decreasing for 10 epochs. 
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Appendix E4. Ventricle Segmentation Model 

Image Preprocessing 
The model takes square-cropped images, which are all resized to 128 × 128 pixels. Images were 
randomly augmented and then standardized. 

The number of images used in total was 5512, split between training/validation/testing as 
4308/362/842. 

Data Augmentation 
For data augmentation, the image stack is first treated as a 3D volume. The Volumentations 
Python library was used to provide a random 90-degree rotation of the volume with a probability 
of 20%. Random rotation between-45 and 45 degrees with a probability of 40% was calculated 
using Scipy. 

After initial “volume-wise” augmentation, a square bounding box containing the union of 
all masks in the slice direction was calculated for the augmented image stack. The bounding box 
is then expanded by a random value between 40%–60%. This mimics the output of the heart 
localization model, which finds a bounding box around the union of the predicted segmentation 
masks and expands the bounding box by 50%. The random scale factor also provides data 
augmentation. 

After cropping, the images in the image stack were treated as separate 2D images. These 
2D images were randomly augmented “on-the-fly” during the training using the Albumentations 
Python library. 

• Random brightness between -10 - 10% of the image, with 30% probability 

• Random contrast between -50 - 50% of the image, with 30% probability 

• Random translation between -10 and 10% of the image, with 100% probability 

• One of: 

◦ Random image compression, with 80% as the lower bound for image quality and 100% as the upper bound, 
with 70% probability 

◦ Gaussian noise, with 10% probability 

◦ Motion blur, with 30% probability 

Hyperparameter Optimization 
Similar to the heart localization model, the hyperband optimization was set to minimize the 
“blood pool pixel difference.” 

Network Architecture 
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The ventricle segmentation model used the UNet 3+ architecture with 64 base filters. This model 
did not use a weighted loss or deep supervision. It used a dropout rate of 0.3 and a final softmax 
layer. 

• Loss = [IoU, Dice, Focal Tversky, Tversky, Categorical Crossentropy] 

• Weighted Loss = True/False 

• Deep Supervision = True/False 

• Dropout Rate = 0.0 - 0.5 (0.3) 

• Depth = [2, 3] 

• Kernel Size = [3, 5] 

• Base Filters = [16, 32, 64] 

Training Parameters 
The classifier was trained with a Tversky loss. The model was trained with an Adam optimizer at 
a learning rate of 0.0001. The model was trained with a batch size of 16 until the loss stopped 
decreasing for 10 epochs. 

Appendix E5. Qualitative Scoring 

The pipeline was run on a further 475 patient examinations. The predicted end-diastolic and end-
systolic segmentations for these patient examinations were qualitatively scored according to four 
categories: 

1. Satisfactory segmentation - the predicted segmentation masks need no manual adjustments (Fig E1) 
2. Minor adjustments - the masks need a small number of manual adjustments in 1-2 slices (Fig E1) 
3. Major adjustments the masks need a large number of manual adjustments in >2 slices (Fig E1) 
4. Crop failure - the heart localization stage failed to crop the location of the heart (Fig E2) 
 
 

 

Figure E1: Examples of segmentations for the first three qualitative scoring criteria. 
The images were also labeled as having either good or poor image quality. Poor image 
quality is described as having poor resolution, poor contrast, containing an artifact, or 
having significant motion blur or noise, examples shown in Figure E2. 
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Figure E2: Examples of scans classed as having good and poor image quality. The 
images are cropped around the heart. All of the end-diastolic and end-systolic 
predictions (950 in total) were shown to the clinical observer individually and at random 
during the scoring. If the end-diastolic and end-systolic predictions were given different 
scores, the worst of the two scores was taken as the result of the given patient 
examination. A given patient examination was rated as having poor image quality if 
either the end-diastolic or end-systolic image was labeled as having a poor image 
quality. 

Appendix E6. Demographic Characteristics Comparison between 
Training, Validation and Test datasets 

Table E3 

Demographic Characteristics in the Training, Validation, and Test Datasets for 
Deep Learning Models are Compared 
 Data Set 

Training Validation Test 
Age  
 Median 16.5 14.0 17.0 

IQR 12–22 11–19 10–21 
Kruskal-Wallis Statistic 0.95 
P value 0.62 

Body Surface Area (m2)  
 Median 1.59 1.52 1.66 

IQR 1.26–1.83 1.24–1.78 1.37–1.93 
Kruskal-Wallis Statistic 0.45 
P value 0.80 

Ventricle Systemic Circulation  
 Χ2 test Statistic 1.7 
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P value 0.79 
DOF 4 

Note.—Age, BSA, and ventricular morphology types are tested for statistical significance. P values < .05 indicate 
significant differences. 

Appendix E7. Pipeline Segmentation Results over Time 

Movies 1–3 (multimedia) show the pipeline’s segmentation outputs over time for the best, 
median and worst cases according to Dice score, corresponding to Figure 3 in the main paper. 

 

 

Movie 1: Segmentation over time for the best case. 
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Movie 2: Segmentation over time for the median case. 
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Movie 3: Segmentation over time for the worst case. 
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A Deep Learning Pipeline for Assessing Ventricular Volumes from a
Cardiac MRI Registry of Pa<ents with Single Ventricle Physiology

Key Result

Pa#ents:

Methods: Results:
• Median (IQR) Dice scores achieved by the pipeline:

• End-diastolic volume = 0.91 (0.89–0.94)
• End-systolic volume = 0.86 (0.82–0.89)
• Myocardium = 0.74 (0.70–0.77)

• SegmentaKon quality on external test set examinaKons:
68% were saKsfactory, 26% needed minor adjustments,
5% needed major adjustments, and 0.4% had cropping
model failure.

• The pipeline contained three DL
models (see Figure).

• DL-derived volumetric and
funcKonal metrics were compared
with ground truth manual
segmentaKon-derived
measurements.

• The pipeline was qualitaKvely
evaluated on the external test set.

Training, ValidaKon, & Internal Test
Sets: 250 cardiac MRI examinaKons
from 13 centers (FORCE registry)

The developed deep learning (DL) pipeline can provide standardized segmentaKon for paKents
with single ventricle physiology that is robust to highly variable anatomy and heterogeneous
data collected from mulKple centers.

External Test Set: 475 unseen cardiac MRI
examinaKons from FORCE registry


