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Abstract 

Speech is promising as an objective, convenient tool to monitor 

health remotely over time using mobile devices. Numerous 

paralinguistic features have been demonstrated to contain 

salient information related to an individual’s health. However, 

mobile device specification and acoustic environments vary 

widely, risking the reliability of the extracted features. In an 

initial step towards quantifying these effects, we report the 

variability of 13 exemplar paralinguistic features commonly 

reported in the speech-health literature and extracted from the 

speech of 42 healthy volunteers recorded consecutively in 

rooms with low and high reverberation with one budget and two 

higher-end smartphones, and a condenser microphone. Our 

results show reverberation has a clear effect on several features, 

in particular voice quality markers. They point to new research 

directions investigating how best to record and process in-the-

wild speech for reliable longitudinal health state assessment.  

Index Terms: measurement error, reproducibility, acoustic 

environment, paralinguistics, mobile health 

1. Introduction 

Speech processing applied to in-the-wild smartphone 

recordings in health state assessment has potential as a 

convenient, objective monitoring tool in health care and 

research [1]. As a clinical application, this may break down 

barriers affected individuals face in accessing healthcare. 

Multiple studies have demonstrated the inherent value of the 

paralinguistic content of speech in the detection and 

classification of a range of health disorders e.g., [2]–[8] 

However, much of this research has used one-off speech 

recordings made in highly controlled environments with high-

specification audio equipment, with collection overseen by a 

trained researcher. In-the-wild longitudinal monitoring with 

mobile devices, in contrast, introduces multiple technical, 

acoustic and human factors, and associated variability in the 

recorded speech signal, some of which could be erroneously 

interpreted as related to a change in health state. These factors 

may include the specification of the recording hardware, 

ambient noise and room acoustics.  Smartphone design varies 

greatly, resulting in varying data quality and reproducibility 

issues when recording on different devices [9]. 

Literature quantifying sources of variability in recorded 

speech for mobile health applications is relatively sparse. Most 

studies have focused on dysphonia and a small number of 

features, most commonly comparing the performance of mobile 

devices in capturing speech features to a studio microphone 

[11]–[14]. Studies have shown that fundamental frequency (F0) 

is more robust to device type and ambient noise, while voice 

quality features such as jitter and shimmer are heavily impacted 

[12],  [13]. Device type has also been shown to affect the signal-

to-noise ratio of recorded speech [15]. Voice quality features 

have also been shown, in a controlled phonetics study, to be 

affected by recording environment [16].  

The effects of ambient noise and microphone type have 

been somewhat investigated, however, the effect of 

reverberation on speech features in-the-wild has received no 

specific attention in the literature, to the best of the authors’ 

knowledge, and differences in reverberation are often audible. 

To begin to address this knowledge gap, our pilot measures the 

effect of reverberation on exemplar speech features commonly 

used in health-driven analyses, recording healthy volunteers in 

rooms with low and high reverberation, simultaneously with 

several devices. We chose to focus on the healthy state to create 

baseline data to facilitate the interpretation of reverberation-

affected data from clinical cohorts in future work. We assessed 

features extracted with standard open-source processing tools 

to observe the sensitivity of the entire data pipeline to 

reverberation and not only recording hardware. 

Our first results, that are part of a larger body of work, are 

reported here. We report two analyses. First, we assessed the 

effect of reverberation on features extracted at a suprasegmental 

level from recordings, a common approach for baseline 

machine learning experiments. Second, removing the effects of 

linguistic variability, we report changes in features with 

reverberation at the vowel level. We analyzed recordings from 

a benchmark condenser microphone and three smartphones to 

observe the effects of reverberation in each. Our aim was to 

investigate the implications of room reverberation for mHealth 

tool robustness in research and clinical practice. 

2. Methodology  

With no public dataset of mobile device recordings in 

controlled conditions with varying reverberation available, we 

created a new speech dataset. To facilitate rapid recruitment of 

a balanced cohort in the short time frame available, it was 

decided to not make these recordings publicly available. Speech 

features and basic non-identifiable, anonymized participant 

data will be available upon completion of the project per the 

conditions of the participants’ consent. The recording and 

analysis pipeline is summarized in Figure 1. 



2.1 Data Collection 

Participant recruitment: This project received approval from 

the Research Ethics Committee of King’s College London. 

Forty-two volunteers were recruited by word-of-mouth, social 

media and the institute’s participant recruitment website and e-

newsletter. Exclusion criteria included dyslexia, being a 

smoker, being under 16, ongoing treatment for a mental health 

disorder, and having any other kind of neurological, respiratory 

or other health issue that may affect the participant’s speech. 

Volunteers whose first language was not English were required 

to have a sufficient level of reading ability and spoken English 

to read aloud two easy-intermediate texts and describe an 

everyday scene. Enrolment questionnaires recorded 

participants’ age, sex, height, whether English was their first 

language and, if not, their level of English according to the 

Common European Framework of Reference for Languages1. 

For analysis, all participant data was saved and labelled only 

with a non-personally identifiable ID number. 

Speech Recording:  Participants were recorded in Summer 

2022 in two small, neighboring, identical, windowless 

electroencephalogram test rooms with low ceilings in the 

basement of a university building where there was no ambient 

noise. Room 1 was fitted with acoustic foam and soft 

furnishings and Room 2 was empty, leaving only hard plaster 

and wooden surfaces, except for carpet tiles on the floor. Thus, 

we had recording spaces with low and high reverberation, 

respectively. In a single session, we recorded a participant 

consecutively in each room, alternating the room order between 

participants to avoid introducing bias between rooms. 

Participants read aloud the full version of The Rainbow Passage 

in each room [17] to elicit consistent speech across the cohort 

with minimal training. The reading provides variety and 

versatility for analysis, with high phonetic balance and full 

phonetic coverage, and structural and lexical complexity 

appropriate for our healthy, educated cohort [18], [19].  

Each participant reading was recorded simultaneously with 

a Samsung Galaxy S20 FE 5G (released 2020), as a 

representative non-budget Android smartphone; a Motorola G6 

Play (released 2018), as a representative budget Android 

smartphone; an Apple iPhone 11 (released 2019) and an Audio 

 
1 Council of Europe, www.coe.int/lang-cefr 
2 Radford et al, arxiv.org/abs/2212.04356 

Technica AT2020USB+ condenser microphone with a cardioid 

pickup area, providing a higher quality recording from a non-

mobile device within the budget constraints of our pilot study. 

The condenser microphone was fitted with a Rycote InVision 

shock mount and foam pop filter on a tabletop microphone 

stand and operated using Audacity open-source software (v. 

3.1.3). The smartphones were positioned directly adjacent to the 

pop filter with their primary microphones at the height of the 

center of the condenser microphone diaphragm.  

Participants were instructed to stand in front of and facing 

the pop filter. The height of the smartphones and condenser 

microphone was adjusted to be approximately level with the 

participant’s mouth. Immediately prior to recording, the 

participant was positioned 30 cm from the condenser 

microphone, the distance at which its frequency response is 

specified. Upon completion of recording, audio files were saved 

and transferred to a secure cloud storage service. As with all 

participant data, recordings were labelled only with the 

participant’s non-personally identifiable ID number.  

2.2 Feature extraction and analysis 

Feature extraction: We extracted 13 exemplar features 

commonly used in speech-health research that represent the 

basic speech production characteristics of timing, prosody, 

quality and articulation. These were speaking rate; articulation 

rate; number of pauses; mean fundamental frequency, (F0 

mean); standard deviation (F0 standard deviation); intensity; 

first formant mean frequency, (F1 mean); second formant mean 

frequency, (F2 mean); spectral slope; spectral tilt; jitter; 

shimmer; and cepstral peak prominence, (CPP). 

First, we converted all audio files to single channel 16 kHz 

Waveform Audio File Format (WAV) files. Audio files were 

then automatically transcribed, using the base Open AI Whisper 

model (v. 20230117) 2 , choosing automated analysis over 

manual transcription as a more realistic solution for a real-world 

mHealth pipeline [20]. We aligned transcripts with the reading 

text with the Montreal Forced Aligner [21] and English MFA 

acoustic model V2.0.0a3 to extract the three timing features for 

the entire reading. 

3 mfa-models.readthedocs.io 

Figure 1: Data pipeline for investigation of room reverberation effects on 13 exemplar timing and acoustic speech features 

extracted from smartphone recordings. Forced alignment provides information for timing feature extraction. 
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Acoustic features were extracted at two levels: (1) 

suprasegmentally, at the level of the entire reading, and (2) at 

the vowel level, for occurrences of /a/ of at least 100 ms. We 

undertook a suprasegmental approach as this is a common 

approach in paralinguistic analyses [22] and enables the 

calculation of timing features. In contrast, analysis of /a/ vowel 

sounds removes variability due to the diverse linguistic content 

of the entire reading. An open vowel, /a/ has been recommended 

as more reliable for jitter and shimmer measurements [23], two 

features associated with changes in health, in particular mental 

state [7]. Timings provided by forced alignment enabled the 

extraction of feature values for each detected /a/ sound. 

Acoustic features were extracted using Parselmouth (v. 

0.4.1), an open-source Python library (v. 3.9.13), in 

combination with Praat (v. 6.3.02) [24], [25]. This extraction 

used default Praat settings, except for the extraction of F0, 

which followed the two-step approach recommended in [26]. 

The use of Whisper, Montreal Forced Aligner and Praat was a 

design choice to observe the sensitivity of feature extraction to 

reverberation effects using a processing pipeline of standard, 

open-source, well-established tools. 

Statistical analysis:  Tests were undertaken in R (v. 4.2.2). We 

analyzed the 13 features extracted at the suprasegmental level 

using bootstrapped paired t-tests. First, for each feature and 

device combination, we grouped the 84 feature values obtained 

for every participant in the two rooms, standardizing the values 

(mean = 0; standard deviation = 1). In each feature-device 

group, we then paired feature values per participant (Room 1, 

Room 2) to perform the t-tests and plotted standardized mean 

differences and corresponding 95% confidence intervals (CI).  

We used linear mixed effects (LME) models [27] to analyze 

the effects of reverberation on the 10 acoustic features extracted 

from repeated /a/ vowel sounds identified in each of our 

recordings. We detected a median of 5 /a/ sounds ≥ 100 ms per 

recording (interquartile range: 3-10). Individual models were 

fitted for each feature-device combination, using groups of 

standardized feature values for each room-participant 

permutation, similar to the suprasegmental analysis. In contrast 

to the suprasegmental t-tests, LME models account for the 

clustering of repeated measures and allows us to adjust for 

participant gender, age, height and first language [28].  

Each model considered a single speech feature as the 

dependent variable and included reverberation (0 = low, 1 = 

high), years of age, height (m), sex (0=female, male = 1), L1 

English (0 = No, 1 = Yes) and room recording order (0 = Room 

1 first, 1 = Room 2 first) as independent variables (Table 1). 

Each model included a participant random intercept to account 

for clustering of repeated measures. We report the β coefficients 

for reverberation, labelled adjusted mean difference, and their 

corresponding 95% CI. The regression coefficients represented 

the standard deviations difference in each speech feature 

between low and high reverberation rooms. Bootstrap CIs were 

estimated using a parametric percentile bootstrap with 500 

iterations, implemented using the confint.merMod method from 

the lme4 package for R [29].  

 

3. Results & Discussion 

Figures 2 and 3 show the within-person standardized mean 

differences (and corresponding 95% confidence intervals) in 

each feature between the two rooms. Positive values indicate 

that mean feature values were higher in the presence of high 

reverberation (Room 2) versus low reverberation (Room 1). 

The three extracted timing features are all affected somewhat 

by room reverberation (Figure 2). The consistent negative mean 

difference raises robustness and validity concerns for these 

features, which are widely used as markers in mental health and 

neurological speech studies [7].  

F0 mean and standard deviation are least affected by 

reverberation (Figure 3). Both the mean difference and room 

coefficient have estimates closer to zero and narrow confidence 

intervals. This is consistent with results reported in [12], [13] 

where F0 was reported as more robust to ambient noise and 

microphone type than other speech features. Surprisingly, we 

observe no clear effect of reverberation on intensity as recorded 

by the condenser microphone. There are, however, small offsets 

in intensity in all three smartphones.  

Considering F1 and F2, the systematic biases observed in 

the suprasegmental analysis of the Motorola, iPhone and the 

condenser microphone are not present in the LME /a/ analysis. 

We speculate that this is due to the reduction in linguistic 

variability. Interestingly, the F1 results for Samsung differ from 

the other devices. We speculate that this could be due to pre-

processing on the Samsung. Voice quality features appear the 

most affected by reverberation, with jitter, shimmer and CPP 

being clearly affected in all testing scenarios. These results 

amplify existing concerns about the robustness and validity of 

voice quality features for health assessment [12], [13]. We 

observed no clear differences between smartphones, including 

between the budget phone and other phones we tested. 

However, we plan to compare devices formally in future work. 

In summary, our analysis demonstrates that room 

reverberation is a source of variability in multiple features. This 

is unsurprising; reverberation is a convolutive phenomenon and 

dictated by the raw speech signal and the room impulse 

response, and almost all extracted features are likely to be 

somewhat affected. A caveat is that these observations may not 

be due solely to reverberation; the Lombard effect may have 

resulted in different raw speech characteristics [30].  

 

Figure 2: Standardized differences in timing features 

between low and high reverberation per participant over 42 

participants. Errors bars are 95% confidence intervals. 

Negative differences represent lower feature values in the 

presence of higher reverberation. 

Table 1: Participant characteristics (n = 42) 

sex female 23 English 

L1 

Yes 29 

male 19 No 13 

age 

(years) 

median 28 height 

(m) 

median 1.70 

IQR 23-32 IQR 1.63-1.80 

 

 



Our study has several limitations. First, it was conducted 

in healthy volunteers. This was a design choice to begin to 

investigate reverberation effects while minimizing variability 

due to pathology and to pilot data collection procedures for 

future larger studies. Second, our experimental set-up likely 

represents the upper extreme of reverberation levels in-the-wild 

and consequently overestimates the effects; however, our 

results still highlight reliability concerns. Third, we have a 

limited age range. Fourth, we did not collect sustained vowels 

as part of our protocol; this might have allowed more reliable 

extraction of voice quality features. Fifth, we did not compare 

the effect of different processing tools and algorithm settings. 

Sixth, our analysis is not a formal comparison of mobile 

devices. We are planning a larger study to address these.  

4.  Conclusion 

Our findings on the effects of reverberation complement 

observations in the literature on ambient noise and device 

choice [12], [13]. The speech processing community cannot 

ignore these sources of variability and expect to develop robust 

and reliable models for health assessment; otherwise, 

differences in recording conditions may be attributed to 

different health states. Instead, we must address the question of 

how we best record speech in-the-wild that is both robust to 

variations in recording parameters but still captures salient 

indicators of an individual’s health state. Signal processing and 

machine learning solutions must also be explored. This could 

include impulse response estimation techniques and adversarial 

learning approaches [31, 32]. These are vital steps in the 

development of transparent, reliable, valid and reproducible 

tools for health state assessment.   
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Figure 3: Standardized differences in features values between low and high reverberation per participant over 42 participants. 

Mean differences in (ii) are adjusted for participant and measurement variables. Positive differences represent higher values in 

the presence of higher reverberation. Error bars represent 95% confidence intervals.  
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