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Abstract

This dissertation examines three phenomena, that are prevalent in healthcare, and

their consequences for patient health outcomes. The focus of Chapter 2 is the adop-

tion and diffusion of robots in England for the surgical treatment of prostate cancer

patients in the National Health Service (NHS). Exploiting quasi-random variation

in the geographic allocation of robots, Chapter 2 shows that robots shorten patients’

length of stay and decrease the incidence of adverse events from surgery, but their

effects are heterogeneous and significantly depend on surgeons’ skills. High-skilled

surgeons benefit the least from using the technology, while lower-skilled surgeons

appear to gain the most from it. Chapter 3 studies the impact of hospital mergers

on the quality of clinical care. Using the universe of hospital medical records in

England, it examines all public hospital mergers after the introduction of hospital

choice in 2006. There were 159 hospital sites involved in mergers over our sample

period, comprising 13 transactions. Using an event study framework, this Chapter

finds that mergers have immediate and persistent negative impacts on clinical qual-

ity. Chapter 4 uses a unique source of information, Real-Time Location System

(RTLS) Data, to study the effect of contact time on patient health outcomes. RTLS

allows to perfectly observe the amount of time nurses spend with patients in the hos-

pital. This Chapter exploits the granularity of this data to estimate a causal impact of

contact time on patient outcomes by decomposing contact time into an endogenous

and plausibly exogenous component and shows that direct contact between nurses

and patients significantly reduces in-hospital mortality and accidents.





Impact Statement

The healthcare sector is of great significance across multiple dimensions within

society. It plays a pivotal role in tackling global challenges like demographic shifts

towards aging populations and addressing disparities in quality of life. By serving

as the bedrock for developing healthier and more resilient communities, it emerges

as a fundamental building block for fostering a prosperous and sustainable future.

By exploring the transformative potential of new technologies, the findings of

Chapter 2 hold promise for addressing long-standing inequalities and improving

patient outcomes. This Chapter reveals that robots can significantly reduce hospital

stays and decrease adverse events from surgery. However, it also highlights the role

of surgical expertise in realizing these benefits. The advent of robots in healthcare,

as illuminated by this research, represents a pivotal step towards enhancing patient

experiences and safety, but also an important tool to reduce disparities in the quality

of care.

Chapter 3 focuses on the intricate dynamics of hospital mergers. It unveils the

complex relationship between hospital consolidation and patient outcomes. Recent

trends in hospital consolidation have been notable within the healthcare industry,

with a growing number of mergers and acquisitions taking place among healthcare

providers. These trends have sparked considerable discussion and concern regard-

ing their effects on patient care and outcomes. The results presented in this Chaper

provide crucial insights into the ramifications of these mergers, shedding light on

their immediate and lasting effects on clinical quality. In this sense, they provide

essential evidence for policymakers, healthcare providers, and patient advocates to
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closely monitor these trends and work collaboratively to balance the potential ben-

efits of consolidation and the protection of patient access, affordability, and quality

of care.

Chapter 4 examines the fundamental role of direct nurse-patient interactions within

hospital settings. Employing innovative data, it uncovers the substantial impact of

contact time on in-hospital mortality and accident rates. These findings underscore

the invaluable contribution of personal care in the recovery process. Understand-

ing the impact of nurse availability on patient care is vital for policymakers as they

make decisions about healthcare staffing standards, funding allocation, and work-

force planning. It informs decisions related to nurse-to-patient ratios, nurse train-

ing, and strategies for retaining nursing talent. This Chapter provides substantial

evidence of the detrimental effect that nurse shortages may have on patients.

Collectively, this dissertation illuminates critical facets of the healthcare landscape,

offering tangible insights and evidence-based recommendations. Its research not

only enriches the academic discourse but also has the potential to inform policy

decisions and practical strategies aimed at enhancing patient health outcomes in

healthcare systems worldwide.
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Chapter 1

Introduction

This dissertation studies the healthcare sector from an economist’s perspective. Un-

derpinning these studies is the idea that economic theories and models can help us

understand how the healthcare market operates and how policies can be designed to

make healthcare more efficient and accessible for everyone.

The first economic phenomenon I explore is technology adoption. Economists study

technology adoption to understand its impact on productivity, economic growth,

and market dynamics. Analyzing how businesses and individuals adopt and utilize

technology provides insights into efficiency gains, income distribution, and over-

all societal progress. Notably, understanding the dynamics of technology adoption

in healthcare is crucial, given the sector’s reliance on innovation. Chapter 2 in-

vestigates the potential of robots to reduce variation in patient outcomes. Across

and within occupations, individuals differ substantially in their level of skills, and

healthcare providers, such as surgeons and doctors, are no different (Chan et al.,

2022; Currie and MacLeod, 2017; Kolstad, 2013a). Differences in providers’ skills

generate inequality and can exacerbate systematic disparities in access (Finkelstein

et al., 2016; Chandra and Skinner, 2003; Deaton, 2003). I show that, in England,

the diffusion of robots coincided with an improvement in average surgical perfor-

mance and convergence in outcomes between high and lower-skilled surgeons. I ex-

ploit quasi-random variation in the geographic allocation of robots to study whether

this is attributable to the adoption of robotic surgery. Using administrative data
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on prostate cancer patients, the most common type of cancer in men in the United

Kingdom (UK), I show that robots played a fundamental role. I find that robotic

surgery improves surgeons’ performance. The robot reduces post-operative length

of stay and morbidity across patients. However, my analysis shows that these effects

are highly heterogeneous, and technological gains significantly depend on the skills

of the surgeon. High-skilled surgeons benefit the least from using the technology,

while lower-skilled surgeons appear to gain the most from it. This result suggests

that the robot exhibits decreasing returns in skills, which means that it comple-

ments lower-skilled surgeons more strongly than higher-skilled ones. With tradi-

tional surgery, the patients of high skilled surgeons are four percentage points less

likely to experience an adverse event than those of lower-skilled surgeons. However,

with the robot, they are around one percentage point less likely to experience these

events. A similar pattern emerges for the length of stay. As differences in patient

outcomes between high and lower-skilled surgeons shrink, my analysis thus sug-

gests that the robot may have the potential to reduce variation in patient outcomes.

This effect appears to ensue from lower skilled surgeons performing significantly

more poorly without any technological aid, and the technology equalizing them to

high skill surgeons.

The second economic phenomenon I study is related to market consolidation.

Economists investigate how mergers influence consumer welfare, particularly in

terms of pricing, product quality, variety, and availability. Mergers can affect con-

sumers positively through improved offerings or negatively through reduced com-

petition and increased prices. Recent trends in hospital consolidation have been

notable within the healthcare industry, with a growing number of mergers and ac-

quisitions taking place among healthcare providers. Chapter 3 studies the impact of

hospital mergers on the quality of clinical care. Using the universe of hospital med-

ical records in England it examines all public hospital mergers after the introduction

of hospital choice in 2006. There were 159 hospital sites involved in mergers over

our sample period, comprising 13 transactions. Using an event study framework

to evaluate the population of hospital mergers in the English NHS between 2006
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and 2015, it finds that mergers have immediate and persistent negative impacts on

clinical quality.

Lastly, this dissertation focuses on how interactions between service providers and

consumers affect the provision of services in a very special type of firm: hospi-

tals. Chapter 4 uses a unique source of information, Real-Time Location System

(RTLS) Data, to study the effect of contact time on patient health outcomes. The set-

ting of this paper is the New Cross Hospital in Wolverhampton, England. This is a

large district general hospital part of the Royal Wolverhampton NHS Trust (RWT).

The Trust is one of the main healthcare providers in the West Midlands, cover-

ing acute, community, and primary care services. In 2013, RWT partnered with a

United States technology company to develop a real-time patient flow and tracking

solution. This application was intended to support staff in delivering care and to en-

hance efficiency through the process of providing real-time operational information

across clinical areas. RTLS allows to perfectly observe the amount of time nurses

spend with patient in hospital.This Chapter exploits the level of granularity of this

data to estimate a causal impact of contact time on patient outcomes. By decom-

posing contact time into an endogenous and plausibly exogenous component, this

Chapter shows that direct contact between nurses and patients significantly reduces

in-hospital mortality and accidents.



Chapter 2

Technology, Skills, and Perfomance:

The Case of Robots in Surgery

2.1 Introduction

Disparities in access and quality of services concern regulators and policy markers.

This is particularly true in healthcare, where substantial effort has been devoted

to study why differences in patient outcomes across areas and providers persist,

even after controlling for patient risk Skinner (2011). Providers’ use of alternative

treatments may explain part of this phenomenon (Tsugawa et al., 2017; Birkmeyer

et al., 2013b). Health outcomes appear nonetheless to be only marginally affected

by it (Molitor, 2018). In fact, heterogeneity in healthcare providers’ skills may be

at the root of this variation (Chandra and Staiger, 2020; Hull, 2018; Chandra and

Staiger, 2007).

In this paper, I investigate the potential of robots to reduce variation in patient out-

comes. Across and within occupations, individuals differ substantially in their level

of skills, and healthcare providers, such as surgeons and doctors, are no different

(Chan et al., 2022; Currie and MacLeod, 2017; Kolstad, 2013a). Differences in

providers’ skills generate inequality and can exacerbate systematic disparities in

access (Finkelstein et al., 2016; Chandra and Skinner, 2003; Deaton, 2003). I show

that, in England, the diffusion of robots coincided with an improvement in average
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surgical performance and convergence in outcomes between high and lower-skilled

surgeons. I exploit quasi-random variation in the geographic allocation of robots to

study whether this is attributable to the adoption of robotic surgery. Using adminis-

trative data on prostate cancer patients, the most common type of cancer in men in

the United Kingdom (UK), I show that robots played a fundamental role.

The literature in economics has mostly thought of robots as competing against hu-

man labor in the production of different tasks (Acemoglu and Restrepo, 2020; Hum-

lum, 2019). However, in many applications, the robot is meant to aid rather than

substitute workers. Surgical robots are fully operated by surgeons and are an exten-

sion of their users. I anticipate that, in this case, any potential return from using the

technology will depend on the interaction between the human and robotic capabili-

ties.

Robotic technology may exacerbate variation in surgical performance, or may be

a solution to this problem if its returns are decreasing in surgeons’ skills. I show

that robotic surgery reduces variation in patient outcomes, and this reduction is

caused by what I estimate to be more significant improvements among lower skilled

surgeons.

Part of my contribution is to identify the impact of this technology in the presence

of both heterogeneous treatment effects and a selection problem. To this day, med-

ical evidence that robotic surgery improves patient outcomes, relative to the more

invasive alternative, has been at best inconclusive (Coughlin et al., 2018; Yaxley

et al., 2016; Robertson et al., 2013; Bolla et al., 2012). Existing studies are based

on small and selected samples (Neuner et al., 2012) and are not designed to iden-

tify causal effects (Ho et al., 2013). If the potential of robotic surgery to improve

performance depends on surgical skills, small sample studies will reflect only part

of the picture. Moreover, suppose the uptake of this technology is also heteroge-

neous across the skills’ distribution. In that case, any naive correlation will speak

more to the characteristics of the adopters rather than the technology itself. Impor-

tantly, when treatment effects are heterogeneous, surgeons and patients may choose
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the robot based on their specific technological gains (Björklund and Moffitt, 1987).

Regression-adjusted comparisons between robotic and traditional surgery would,

in this case, provide misleading estimates if adoption is informed by unobserved

factors that influence selection.

To identify causal effects, I use an approach introduced by Björklund and Moffitt

(1987) and generalized by Heckman and Vytlacil (2005) that concentrates on the

marginal treatment effect (MTE). In this context, the MTE is the average effect of

robots on the outcome of individuals at a particular margin of indifference between

robotic and traditional surgery. With this approach, I identify the causal effects of

robots on patient outcomes and how these depend on surgical skills. I focus on two

patient outcomes: the speed of recovery (i.e. post-operative length of stay) and the

occurrence of adverse events from surgery (i.e. post-operative morbidity). These

are two dimensions of surgical performance that matter to physicians, patients, and

policymakers (Lotan, 2012), and robotic surgery should have a measurable effect on

them because it increases precision and requires smaller incisions (Higgins et al.,

2017; Coelho et al., 2010; Lowrance et al., 2010; Nelson et al., 2007). I use a single

risk-adjusted indicator of surgeons’ patient outcomes to measure skills. Because I

expect the robot to impact surgeons’ performance, I estimate this indicator using

data from the years preceding the introduction of this technology nationally. In fact,

the indicator is measured when all operations were carried out without technological

aid and is not affected by the surgeons’ adoption behavior.

Identification of causal effects in the MTE framework requires, in most cases, no

stronger assumptions than standard instrumental variable methods, but poses a more

substantial burden on the instrument (Cornelissen et al., 2016). Indeed, this method

requires at least one instrumental variable to be continuous. I exploit the staggered

adoption of robots over time to construct two instruments that arguably satisfy the

conditions for identification.

In England, the acquisition of surgical robots has been managed by individual hos-

pitals (Lam et al., 2021). This process resulted in an uneven distribution of robots
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geographically and created differences in the availability of the technology over

time. I argue that the timing of the patient cancer diagnosis, relative to his closest

hospital adopting the robot, induces a variation in the probability of robotic surgery

that is uncorrelated to patient outcomes. Further, as in McClellan et al. (1994); Mc-

Clellan and Newhouse (1997) and Gowrisankaran and Town (1999), I argue that the

patient relative distance to a hospital with the robot affects the probability of robotic

surgery but is plausibly uncorrelated to outcomes.

I find that robotic surgery improves surgeons’ performance. The robot reduces post-

operative length of stay and morbidity across patients. However, my analysis shows

that these effects are highly heterogeneous, and technological gains significantly de-

pend on the skills of the surgeon. High skilled surgeons benefit the least from using

the technology, while lower skilled surgeons appear to gain the most from it. This

result suggests that the robot exhibits decreasing returns in skills, which means that

it complements lower skilled surgeons more strongly than higher skilled ones. With

traditional surgery, the patients of high skilled surgeons are four percentage points

less likely to experience an adverse event than those of lower skilled surgeons. How-

ever, with the robot, they are around one percentage point less likely to experience

these events. A similar pattern emerges for length of stay. As differences in patient

outcomes between high and lower skilled surgeons shrink, my analysis thus sug-

gests that the robot may have the potential to reduce variation in patient outcomes.

This effect appears to ensue from lower skilled surgeons performing significantly

more poorly without any technological aid, and the technology equalizing them to

high skill surgeons.

That said, I uncover a strong pattern of negative selection. High skilled surgeons

use the technology more intensively, while lower skilled ones use it less despite

their higher returns. Surgeons generally appear to use the robot on younger and

less complex patients, but on all patients highly skilled surgeons are more likely to

use the robot. Similarly, the MTE curve is downward sloping, with higher resis-

tance to treatment associated with larger improvements in patient outcomes. Het-

erogeneous actual or perceived costs to adopt the technology may explain this result
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(Suri, 2011).

This paper builds on several literatures. An influential body of work has doc-

umented heterogeneity in skills and treatment rates across healthcare providers.

Abaluck et al. (2016), Currie and MacLeod (2017), and Chan et al. (2022) show

that doctors differ in their ability to diagnose patients. Part of this literature focuses

on the role of comparative advantage to explain providers’ treatment decisions. In

Chandra and Staiger (2007) productivity spillovers generate heterogeneity in re-

turns which may induce some hospitals to use a certain treatment more intensively.

In a recent paper, Breg (2022) shows that tradeoffs between multiple dimensions

of health may explain differences in treatment rates. Chandra and Staiger (2020)

conclude that most hospitals overuse treatments in part because of incorrect beliefs

about their comparative advantage. I add to this literature by showing that the adop-

tion of new technologies may limit the extent to which skills heterogeneity affect

patient outcomes, but that some providers may under use the innovation, therefore

limiting its potential.

More broadly, this paper contributes to the literature studying the effects of tech-

nology on the labor market. This literature focuses, for the most part, on the way

technology affects workers across education levels (Acemoglu and Autor, 2011). I

concentrate instead on within occupation and task effects. A recent focus of this

literature have been robots. Unlike Acemoglu and Restrepo (2020) and Humlum

(2019), I study the effects of robots on workers’ performance rather than wages or

employment, and I study robots in abstraction from automation. Hence, I bring a

novel perspective to the study of the relationship between skills and technologies.

Lastly, I contribute to a new literature studying the effects of robots in healthcare.

Using data from the United States (US), Horn et al. (2022) show that adopting a

robot drives prostate cancer patients to the hospital. Maynou et al. (2021) describe

a similar pattern for the UK and shows that the adoption of robots correlates with

reduced readmissions and length of stay. Maynou et al. (2022) discusses how the

use of robots for prostate cancer patients affected their diffusion in other specialties
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in the UK.

The paper proceeds as follows. Section 2.2 describes surgical robots and their use

for prostate cancer surgery. Section 4.2 presents the data. Section 2.4 discusses

how I measure surgeons’ skills and provides the empirical facts that have motivated

this work. Section 2.5 presents the econometric model and the conditions required

for identification and estimation of the parameters. Section 2.6 introduces the in-

strumental variables I will use to identify the model parameters and discusses their

validity. Section 2.7 summarizes the results. Finally, Section 2.8 concludes.

2.2 Robotic surgery for prostate cancer
The uses of robotics in surgery were hypothesized as far back as 1967, but it took

nearly 30 years and the National Aeronautics and Space Administration (NASA) to

complete the first functional surgical robot (George et al., 2018).

The only type of robot currently available in the US and the UK is the da Vinci

surgical system. This is manufactured by the California-based company and market

leader Intuitive. The robot has three components which I show in Figure 2.1:

1. a viewing and control console that the surgeon uses,

2. a vision cart that holds the endoscopes and provides visual feedback, and

3. a manipulator arm unit that includes three or more arms.

The instruments, including a video camera, are attached to the robotic arms and con-

trolled directly by the surgeon. The robotic arms not only allow to work through in-

cisions much smaller than what would be required for human hands but also to work

at scales, where hand tremors would pose fundamental limitations (Tonutti et al.,

2017). The console consists of multiple components, including finger loops, joy-

sticks, and foot pedals, that allow movements to go through the robotic arms. The

robotic joysticks require less force to manipulate than standard tools (Jayant Ketkar

et al., 2022), and an adjustable seat and arm support allow surgeons to adapt the ma-

chine to their bodies. By providing articulation, implementing filtering of tremors,
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and simulating tactile sensations, the surgeon’s dexterity and eye-hand coordination

are enhanced, thereby subjectively improving surgical performance (Tonutti et al.,

2017).

Figure 2.1: Picture of Da Vinci surgical system

Although robots have found several applications in surgery, this paper focuses on

robotic surgery for prostate cancer (or radical prostatectomy (RP)). Prostate cancer

is the most common cancer in men in the UK; that’s 129 men are diagnosed with

prostate cancer every day, and more than 11,500 die yearly from it.1 I restrict my at-

tention to this operation because the robot has played a notable role in transforming

how surgeons perform it (Hussain et al., 2014).

In the US, the diffusion of robots for prostate cancer surgery has been incredibly

rapid. In 2003, less than 1 percent of surgeons in the US performed this proce-

dure robotically. Seven years later, already 86 percent of the 85,000 men who had

prostate cancer surgery had a robot-assisted operation. Eventually, by 2014, robotic

surgery accounted for up to 90 percent of radical prostatectomies across the US.2

This trend has been similar in England where, by 2014, the majority of cases (62.7

percent) were performed robotically (Marcus et al., 2017).

Before robots, prostate cancer surgery was usually performed with an ‘open’

1https://prostatecanceruk.org
2https://www.nature.com/articles/d41586-020-01037-w
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method because the prostate is hard to access with conventional tools. In the ‘open’

method, the surgeon makes a single large incision that allows seeing the area of in-

terest and operate.3 From an oncological perspective, robotic surgery is equivalent

to traditional surgery; they are both practical to remove cancer when this is confined

to the prostate. However, robotic surgery promised to reduce blood loss, pain, scar-

ring, infections, and average length of stay (among others) by replacing the practice

of cutting patients open with a technique that involved only a few small incisions

(see Figure 2.2) and complex manual tools.

Figure 2.2: Comparison of incisions

Note: Comparison of incisions required for traditional and robotic radical prostatectomy

Generally, medical technology is considered to be valuable if the benefits of medical

advances exceed the costs (Cutler and McClellan, 2001). Robotic surgery is now the

standard for the removal of prostate cancer, but doubts remain on whether the sup-

posed benefits outweigh the costs of this technology (Davies, 2022). Indeed, among

the most significant barriers to adopting robotic surgery are the high costs associ-

ated with the purchase and maintenance of robots (Marcus et al., 2017). Lam et al.

(2021) suggests that the median cost of acquisition of the da Vinci robot in Eng-

land is £1,350,000, with a median yearly maintenance cost of £492,000. Moreover,
3Other minimally invasive approaches, such as laparoscopy, had also been available before

robotic surgery but had limited popularity because of the problematic position of the prostate.
Throughout this paper, I will refer to all approaches that do not involve using robots as traditional
surgery.



2.3. Data and Institutional Context 29

robotic technology requires the surgeon and the hospital to change their practices

significantly. Robots usually necessitate a dedicated operating room, which is built

for this purpose in many cases. Both surgeons and nurses also need specialized

training. Operating using the console requires significant coordination between the

head surgeon and the assistant working at the bedside. Any technical drawback

during the operation is risky for the patient, but also prolongs operation time and

generates inefficiencies for the hospital (Compagni et al., 2015).

2.3 Data and Institutional Context
The data I use comes from the Hospital Episodes Statistics (HES). HES is an ad-

ministrative data set covering the universe of inpatient discharges from the English

National Health Service (NHS). HES provides detailed demographic and clinical

information about the patient, including age, sex, ethnicity, admission date, dis-

charge date, and up to 20 recorded diagnoses. Geographical information, such as

where patients receive treatment and their area of residence, is also available.

In England, health care is publicly funded and free for all UK residents. Hospitals

in the NHS provide care to patients and are reimbursed by the government under

nationally agreed tariffs. Planned or elective care is rationed through waiting times

and requires an initial referral from a primary care physician (known as a General

Practitioner or GP). Patients are entitled to choose a hospital for treatment when

the treatment is planned. The choice of which hospital to attend is made with the

support of the patient’s GP. Hospitals cannot refuse patients, but will schedule ad-

missions and cancel treatments if there is a lack of capacity.

Although equitable accessibility of resources is part of the NHS constitution, the

acquisition of surgical robots in England has been managed by individual hospitals

(Lam et al., 2021). The adoption of surgical robots has occurred in the absence of

guidelines, leaving to the individual provider the decision to adopt the technology

and the development of best practices. A recent study suggests that at least 25

percent of hospitals own a robot in England (Lam et al., 2021), but to this day there

is no account of the location and utilization of robots in the NHS.
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Figure 2.3: Hospital level diffusion of robotic surgery

Note: Produced using HES. In green the hospitals using for the first time a robotic oper-
ation code for RP in 2006. In blue those using for the first time a robotic operation code
for RP between 2007 and 2009. In red those observed using for the first time a robotic
operation code for RP after 2009.

Using HES, I am able to identify and collect data on all operations that involve

a surgical robot. In fact, HES provides a record of all procedures performed by

NHS hospitals in England and the method used to perform them (e.g. traditional

or robotic). Moreover, for each admission, HES identifies the consultant in charge

of the operation. HES allows me then to determine the date of the first robotic RP

within each hospital, which I will consider as the date of adoption of the technology.

In Figure 2.3, I present the location of the hospitals adopting the robot. I do this over

three windows of time; from 2006 to 2008, from 2009 to 2013, and from 2014 to

2015. In my identification strategy, I will exploit differences in adoption timing.

Eventually, my sample comprises all radical prostatectomies occurring throughout

NHS England from 2004 to 2017 for a total of 62,258 admissions, 25208 of which

are performed with a robot. Table 2.1 summarizes the characteristics of patients for

both the traditional and the robotic approach.

HES shows that prostate cancer surgery is England’s most commonly performed

robotic operation. In Figure 2.4, I plot the number of robotic operations in the NHS

vis a vis the number of robotic operations in urology (of which RP is the most
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Table 2.1: Radical Prostatectomy Patients

Full sample Traditional Robotic
mean sd mean sd mean sd

Age 63.061 6.570 63.237 6.550 62.835 6.589

White 0.725 0.446 0.764 0.424 0.675 0.468
Black 0.035 0.184 0.031 0.172 0.041 0.199
Asian 0.014 0.119 0.015 0.121 0.014 0.117
Other 0.225 0.418 0.190 0.393 0.270 0.444

Diabetes 0.076 0.265 0.071 0.257 0.082 0.275
Heart disease 0.035 0.183 0.033 0.178 0.037 0.189
Metastatic cancer 0.015 0.122 0.013 0.113 0.018 0.133
Liver disease 0.007 0.086 0.005 0.074 0.010 0.099

Rural-Urban Indicator 5.411 0.986 5.392 0.935 5.436 1.047
Rank of income deprivation 15531 8471 15421 8432 15646 8511
Rank of health deprivation 16382 9060 16150 9007.111 16626 9110
Rank of education deprivation 17186 9123 16691 9230 17706 8979

Elective admission 0.996 0.066 0.995 0.067 0.996 0.065
Waiting time 39.574 32.518 42.103 33.675 36.679 30.889

Length of stay 3.274 3.024 4.305 3.380 1.944 1.750
Length of stay (pre-operative) 0.330 1.089 0.475 1.190 0.144 0.910
Length of stay (post-operative) 2.944 2.892 3.830 3.212 1.800 1.877

Adverse event 0.144 0.351 0.186 0.389 0.090 0.286

Observations 61839 34829 27010
∗ Note: Source HES. Sample of patients undergoing RP from 2004 to 2007. Patients identified
using OPCS code for operations and procedures.

common operation). The figure shows that urology dominates the field of robotic

surgery. The first notable use of robots for urology is in 2007. Only five years after

2013 robots start to diffuse in other specialities, but uptake is significantly slower.

The data shows that in England, the use of robotic surgery for RP grew from 5

percent in 2007 to 80 percent in 2017. In Figure 2.5, I plot the total number of

RP by surgical approach from 2003 to 2017. The steady increase in the number of

robotic operations coincided with a decrease in the number of traditional surgeries.

Hence, a clear pattern of substitution toward this technology (Maynou et al., 2021).

Moreover, the figure shows a remarkable increase in the number of RPs over time,

with the number of patients undergoing this operation almost doubling from 2009 to
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2017. In fact, this period is characterized by a considerable increase in prostate can-

cer diagnoses. Figure 2.6 displays the number of prostate cancer diagnoses and the

share of patients opting for RP over time. However, the share of patients undergoing

surgery remains relatively stable.

Figure 2.4: Diffusion of robotic surgery in the NHS

Note: The picture shows the number of robotic operations by year for urology compared
to all other specialties in which robots are used. The data is from the Hospital Episodes
Statistics.

From HES, I identify two patient outcomes for which I evaluate the effect of robots.

Namely, patients’ length of stay and the occurrence of adverse events from surgery.

I focus on these patient outcomes for several reasons. First, they are important

margins of performance for patients. Undoubtedly, patients desire to spend fewer

days in the hospital and to minimize the number of complications from surgery.

If robotic surgery would improve these outcomes, patients would clearly benefit

from it. Second, these are important cost drivers to the system and often considered

when evaluating whether a technology is worth adopting (Lotan, 2012). Third,

the medical literature considers that — if any — robotic technology should have

measurable benefits on these two margins (Higgins et al., 2017; Coelho et al., 2010;

Lowrance et al., 2010; Nelson et al., 2007). Robotic surgery allows operating using

small and compact tools that can fit into narrow incisions. For this reason, the

procedure is less invasive and should therefore increase the speed of recovery (or

reduce length of stay). Further, because these tools allow for higher precision, the
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Figure 2.5: Volume of robotic and traditional radical prostatectomies

Note: Graph produced using HES. The shaded gray area represents the total number of
RP performed by NHS Hospitals in England. The black dots represent the number of
radical prostatectomies performed using the traditional approach. The blue dots represent
the number of radical prostatectomies performed using the robotic approach.

Figure 2.6: Surgical interventions as a share of prostate cancer diagnosis

Note: Graph produced using HES. The shaded blue area represents the number of RP
performed by NHS hospitals in England. The shaded gray area represents the number of
patients with prostate cancer that have undergone radio therapy treatment. The black line
represents the total number of patients diagnosed with prostate cancer.
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incidence of complications should diminish. Lastly, these are outcomes that I can

reliably measure from the data I have.

The length of stay in hospital of a patient undergoing surgery can be decomposed

into two parts; pre- and post-operative. Pre-operative length of stay refers to the

number of days between the date of admission and the date of operation. This is

believed to be primarily determined by hospital management and should therefore

reflect efficiency rather than performance (Cooper et al., 2010a). Post-operative

length of stay refers to the number of days a patient spends in the hospital after

surgery. A shorter post-operative length of stay suggests that the patient recovered

quickly, while a prolonged one may indicate the occurrence of complications in the

operating theatre (Strother et al., 2020). Consequently, I concentrate on the effect

of robots on post-operative length of stay, which I measure for each patient as the

number of days between the operation date and the date of discharge.

I identify adverse health events, likely to be the result from the operation being

suboptimally performed, by exploiting the panel dimension of my data. I focus on

three adverse events: in-hospital deaths, 30 days emergency readmissions, and com-

plications arising within two years of operation that require surgical interventions.

The latter class of events includes urinary complications and erectile dysfunctions.

These are common side effects of prostate cancer surgery and are often employed

to measure surgical performance.4

Table 2.1 summarizes both margins of surgical performance. The average post-

operative length of stay in the sample is 2.9 days, and more than 14 percent of

individuals appear to have experienced an adverse event.

2.4 Measuring Skills
Skills are not directly observable and notoriously difficult to measure. The measure-

ment most commonly called upon in economics is some indicator of educational at-

tainment (Borghans et al., 2001), but when all those performing a job must have the

4I will not be able to detect erectile dysfunctions that are treated with medical interventions with
the data I have.
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same level of education, this approach is infeasible. In some occupations, however,

the product of one’s work is observable, and its quality can be attributed to the skills

of the individual. For example, Birkmeyer et al. (2013a) shows a clear relationship

between surgical skills and patient outcomes.

In line with the medical literature, I use patients’ post-operative outcomes as a proxy

measure of surgeons’ skills. I focus on two adverse events, namely within 30 days

in hospital deaths and readmissions. Using patient outcomes to compare surgeons

requires however some way of risk-adjustment. The purpose of the risk adjust-

ment is to remove differences in health and other risk factors that impact observed

outcomes, thereby enabling a more accurate comparison across surgeons that treat

individuals of varying clinical complexity. In fact, surgeons work on patients that

vary in their level of health and deal with cases of various complexity.

My objective is to produce a single risk-adjusted indicator of skills. To compare out-

come rates from different populations of patients, I adapt a risk-adjustment method-

ology developed in Horwitz et al. (2014) for the Centers for Medicare Medicaid

Services (CMS). I compute the skills measure in two steps. In the first step, I esti-

mate a random coefficient model with a surgeon random intercept.

Let Yi j for patient i operated by surgeon j denote the binary outcome equal to one

if the patient experiences post-operative morbidity. Xi j denotes a set of risk factors

identified by the medical literature to influence the outcome of patient j. Let M

denote the number of surgeons and M j the number of prostatectomies performed by

surgeon j. I assume that the outcome is related linearly to the covariates via a Logit

function:

logit(Prob(Yi j = 1)) = α j +βXi j (2.1)

α j = µ +ω j

ω j ∼ N (0,τ2)

α j represents the surgeon specific random intercept; µ is the adjusted average out-

come over all surgeons; and τ2 is the between surgeons variance component. The
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component ω j will be estimated it using the empirical Bayes posterior mean. The

empirical Bayes estimate will capture variation in post-operative morbidity at the

surgeon level for observationally similar patients. The conditional distribution of

the binary indicator given the random effects is assumed to be Bernoulli, with the

probability of an adverse event determined by the logistic cumulative distribution

function. I present the Xi j set of k patient level covariates included in the model in

Table 1.

In the second step, I use the regression estimates from Equation 2.1 to compute a

surgeon’s Standardized Risk Ratio (SRR) of post-operative morbidity, which I use

to proxy the surgeon’s skills. The SRR is the ratio between what Horwitz et al.

(2014) calls the predicted and expected post-operative morbidity. The predicted

number of adverse events for a surgeon j is calculated as the sum of the predicted

probability for each patient ∈ M j, including surgeon j random effect α j. The ex-

pected number of adverse events for a surgeon j is calculated as the sum of the

predicted probability of readmission for each patient ∈ M j, ignoring the surgeon

specific random effect. This is the probability of an adverse event given the esti-

mated parameters, but where τ is zero, equivalently, this is the probability of an

adverse event when the dispersion in α j is set to zero.

In practice, I compute these terms as follows:

predicted j = ∑
i∈ j

logit−1(
α̂ j + β̂Xi j

)
(2.2)

expected j = ∑
i∈ j

logit−1(
µ̂ + β̂Xi j

)
(2.3)

My indicator of skills is then is:

Skills j =
predicted j

expected j
. (2.4)

A value of 1 indicates that the level of post-operative morbidity for surgeon j is as
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expected given her pool of patients. When the ratio is above (below) 1 it indicates

that the surgeon is under- (over-) performing relative to the national average. I

estimate the model parameters using data from 2005 to 2007, a period prior to the

diffusion of robots in the NHS. Skills are then measured when all operations were

performed with the traditional method. In this way, the skill level is not endogenous

to the use of the technology.

In practice, I perform this estimation at the hospital level. I do this because the

majority of hospitals have 1 to 2 surgeons operating prostate cancer patients, and in

most cases, one surgeon is significantly lower volume. What I am going to measure

will reflect then more closely the average performance of the hospital’s team of

surgeons. As the median number of surgeons per hospital in my sample is two, I

believe this simplification is unlikely to be significant. In turn, I am able to estimate

this measure for 144 hospitals. To show that this simplification is unlikely to be

relevant, I also test my baseline specification when I compute the measure at the

surgeon level. I show the distribution of the measure of skills with surgeons’ random

intercept in Figure 1 of the Appendix.

In Figure 2.7, I show how surgeons’ skills are distributed according to this measure.

There is substantial variation in the skills of surgeons pre-robot. The standard devia-

tion is 0.4, and the distribution is characterized by long tales to the right, suggesting

that some surgeons perform particularly poorly.

Key facts on robotic surgery, skills, and performance

I start my analysis by showing in Figure 2.8 some correlations between robotic

surgery, skills, and performance. I group surgeons into two categories; top and

bottom surgeons. Top surgeons are identified as those above the 20th percentile

of the distribution of skills (low post-operative morbidity), bottom surgeons are

identified as those below the 80th percentile (high post-operative morbidity).

The first fact that emerges is that surgeons at the top of the distribution of skills

appear to use the technology more intensively. These surgeons start using the robot

before anyone else, and by their second year of use, they operate on more than
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Figure 2.7: Distribution of surgical skills

Note: Distribution of skills measure (i.e. post-operative morbidity standardised risk ratio).
Measure computed as the ratio between predicted and expected morbidity (deaths and
readmissions). Predicted and expected post-operative morbidity are obtained by estimating
the logistic model described in Section 4. Hospital random intercept for predicted post-
operative morbidity. Estimates using all prostatectomy patients from 2005 to 2007.

20 percent of their patients using the technology. It takes five more years for the

surgeons at the bottom of the distribution to use the technology at a similar rate. By

the end of the sample period, however, both groups use the robot at a similar rate

and almost 80 percent of patients are operated on with the robot in 2017.

The second fact is that over this period there has been a substantial improvement in

surgical performance. Post-operative length of stay and morbidity have decreased

respectively by 57 and 73 percent from 2007 to 2017. But, there has also been a

convergence in surgical performance between surgeons at the top and the bottom

of the skill distribution. In 2007, patients operated on by high-skilled surgeons

experienced 3.5 days of post-operative length of stay, while lower skilled surgeons

had an average of 6 days. By 2017, this was down to around 2 days for both groups.

A similar trend can be observed when inspecting the share of patients experiencing

an adverse event from surgery. For both outcomes indeed, by the end of the sample

the raw outcomes of high and low skilled surgeons are about the same.

Generally, regardless of skills, there has been an increase in the number of patients

under the care of these surgeons. This is consistent with the increase in the number
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Figure 2.8: Key empirical facts

(a) Robotic rate (b) Number of operations

(c) Length of stay (d) Adverse events

Note: Top quality if skills pre-robot period above the 20th percentile, bottom quality if
skills pre-robot below 80th percentile. Mean share of robotic operations is computed as
the number of operations per year using the robot over the total number of operations
at the hospital level. The rate of adverse events is computed as the number of patients
experiencing an adverse event from surgery over the total number of operations.

of prostate cancer diagnosis we observe in this period. But, it also appears consistent

with the findings of Neuner et al. (2012) and more recently by Horn et al. (2022)

and Maynou et al. (2021). This increase is nonetheless more significant for high

skilled surgeons.

2.5 Econometric model
My empirical strategy is tailored to the presence of heterogeneous treatment ef-

fects and the possibility of selection into treatment. My hypothesis is that surgeon’s

skills will induce substantial heterogeneity in treatment effects, but this could also

arise because patients differ in their observed and unobserved characteristics. For



2.5. Econometric model 40

example, the returns from using the robot may depend on the age of the patient,

or on whether the patient suffers from diabetes and other comorbidities. Selection

occurs because neither patients not surgeons are randomly allocated to the robotic

approach, and the choice of treatment may be endogenous to their observed and

unobserved characteristics, and surgery could be selected on the basis of their antic-

ipated effects from treatment (Zhou and Xie, 2019). Surgeons may choose to use the

robot only on patients for which they expect a substantial improvement in their out-

comes, and opt for traditional surgery otherwise. Regardless of how the allocation

of treatment occurs, a selection bias will arise if this process is non-random.

The most commonly used approach to deal with selection on unobservables is the

instrumental variable (IV) method. In the IV approach, an external variable (i.e.

the instrument) is used to distil out an exogenous variation in the probability of

treatment (Banerjee and Basu, 2021). In this paper, I use a different method and

employ an approach first pioneered by Björklund and Moffitt (1987) and subse-

quently developed in Heckman and Vytlacil (2005). This approach focuses on the

identification and estimation of the marginal treatment effects (MTE).

The MTE is the average treatment effects for people with a particular unobserved

variable value that influences selection. Identification of MTE is intuitively similar

to the IV, but is more informative in the presence of heterogeneous effects in some

cases (Cornelissen et al., 2018). Heckman and Vytlacil (2005) shows that the MTE

is the foundation of all population level treatment effects. For example, the average

treatment effect (ATE) is the unweighted average of the MTEs, and it is point iden-

tified for 0,1 ∈ supp P(Z) (Heckman and Vytlacil, 2001). The average treatment

effect on the treated (ATT) is a weighted average of the MTEs where individuals

with low values of the unobserved variable value that influences selection are given

heavier weights. The average treatment effect on the untreated (ATU) is a weighted

average of the MTEs where heavier weights are given to individuals whose unob-

served variable value that influences selection is high.

In this section, I first describe the MTE in its theoretical set-up, introduce terminol-
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ogy and notation, as well as the foundational assumptions needed for identification.

I then present how I apply this framework to my specific context, and introduce the

additional assumptions I impose for identification and estimation.

General MTE framework

The building block of the MTE approach is the generalized Roy model of binary

treatment choice (Roy, 1951). In this model, the individual can have one of two

potential outcomes, Y1 and Y0, depending on the choice of treatment D ∈ [0,1]. For

each individual, depending on the choice of treatment, only one outcome is actually

observable. Both outcomes depend on some observed characteristics X , that are not

determined by D, and an unobserved component which is additively separable:

Y0 = h0(X)+ ε0 (2.5)

Y1 = h1(X)+ ε1 (2.6)

hD(X) ≡ E[YD|X ] for D ∈ [0,1] and ε0 and ε1 are error terms of mean zero condi-

tional on X .

The treatment choice is represented by an index threshold crossing model

D = 1[D∗ ≥ 0] (2.7)

where a person chooses D = 1 whenever the latent variable D∗ ≥ 0. The latent

choice is a function of observable Z characteristics and an additively separable com-

ponent V :

D∗ = g(Z)−V (2.8)

From the point of view of the econometrician Z is observed while V is not (Carneiro

et al., 2011). The Z vector may include some or all of the variables in X, but cru-

cially includes a continuous variable that affects outcomes only via the treatment

status (i.e. a continuous instrument for D). As V enters the expression with a nega-

tive sign, this is called resistance to treatment. This a continuously distributed ran-
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dom variable representing all unobserved factors that make an individual less likely

to choose D = 1. Importantly, no restriction is imposed on the relationship between

(Y1,Y0) and V , so that individuals may select on the basis of their anticipated return

from treatment, or treatment effect.

Two assumptions are maintained to specify and identify the MTE using the method

of local instrumental variables (Heckman and Vytlacil, 1999):

Assumption 1. (ε0,ε1,V ) are statistically independent of Z conditional on X

(Independence).

Assumption 2. g(·) is a non-trivial function of Z conditional on X (Rank

condition).

To specify the MTE, the decision rule is conventionally expressed in terms of the

propensity score P(Z), i.e., the probability of treatment given the observed covari-

ates:

P(Z)≡ P(D = 1|Z)

= P(D∗ ≥ 0|Z) = P(g(Z)−V ≥ 0|Z)

= FV |Z(g(Z))

= FV |X(g(Z))

where FV |X(·) is the cumulative distribution function of V given X.

The decision rule in terms of the propensity score is

D = 1[D∗ ≥ 0]

= 1[g(Z)−V ≥ 0]

= 1[FV |X(g(Z))−FV |X(V )≥ 0]

= 1[P(Z)−U ≥ 0]

where the variable U ≡ FV |X(V ) represents the quantiles of the distribution of the
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unobserved resistance to treatment V , which by definition follows a standard uni-

form distribution.

The MTE, is defined by the following conditional expectation:

E[Y1 −Y0|X = x,U = u]

= h1(X)−h0(X)+E[ε1 − ε0|X = x,U = u]

≡ MT E(x,u)

It is the average gain from treatment for individuals with characteristics X = x,

and indifferent between treatments at the propensity score P(Z) = u. Variation in

the MT E(x,u) over values of u reflects how treatment effect varies with different

quantiles of the unobserved resistance to treatment.

The MTE is closely related to the LATE. The model, as presented, combined with

Assumption 1. and Assumption 2., is equivalent to the Imbens and Angrist (1994)

conditions of independence and monotonicity for the interpretation of the IV esti-

mands as a local average treatment effects (LATE) (Vytlacil, 2002). The LATE is

the average treatment effects on the compliers, individuals in a given range of U,

while the MTE is this effect at a specific value of U.

Application of the MTE to robotic surgery

In practice, I have two margins over which to evaluate treatment effects. Namely,

the logarithm of the patient length of stay in hospital and a binary indicator of

adverse event from surgery. I will assume that both outcomes and the choice of

treatment depend linearly on the patient’s characteristics Xi, and the surgeon’s skills

Skills j.

Assumption 3. Y1i j,Y0i j and D∗
i j are a linear function of Xi and Skills j

Y1i j = β1Xi +δ1Skills j + ε1i j (2.9)

Y0i j = β0Xi +δ0Skills j + ε0i j (2.10)
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Note that the return to using the robot (i.e., Y1i j −Y0i j) varies across individuals

with different observed (Xi and Skills j) and unobserved characteristics (ε0i j and ε1i j

). This is an important feature of this framework, which emphasizes heterogeneity

in returns (and the distinction between the returns for average and marginal individ-

uals) (Carneiro et al., 2011).

As both patients and surgeons jointly determine the course of treatment, the deci-

sion to use the robot will also be a linear function of surgeons’ skills and patients’

characteristics. Importantly, the decision to take treatment depends on a continuous

variable Zi that does not enter the outcome equation (i.e., the instrument).

Di j = 1[D∗ ≥ 0] (2.11)

D∗
i j = βdXi +δdSkills j + γdZi −Vi j (2.12)

Patients that are observationally similar will be allowed to differ in their treatment

because of V . For example, if either the surgeon or the patient dislikes the robot,

this will be captured by V . Variation in Z will allow me to identify the parameters

of the model. I will present the variables included in Z in Section 2.6.

The equivalent representation in terms of the propensity score is:

D = 1 if P(Xi,Skills j,Zi)≥U , and D = 0 otherwise. (2.13)

Individuals are treated with the robot if the propensity score exceeds the quantile of

the distribution of Vi j at which the individual is located (Cornelissen et al., 2016).

The observed outcome can then be expressed as:

Yi j = Y0i j +Di j[(β1 −β0)Xi︸ ︷︷ ︸
∆1

+(δ1 −δ0)Skills j︸ ︷︷ ︸
∆2

+ε1i j − ε0i j︸ ︷︷ ︸
∆3

] (2.14)

Where Yi j is either the length of stay or an indicator for whether the patient i has

experienced an adverse event from surgery.
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The effect of robotic surgery is the sum of ∆1, ∆2, and ∆3. ∆1 reflects what arises

from the characteristics of the patient. For example, ∆1 will be negative if the

technology makes an older patient less likely to experience an adverse event from

surgery. ∆2 reflects gains that arise from the way technology combines with skills

and is my quantity of interest. My interpretation is the following:

• A negative ∆2 implies that the technology complements more strongly indi-

viduals with lower skills (decreasing returns in skills);

• A positive ∆2 implies that higher skilled surgeons experience larger improve-

ments in patient outcomes relative to lower skilled surgeons (increasing re-

turns in skills).

Lastly, ∆3 is the individual specific idiosyncratic effect from treatment. An impor-

tant feature of this framework is then that the return from using the robot depends

on both observed and unobserved characteristics.

The marginal treatment effect of robotic surgery at Skills = s,X = x and U = u is:

MT E(s,x,u) = E(Y1i j −Y0i j|Xi = x,Skills j = s,Ui j = u) (2.15)

I will assume that the MTE is additively separable in its components (Brinch et al.,

2017):

Assumption 4. E[ε1i j − ε0i j|Xi = x,Skills j = s,Ui j = u] does not depend on

x and s (Additive Separability)

Under Assumption 1 to 4, the MTE can be represented as:

MT E(s,x,u) = x(β1 −β0)+ s(δ1 −δ0)+E(ε1i j − ε0i j|Ui j = u) (2.16)
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and the expected outcome of individual i operated by surgeon j is:

E[Yi j|Xi = x,Skills j = s,P(Z) = p] =

Xiβ0 +Skills jδ0 + pXi(β1 −β0)+ pSkills j(δ1 −δ0)+K(p)

where K(p)≡
∫ p

0 E(ε1i j −ε0i j|U = u)du is a function of the propensity score p and

captures all the ‘essential heterogeneity’ in the outcomes. K(p) can be estimated

either nonparametrically or with some functional form restrictions.

As shown in Carneiro et al. (2011), the derivative of the outcome Y with respect to

p identifies the MTE for individuals with X = x, S = s, and U = p.

∂E[Y |X = x,Skills = s,P(Z) = p]
∂ p

= x(β1 −β0)+ s(δ1 −δ0)+
∂K(p)

∂ p

= MT E[X = x,Skills = s,U = p]

The intuition is simple. Increasing the propensity score by a small amount shifts

previously indifferent individuals into treatment and changes the observed outcome.

By taking the derivative with respect to the propensity score, we obtain the change

in Y (i.e., the treatment effect) at a given margin of indifference. As the K(p) com-

ponent only depends on p, patient and surgeon’s characteristics do not affect the

shape of the MTE curve, which implies that I can identify the MTE over the uncon-

ditional support of P(Z), jointly generated by the instruments and the covariates, as

opposed to the support of P(Z) conditional on covariates.

Estimation of the MTE allows me therefore to identify complementarities between

robots and skills, but also to determine whether there is selection on gains from

observed or unobserved characteristics. The parameter δ1 − δ0 could be positive

or negative depending on whether surgeons of higher skills have higher or lower

returns from using the robot. The derivative of K(p) will similarly tell us whether

returns are increasing or decreasing in the unobserved component V . In the edu-

cation literature, the component V is usually thought as the negative of unobserved

ability (Carneiro et al., 2011). Under this interpretation, if an individual with higher
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unobserved ability had higher returns, the K(p) function should be declining in V .

2.6 Exogenous variation in treatment probability
The MTE framework requires at least one continuous instrumental variable to be

included in the selection equation (Heckman and Vytlacil, 2005). The instrument

must satisfy the same conditions required by Imbens and Rubin (1997) for identifi-

cation of the LATE (Vytlacil, 2002). First, it should affect treatment but be plausibly

independent of potential outcomes (Y1,Y0). Second, it should affect selection into

treatment monotonically. Moreover, ideally, the instrument should have enough

variation to generate a propensity score with full support (Cornelissen et al., 2016).

I use the fact that robots have been acquired under no centralized strategy, leading

to a staggered adoption, to build two instrumental variables that exploit the fact that

an individual’s access to robotic surgery will vary according to where they live and

to the timing of their cancer diagnosis.

Diagnosis timing instrument definition and validity

I propose a novel instrument that exploits diagnosis timing to detect an exogeneous

variation in the probability of robotic surgery. I will refer to this instrument with

the name Zdays, and compute it for each patient as:

Zdays = t −TR (2.17)

where t is the date on which the patient received his diagnosis of prostate cancer5,

and TR is the date on which his closest hospital performed its first robotic assisted

prostatectomy. I expect that a patient diagnosed after TR will be more likely to get

treated than one diagnosed earlier. The intuition is simple, individuals tend to visit

their closest hospital for most issues, hence adoption by the closest hospital raises

the probability of robotic surgery.

To satisfy the exclusion restriction, I require the timing of adoption to be random

5As diagnosis of prostate cancer requires a biopsy which is performed in hospital, the diagnosis
date is identifiable using the HES data.
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relative to the individual health status, and hence unrelated to his potential out-

comes. Consequentially, Zdays should affect the outcomes only through its effect

on the patient’s likelihood to receive robotic surgery. To provide evidence that this

is actually the case, I test whether the instrument has an effect on the surgical out-

comes of patients undergoing a radical prostatectomy prior to the introduction of

robots to the NHS. For these patients, Zdays cannot affect selection into treatment

because treatment is not available to them, which means that the first stage effect

is by definition null. Hence, any effect of the instrument on the outcomes of these

patients would suggest the presence of another channel of impact, and a violation

of the exclusion restriction.

Table 2.2 presents the result of this exercise. Column 1 to 3 show the coefficients

estimated from a OLS regression of log length of stay on Zdays for increasingly

richer specifications. The sample comprises all prostatectomy patients operated in

the NHS in 2003. The coefficient on Zdays is not statistically significant. Column

4 to 6 show the coefficients estimated from a OLS regression of a binary indicator

of adverse events on Zdays for increasingly richer specifications. The coefficient in

column 4 is negative and statistically significant, but after controlling for patient

characteristics, this correlation disappears. Overall, this is suggestive that the ex-

clusion restriction is likely to be satisfied conditional on the covariates included in

the model.

I show how Zdays is distributed in Figure 2.9. The average patient is diagnosed

almost a year before his closest hospital has adopted the robot. Consistently, the

distribution exhibits a longer tail to the left, i.e., more patients being diagnosed

prior their closest hospital has started performing robotic prostate cancer surgery.

Relative distance instrument definition and validity

In their seminal contribution, McClellan et al. (1994) use differential distances to

alternative types of hospitals as independent predictors of how heart attack patients

will be treated. More recently, Card et al. (2019) employ a similar instrument in the

context of delivery choices of mothers in the US. Card et al. (2019) use the relative
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Table 2.2: Correlation of surgical outcomes and Zdays (Pre-Robots) - Lin-
ear regression coefficients

Length of stay Adverse event
(1) (2) (3) (4) (5) (6)

Zdays -0.049 -0.028 0.072 -0.117* -0.035 -0.033
(0.047) (0.047) (0.049) (0.051) (0.05) (0.053)

Patient control No Yes Yes No Yes Yes

Year-month No No Yes No No Yes

Day of the week No No Yes No No Yes
Zdays -2707 -2709 -2709 -2707 -2709 -2709
N 5566 5549 5549 5574 5557 5557

Standard errors in parentheses * p < 0.05, ** p < 0.01, *** p < 0.001. Linear regression model
estimated using OLS. Coefficients and standard errors multiplied by 100. Three significant figures
displayed. Model in (2)-(3)-(5)-(6) control for age, age squared, 10 comorbidity dummies, ethnicity,
rural urban indicator. Sample of radical prostatectomy patients in 2003.

(a) Zdist instrument (b) Zdays instrument

Figure 2.9: Variation of instrumental variables in sample data
Note: Panel (a) plots the instrument Zdist defined as the relative distance between the
patients nearest hospital capable of offering robotic assisted radical prostatectomy and the
closest hospital offering traditional radical prostatectomy. The distance is expressed in
kilometers. Panel (b) plots the instrument Zdays defined as the number of days from the
patient diagnosis of prostate cancer and the closest hospital to the patient adopting the
robot. The date of adoption is the earliest date in which the hospital performs a robotic
assisted radical prostatectomy.
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distance from a mother’s home zip code to the nearest high c-section hospital versus

the nearest low c-section hospital as an instrumental variable for delivery at a high

c-section hospital.

Inspired by this body of work, I use as an additional instrument the differential dis-

tance from the patient’s residence to a hospital capable of providing robotic surgery.

The idea is that relative distances approximately randomize patients to different

likelihoods of receiving treatment. In other words, a patient closer to a hospital

offering robotic surgery will be more likely to be operated on with the robot for

reasons unrelated to his health. I refer to this variable as Zdist , and I compute it for

each patient as;

Zdist = DR −DT , (2.18)

where DR is the geographic distance between the patient and the nearest hospital

with a robot in the year the patient is operated, and DT is the geographic distance

between the patient and the nearest hospital without the robot.

Data on where a patient lives in HES is limited to the postal area, but HES includes

information on the patient GP. Hence, I use the postcode of the patient’s GP to proxy

for his location. In England, individuals have to register to a GP to obtain a referral,

which is necessary to access non-emergency services from hospitals. As patients

can only register to GP practices in proximity to their home address, I believe the

GP’s postcode is a good proxy for the location of the patient.

A criticism of this type of instruments is that patients who live nearer to a hospital

offering a given treatment — or for this matter to any hospital — may differ in terms

of their underlying health because they have better access to care, or access to higher

quality care (Hadley and Cunningham, 2004). If this was the case, the instrument

would be invalid. To limit this concern, I control directly for the distance between

the individual and his closest hospital, and for whether this is a teaching hospital.

In this way, relative distance comparisons occur only within groups of individuals

that have similar quality and access to care.
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Nevertheless, it may still be that relative distance is correlated to health outcomes in

a way not accounted for by the model. To investigate the plausibility of such a story,

I test whether relative distance to a robotic hospital can predict the health outcomes

of individuals who had a heart attack (clinically referred to as an Acute Myocardial

Infarction, or AMI).

Under the exclusion restriction, relative distance should only affect patients’ out-

comes through its effect on the probability of receiving robotic surgery. The treat-

ment of AMI does not involve robotic surgery, and for this reason, relative distance

should have no relationship with the health outcomes of patients with this condition.

But, if there was non-random sorting of individuals across locations in such a way

that relative distance was correlated with better (or worse) health, this would surely

emerge in this relationship. I focus on AMI patients for two reasons. First, cardio-

vascular diseases, of which AMI is the primary manifestation, have a high mortality

rate and therefore a well-defined health outcome to test for. Second, mortality from

AMI is often associated with poverty or low access to social support (Mookadam

and Arthur, 2004). This means that AMI mortality can serve as a proxy for both in-

dividuals’ health and physical well-being, and of economic and social risk factors.

I estimate the relationship between relative distance and AMI mortality only for pa-

tients admitted to the hospital from the emergency department, which account for

68 percent of the total admissions for AMI from 2006 to 2010. Table 2.3 presents

the estimates from a logistic regression where the dependent variable is hospital

death and the independent variable of interest is the instrument Zdist computed for

my sample of AMI patients. When I control for patient characteristics and the time

period of the operation, I find no statistically significant relationship between AMI

mortality and the instrument.

Lastly, I test my baseline model under the inclusion of area fixed effects.6 As hos-

pitals adopt the robot at different dates, the relative distance will change for patients

living in the same area. I exploit this variation and estimate the model within small

6These are postal area fixed effects (i.e., the first four digits of the patient postcode of residence,
which is available in HES)
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Table 2.3: AMI patients mortality and Zdist

(1) (2) (3)
Zdist 0.045∗∗ -0.016 0.031

(0.016) (0.018) (0.019)

Distance closest hospital 0.269∗ 0.111
(0.107) (0.130)

Year-month No Yes Yes

Day of the week No Yes Yes

Patient control No No Yes
Deaths (%) 19 19 19
Zdist 68.64 68.64 68.75
N 68467 68467 67882

Standard errors in parentheses ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
Linear regression model estimated with OLS. Demographic controls are
age, age squared, ethnicity and a rural urban indicator. Clinical controls
include age, age squared, 10 comorbidity dummies, ethnicity, rural urban
indicator. Sample of AMI patients from 2005 to 2009. Coefficients and
standard errors multiplied by 100.

geographic cells, which allows for tighter handling of non-random selection than

most studies using this type of instrument. A notable exception is Cornelissen et al.

(2018), which estimates marginal treatment effects of child care. In this paper, the

staggered rollout of a policy granting universal child-care in Germany creates vari-

ation in the availability of childcare slots across both geography and cohorts, thus

allowing the authors to include in the model municipality fixed effects. As in Cor-

nelissen et al. (2018), I restrict the area dummies to having the same effect in the

treated and untreated outcome equations, so they have no influence on the treatment

effect. I show how Zdist is distributed in Figure 2.9. The average relative distance is

19 km. This varies substantially over time. The value of the instrument in 2007 was

80 km for the average patients. By 2012 this was down to 20 km, while in 2017 the

closest hospital to the average patient offers robotic surgery.

Relevance, monotonicity, and common support assumptions

To show that the instruments are relevant, I estimate a Probit regression where the

dependent variable is a binary indicator of the robotic approach regressed on Zdist ,

Ztime, and a large set of individual clinical and demographic controls. Coefficients

and marginal effects are presented in Table 2.4, where the columns denote increas-
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Figure 2.10: Average relative distance to robotic hospital and to closest hospital

Note: Relative distance computed as the difference between the patient’s distance to the
closest hospital offering robotic technology and the distance to the closest hospital offer-
ing only traditional surgery. The patient location is proxied with the location of his GP.
Hospitals date of adoption is identified from HES as the earliest data when a robotic RP is
performed.

ingly richer specifications. Column 7 represents the selection equation, which I will

discuss in more details in Section 2.7.

Table 2.4 shows that both instruments are statistically significant in predicting

whether the patient will be operated with the robot. Zdist has a positive coefficient in

all specifications. This indicates that the longer it passes, after the closest hospital

has adopted the robot, the more likely the patient is of getting robotic surgery.

In Figure 2.11, I show the average predicted probability evaluated as different val-

ues of this instrument. The figure shows how the probability of receiving robotic

surgery changes at different values of the instrument. An individual diagnosed two

years before his closest hospital has adopted the robot has a 0.4 probability of being

treated, while for an individual diagnosed two years after the probability is 25 per-

cent higher. Zdays has, instead, a negative coefficient. This indicates that the higher

the relative distance, the less likely is the patient to receive robotic surgery. In Fig-

ure 2.12, I show the average predicted probability evaluated as different values of

this instrument. An individual whose value of Zdist is 30 km has a probability of

being treated of 0.4, doubling this distance reduces this probability by almost fifty
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Table 2.4: Relevance of instruments

(1) (2) (3) (4) (5) (6)
Coefficients

Zdist -1.95*** -1.04*** -1.07*** -1.1*** -0.99***
(0.038) (0.032) (0.032) (0.033) (0.034)

Zdays 0.057*** 0.041*** 0.041*** 0.042*** 0.024***
(0.001) (0.001) (0.001) (0.001) (0.001)

Marginal effects

Zdist -0.651*** -0.307*** -0.316*** -0.319*** -0.272***
(0.008) (0.009) (0.009) (0.009) (0.009)

Zdays 0.0159*** 0.0122*** 0.0119*** 0.0122*** 0.007***
(0.000) (0.001) (0.001) (0.001) (0.001)

Demographic No No No Yes Yes Yes

Clinical No No No Yes Yes Yes

Year-month No No No Yes Yes Yes

Day of the week No No No Yes Yes Yes

Area No No No No Yes Yes
Robot (%) 48 44 49 49 49 49
Zdist 21.83 21.83 21.86 21.86 21.86
Zdays 68 389 387 387 387
N 53937 58906 52671 52572 52572 52572

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Robust standard errors in parentheses. Coefficients, standard errors, and margins multiplied by 100. Probit
regression with dependent variable indicator of robotic approach. Demographic controls include age, age squared, indicator for white ethnic pro-
file. Clinical controls include ten comorbidity variables. Area controls include distance to the closest hospital, indicator for closest hospital being
teaching hospital, urban city indicator. SRR is the standardized risk ratio for post-operative morbidity (interpreted as the inverse of skills).

percent.

The instruments should affect the probability of treatment in a monotone way. In

other words, there should be no defiers (Imbens and Rubin, 1997). I believe that

this arguably satisfied by both instruments. It is indeed unlikely that an individual

would opt for traditional surgery for a reduction in the distance to a robotic hospi-

tal. Similarly, there is no reason to believe that as time passes, from the adoption of

the closest hospital, a patient would opt for traditional surgery. To corroborate that

this is actually the case, I estimate the selection equation for different subgroups

of the population. Specifically, I estimate the first stage separately for individuals

above and below the age of 55, residing in areas above and below the mean level

of urban development, with different case complexity as measured by the Charlson

Comorbidity Index (CCI), and finally for white individuals and for those of other

ethnic backgrounds. I present the coefficients on the instruments, estimated using a
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Figure 2.11: Probability of robotic approach at Zdays values

Note: Probit regression estimates, dependent variable robotic approach. Marginal proba-
bility estimated at different value of relative diagnosis timing. Covariates in the model at
means, include demographic and clinical patient characteristics, distance to closest hospi-
tal, indicator for whether the closest hospital is a teaching hospital, and instrument Zdist .
Model controls for month-year and day of the week. Model includes continuous measure
of surgical skills. Standard errors computed with delta method.

Figure 2.12: Estimated probability of robotic approach from selection equation - at Zdist
values

Note: Probit regression estimates, dependent variable robotic approach. Marginal proba-
bility estimated at different value of relative distance to hospital offering robotic approach.
Covariates in the model at means, include demographic and clinical patient characteristics,
distance to closest hospital, indicator for whether the closest hospital is a teaching hospital,
and instrument Zdays. Model controls for month-year and day of the week. Model includes
continuous measure of surgical skills. Standard errors computed with delta method.
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Figure 2.13: Test for monotonicity of the instruments

(a) Zdist (b) Zdays

Note: OLS regression for subsets of the population. Age above and below 55. CCI above
and below 2. Ethnicity white and all other ethnicity. Coefficients estimated using logistic
regression. Dependent variable is a binary indicator of whether the individual has been
operated using the robot. Demographic controls are age, age squared, ethnicity and a rural
urban indicator. Clinical controls are a set of ten comorbidity dummies. All models are
estimated using year, month, and day of the week fixed effects.

logistic regression, for the subgroups of interest in Figure 2.13. Zdist has always a

negative coefficient indicating that increasing the relative distance to a robotic hos-

pital weakly decreases patient’s propensity to undergo robotic surgery regardless of

the cell of patients demographics I focus on. Similarly, Zdays has always a positive

coefficient when statistically significant. In all cases, the estimated effect of diag-

nosis timing on the choice of robotic surgery is the same, affecting positively the

choice, suggesting that there are no defiers.

Finally, under Assumption 4, the instruments should generate sufficient variation

across the observable characteristics to generate a propensity score P(Z) with full

common support. In Figure 2.14, I present the unconditional support jointly gener-

ated by the instruments and covariates. The instruments create a common support

in the estimated propensity score that spans virtually the full unit interval. This is

crucial to compute the treatment effect of the treated (ATT) and the treatment effect

on the untreated (ATU).
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Figure 2.14: Common support

Note: Unconditional support jointly generated by instruments and covariates. Covariates
in the model include demographic and clinical patient characteristics, distance to closest
hospital, indicator for whether the closest hospital is a teaching hospital, instrument Zdist ,
and Zdays. Model controls for year-month and day of the week fixed effects. Model in-
cludes continuous measure of surgical skills.

2.7 Results

I will estimate the MTE using the local instrumental variable method introduced

by Heckman and Vytlacil (1999). I estimate the selection equation (i.e., Equation

2.11) using a Probit regression model, from which I derive the propensity score p̂.

The model includes the two instruments, controls for distance to the closest hos-

pital, and an indicator for whether the closest hospital to the patient is a teaching

hospital. I present the variables included in Xi in Table 1. Skills j are alternatively

added as a continuous variable or as a high skilled indicator (i.e., above the median

of the distribution of skills). In all specifications, I include day of the week, month,

and year fixed effects. I will model the outcomes both parametrically and non para-

metrically (partially-linear) in terms of the unobserved term K(p).7 Heckman et al.

(2006) provide a detailed discussion of different estimation methods.

7I want to acknowledge that this can be easily done using Stata thanks to a command from
Andresen (2018).
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Skills and technological gains

In Table 2.5 to 2.7, I test three different specifications under the assumption of

joint normality of the error terms. Table 2.5 presents the baseline model where the

outcomes depend on distance to the closest hospital, an indicator for whether the

closest hospital to the patient is a teaching hospital, and the patient characteristics

presented in Table 1. The model includes year, month, and day of the week fixed

effects all interacted with the propensity score. In Table 2.6, I add postal area fixed

effects to control for time invariant differences across neighborhoods. In Table 2.7,

I test the baseline specification on a restricted sample of surgeons for which I can

observe at least 50 operations in the period pre-robots (2005-2007).

Column 1 provides the coefficient on skills for the selection equation (Equation

2.11). Column 2 and 3 present, respectively, the coefficients δ0 and δ1 − δ0 esti-

mated from Equation 2.14. Column 2 provides the estimates for log length of stay,

and Column 3 for the adverse event indicator. The coefficient δ0 speaks to the way

skills affect patient outcomes when traditional surgery is used. The coefficient on

skills interacted with the propensity score speaks to the level of heterogeneity in

treatment effects that depends on the skills of the surgeon (i.e., δ1 − δ0). I test the

model using either a continuous measure of skills or a binary variable that takes

value 1 if the surgeon’s skills are above the median of the distribution.

Under all model specifications, the coefficient on skills δ0 is negative and statisti-

cally significant for both patient outcomes. With traditional surgery, high skilled

surgeons’ patients have better outcomes than the patients of lower skilled surgeons.

This is not unexpected, as finding otherwise would have questioned the validity of

my measure of skills. The coefficient interacted with the propensity score δ1−δ0 is

instead positive for both outcomes. Treatment effects from using the robot depend

on the skills of the surgeon. For length of stay, the coefficient interacted with the

propensity score is positive and statistically significant, suggesting that the treat-

ment effect is stronger the lower the skills of the surgeon. Length of stay decreases

from using the robot, but more significantly for lower skilled surgeons. The same
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is true for the adverse event indicator, although the coefficient is not statistically

significant in the baseline specification. In turn, these results suggest limited com-

plementarities of the robot with high skilled surgeons.

In Figure 2.15 and 2.16, I provide a graphical representation of the difference in per-

formance between high and low skilled surgeons under traditional (the gray bars)

and robotic surgery (the blue bars). For both outcomes, the difference between high

and low skilled surgeons shrinks when using the robot. For example, in the model

with area fixed effects, the patients of high skilled surgeons are 4 percentage points

less likely to experience an adverse event from surgery. However, the treatment

effect is almost five percentage points more negative for lower skilled surgeons.

Actually, in some cases it appears that, with the robot, patients of low skilled sur-

geons are less likely to experience an adverse event from surgery relative to the

patients of high skilled surgeons. This result points to an equalizing effect of the

technology.

In the Appendix, I test the robustness of this result to a number of different model

specifications. In Table 10, I show the coefficients on skills estimated under the

inclusion of a measure of surgeons’ experience. In Table 2.6, I use an alternative

measure of surgeons’ skills which I derive from a fixed effect model rather than the

model presented in Section 2.4. Further, in Table 9 I test the baseline specification

under the inclusion of dummies that indicate the year the hospital has adopted the

robot. Lastly, I test a specification where I employ the instrument Zdist as a binary

indicator that takes value 1 if Zdist is positive and takes value 0 otherwise.

Selection into robotic surgery

Comparing the coefficients from the selection equation (Column 1) to the estimates

from the outcome equations (Column 2 and Column 3) allows identifying whether

surgeons of different quality select based on their gains. This is not the case. Lower

skilled surgeons have the largest gains from using the robot, but are also less likely

to use it on any given patient. Hence, the estimates uncover a pattern of negative

selection on gains.
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Figure 2.15: Length of stay – high vs low skilled surgeons

Note: High skilled surgeons above the median of skills. Displays the value of δ0 the
coefficient on High Skilled indicator for the estimated outcome equation with dependent
variable log lenght of stay (in gray). Displays in blue the value of δ1 obtained by adding
to the coefficient on High Skilled indicator * Propensity score δ1 − δ0 the estimated δ0.
The baseline model controls for age, age squared, indicator for white ethnic profile, ten
comorbidity dummies, distance to the closest hospital, indicator for closest hospital being
teaching hospital, urban city indicator, year-month, and day of the week fixed effects all
interacted with the propensity score. Instruments used to estimate the propensity score are
Zdist and Zdays. The model Area control includes postal area fixed effects not interacted
with the propensity score. The model Sample restriction estimates the baseline specifica-
tion using data from surgeons that are observed operating on at least fifty patients in the
period 2005-2007.

Figure 2.16: Adverse event – high vs low skilled

Note: High skilled surgeons above the median of skills. Displays in gray the value of
δ0 the coefficient on High Skilled indicator for the estimated outcome equation with de-
pendent variable indicator of adverse event. Displays in blue the value of δ1 obtained by
adding to the coefficient on High Skilled indicator * Propensity score δ1−δ0 the estimated
δ0. The baseline model controls for age, age squared, indicator for white ethnic profile, ten
comorbidity dummies, distance to the closest hospital, indicator for closest hospital being
teaching hospital, urban city indicator, year-month, and day of the week fixed effects all
interacted with the propensity score. Instruments used to estimate the propensity score are
Zdist and Zdays. The model Area control includes postal area fixed effects not interacted
with the propensity score. The model Sample restriction estimates the baseline specifica-
tion using data from surgeons that are observed operating on at least fifty patients in the
period 2005-2007.
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Table 2.5: Heterogeneity in causal effects - Normal model

(1) (2) (3)
Selection equation Length of stay Adverse event

Continuous Skills
Skills 0.368∗∗∗ -0.319∗∗∗ -0.0319∗∗∗

(0.017) (0.011) (0.007)
Skills * Propensity score 0.272∗∗∗ 0.0265

(0.026) (0.014)
Binary Skills
High skilled 0.261∗∗∗ -0.199∗∗∗ -0.036∗∗∗

(0.014) (0.010) (0.007)

High skilled * Propensity score 0.155∗∗∗ 0.035∗∗

(0.018) (0.011)

Year-Month FE Yes Yes Yes

Day of the week FE Yes Yes Yes

N 50203 49215 50203
∗ Standard errors bootstrapped with 100 repetitions p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
Column(1) dependent variable binary indicator of robotic surgery. Estimated using Probit
regression model. Column (2) and (3), coefficients of regressors not interacted with the
propensity score measure effects on the outcome in the untreated state (δ0). Coefficients of
regressors interacted with the propensity score measure effects the difference of the effects
between the treated and the untreated state (δ1 − δ0). Demographic controls include age,
age squared, indicator for white ethnic profile. Clinical controls include ten comorbidity
variables. The controls include distance to the closest hospital, indicator for closest hospital
being teaching hospital, urban city indicator. Skills, a continuous variable, is measured us-
ing the standardized risk ratio for post-operative morbidity (deaths and readmissions) com-
puted using 2005-2007 data. High skilled indicator takes value 1 if skills above the median
of the distribution of skills. Instruments used to estimate the propensity score are Zdist and
Zdays. Estimation of coefficients under the assumption of normality of unobserved compo-
nents.

In Column 1 of each table, I show the coefficients on skills from the estimated

selection equation (i.e., Equation 2.11). The dependent variable is a binary indicator

for whether the patient has been operated with robotic surgery. The results show that

surgical skills are an important determinant of whether the patient is operated with

the robot. The coefficient on skills is positive and statistically significant, and this

is true using both skills as a continuous measure or the high-skilled indicator.

To illustrate the magnitude of this relationship, in Figure 2.17, I show graphically

how the probability of using the robot depends on skills. These are the marginal

effects at different levels of my measure of skills, which I have normalized to be
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Table 2.6: Heterogeneity in causal effects – Normal model with local area fixed effects

(1) (2) (3)
Selection equation Length of stay Adverse event

Continuous Skills
Skills 0.567∗∗∗ -0.264∗∗∗ -0.022∗

(0.036) (0.016) (0.009)
Skills * Propensity score 0.263∗∗∗ 0.049∗∗∗

(0.025) (0.012)
Binary Skills
High skilled 0.121∗∗∗ -0.099∗∗∗ -0.040∗∗∗

(0.027) (0.015) (0.007)

High skilled * Propensity score 0.018 0.047∗∗∗

(0.016) (0.010)
Year-Month FE Yes Yes Yes

Day of the week FE Yes Yes Yes

Area FE Yes Yes Yes
N 48083 47139 48083

Standard errors bootstrapped with 100 repetitions p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
Column(1) dependent variable binary indicator of robotic surgery. Estimated using Probit
regression model. Column (2) and (3), coefficients of regressors not interacted with the
propensity score measure effects on the outcome in the untreated state (δ0). Coefficients of
regressors interacted with the propensity score measure effects the difference of the effects
between the treated and the untreated state (δ1 − δ0). Demographic controls include age,
age squared, indicator for white ethnic profile. Clinical controls include ten comorbidity
variables. The controls include distance to the closest hospital, indicator for closest hospital
being teaching hospital, urban city indicator. Skills, a continuous variable, is measured us-
ing the standardized risk ratio for post-operative morbidity (deaths and readmissions) com-
puted using 2005-2007 data. High skilled indicator takes value 1 if skills above the median
of the distribution of skills. Instruments used to estimate the propensity score are Zdist and
Zdays. Estimation of coefficients under the assumption of normality of unobserved compo-
nents. Model estimated using postal area fixed effects, not interacted with the propensity
score.

between 0 and 1. The rest of the covariates are held at their mean value. The figure

shows that a patient whose surgeon is at the top of the distribution of skills will

almost certainly be operated with the robot. On the other hand, a patient whose

surgeon is at the bottom of the distribution will have 1 in 10 chances to be operated

with it. For the high-skilled indicator, the value of the margin is the difference in

the probability of using the robot between high and lower skilled surgeons. High-

skilled surgeons’ average predicted probability of using the robot is 0.58 while for

the rest is 0.38, they are 30 percent more likely to use the robot on an average

patient.
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Table 2.7: Heterogeneity in causal effects - Normal model with sample restriction

(1) (2) (3)
Selection equation Length of stay Adverse event

Continuous Skills
Skills 0.180∗∗∗ -0.324∗∗∗ -0.033∗∗∗

(0.017) (0.012) (0.009)
Skills * Propensity score 0.352∗∗∗ 0.057∗∗∗

(0.025) (0.016)
Binary Skills
High skilled 0.271∗∗∗ -0.201∗∗∗ -0.029∗∗

(0.015) (0.016) (0.010)
High skilled * Propensity score 0.160∗∗∗ 0.026

(0.027) (0.015)
Year-Month FE Yes Yes Yes

Day of the week FE Yes Yes Yes

Area FE Yes Yes Yes
N 48083 47139 48083

∗ Standard errors bootstrapped with 100 repetitions p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
Column(1) dependent variable binary indicator of robotic surgery. Estimated using Probit
regression model. Column (2) and (3), coefficients of regressors not interacted with the
propensity score measure effects on the outcome in the untreated state (δ0). Coefficients of
regressors interacted with the propensity score measure effects the difference of the effects
between the treated and the untreated state (δ1 − δ0). Demographic controls include age,
age squared, indicator for white ethnic profile. Clinical controls include ten comorbidity
variables. The controls include distance to the closest hospital, indicator for closest hospital
being teaching hospital, urban city indicator. Skills, a continuous variable, is measured us-
ing the standardized risk ratio for post-operative morbidity (deaths and readmissions) com-
puted using 2005-2007 data. High skilled indicator takes value 1 if skills above the median
of the distribution of skills. Instruments used to estimate the propensity score are Zdist and
Zdays. Estimation of coefficients under the assumption of normality of unobserved com-
ponents. Sample is restricted to surgeons for which I observe at least 50 operations in the
period pre-robots.

Generally, more complex patients appear to be less likely to be operated with robotic

surgery. Patients that have a comorbidity, or are older, have a lower probability of

getting the robotic approach, regardless of whether they are operated by a high

or a lower skilled surgeon. However, high skilled surgeons use the robot more

intensively for all patients. In Figure 2.18, I show how the predicted probability

varies by age for surgeons above and below the median of skills. For both types of

surgeons, the likelihood of using the robot diminishes with the age of the patient.

But, at all age levels, high skilled surgeons are more likely to operate with the robot.

The fact that lower skilled surgeons use the robot less intensively, conditional on

patient characteristics, suggests they face a higher cost (actual or perceived) to use
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Figure 2.17: Estimated probability of robotic approach by skill

Note: Probit regression estimates, dependent variable robotic approach. Marginal prob-
ability estimated at values of skills measure. Covariates in the model at means, include
demographic and clinical patient characteristics, distance to closest hospital, indicator for
whether the closest hospital is a teaching hospital, instrument Zdist , and Zdays. Includes a
squared term for skills. Model controls for month-year and day of the week. Delta method
for standard errors.

the technology (Chandra and Staiger, 2020; Suri, 2011).

Returns to treatment based on unobserved characteristics

Using the model parameters, I can estimate the MTE curve that relates the returns

from using the robot to the unobserved resistance to treatment. As a first step, I es-

timate the K(p) component parametrically under joint normality of the error terms.

Under this assumption, the outcome and choice equation can be jointly estimated

using the method of maximum likelihood (Carneiro et al., 2011). The estimated

MTE under this assumption is shown in Figure 2.19.

The MTE curve mimics the pattern of negative selection found on observables. The

relationship between the unobserved resistance to treatment V and the gains from

treatment is consistently negative for the length of stay, and homogeneity can be

rejected at all conventional levels of statistical significance. This implies that the

patients most likely to undergo robotic surgery, based on their unobserved charac-

teristics (which may include some characterstic of the surgeon), have the lowest

returns from the treatment. The shape of MTE curve for the adverse event indicator
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Figure 2.18: Estimated probability of robotic approach by age

Note: Adjusted predictions with 95 per cent confidence interval. Probit regression esti-
mates, dependent variable robotic approach. Marginal probability estimated at different
value of patient age. Covariates in the model at means, include demographic and clinical
patient characteristics, distance to closest hospital, indicator for whether the closest hospi-
tal is a teaching hospital, instrument Zdist , and Zdays. Model controls for month-year and
day of the week. High-skilled indicator takes value 1 if SRR above median of the distri-
bution. Standard errors computed with delta method.

suggests a similar story, but we can’t reject homogeneity on unboservable charac-

teristics.

In Figure 2.20, I relax the assumption of joint normality and let the function K(p)

be approximated by a polynomial in p. Estimation in this case is achieved by a two-

step procedure discussed in Heckman et al. (2006). For length of stay, the results are

almost unchanged and the shape is remarkably similar to what described earlier. For

the probability of adverse event, however, we are able to get more precise estimates

under which we can exclude homogeneous effects.

Lastly, I estimate E(Y |P(Z) = p) semi-parametrically and compute its derivative

with respect to p. The parameters in this case are estimated from a partial linear

regression of Y on X and P(Z), and the estimation of K(p) is achieved by a local

polynomial regression. Still, the MTE curve suggests negative selection for length

of stay and the adverse event indicator.
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Figure 2.19: MTE curve – Normal

(a) Length of stay (b) Adverse event

Note: Estimates of marginal treatment effects of robotic surgery, as opposed to traditional
surgery, on log length of stay (a) and probability of adverse event (b). The horizontal
axis in each plot is the percentile on the distribution of unobserved resistance to robotic
choice. Gray bands are 95% confidence intervals. Unobserved heterogeneity, modeled as a
function of the propensity score, p, parametrically under the assumption of K(p) is normal.
All specifications use the instruments Zdist Zdays as the excluded variables, and control age,
age squared, ethnicity, city indicator, ten comorbidity dummies (e.g. malignant neoplasm,
diabetes), distance to closest hospital, indicator of whether the closest hospital is a teaching
hospital, surgeon’s skills (measured in the period pre-robot), and year, month and day of
the week fixed effects. Standard errors are bootstrapped with 100 repetitions.

Figure 2.20: MTE curve – Polynomial

(a) Length of stay (b) Adverse Event

Note: Estimates of marginal treatment effects of robotic surgery, as opposed to traditional
surgery, on log length of stay (a) and probability of adverse event (b). The horizontal
axis in each plot is the percentile on the distribution of unobserved resistance to robotic
choice. Gray bands are 95% confidence intervals. Unobserved heterogeneity, modeled as
a function of the propensity score, p, parametrically under the assumption of K(p) is a
polynomial of degree 2.All specifications use the instruments Zdist Zdays as the excluded
variables, and control age, age squared, ethnicity, city indicator, ten comorbidity dummies
(e.g. malignant neoplasm, diabetes), distance to closest hospital, indicator of whether the
closest hospital is a teaching hospital, surgeon’s skills (measured in the period pre-robot),
and year, month and day of the week fixed effects. Standard errors are bootstrapped with
100 repetitions
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Figure 2.21: MTE curve – Semiparametric

(a) Length of stay (b) Adverse Event

Note: Includes area fixed effects not interacted with the propensity score. Estimates of
marginal treatment effects of robotic surgery, as opposed to traditional surgery, on log
length of stay (a) and probability of adverse event (b). The horizontal axis in each plot is
the percentile on the distribution of unobserved resistance to robotic choice. Gray bands
are 95% confidence intervals. Unobserved heterogeneity, modeled as a function of the
propensity score, p, semi-parametrically. All specifications use the instruments Zdist Zdays
as the excluded variables, and control age, age squared, ethnicity, city indicator, ten comor-
bidity dummies (e.g. malignant neoplasm, diabetes), distance to closest hospital, indicator
of whether the closest hospital is a teaching hospital, surgeon’s skills (measured in the
period pre-robot), and year, month and day of the week fixed effects. Standard errors are
bootstrapped with 100 repetitions.

Figure 2.22: MTE curve – Normal with area fixed effects

(a) Length of stay (b) Adverse event

Note: Estimates of marginal treatment effects of robotic surgery, as opposed to traditional
surgery, on log length of stay (a) and probability of adverse event (b). The horizontal
axis in each plot is the percentile on the distribution of unobserved resistance to robotic
choice. Gray bands are 95% confidence intervals. Unobserved heterogeneity, modeled as a
function of the propensity score, p, parametrically under the assumption of K(p) is normal.
All specifications use the instruments Zdist Zdays as the excluded variables, and control age,
age squared, ethnicity, city indicator, ten comorbidity dummies (e.g. malignant neoplasm,
diabetes), distance to closest hospital, indicator of whether the closest hospital is a teaching
hospital, surgeon’s skills (measured in the period pre-robot), and year, month and day of
the week fixed effects. Standard errors are bootstrapped with 100 repetitions. Include area
fixed effects (not interacted with propensity score).
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Conventional treatment effects and policy simulation

In Table 3.1 and Table 2.9, I show the treatment effects parameters, which I compute

by appropriately integrating over the MTE curve. The robot improves significantly

the performance of surgeons. The effect of using the robot is negative and statisti-

cally significant. The ATE is always negative regardless of the specification. This

means that the robot on average improves surgical performance. The robot reduces

length of stay and the probability that the patient experiences an adverse event from

surgery. Consistent with the pattern of selection I have uncovered, the average treat-

ment effect on the untreated (ATU) is more negative than the effect on the treated

(ATT). In some cases actually the ATT is positive, indicating that these patients

would have been better off with traditional surgery. The patients that would benefit

the most from being operated with the robot are the untreated group. Notice that

Mogstad et al. (2021) show that with more than one instrument, the monotonicity

condition required for identification of the LATE can only be satisfied if choice

behavior is effectively homogeneous.

As a conclusive exercise, I exploit the structure of the model to conduct a policy

simulation. Following Heckman and Vytlacil (2005); Carneiro et al. (2011), I con-

sider a class of policies that change P(Z), the probability that the patient is operated

with the robot, but that do not affect the potential outcomes or the unobservable

characteristics in the model. Heckman and Vytlacil (2005) show how to compute

the Policy Relevant Treatment Effect (PRTE) which is the mean effect from going

to the baseline policy to an alternative policy per net person shifted in to treatment.

I compute this parameter for a counterfactual scenario in which I assign to lower

skilled surgeons the same probability of using the robot as high skilled surgeons.

Basically, I evaluate effects if lower skilled surgeons were mandated to use the

robot with the same intensity as high skilled ones. This policy simulation speaks to

a hypothetical counterfactual scenario in which the costs or barriers that limit the

use of the robot by lower skilled surgeons were lifted. For example, suppose that

lower skilled surgeons use the robot less because they have fewer of them. Then,
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Table 2.8: Length of stay - Conventional estimates

(1) (2) (3) (4)
Normal Normal FE Polynomial Semiparametric

ATE -0.483∗∗∗ -0.571∗∗∗ -0.501∗∗∗ -0.546∗∗∗

(0.026) (0.026) (0.033) (0.033)

ATT 0.649∗∗∗ -0.408∗∗∗ 0.619∗∗∗ 0.525∗∗∗

(0.067) (0.026) (0.057) (0.062)

ATUT -1.570∗∗∗ -0.727∗∗∗ -1.578∗∗∗ -1.576∗∗∗

(0.067) (0.044) (0.069) (0.075)

LATE -0.343∗∗∗ -0.596∗∗∗ -0.366∗∗∗ -0.414∗∗∗

(0.024) (0.024) (0.023) (0.027)

Year-Month Yes Yes Yes Yes
Day of the week Yes Yea Yes Yes
Area FE No Yes No No
N 49215 47139 49215 49215

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Standard errors bootstrapped with 100 repetitions. The dependent variable
is the logarithm of post-operative length of stay. Demographic controls include age, age squared, indicator for white
ethnic profile. Clinical controls include ten comorbidity variables. Area controls include distance to the closest
hospital, indicator for closest hospital being teaching hospital, urban city indicator. All specifications are estimated
using the instruments Zdist and Zdays and include the continuous measure of surgeon’s skills.

this policy counterfactual shows what would happen to the average treatment effect

if lower skilled surgeons had the same number of robots as high skilled surgeons.

In a different vein, suppose that lower skilled surgeons dislike the robot and that’s

why they use it less intensively than high skilled surgeons. In this case, the policy

counterfactual speaks to a situation in which the lower skilled surgeons liked the

robot as much as the high skilled surgeons. The results of this exercise are shown

in Figure 2.23 for both margins of performance. The PRTE is always more negative

than the ATE indicating that inducing lower skilled surgeons to use the robot more

intensively would generate larger gain from the adoption of robots.
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Table 2.9: Adverse Event – Conventional estimates

(1) (2) (3) (4)
Normal Normal FE Polynomial Semiparametric

ATE -0.073∗∗∗ -0.138∗∗∗ -0.067∗∗∗ -0.065∗∗

(0.015) (0.019) (0.017) (0.0211)

ATT 0.0623 -0.144∗∗∗ 0.0718∗ 0.043
(0.032) (0.019) (0.033) (0.039)

ATUT -0.205∗∗∗ -0.133∗∗∗ -0.202∗∗∗ -0.169∗∗∗

(0.038) (0.039) (0.043) (0.049)

LATE -0.067∗∗∗ -0.136∗∗∗ -0.065∗∗∗ -0.0713∗∗∗

(0.012) (0.016) (0.012) (0.015)

Year-Month Yes Yes Yes Yes
Day of the week Yes Yes Yes Yes
Area FE No Yes No No
N 49215 47139 49215 49215

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Standard errors bootstrapped with 100 repetitions. The dependent variable
is the logarithm of post-operative length of stay. Demographic controls include age, age squared, indicator for white
ethnic profile. Clinical controls include ten comorbidity variables. Area controls include distance to the closest
hospital, indicator for closest hospital being teaching hospital, urban city indicator. All specifications are estimated
using the instruments Zdist and Zdays and include a continuous measure of surgeon’s skills pre-robot. Skills are mea-
sured using the SRR.

2.8 Conclusive remarks
This paper shows that thinking of innovations in abstraction from the character-

istics of their users limits our view of what technologies can achieve. Using the

case of robots in surgery, I showed that new technologies might help reduce vari-

ation in workers’ performance. This is a significant finding in healthcare, where

disparities in access and quality are a central concern of regulators and policymak-

ers. Nevertheless, it can be applied to any context where service delivery should

be of consistent quality regardless of the individual in charge. The adoption of

robots in surgery has been criticized because the literature, so far, has not reached a

conclusive agreement on whether robots improve the outcomes of patients relative

to traditional surgery. I show that outcomes improve by using the robot, but also

that robots have the potential to reduce variation in patient outcomes arising from

heterogeneity in surgeons’ skills. I have shown that the robot helps lower skilled
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Figure 2.23: Policy simulations - MTE and PRTE

(a) Length of stay (b) Adverse event

Note: Estimates of marginal treatment effects of robotic surgery, as opposed to traditional
surgery, on log length of stay (a) and probability of adverse event (b). The horizontal axis
in each plot is the percentile on the distribution of unobserved resistance to robotic choice.
Unobserved heterogeneity, modeled as a function of the propensity score, p, parametrically
under the assumption of K(p) is normal. All specifications use the instruments Zdist Zdays
as the excluded variables, and control for age, age squared, ethnicity, city indicator, ten
comorbidity dummies (e.g. malignant neoplasm, diabetes), distance to closest hospital,
indicator of whether the closest hospital is a teaching hospital, surgeon’s skills (measured
in the period pre-robot), and year, month and day of the week fixed effects. Standard
errors are bootstrapped with 100 repetitions. In orange the estimated effects from policy
simulation. Crosses indicate the weights.

surgeons perform almost as well as high skilled surgeons. However, my analysis

suggests that lower skilled surgeons may face a higher cost of using the robot. Al-

though, they have the highest gains, they are less likely to use the robot on any

given patient. More research is needed to identify the reason lower skilled surgeons

use the robot less than their high skilled colleagues. Policies that encourage the

adoption of these technologies may be welfare enhancing.



Chapter 3

Killer Deals? The Impact of Hospital

Mergers on Clinical Quality

Joint work with Thomas P. Hoe

3.1 Introduction
Industry consolidation has often raised concern among economists. These issues

have come to the fore again lately, with recent research showing the extent of con-

solidation globally (Loecker and Eeckhout, 2018) and other work highlighting the

limited benefits (Grullon et al., 2019) or negative impacts (Gutierrez Gallardo and

Philippon, 2017) associated with mergers. These concerns have been especially

acute in the hospital market where there has been significant consolidation (Cut-

ler and Morton, 2013). Mergers in this setting have been shown to increase hos-

pital prices, which feed through to higher insurance premiums (Dafny and Lee,

2019; Schmitt, 2018), and to slow wage growth in local labor markets (Prager and

Schmitt, 2019). While hospital mergers have also been found to lead to reduced

costs (Schmitt, 2017), other work has shown that these benefits are sometimes lim-

ited and can be outweighed by other transaction costs (Craig et al., 2019).

This paper provides new evidence on the impact of hospital mergers on clinical

quality of care. These outcomes are notoriously difficult to measure, but there are

clear antitrust concerns. Increasing market power may be exercised through price
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increases or a deterioration in product quality, and the latter can be a matter of life or

death in hospital markets. These concerns have been raised on multiple occasions,

and antitrust authorities have blocked proposed mergers on this basis.1

We use the universe of public hospital medical records in England to examine all

public hospital mergers after the introduction of hospital choice in 2006. There were

159 hospital sites involved in mergers over our sample period, comprising 13 trans-

actions. An advantage of our setting is that hospital reimbursement is unaffected by

mergers—hospital services are free at the point of care and hospital payments are

made and set centrally by the government—which allows us to study the impact of

mergers on quality of care in isolation from other changes.

We use an event-study framework and focus on two measures of clinical quality:

30-day unplanned readmissions and 30-day in-hospital mortality. To account for the

fact that hospitals may treat different patient populations before and after mergers,

we risk adjust our quality measures following the latest methodologies developed

for the Center for Medicare and Medicaid Services (Leora, 2012). These methods

use a series of hierarchical logistic regression models, which control for a variety

of observable patient characteristics, to compute standardized risk ratios (SRRs).

These ratios report the number of ‘excess deaths’ (or excess readmissions) at a

particular hospital relative to the expected number of deaths nationally for a com-

parable patient pool.

Our analysis tracks SRRs for the two years prior to and following a hospital merger.

We perform this analysis for all acute hospital sites involved in a merger. The

event study estimates indicate how clinical quality at these hospitals, as measured

1A debated case in the UK was for example the merger proposal between The Royal
Bournemouth and Christchurch Hospitals NHS Foundation Trust and Poole Hospital Foundation
Trust. The Competition Commission prohibited the merger in a decision in 2013 on the basis of com-
petition concerns and the absence of demonstrated benefits (Schiraldi, 2019). Similarly, in 2014, the
U.S. Court of Appeals for the Sixth Circuit supported the FTC decision to block a hospital merger
in Toledo, Ohio, between the area’s most extensive healthcare system, ProMedica, and one of its
rivals, St. Luke’s Hospital. The FTC showed that health plans could obtain more competitive prices
from ProMedica when St. Luke’s existed as a suitable alternative. The loss of that alternative would
have increased ProMedica’s negotiating clout and left health plans vulnerable to ProMedica’s price
demands (Ramirez, 2014).
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by excess deaths and readmissions, evolved relative to national trends.

We find evidence that hospital mergers have immediate and persistent negative im-

pacts on the quality of care. Risk-adjusted mortality is flat in the pre-merger period,

suggesting that mergers are not a case of poorly performing hospitals being ac-

quired. In the post-merger period, mortality increases in the month after a merger

and remains above baseline levels for the next two years. There is a similar pattern

with readmissions, with some evidence of an increase two months prior to a merger.

As a placebo test, we compute equivalent estimates for hospital sites not involved

in mergers. The event study estimates for these hospitals are flat in pre- and post-

merger periods.

The magnitude of the estimated merger effects is substantive. On average, the merg-

ers we study increased the likelihood of a patient dying by 0.4 percentage points,

or 27 percent, relative to the baseline mortality rate of 1.4 percent. Similarly, the

likelihood of readmission increased by 0.9 percentage points (11 percent relative to

a baseline of 8.3 percent).

Scaling these effects up to the patient population suggests that mergers led to ap-

proximately 98 additional deaths and 218 additional readmissions per year. Under

conservative assumptions on the value of a life-year, the additional deaths are valued

at around £11 million, which is approximately 4 percent of average annual hospital

costs. This is the same order of magnitude as previous estimates of cost synergies

from mergers in other settings (Schmitt, 2017; Craig et al., 2019) .

These results illustrate that mergers can have severe consequences for the quality of

care. These effects could plausibly outweigh any cost savings from mergers. As we

develop this work further, we intend to explore the incentives and mechanisms lead-

ing to the quality deterioration. In particular, we will test whether the impacts are

associated with changes in market power (e.g., HHI variations) or specific decisions

taken by hospitals in the post-merger period (e.g., internal department reorganiza-

tions). We also plan to address several methodological issues, such as how we
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compute standard errors and the choice of covariates in the risk adjustment method-

ology.

Our work contributes to the literature on the effects of mergers in the healthcare

setting. The large majority of these studies analyze mergers between hospitals in

the US market and focus on the effect of consolidation on prices (Lewis and Pflum,

2017), wages (Prager and Schmitt, 2019), and/or on the impact on hospital-insurer

negotiations (Dafny et al., 2019). Fewer studies investigate whether hospital merg-

ers and consolidation have an impact on quality. Ho and Hamilton (2000) compares

the quality of hospital care before and after mergers in California between 1992 and

1995. Quality is measured using mortality for heart attack and stroke patients, 90-

day readmission for heart attack patients, and discharge within 48 hours for normal

newborn babies. Propper et al. (2012) examines the impact of public hospital merg-

ers in England over the period 1997 to 2006 on a number of outcomes including

emergency heart attack mortality. Both of these studies find little to no impact on

the quality of care. The most robust evidence linking market structure to quality

of care is Cooper et al. (2011) and Gaynor et al. (2013). These studies evaluate

the impact of introducing patient choice in hospital markets in England in 2006,

finding that mortality rates for heart attack patients were reduced by more in areas

where hospitals were exposed to more competition in comparison to areas with less

competition.

This paper complements the existing literature by directly analyzing mergers – i.e.

changes in market structure – and focusing on hospital-wide measures of clinical

quality. The rich administrative data that we have available makes this possible

since we observe the entire population of patients over a long time period and have

detailed information on patient characteristics to construct state-of-the-art risk ad-

justed quality measures. While this result is in line with standard predictions from

industrial organization, to the best of our knowledge, this is the first paper providing

empirical evidence that mergers negatively impact clinical quality. Although more

research is needed, our conclusion has potential implications for antitrust policy in

healthcare markets.
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The remainder of this paper is organized as follows. Section 2 describes the data.

Section 3 outlines our empirical specifications. Section 4 presents our results. Sec-

tion 5 sets out a framework for analyzing how our results may relate to changes in

market competition. Section 6 concludes.

3.2 Data
Our primary source of data is the Hospital Episodes Statistics (HES), a compre-

hensive administrative database containing all visits to public hospitals in England.

We combine HES data with information from NHS Digital about the opening and

closing dates of all public hospitals. Together these datasets allow us to identify

hospital mergers and observe the treatment and health outcomes of all patients in

England.

Identifying Hospital Mergers

We use NHS Digital data on openings and closures of hospital sites to identify

hospital mergers and validate our final list using a variety of other sources of infor-

mation. We restrict our focus to mergers occurring after 2006, the year marking the

introduction of patient choice in the NHS and the prospective payment system. Un-

der the prospective payment system hospitals are reimbursed through fixed prices

set and paid centrally by the government (Gaynor et al., 2013).

We identify 25 hospital mergers occurring during the period 2006-2015. We limit

our analysis to acute hospitals, the leading providers of hospital-based services in

England (Gaynor et al., 2013), resulting in a total of 16 mergers. From those, we

exclude two mergers involving hospitals already involved in a previous merger.

Mergers are somewhat concentrated across time and space. Geographically, merg-

ers occurred in three main areas: London and the south, the northwest near Liver-

pool and Manchester, and the northeast near Newcastle, see Figure 3.1. The bulk of

mergers occurred between 2012 and 2014. Figure 3.2 shows the number of mergers

occurring between 2006 and 2015. 3.3 shows the number of hospitals involved in a

merger in the period 2006-2015.
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Figure 3.1: Hospital sites involved in mergers, 2006-2015

Notes: The figure shows the location of acute hospital sites involved in mergers in England
between 2006 and 2015. We display the distribution of hospitals by postal area. Postcode
areas are used by Royal Mail for the purposes of directing mail within the United King-
dom. The postcode area is the largest geographical unit used and forms the initial charac-
ters of the alphanumeric UK postcode.

Figure 3.2: Number of NHS mergers 2006-2015

Notes: The Figure shows the number of mergers between Acute NHS Trusts in England
between 2006-2015.
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Figure 3.3: Number of NHS sites involved in mergers 2006-2015

Notes: The Figure shows the number of hospital sites involved in mergers in England
between 2006-2015.

Hospital Episodes Statistics

The HES data covers the universe of inpatient discharges from NHS hospitals in

England, comprising over 9 million admissions per year. The data includes detailed

patient clinical information (e.g., diagnoses, operations), patient demographic infor-

mation, administrative information (e.g., methods of admission and discharge), and

geographical information such as where patients are treated and where they live.

We apply three selection rules to the data before conducting the analysis. First,

for each year between 2006 and 2015 we select a 50% random sample of patients

admitted to the hospital. Second, we select only hospitals that belong to an acute

trust.2 Third, we drop from our sample any hospital for which the data required for

the analysis is not available.

We divide hospitals into a treatment and a control group. The treatment group

is composed by hospitals that have been involved in a merger between 2006 and

2015, with the remaining hospitals making up the control group. We have 1,199

and 139 hospitals in the control and treatment groups, respectively. Table 3.1 shows

the characteristics of the treatment and control group at the trust and hospital (i.e.,

2We define as acute trust any NHS trust that in the Estates Returns Information Collection data
has had one site recorded as ”General and Acute” from 1999 onwards.
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site) level. On average, control-group trusts have a more significant number of

hospital sites compared to the treatment group. However, once we restrict to acute

trusts, the gap disappears. Control trusts also have, on average, a more significant

number of occupied and available beds and many employees. The average site in

the control group has relatively fewer patients than the average site in the treatment

group, although this difference is not statistically significant.

Table 3.1: Balancing of characteristics treatment and control group

Treatment Control P-value N-difference
Panel A: Trust characteristics

Total number of sites 4.5 8.311 [0.000] 0.298
(5.051) (11.76)

Acute sites 2.088 1.959 [0.210] 0.087
(0.794) (1.236)

Available beds 696.7 937.7 [0.000] 0.472
(265.5) (435.7)

Occupied beds 617.6 746.9 [0.000] 0.272
(257.9) (399.4)

Total staff 4539.7 5105.4 [0.057] 0.159
(2472.2) (2552.5)

Panel B: Hospital characteristics

Admissions per month 277.4 275.4 [0.954] 0.004
(328.8) (366.3)

Raw mortality rate 0.018 0.028 [0.003] 0.079
(0.070) (0.109)

Raw readmission rate 0.137 0.081 [0.020] 0.194
(0.250) (0.146)

Notes: Column 3 reports p-values from a test of equality of means carried out by OLS regression of each characteristic on a
dummy for assignment to treatment. Standard errors are clustered at the site level. Column 4 reports normalized differences
are computed following Imbens and Wooldridge (2009). The sample comprises acute sites in England in the period 2006-2015.
The control group includes all acute sites that have not been involved in a merger in the period of interest; the control group
comprises all acute sites that have been involved in a merger in the period of interest. The number of sites, acute sites, available
beds, occupied beds and total staff is at the year level and retrieved from the ERIC data. The number of patients, readmission
rates and mortality rates are computed at the monthly level from the HES data.
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3.3 Empirical Methodology

We use an event-study framework to study the impact of hospital mergers on risk-

adjusted measures of clinical quality. In this section, we describe our methodology

for computing quality and then set out the event-study specification.

Measures of Clinical Quality

To measure clinical quality we use standard risk-adjustment methodologies em-

ployed by the Center for Medicare and Medicaid Services (CMS). Specifically, we

compute two measures: the Hospital Wide Risk Standardized Mortality measure

(henceforth HWM) and Hospital Wide Risk Standardized Readmission measure

(henceforth HWR) developed for CMS by the Yale New Haven Health System /

Center for Outcomes Research and Evaluation (YNHHS/CORE).

The methods that underpin the HWM and HWR are routinely used by the US fed-

eral government to evaluate and disseminate information on quality of care at US

hospitals. Most notably, the Hospital Readmission Reduction Program one of the

largest pay-for-performance policies in health care globally uses similar measures

to financially penalise hospitals with excess readmissions(Gupta, 2017). Similarly,

risk-adjusted mortality measures are publicized through hospital report cards that

allow patients compare the quality of participating hospitals (Kolstad, 2013b).

The HWM measure is a single hospital level summary score that reports the risk-

standardized rate of deaths within 30 days of hospital discharge for any condition.

Mortality is an unwanted outcome for the majority of patients and when assessed

among appropriate individuals, it provides a concrete signal of quality by capturing

the result of care processes as well as the impact of both optimal care and adverse

events. The measure is computed using a sample of patients for which survival was

most likely the primary goal when entering the hospital, and for which improved

care quality could have been reasonably expected to impact the chance of survival.

The measure is meant to cover all deaths of patients admitted to hospital that died

either while in hospital or within 30 days of discharge. From our data, we cannot
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observe deaths that occur outside the hospital. For this reason, we limit the mea-

sure to cover only deaths of patients admitted to acute sites that occur in hospital.

Because overall mortality rate for patients admitted more than once is higher than

for those with only one admission, the measure randomly selects one admission for

each patient in the measurement period. Random selection is meant to reflect that

the outcome of an admission can be either survival or death.

The HWR measure is a single hospital level summary score that reports the risk-

standardized rate of unplanned readmission within 30 days of hospital discharge

for any condition. A readmission is an admission to an acute care hospital within

30 days of discharge from an acute care hospital. Readmissions may be planned

or unplanned. A planned readmission is intentional and scheduled as part of the

patient’s plan of care. Unplanned readmissions are acute clinical events experienced

by a patient that require urgent hospital admission. Hospital readmissions, of this

kind, are disruptive to patients and costly to the healthcare system. Higher than

expected unplanned readmission rates suggest lower quality of care and are the

focus of quality measurement. Because planned readmissions are not a signal of

quality of care, these patient outcomes are excluded from the measure.

Following the CMS methodologies, we compute HWM and HWR in two steps. In

the first step we estimate a regression model that risk adjusts the relevant outcome,

i.e. unplanned readmission or mortality. In the second step we use the first-stage

regression estimates to compute specialty-level Standardized Risk Ratios (SRR)

which are then aggregated to produce the HWM or HWR.
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Risk-adjustment Model

CMS estimates the following hierarchical logistic regression separately for each

specialty cohort c and year t

Pr(yicht = 1 | xi,c,h, t) = F(αct +βcht + γctxi + εicht) (3.1)

βcht ∼ N (0,θ 2
ct) (3.2)

εicht ∼ N (0,σ2
ct), (3.3)

where F(.) is the logistic function and yicht is a binary variable indicating the read-

mission or death of patient i in specialty cohort c at hospital h in year t. The remain-

ing terms are xi a vector of (assumed exogenous) patient-level characteristics, αct

the intercept, βcht a hospital-specific fixed effect, and εicht an error term capturing

any over- or under-dispersion.

The model is estimated separately for each specialty cohort. A cohort is a group of

discharge conditions or procedure categories typically cared for by the same team

of specialists. In line with CMS, we estimate the model for five specialty cohorts

for the HWR measure and for fifteen specialty cohorts for the HWM measure.3 The

vector xi is common across specialty cohorts and includes age, a set of comorbidity

indicators, and a set of diagnosis fixed effects.4

For each estimation, we use the baseline sample described in section 3.2 and then

follow CMS by making a number of nuanced data exclusions that are specific to the

HWM or HWR measures.5

3For the HWM measure, we group non-surgical patients into cancer, cardiac, gastrointestinal,
infectious disease, orthopedics, pulmonary, renal, and other conditions categories, while we group
surgical patients into cancer, cardiothoracic, general surgery, neurosurgery, orthopedics, and other
surgical procedures categories. For the HWR measure, we group non-surgical patients into medical,
neurology, cardiovascular, and cardiorespiratory categories, while we group surgical patients in the
single category surgery.

4The comorbidity indicators are as follows: for the HWR measure, the model controls for 31
risk variables that encompass 74 comorbidity conditions categories.; and for the HWM measure,
the model controls for 19 risk variables that encompass 38 comorbidity categories. We use the 12
months prior to the admission to identify the patients’ comorbid conditions. The diagnosis fixed
effects are included only for those categories with more than 1,000 admissions.

5The HWM sample excludes the following patients: those who have died in hospital, those
that have been transferred between hospitals during the admission, those who have been admitted
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Constructing Standardized Risk Ratios

Standardized Risk Ratios (SRRs) are a function of the ‘predicted’ and ‘expected’

outcomes (i.e., mortality and readmission) for each specialty-hospital combination.

The expected outcome is the number of deaths, or readmissions, that would occur

if a particular set of patients were treated by an average hospital (i.e., the national

average expected performance). The predicted outcome is the equivalent number

for a specific hospital. We compute these terms at the specialty-hospital-month

level as follows

predictedchm = ∑
i∈c,h,m

F
(
α̂ct + β̂cht + γ̂ctxi

)
(3.4)

expectedchm = ∑
i∈c,h,m

F
(
α̂ct + β̂xi

)
, (3.5)

where m is a month within year t. So while Equation (3.1) is estimated annually, we

use these estimates to construct SSRs which are measured at a monthly frequency.6

We then compute the specialty-level SRR as follows

SRRchm =
predictedchm
expectedchm

. (3.6)

An SRR of 1 indicates that the number of deaths (or readmissions) in specialty c at

hospital h in month m are in line with the number of deaths expected nationally at

hospitals treating similar patients during that year. An SRR above (below) 1 indi-

cates that the hospital is under- (over-) performing relative to the national average.

Finally, a hospital-wide SRR is computed as the geometric mean of specialty-

for psychiatric and metastatic cancer diagnosis, rehabilitation treatments, and those that have been
enrolled in a hospice in the 12 months prior. The HWR sample excludes the following patients: those
who have died in hospital, that have been transferred between hospitals during the admission; that
have been discharged against medical advice, who have been admitted for psychiatric and cancer
diagnosis or rehabilitation treatments.

6Ideally we would run the risk adjustment regression monthly, however the sample sizes do not
allow us to do this with sufficient precision.
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specific SRRs

SRRhm = exp

{
∑c wchm log(SRRchm)

∑c wchm

}
(3.7)

where the weights, wchm, correspond to the monthly volume of admissions in each

specialty cohort.

We run the risk-adjustment estimation and SRR computations for mortality and

readmission separately, giving us two measures of SRRhm for each hospital-month

in our data. We refer to these aggregated variables as HWM and HWR for simplic-

ity.

Table 3.2 shows summary statistics for the two measures over the period of inter-

est. The average HWR is larger than one, indicating a higher-than-expected rate of

readmissions. The average HWM is less than one, indicating a lower-than-expected

rate of in-hospital deaths. Some hospitals appear to be outliers with the value of the

measure greatly exceeding the rest of the observations.

Table 3.2: Summary statistics for quality measures

Mean SD Min Max
Hospital Wide Readmissions 1.050 0.505 0.242 12.764
Hospital Wide Mortality 0.831 1.004 0.019 34.861

Notes: The Table displays summary statistics for the risk adjusted hospital mortality and readmis-
sions measure. The sample over which they are calculated includes all hospitals involved in a merger
that belong to a trust providing acute-care services in England. The level of observation is the hospi-
tal in a given month-year.
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Event Study Framework

We use the following regression specification to estimate the impact of mergers on

hospital quality over time

yhs = µs +
−11

∑
k=−24

κk +
24

∑
k=−13

κk +uth (3.8)

where yhs is one of the two measures of hospital quality, HWM or HWR, in period

s for hospital h. µs are calendar time fixed effects, κk are event time fixed effects,

and uhs is an error term.

We estimate Equation (3.8) using hospitals involved in mergers as described in sec-

tion 3.2. The parameters of interest are the κk, which measure the outcome at event

time k relative to the base category which we set at 12 months prior to the merger.

The κk parameters for periods prior to the merger (k < 0) allow us to test for pre-

trends or impacts on quality that occur before the merger is formally completed. We

are primarily interested in κk parameters for periods after the merger (k > 0). We

anticipate that κk = 0 for k < 0 (i.e. no pre-trends) and we test the null hypothesis

that κk = 0 for k > 0, meaning mergers have no impact on hospital quality. Since our

dependent variables HWM and HWR are measured relative to the expected national

average, if we find that κk > 0 in the post-merger period this implies that clinical

quality at merged hospitals has deteriorated relative to hospitals that did not merge.

As a placebo test, we also estimate Equation (3.8) for hospitals not involved in

mergers and impose artificial mergers at the dates of the actual mergers in our data.

In this case, we anticipate that κk = 0 for all k.

We estimate Equation (3.8) using OLS and cluster standard errors by hospital site.

In this specification, we treat the hospital quality measures as fixed, which will

understate the standard errors because it omits any estimation error from the risk-

adjustment exercise. In future work, we plan to bootstrap the standard errors to

account for the two-stage nature of the estimation.
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Figure 3.4: Event study estimates of the impact of hospital mergers on unplanned readmis-
sions

Notes: The Figure plots event study estimates and corresponding 95 percent confidence
bands. The dependent variable is the Hospital Wide Risk Standardized Readmission Mea-
sure - HWR. The unit of observation is a hospital site. Estimation from OLS regression
with standard errors clustered at the hospital level. The regression includes calendar time
fixed effects. Sample comprises all hospitals involved in a merger that belong to a trust
providing acute-care services in England.

3.4 Results

Baseline Results

We start our analysis by plotting the event study estimates from equation (3.8) for

our two measures of quality in Figure 3.4 and 3.5. The coefficients measure the

difference in care quality relative to the baseline period for the hospitals involved in

a merger. We include calendar time fixed effects that control for changes in quality

common to all hospitals. Standard errors are clustered at the hospital level. We

find a negative and significant effect of mergers on the quality of care, with both

measures displaying an increase in the period after the merger (i.e., a reduction in

the quality of hospital care).

Our risk-adjusted mortality measure increases in the month following a merger and

remains above the baseline level for the following two years. The picture is broadly

similar when using risk-adjusted readmissions, with some evidence of an increase in

quality two months prior the merger. Reassuringly, the coefficients are close to zero
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Figure 3.5: Event study estimates of the impact of hospital mergers on in hospital mortality

Notes: The Figure plots event study estimates and corresponding 95 percent confidence
bands. Dependent variable is the Hospital Wide Risk Standardised Mortality Measure -
HWM. The unit of observation is a hospital site. Estimation from OLS regression with
standard errors clustered at the hospital level. The regression includes calendar time fixed
effects. Sample comprises all hospitals involved in a merger that belong to a trust providing
acute-care services in England.

in the time preceding the event indicating that we are not capturing the acquisition

of poorly performing hospitals.

The mergers we study increase the likelihood of a patient dying by 0.4 percentage

points, or 27 per cent relative to the baseline mortality rate of 1.4 per cent. Similarly,

the likelihood of readmission increases by 0.9 percentage points (11 per cent relative

to a baseline of 8.3 per cent). This effect corresponds to around 60.000 excess

deaths, and 140.000 excess readmissions due to the mergers in the period we study.

We estimate the total value of life lost from mergers to exceed 13 millions, 4% of

hospital costs.7

As a placebo test, we compute equivalent estimates for hospital sites not involved

in mergers. The event study estimates for these hospitals are entirely flat in the pre-

and post-merger periods, see Figure 3.6 and 3.7.

7This value is calculated under the assumption that the average patient that died in hospital had
two years of life left to leave with value of life per year being 111,860.66 pounds.
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Figure 3.6: Event study estimates of the impact of hospital mergers on unplanned
readmissions- Placebo test

Notes: The Figure plots event study estimates and corresponding 95 percent confidence
bands. Dependent variable is the Hospital Wide Risk Standardised Readmission Measure
- HWR. The unit of observation is a hospital site. Estimation from OLS regression with
standard errors clustered at hospital level. The regression includes calendar time fixed
effects. Treatment sample comprises all hospitals involved in a merger that belong to a
trust providing acute-care services in England. Control sample comprises all hospitals not
involved in a merger that belong to a trust providing acute-care services in England.

Figure 3.7: Event study estimates of the impact of hospital mergers on in hospital mortality
- Placebo test

Notes: The Figure plots event study estimates and corresponding 95 percent confidence
bands. Dependent variable is the Hospital Wide Risk Standardised Readmission Measure
- HWR. The unit of observation is a hospital site. Estimation from OLS regression with
standard errors clustered at hospital level. The regression includes calendar time fixed
effects. Treatment sample comprises all hospitals involved in a merger that belong to a
trust providing acute-care services in England. Control sample comprises all hospitals not
involved in a merger that belong to a trust providing acute-care services in England.
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Figure 3.8: Impact of hospital mergers on unplanned readmissions

Notes: The Figure plots the estimates and corresponding 95 percent confidence bands
of the difference in quality before and after the merger. Quality is measured using the
Hospital Risk Standardised Mortality (HWM) measure, and the mortality Standardised
Risk Ratio (SRR) for the specialty cohort estimates. The unit of observation is a hospital
site. Estimation from OLS regression. The regression includes calendar time fixed effects.
Standard errors are clustered at site level. Sample comprises all hospitals involved in a
merger that belong to a trust providing acute-care services in England.

Subgroup Analysis

We estimate the average effect of mergers on hospital quality at specialty cohort

level with the intent of uncovering heterogeneous effects. The results are shown

in Figure 3.8 and 3.9. Here, the coefficients represent the difference between the

average quality of merging hospitals before and after the event. We include calen-

dar time fixed effects that control for changes in quality common to all hospitals.

Standard errors are clustered at the hospital level. In Figure 3.9 we break down

the analysis into the 15 specialty cohort components of the HWM measure. The

effect of mergers on quality appears to vary across different specialties, although in

most cases we cant distinguish it from zero with a high level of accuracy. In Figure

3.9, we repeat the analysis using the 5 specialty cohort components of the HWR

measure. Similarly to the HWM measure, the effect of mergers on quality is not ho-

mogeneous, with patients undergoing surgical operations being the most negatively

affected from the merger.
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Figure 3.9: Impact of hospital mergers on mortality

Notes: The Figure plots the estimates and corresponding 95 percent confidence bands
of the difference in quality before and after the merger. Quality is measured using the
Hospital Risk Standardised Mortality (HWM) measure, and the mortality Standardised
Risk Ratio (SRR) for the specialty cohort estimates. The unit of observation is a hospital
site. Estimation from OLS regression. The regression includes calendar time fixed effects.
Standard errors are clustered at site level. Sample comprises all hospitals involved in a
merger that belong to a trust providing acute-care services in England.

3.5 Extension
In this section we sketch out one possible mechanism through which mergers can

negatively affect the quality of care: through their impact on market competition.

Weaker market competition is believed to reduce hospitals incentives to provide

better quality services in markets with fixed prices. As of now we can’t conclude

on whether this is the ultimate mechanism trough which mergers impact hospital

quality.

Mergers and Market Competition

Gaynor et al. (2013) finds compelling evidence that competition in the NHS reduced

acute myocardial infarction mortality and patient length of stay. These findings are

consistent with predictions from economic theory. In the absence of price com-

petition, hospitals have to compete on quality to attract patients, hence the higher

the number of competitors in a market the higher hospitals incentives to increase

quality (Gaynor, 2006).
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Mergers reduce the number of competitors in a industry and may therefore weaken

competition and increase the merging parties market power leading to a reduction

in quality. To produce some descriptive evidence on whether a competition story

is behind the effects we found we compute a measure of market competition and

relate this measure to changes in quality following the mergers.

We choose to measure competition using the Herfindahl Hirschman Index (HHI)

which does not require price inputs and is therefore suitable to analyse the envi-

ronment in which UK hospitals operate. The HHI is the sum of squared market

shares of each firm competing in the market, ranging from 0 (perfect competition)

to 10000 (monopoly). Following Gaynor et al. (2013), we calculate a hospital level

HHI in two steps. First, we produce General Practice (GP) level HHI. Second, we

aggregate HHIs at the hospital level. Equation 3.9 shows the first stage

HHI jc =
N

∑
i=1

S2
ic (3.9)

i denotes a hospital that competes on the market of GP j for specialty c. Sic is the GP

j’s share of patients that have been inpatient in hospital i for specialty c expressed

as a whole number, not a decimal. We compute Sic using the HES data.

A critical input for this measure is determining the relevant market over which to

compute market shares. We define a different relevant market for each GP to mirror

the structure of the NHS where patients choose hospitals in conjunction with their

doctors (Cooper et al., 2010b). We restrict the geographical extension of each GP

market using the 80th percentile of the distance travelled by patients from the GP

location to the hospital. This distance approximate patients willingness to travel.

More specifically, the GP-relevant market is a circle centered around the GP location

with radius equal to the 80th percentile of the distance. All acute hospitals that

are located within this circle are potential competitors. In addition, we define a

different relevant market for each specialty for two reasons. First, there is little

substitutability between specialties. Second, patients needing different treatments

may have different willingness to travel.
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For each hospital, the hospital-specialty HHI is then computed as a weighted aver-

age of GP-specialty HHIs. Equation 3.10 shows the second stage, that is the HHI at

hospital level.

HHIhc =
J

∑
j=1

s jc ·HHI jc (3.10)

shic represents the share of patients that hospital h receives from GP j for specialty c.

HHI jc represents the GP level HHI for practice j and specialty c. Table 3.3 shows

summary statistics for the site-specialty HHI. On average, site-specialty markets

appear to be moderately concentrated in the period of interest.

Table 3.3: Summary statistics for competition measure

Mean SD Min Max
Herfindahl-Hirschman Index 1792.958 2278.348 0 10000

Notes: The Table displays summary statistics for HHI index for site-specialty relevant markets over the pe-
riod 2006-2013. Sample comprises all hospitals operating in England.

Inspecting the Mechanism

Antitrust authorities generally consider markets in which the HHI is between 1,500

and 2,500 points to be moderately concentrated and, beyond 2,500 points to be

highly concentrated. Mergers occurring in concentrated markets are most likely to

give cause for concern.8

In order to assess whether the effect found in the previous section can be the result

of increased concentration and market power, we compute the pre-merger HHI for

each specialty cohort. Figure 3.10 shows the average specialty HHI for the pre-

merger period for the HWM groupings. The HHI of 4 of the 15 HWM specialty

categories falls in the range of moderately concentrated; the HHI of 3 specialty cat-

egories falls in the highly concentrated range. Mergers occurring in these markets

have ex-ante the potential to reduce quality.

Interestingly, some of the specialty cohorts for which we find a negative impact

of mergers on hospital quality display a significantly high level of market concen-
8In particular, mergers occurring in such markets that result in changes in HHI greater than 100

potentially raise competitive concerns; mergers in highly concentrated markets that result in a change
in HHI greater than 200 are presumed to be very likely to enhance market power9.
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Figure 3.10: Hospital-Specialty HHI for HWM categories

Notes: The Figure plots the average hospital-specialty HHI for the period -1 relative to
the date of the merger. Sample comprises hospitals that have been involved in a merger in
the period 2006-2015. Groupings of patients from HWM methodology. Red dashed lines
denote antitrust authorities thresholds for moderately concentrated (1500¡HHI¡2500) and
highly concentrated (HHI¿2000).

tration pre-merger. For example, Renal for which we find a statistically significant

negative impact of mergers on quality has a pre-merger HHI of more than 5000. Fig-

ure 3.11 shows the average specialty HHI for the pre-merger period for the HWR

groupings. Cardiorespiratory which we have found to experience a decrease in

quality after the mergers shows high level of market concentration pre-merger. In a

similar vein, Medicine for which we have found no negative impact of mergers on

quality shows a low level of HHI pre-merger. On the other hand, Surgery shows a

very low level of concentration pre-merger and a sizable negative impact of mergers

on quality.

To further examine whether the competition mechanism could be a plausible expla-

nation in our context we compute the average impact of mergers at hospital level

and relate this to the level of pre-merger market competition faced by the hospital.

Figure 3.12 shows the relationship between the average site-level effect of mergers

on the HWM measure and the level of pre-merger market competition. Figure 3.13

shows the relationship between the average site-level effect of mergers on the HWM

measure and the level of pre-merger market competition. There is a mild positive
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Figure 3.11: Hospital-Specialty HHI for HWR categories

Notes: The Figure plots the average hospital-specialty HHI for the period -1 relative to the
date of the merger. Sample comprises hospitals that have been involved in a merger in the
period 2006-2015. Groupings of patients from the HWR methodology. Red dashed lines
denote antitrust authorities thresholds for moderately concentrated (1500¡HHI¡2500) and
highly concentrated (HHI¿2000).

relationship between the level of pre-merger market competition and the impact of

mergers on our measures of hospital quality. An increase in the HHI pre-merger is

loosely correlated with an increase in the effect of mergers on the HWM and HWR

measures (i.e. a reduction in quality following the merger). No direct conclusion

can be extracted from these figures. In the future we plan to further develop this

area of the analysis.

3.6 Conclusions
Mergers and acquisitions raise a number of antitrust concerns, chief among them

that market consolidation may lead to higher prices or poorer product quality. Both

of these effects are incredibly important in health care markets, which have experi-

enced significant merger activity over the past two decades, and where prices and

quality can literally be a matter of life or death.

This paper provides novel evidence on the effect of mergers on quality of clinical

care. We use an event study framework to evaluate 159 public hospitals involved in

mergers in the English NHS during 2006 to 2015.
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Figure 3.12: Relationship between effect of mergers and pre-merger HHI

Notes: The Figure displays the relationship between average effect of mergers at hospital
level and hospital level HHI in the period pre-merger. Average effect of merger estimated
with OLS regression controlling for calendar time fixed effects.

Figure 3.13: Relationship between the effect of mergers and pre-merger HHI

Notes: The Figure displays the relationship between average effect of mergers at hospital
level and hospital level HHI in the period pre-merger. Average effect of merger estimated
with OLS regression controlling for calendar time fixed effects.
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We find evidence that hospital mergers have immediate, persistent and statistically

significant negative impacts on quality of care. On average, the mergers we study

increased the likelihood of a patient dying by 0.4 percentage points, or 27 per cent

relative to the baseline mortality rate of 1.4 per cent. Similarly, the likelihood of

readmission increased by 0.9 percentage points (11 per cent relative to a baseline

of 8.3 per cent). Under very conservative assumptions about the valuation placed

on life-years, we estimate that the deterioration in health outcomes is valued at

approximately 4 per cent of average annual hospital costs. These effects are the

same order of magnitude to the estimated effects of mergers on hospital costs.

There are a number of important caveats to this work. First, our work has focused

on mergers between acute hospitals. In the future, it would be important to extend

the analysis to specialists hospitals. This may uncover positive effects of mergers on

hospital quality arising from specialisation economies. Second, the risk adjustment

methodology could be further developed. In this work we risk adjust mortality and

readmissions using the CMS methodology. This methodology has been developed

for US hospitals and in particular Medicare patients. This is a limited share of

population which could be very different from NHS patients. In the future we plan

to develop our risk adjustment methodology further with the purpose of capturing

health shifters relevant to the UK setting. Third, as of now we could improve on the

way we estimate our coefficients standard errors. In the future we plan to refine the

way we compute standard errors by using bootstrapping techniques. Lastly, we plan

to investigate the channels through which mergers impact the quality of hospital

care. In particular, we plan to investigate whether the impacts are associated with

changes in market power or specific decisions taken by hospitals in the post-merger

period (e.g. internal department reorganizations).

Based on the analysis to date, we conclude that hospital mergers may have first

order impacts on clinical quality and this should be an important consideration for

antitrust authorities. The steps outlined above will help us understand these effects

in more detail. Our specific estimates of course apply to the English setting, where

hospitals are publicly owned and prices are fixed. While this is an ideal setting to
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evaluate the clinical quality impacts, understanding how these results generalize to

more complex settings is an important direction for future



Chapter 4

Does Contact Time Matter For

Patient Outcomes?

Joint work with Ann-Marie Cannaby, Vanda Carter, David C. Chan, Jonathan Gru-

ber, and Stephenson Strobel

4.1 Introduction
In 2023, 71% of the National Health Service (NHS) staff who have direct contact

with patients said they did not have the amount of time they would like to have to

help them.1

Although widely recognized as an essential component of good care and patient ex-

perience (Aiken et al., 2000), little is known about the relationship between contact

time and patient hospital outcomes. This study aims to provide a first estimate of

this relationship.

Contact time between medical staff and patients is generally considered a vital di-

mension of a patient stay in hospital (Barker et al., 2016; Griffiths et al., 2019).

It is meant to allow the hospital staff to target, coordinate, and monitor treatment

and contributes to the patient feeling cared for and supported (Aiken et al., 2000;

Duffield et al., 2011; Westbrook et al., 2011). But does contact time matter for

1https://www.theguardian.com/society/2023/jul/24/most-nhs-staff-say-they-dont-have-enough-
time-to-spend-with-patients
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patients’ outcomes?

Empirical research in this area has been challenging. Data on contact time is not

widely available and difficult to collect on a large scale. Existing studies have gen-

erally relied on self-reported logs or involved an external observer recording staff

movements and activities (Dall’Ora et al., 2021; Edwards et al., 2009; Hendrich

et al., 2008; Yen et al., 2018b). Both approaches suffer from significant limitations

and are hard to scale. Time-motion analyses require a human observer to record and

characterize activities over time. This is costly, time-consuming, and captures only

limited time frames and locations. Using an observer to collect this type of data may

also induce individuals to change their behavior, leading to biased results (Mahtani

et al., 2018). Self-reported activity logs require staff to record, without any outside

interference, how they spend their time during the day (Antinaho et al., 2015). This

method is subject to recall bias, as staff members often overestimate their time with

patients (Donaldson and Grant-Vallone, 2002), besides being an important ask to

staff who are already significantly overworked.

However, data limitations have not been the only impediment to investigating the

relationship between contact time and patient outcomes. Identifying a causal im-

pact requires a plausible exogenous variation in contact time as this may correlate

with observable and unobservable patient characteristics. Staff for example can be

expected to spend more time with sicker patients, which may induce a spurious cor-

relation between health outcomes and contact time. Policy experiments that have

changed contact time have been challenging to come across, and to this day no

existing study has attempted to address this challenge.

This paper uses a novel and unique data source, real-time location system (RTLS)

data, to overcome these challengers. RTLS allows organizations to observe the

movements of objects and individuals across space in real-time (Cannaby et al.,

2022b). These systems have been deployed in healthcare, where they are increas-

ingly leveraged to organize patient and staff flow (Overman, 2022). Data capture is

a crucial capability of RTLS; every movement is recorded and stored in the system’s
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memory (Cannaby et al., 2022a). RTLS data allow us to have a privileged view of

the interactions between patients and staff in the hospital and to compute contact

time accurately across an entire hospital. Having quantified the amount of contact

time patients receive from nurses; we analyze whether contact time has a detectable

effect on patient outcomes. We focus on three patient outcomes: mortality, transfers

to the Intensive Care Units ICU), and accidents. These outcomes capture essential

dimensions of the patient’s hospital stay. Mortality is a crucial result for both the

patient and the hospital. ICU transfers indicate deterioration in patients’ health.

Accidents are considered a marker of the quality-of-care patients receive during a

hospital admission stay and the level of oversight provided.

We estimate the relationship between patient outcomes and contact time using a

fixed effect Ordinary Least Squares regression to provide evidence of causal ef-

fects. Exploiting the richness of our data, we decompose the amount of contact

time a patient receives into an endogenous and a likely exogenous component. We

show that contact time that arises from interactions at the patient bed is endogenous

as sicker patients require more care, so nurses spend more time with them at their

bedside. However, we believe that a significant portion of the time nurses spend

with patients is unrelated to their characteristics and can be considered unrelated to

their health outcomes. In particular, we argue that the amount of time nurses spend

in the patient room is uncorrelated to other determinants of patient health once we

control for the patient bed-side level contact time. Under this assumption, our re-

sults suggest that contact time has a negative effect on both in-hospital mortality and

accidents. An increase in contact time reduces mortality by 0.03% and accidents by

0.01%. This is evidence of the importance of direct care in hospitals for patient

outcomes.

This paper contributes to two strands of literature. First, an extensive literature in

health services that measures contact time as an end in itself. Among all, Butler

et al. (2018) has the approach closest to us. They use a sensor-based measure-

ment of contact time within an intensive care unit and show that nurses spend 32%

of their time with patients. Other studies use less sophisticated contact measure-
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ments; for example, direct observation of nurses taking vital signs suggests that

this is a time-consuming process (Dall’Ora et al., 2021). This type of observation

also suggests that hands-on tasks of nurses occur during the day and that a plu-

rality of time is spent within the nursing station and charting (Yen et al., 2018a).

This relates directly to concerns within medicine on the over-proliferation of non-

clinical work. Surveys suggest that physicians find the amount of time devoted to

paperwork and administrative tasks has increased to the detriment of clinical work

(Government of Nova Scotia, 2020). The introduction of electronic health records

has been associated with an increase in time spent on documentation by 8% among

consultant physicians (Joukes et al., 2018) and nearly 45% increase in documenta-

tion tasks within the ICU (Carayon et al., 2015). Surgical residents spend nearly 24

hours on documentation during a week (Cook et al., 2010). Overall, the impact of

introducing electronic health records seems to increase the overall documentation

time (Baumann et al., 2018)which is in line with survey responses that suggest an

increase in documentation in lieu of face-to-face contact time. This increase in doc-

umentation is associated with physician burnout (OMA, 2021). Our contribution to

this literature is to show that direct contact with patients matters. Trends towards

additional administrative tasks will likely result in poorer patient outcomes.

This links to a second piece of literature on nurse staffing. Much of the current the-

ory on nurse staffing levels and patient outcomes relates to better oversight. More

nurses mean more oversight due to more direct observation of patients (Shekelle,

2013). There has been mixed evidence that additional nurse staffing improves out-

comes. Most associations between patient outcomes and staffing levels show im-

provements in patient outcomes with higher staffing levels (Aiken et al., 2000; Grif-

fiths et al., 2019; Haegdorens et al., 2019; Musy et al., 2021; Needleman et al., 2011;

Zaranko et al., 2022). Policy experiments have been more challenging to find. A

notable exception has been the adoption of minimum nursing ratios in Australia,

which was associated with 7% reductions in mortality and readmissions (McHugh

et al., 2021). Similar mandates in California have demonstrated mixed evidence;

while surveys of nurses report better quality of care (Aiken et al., 2010), adminis-
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trative data suggests no improvement in patient outcomes like mortality despite the

policy improving staffing ratios (Cook et al., 2010). We provide a plausible mecha-

nism underpinning this literature: direct contact time improves patient outcomes.

This paper proceeds as follows. In Section 4.2 we describe the RTLS system, our

measure of contact time, and the data on patient outcomes. In Section ?? we present

our empirical strategy and results. Finally, Section 4.4 concludes.

4.2 Data

The setting of this paper is the New Cross Hospital in Wolverhampton, England.

This is a large district general hospital part of the Royal Wolverhampton NHS Trust

(RWT). The Trust is one of the main healthcare providers in the West Midlands,

covering acute, community, and primary care services.

In 2013, RWT partnered with a United States technology company to develop a

real-time patient flow and tracking solution (Nash, 2014). This application was

intended to support staff in delivering care and to enhance efficiency through the

process of providing real-time operational information across clinical areas. The

RTLS requires four main components:

- A locating node (i.e., multiple boxes on the ceiling covering clinical areas),

- A location server (the computer that receives all the data),

- A user application (the software that interprets the data),

- The tag (typically a badge worn by members of staff, patients, and equipment)

RTLS tags can be worn by staff – on a lanyard or clip – while patients have it

attached to a wrist or ankle via a bracelet. The technology transmits continuous

location data that is unique to the tagged person or item in real or near-real-time

(Kamel Boulos and Berry, 2012).

The RTLS at RWT provides real-time tracking of all staff and patients across

564,916 square feet of the New Cross hospital site. As of April 2022, RWT has
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Figure 4.1: RTLS components

Note: The figure shows the locating node and the badges worn by staff and patients.

Figure 4.2: Tracking movements in a day

Note: Total location changes by hour and location type. Source RTLS data at RWT.

issued 7218 staff badges, and all patients are badged on admission for their stay

within the hospital (Cannaby et al., 2022b). We show the privileged view that the

RTLS buys us into the workings of the hospital in Figure 4.2. Each observation in

our data is a location change; someone going in and out of a location. We classify

hospital areas into clinical (e.g., bays), non-clinical (e.g., waiting rooms), and trans-

fer (e.g., corridors, halls) and track how many location changes we observe in each

of these over the course of a day. Clinical areas are the places where most move-

ments occur. Between 8 and 9 AM on average, we can observe more than 8500 staff

movements in and out of locations.

Patients’ contact time with nurses

We utilize RTLS data from April 2016 to April 2019 to measure how much contact

time patients receive from nursing staff, including registered nurses and health care
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support workers (RNs and HCSWs).

The starting point is to identify time lapses when the patient and the nurse interact

at a given location. We focus on two types of interactions: those at the patient’s

bed and those in the patient’s room.2 Our sample comprises more than 20 million

interactions between patients and nursing staff.

We compute bed-side contact time as the total number of minutes a patient spends

with staff at the location identified as the patient’s own bed. We define room-level

contact time as time spent by nurses and patients together in the room where the pa-

tient’s bed is located, regardless of whether the interaction is detected at the patient’s

bed side. Figure 4.3 presents two scenarios illustrating the difference between bed-

side and room-level contact time. In Scenario A, the nurse is at the bed-side of

Patient 1 (in gray); this interaction will feed into Patient 1 bed-side contact time

but will also account for both patients’ room-level contact time. The interaction in

Scenario B will account for both patients’ room-level contact time but contribute

to neither bed-side level contact time. Contact time is then computed as the total

number of minutes nurses spend with patients at their bed (bed-side contact time)

or in the patient’s room (room-level contact time).

Figure 4.4 presents the bed-side and room-level contact time distribution. An ob-

servation in our data corresponds to a unique patient-day combination. The top

and bottom sides of the box are the lower and upper quartiles. The box covers the

interquartile interval, where 50% of the data is found. The horizontal dotted line

in gray that splits the box in two is the median, and the horizontal dotted line in

blue indicates the mean. The median bed-side contact time is 16 minutes, while the

mean is 22. The median room-level contact time is 7 hours, while the mean is 8.

2We don’t have data on the assignment of patients to beds or rooms, but we can reliably identify
assignments using the RTLS data itself. We compute the number of hours we observe each patient in
hospital on a given day. The system tracks the average patient in our sample for 15 hours daily. The
patient’s bed is identified as the bed location where the patient spends most of his/her day. For most
of the patients in our data, the assigned bed accounts for 90 percent of the time they are observed in
the hospital indicating that our imputation method is reasonable. To further check the accuracy of
the imputation, we examine whether the patient diagnosis codes are consistent with the location of
his/her bed. This check substantiates that we can reliably identify the location of the patient’s own
bed.
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Figure 4.3: Bed-side and Room-level Contact Time

Note: Panel A shows what accounts for bed-side level contact time. Panel B shows what
accounts for room-level contact time. All bed-side contact time accounts as room-level
contact time

Both distributions display significant heterogeneity, with different patients receiv-

ing significantly different amounts of contact time. Bed-side contact time is also

concentrated on particular moments of the day, as seen in Figure 4. The most sig-

nificant amount of bed-side contact time is between 8 and 12 AM. This aligns with

previous findings documenting that nurses’ work is not distributed equally across

a 12-hour shift and that hands-on tasks mainly occur between 7 and 11 AM (Yen

et al., 2018b).

Complementary Data

We complement the RTLS data with information on patient characteristics from the

hospital’s inpatient episode dataset. This includes patient clinical and demographic

information. From this data, we identify the date of the patient’s death. Further, we

use data from the incident reporting system data at RWT, which collects all reported

adverse events involving patients, staff, and visitors at the hospital. We observe the

time and the day when these incidents occur, the location, whether the adverse event

has caused any harm to the patient, and the type of event (e.g., pressure ulcer, wrong

medication). Finally, we monitor deterioration in a condition necessitating higher

levels of care with any transfer to the intensive care unit at RWT, which we detect
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Figure 4.4: Distribution of Contact Time

Note: Scatter plot of bed-side and room-level contact time. Does not include outside
values. Bed-side contact time is minutes per day and patient. Room-level contact time is
in hours per day and patient.

Figure 4.5: Minutes of Bed-Side Contact Time by the Hour (Patients)

Note: Average number of minutes per hour patients and nurses are observed together at
the patient’s bed.
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using RTLS data.

Our sample of patients includes all individuals admitted for inpatient care to the

hospital during the observation period across 20 inpatient wards. 60 percent of

patients are males, 78 percent are white, and the average patient is 64 years old

and has a length of stay of 20 days. 0.3 percent of patients experience death in the

hospital, 1.2 experience an accident, and 0.09 are observed being transferred to the

ICU during their hospital stay.

Our sample of staff from the RTLS includes all RNs and HCSWs employed by the

hospital between 2016 and 2019. RNs are qualified nurses who coordinate access

and deliver prescribed care to patients. RNs have either a foundation or bache-

lor’s degree in nursing and are registered practitioners with the Nursing/Midwifery

Council (NMC). HCSWs work under the guidance of a healthcare professional,

such as a nurse or a doctor. In a hospital setting, they may assist with the patient’s

hygiene needs and help mobilize and monitor patients’ conditions. For part of the

nurses in our sample, we can identify their gender, nationality, and experience in

the NHS. For this subset, we can observe that 75 percent are female, 81 percent are

British, and the average nurse has ten years of experience.

Table 4.1: Patients Summary Statistics

mean sd min max
Share Female 0.39 0 0 1
Share White 0.78 0 0 1
Age 64.5 16 15 90
Charlson Index 2.3 2 0 15
Length of Stay 19.5 25 0 583
Daily Bed-Side Contact Time (Minutes) 22.3 19.2 5 593.8
Daily Room-Level Contact Time (Hours) 8.2 5.3 1 22.1
Mortality 0.003 0 0 1
Accidents 0.012 0 0 1
ICU Transfers 0.009 0 0 1
Observations 66825

∗ Note: Source RWT inpatient records, 2016/2019.
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Table 4.2: Nurse Summary Statistics

mean sd min max
Panel A
Share of Registered Nurses 0.64 0 0 1.0
Days Worked Monthly 13.63 5 1 31.0
Observations 203601
Panel B
Share Female 0.75 0 0 1.0
Share British 0.81 0 0 1.0
Years of Experience 10.18 9 0 52.0
Observations 63989

∗ Note: Source RWT RTLS and HR records, 2016/2019.

4.3 Empirical Strategy

Our empirical strategy is tailored to identifying causal effects in the presence of

endogeneity, which arises because the amount of contact time a patient receives

is likely a function of their characteristics and, hence, their outcomes. Omitted

health variables, in particular, are a concern in this context. For example, nurses

may spend more time with patients whose condition is deteriorating rapidly. The

nurses can observe this health measure, but the econometricians can’t. This in turn

could bias any estimate such that we might expect a much reduced or even negative

relationship between contact time and outcomes.

An ideal experiment to address this concern would be a randomized control trial

(RCT) where we could exogenously change the amount of contact time each patient

receives. Within an RCT, averaging differences in outcomes between the control

and treatment groups would be sufficient to identify a causal effect of contact time.

We do not observe any exogenous change in contact time which would be appro-

priate to approximate this setting. However, we believe the granularity of our data

allows us to distinguish between the contact time patients receive because of their

health status and the contact time patients receive because of other reasons unrelated

to their health. We lay out our identification strategy below.
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Identification Argument

Assume that the following relationships can express the true model of contact time

and patient outcomes:

Yirt = β0 +β1CTirt +β2Xirt +β3Hirt + εirt (4.1)

CTirt = f (Xirt ,Hirt) (4.2)

Where Yirt is a binary indicator of whether a patient i residing in room r has ex-

perienced negative health outcomes on day t (i.e., death, ICU transfer, or accident)

and CTirt is the amount of contact time patient i receives on day t. Xirt and Hirt rep-

resent respectively all observed and unobserved factors affecting the outcome and

the amount of contact time the patient receives. Lastly, εirt and uirt represent two

idiosyncratic components.

As we can at best only observe Xirt , the model we can seek to estimate would be:

Yirt = α +β1CTirt +β2Xirt +ηirt (4.3)

ηirt = β3Hirt + εirt (4.4)

Estimating β1 in this case would lead to a biased result because we cannot control

for Hirt . To attenuate this problem and provide evidence on the causal relationship

between contact time and patient outcomes, we make a simple distinction between

what we call bed-side and room-level contact time.

We argue that bed-side level contact time is endogenous as sicker patients require

more direct care and, for this reason, are given more contact time by nurses. How-

ever, we assume that the amount of time nurses spend in the patient room is likely

unrelated to any unobserved determinants of health once we control for the amount

bed-side contact time patient i receives on day t. In particular, we assume contact
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time is the result of the following relationships:

CTirt =CT B
irt +CT R

irt (4.5)

CT B
irt = h(Xirt ,Hirt) (4.6)

CT R
irt = Σ

Nr
j ̸=ig j(CT B

jrt)+gi(CT B
irt) (4.7)

In this model, the amount of contact time patient i receives is given by the sum of

CT B
irt , the bed-side level contact time, and CT R

irt the room-level contact time received

by patient i on day t. CT B
irt is a function of both observed and unobserved factors

affecting the outcome and, in this sense, endogenous. CT R
irt is a function of the

bed-side contact time of the patients in room r and patient i contact time. The bed-

side contact time of the patients in room r is unrelated to patient i characteristics

and hence, once we control for CT B
irt room-level contact time is unrelated to any

unobserved determinant of health.

Estimation

In practice, we estimate the following model:

Yirt = α +β
BCT B

irt +β
RCT R

irt + γNrt +δXirt +Wrt + εirt (4.8)

Yirt is a binary indicator of whether a patient i residing in room r has experienced

negative health outcomes on day t (i.e., death, ICU transfer, or accident). CT B
irt is

the bed-side level contact time received by patient i on day t. CT R
irt is the room-level

contact time received by patient i on day t. Nrt is the number of patients in room r

on day t. Wrt represents the interaction between the ward where room r is located

and the day t. Xirt includes patient i clinical information (e.g., age, comorbidities)

and the characteristics of the average patient in room r , as well as an additional

proxy of health status which is the distance between the patient bed and the nursing

station. We cluster standard errors at the ward level.
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4.4 Results

o In Table 4.3 we show the results from estimating the model in Equation 4.8 where

the dependent variable is a binary indicator of the patient death on day t.

In column (1) we control for ten comorbidity indicators, primary diagnosis code,

age, age squared, the average characteristics of the patients in the room, the distance

between the patient bed and the nursing stations, and the interaction between ward

and day. The coefficient on room-level contact time is negative and statistically sig-

nificant, indicating that an increase in contact time is associated with a diminished

probability of death. In column (2) we control for bed-side contact time. The co-

efficient on room-level contact time becomes more negative. Adding the number

of patients in the room as an additional control in column (3) does not change the

result.

The estimates suggest that one minute more of contact time is associated with a -

0.000635 percentage point change in the probability of death, or a one-unit increase

in contact time reduces in-hospital mortality by 0.3%. This reduction is not negligi-

ble, as it suggests that for ten more minutes of additional contact, patient mortality

would drop by almost 3%. Assuming that for a 12-hour shift 40 percent of the time

is spent in direct contact with patients, adding one more nurse to a ward with ten

patients would result in a drop in mortality of 8.64 percent. This result is in line

with Zaranko et al. (2023) where the authors show that on average, an extra 12-hour

shift by an RN was associated with a reduction in the odds of a patient death of

9.6%.

In Table 4.4 we show the results from estimating the model in Equation 4.8 where

the dependent variable is a binary indicator of the patient being transferred to ICU

on day t. The estimates are negative but not statistically significant, and we cannot

exclude a zero effect for this outcome.

In Table 4.5 we show the results from estimating the model in Equation 4.8 where

the dependent variable is a binary indicator of the patient experiencing an accident



4.5. Conclusions 112

Table 4.3: OLS regression - Dependent variable binary indicator of patient death

(1) (2) (3)
Room-level CT -0.00000332∗∗∗ -0.00000635∗∗∗ -0.00000635∗∗∗

(0.000000690) (0.00000116) (0.00000114)

Bed-side CT 0.000114∗∗∗ 0.000112∗∗∗

(0.0000200) (0.0000197)

Room patients (N) 0.000669∗∗

(0.000206)
Share of deaths 0.002 0.002 0.002
Room-level CT (mean) 439.154 439.154 439.154
Bed-side CT (mean) 16.572 16.572 16.572
N 227395 223996 227395
Standard errors in parentheses are clustered at the ward level
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 4.4: OLS regression - Dependent variable binary indicator of patient ICU transfer

(1) (2) (3)
Room-level CT -0.00000340 -0.00000350 -0.00000356

(0.00000315) (0.00000260) (0.00000261)

Bed-side CT 0.00000124 0.00000278
(0.0000252) (0.0000237)

Room patients (N) 0.000579
(0.000283)

Share of icu transfers 0.004 0.004 0.004
Room-level CT (mean) 439.154 439.154 439.154
Bed-side CT (mean) 16.572 16.572 16.572
N 227395 223996 227395
Standard errors in parentheses are clustered at the ward level
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

on day t. The coefficient on room-level contact time becomes is negative and sta-

tistically significant. Also, in this case, adding the number of patients controlling

for bed-side level contact time makes the coefficient more negative. The estimates

suggest that a one-unit increase in contact time reduces the probability of the patient

experiencing an accident by 0.1%.

4.5 Conclusions
Using novel data from RTLS we showed that contact time between patients and

nurses significantly affects the health outcomes of patients in the hospital. The esti-

mates suggest that one minute more of contact time is associated with a -0.000635
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Table 4.5: OLS regression - Dependent variable binary indicator of patient accident

(1) (2) (3)
Room-level CT -0.00000329∗∗ -0.0000120∗∗∗ -0.0000119∗∗∗

(0.00000108) (0.00000111) (0.00000109)

Bed-side CT 0.000334∗∗∗ 0.000329∗∗∗

(0.0000207) (0.0000201)

Room patients (N) 0.000460
(0.000261)

Share of Accidents 0.013 0.013 0.013
Room-level CT (mean) 439.154 439.154 439.154
Bed-side CT (mean) 16.572 16.572 16.572
N 227395 223996 227395
Standard errors in parentheses are clustered at the ward level
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

percentage point change in the probability of death, or a one-unit increase in con-

tact time reduces in-hospital mortality by 0.3% and accidents by 0.1%. These re-

sults are achieved under a critical assumption: once we control for bed-side contact

time, room-level contact time is not correlated to unobservable patient health char-

acteristics. Further work is needed to provide more evidence on the validity of

this assumption. However, we believe this paper is an important step in delivering

substantive evidence that contact time matter for patient outcomes.



Chapter 5

General Conclusions

This dissertation has provided three core results. First, it showed that robots shorten

patients’ length of stay and decrease the incidence of adverse events from surgery,

but their effects are heterogeneous and significantly depend on surgeons’ skills.

High-skilled surgeons benefit the least from using the technology, while lower-

skilled surgeons appear to gain the most from it. Second, it found that mergers

have immediate and persistent negative impacts on clinical quality. Lastly, it pro-

vided evidence of the effect that direct contact between nurses and patients can have

on in-hospital mortality and accidents. Subsequent research will further explore the

underlying mechanisms driving these discoveries.
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Appendix

Table 1: Patient’s Characteristics

Variable Type Skills model MTE model
Age Continuous X X
Age squared Continuous X
Ethnicity Categorical X
White Binary X
Myocardial infarction Binary X X
Peripheral vascular disease Binary X X
Cerebrovascular disease Binary X X
Dementia Binary X X
Chronic pulmonary disease Binary X X
Rheumatic disease Binary X X
Peptic ulcer disease Binary X X
Mild liver disease Binary X X
Moderate liver disease Binary X X
HIV/AIDS Binary X X
Diabetes Binary X X
Any malignancy (e.g. lymphoma) Binary X
Congestive heart failure Binary X X
Admission method Categorical X

Table 2: Hospital Trusts - Sample Summary Statistics - 2004/2017

Early Adopter Follower Late Adopter
mean sd mean sd mean sd

Sites 5.987 4.971 10.235 11.678 4.136 3.482
Acute sites 1.494 1.034 1.960 1.233 1.687 0.986
Specialist sites 0.420 0.695 0.460 1.081 0.127 0.370
Available beds 852 484 1089 372 763 316
Occupied beds 729 410 879 292 647 283
Capital investment 18254 12083 14586 9141 10963 8993
Patient costs 3270 2135.607 3355 1675 2429 1342
Teaching hospital 0.444 0.511 0.400 0.498 0.147 0.356
Observations 18 30 75

Ordinary least squares regression

I estimate the relationship between robotic surgery and patients’ outcomes using a

linear regression model. In Table 3 the dependent variable is the logarithm of the

patient length of stay in hospital. In Table 4 the dependent variable is an indicator

for the occurrence of an adverse event following the surgery. In both Tables the

columns represent sequentially richer models where control variables and fixed ef-

fects are added to the initial linear regression. The independent variable of interest

for all models is a dummy variable that takes value one if the patient has been op-
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erated with robotic surgery and zero otherwise. The sample includes all patients

that have undergone a radical prostatectomy in a NHS hospital in England. Table 3

shows that patients operated with the robot experience lower length of stay in hospi-

tal. The coefficient in all specifications is negative and statistically significant. The

negative relationship is robust to the inclusion of patient, hospital characteristics,

and year and hospital fixed effects. Table 4 shows that patients that are operated

with the robot are also less likely to experience an adverse event from surgery. The

coefficient in all specifications is negative and statistically significant. The nega-

tive relationship is robust to the inclusion of patient characteristics, and year and

hospital fixed effects. Demographic controls include age, age squared, indicator

for white ethnic profile. Clinical controls include ten comorbidity variables. The

controls include distance to the closest hospital, indicator for closest hospital being

teaching hospital, urban city indicator.

Table 3: Association of robotic approach and adverse event - OLS Regression

(1) (2) (3) (4)
Robot -0.768∗∗∗ -0.648∗∗∗ -0.407∗∗∗ -0.323∗∗∗

(0.057) (0.056) (0.065) (0.046)

Patient characteristics No Yes Yes Yes

Year-Month No No Yes Yes

Day of the week No No Yes Yes

Hospital FE No No No Yes
N 61225 50884 50884 50884
Standard errors clustered at hospital level
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Instrumental variable approach

I use an instrumental variable approach to estimate the local average treatment ef-

fect for log length of stay. I use either or both Zdist and Zdays as an instrument for

the probability of the robotic approach. I employ a two-step procedure suggested

by Wooldridge (2015) whereby instead of using the instrument directly I use the

predicted probabilities from a first stage Probit estimation in the second stage. I

show the first and second stage estimates in Table 5. In Column 1 to 3, I show the

first stage estimates from a Probit regression of an indicator of robotic approach on
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Table 4: Association of robotic approach and log length of stay - OLS Regression

(1) (2) (3) (4)
Robot -0.0958∗∗∗ -0.0809∗∗∗ -0.0438∗∗∗ -0.0639∗∗∗

(0.0105) (0.00951) (0.00958) (0.0114)

Patient characteristics No Yes Yes Yes

Year-Month No No Yes Yes

Day of the week No No Yes Yes

Hospital FE No No No Yes
N 61839 51424 51424 51424
Standard errors clustered at hospital level
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

the instrument(s) and controls. In Column 4 to 6, I show the second stage estimates

where I instrument the indicator of robotic approach with the predicted values from

the Probit first stage. Demographic controls include age, age squared, indicator

for white ethnic profile. Clinical controls include ten comorbidity variables. The

controls include distance to the closest hospital, indicator for closest hospital being

teaching hospital, urban city indicator. YM indicates year-month controls, DOW

indicates day of the week controls. The LATE obtained in all specifications is neg-

ative and statistically significant. Notice that Mogstad et al. (2021) show that with

more than one instrument, the monotonicity condition required for identification of

the LATE can only be satisfied if choice behavior is effectively homogeneous.

Bivariate probit model

Chesher (2005) shows that the assumptions required for justification of two stage

procedures are incompatible with a discrete outcome. For this reason, to provide a

benchmark to the MTE estimates, I use a bivariate Probit model to test the impact of

robotic surgery on the dependent variable adverse event. I maintain the assumption

of joint normality of errors, exogeneity, and relevance conditions for the instru-

ments. Demographic controls include age, age squared, indicator for white ethnic

profile. Clinical controls include ten comorbidity variables. The controls include

distance to the closest hospital, indicator for closest hospital being teaching hospi-

tal, urban city indicator. YM indicates year-month controls, DOW indicates day of
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Table 5: Estimated impacts of robotic approach on log length of stay

(1) (2) (3) (4) (5) (6)
FS FS FS IV IV IV

Zdist -0.127∗∗∗ -0.093∗∗∗

(0.003) (0.003)

Zdays 0.036∗∗∗ 0.027∗∗∗

(0.001) (0.001)

Robot -0.412∗∗∗ -0.221∗∗∗ -0.307∗∗∗

(0.023) (0.023) (0.019)

Patient characteristics Yes Yes Yes Yes Yes Yes

Year-Month Yes Yes Yes Yes Yes Yes

Day of the week Yes Yes Yes Yes Yes Yes
N 51423 50203 50203 50883 49795 49795
Robust standard errors
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

the week controls. Table 6 shows the coefficients estimated for the simultaneous

Probit model. In Panel A, the dependent variable is the indicator of adverse event

(adverse event=1). In Panel B, the dependent variable is an indicator of robotic

approach (robot=1).

Table 6: Estimated impacts of robotic approach on probability of adverse event

(1) (2) (3)
Bi-Probit Bi-Probit Bi-Probit

Panel A
Robot -0.430∗∗∗ -0.448∗∗∗ -0.459∗∗∗

(0.059) (0.072) (0.059)
Panel B
Zdist -0.014∗∗∗ -0.014∗∗∗

(0.001) (0.001)

Zdays 0.0002∗∗∗ 0.0001∗∗∗

(0.00002) (0.00001)
N 49253 48081 48081
Robust standard errors.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Skills measured using surgeon level random intercept model

I test my baseline specification using an alternative measure of skills where I use

surgeon level random intercepts instead of hospital level random intercepts to com-

pute the ratio between expected and predicted adverse events describes in Section
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2.4. I show how the resulting measure is distributed in Figure 1. In Table 7, I test

my baseline specification when I use this measure as a continuous variable, in Table

8 I use a dummy variable that indicates that the surgeon is above the median distri-

bution of skills. In Figure 2 I show the MTE curve with the continuous measure of

skills. In Figure 3 I show the MTE curve with the indicator of high skilled. Standard

errors bootstrapped with 100 repetitions. The dependent variable is the logarithm of

post-operative length of stay. Demographic controls include age, age squared, indi-

cator for white ethnic profile. Clinical controls include ten comorbidity variables.

Area controls include distance to the closest hospital, indicator for closest hospital

being teaching hospital, urban city indicator. All specifications are estimated using

the instruments Zdist and Zdays and include a continuous measure of surgeon’s skills

pre-robot.

Controlling for hospital year of adoption

In Table 9, I test the robustness of my baseline results to the inclusion of a set of

dummies that control for the year the hospital has adopted the robot. I test this spec-

ification using my continuous measure of skills. The adoption year is imputed from

the data as the first year the hospital is observed operating a patient with robotic

surgery. Standard errors bootstrapped with 100 repetitions. The dependent variable

is the logarithm of post-operative length of stay. Demographic controls include age,

age squared, indicator for white ethnic profile. Clinical controls include ten comor-

bidity variables. Area controls include distance to the closest hospital, indicator for

closest hospital being teaching hospital, urban city indicator. All specifications are

estimated using the instruments Zdist and Zdays and include a continuous measure of

surgeon’s skills pre-robot. Skills are measured using the SRR.

Surgeons’ experience

In Column 1 and 3 of Table 10, I test the robustness of my results by estimating the

baseline specification, restricting the sample to surgeons observed working since

2003. In Column 2 and 4, I test the robustness of my results by estimating the base-

line specification under the inclusion of a set of dummies identifying the first year
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the surgeon is observed in my data. I show the relevant MTE curves in Figure 4 and

Table 5. Standard errors bootstrapped with 100 repetitions. The dependent variable

is the logarithm of post-operative length of stay. Demographic controls include age,

age squared, indicator for white ethnic profile. Clinical controls include ten comor-

bidity variables. Area controls include distance to the closest hospital, indicator for

closest hospital being teaching hospital, urban city indicator. All specifications are

estimated using the instruments Zdist and Zdays and include a continuous measure of

surgeon’s skills pre-robot. Skills are measured using the SRR.

Fixed effect model of surgeons’ skills

I test the baseline specification under two different measures of skills that I derive

from a fixed effect model. In Table 13, I show the coefficients estimated from a

model where I measure skills using the estimated fixed effect from a logistic regres-

sion of the binary indicator of adverse event of patient characteristics and a hospital

fixed effect. I use the standardized hospital fixed effect as my measure of skills in

Column 1 and 2. I use the standardized risk ratio computed using the fixed effects

as my measure of skills in Column 2 and 3. The procedure to derive the standard-

ized risk ratio is analogous to the one I use in Section 4.2. However, the predicted

component includes the hospital fixed effects while the expected component sets

the hospital fixed effect to zero. All specifications use the instruments Zdist Zdays

as the excluded variables, and control age, age squared, ethnicity, city indicator, ten

comorbidity dummies (e.g. malignant neoplasm, diabetes), distance to the closest

hospital, indicator of whether the closest hospital is a teaching hospital, surgeon’s

skills (measured in the period pre-robot), and year, month and day of the week fixed

effects. Standard errors are bootstrapped with 100 repetitions. Skills are measured

for the period 2005-2007.
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Table 7: Estimated coefficients - Surgeon level SRR

(1) (2) (3)
Selection Length of stay Adverse event

Skills (Surgeon SRR) 0.126∗∗∗ -0.170∗∗∗ -0.020∗∗∗

(0.013) (0.008) (0.005)
Skills (Surgeon SRR) * Propensity score 0.121∗∗∗ 0.046∗∗∗

(0.023) (0.010)
Year-Month Yes Yes Yes

Day of the week Yes Yes Yes
N 50203 49215 50203
Standard errors in parentheses, bootstrapped with 100 repetitions
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 8: Estimated coefficients - Surgeon level SRR

(1) (2) (3)
Selection Length of stay Adverse event

High Skilled (Surgeon SRR) 0.056∗∗∗ -0.145∗∗∗ -0.065∗∗∗

(0.015) (0.012) (0.007)
High Skilled (Surgeon SRR) * Propensity score 0.029 0.092∗∗∗

(0.018) (0.010)

Year-Month Yes Yes Yes

Day of the week Yes Yes Yes
N 50203 49215 50203
Standard errors in parentheses, bootstrapped with 100 repetitions
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 9: Estimated coefficients controlling for hospital’s year of adoption

(1) (2) (3)
Selection equation Lenght of stay Adverse event

Skills 0.122∗∗∗ -0.150∗∗∗ -0.031∗∗∗

(0.022) (0.013) (0.009)
Skills * Propensity score 0.134∗∗∗ 0.044∗∗∗

(0.026) (0.013)
Year-Month Yes Yes Yes

Day of the week Yes Yes Yes
N 42378 41466 42378
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 10: Estimated coefficients - surgeon experience

(1) (2) (3) (4)
Length of Stay Adverse Event

Skills -0.289∗∗∗ -0.295∗∗∗ -0.046∗∗ -0.0282∗∗∗

(0.019) (0.011) (0.016) (0.007)
Skills * Propensity score 0.279∗∗∗ 0.258∗∗∗ 0.0773∗∗ 0.00910

(0.053) (0.024) (0.029) (0.013)

Year-Month Yes Yes Yes Yes

Day of the week Yes Yes Yes Yes

Experience dummies No Yes No Yes
N 11824 49215 12028 50203
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 11: Estimated effects - surgeon experience

(1) (2) (3) (4)
Lenght of stay Adverse event

ATE -1.112∗∗∗ -0.409∗∗∗ 0.139 -0.0598∗∗∗

(0.107) (0.028) (0.0768) (0.0159)

ATT -0.0052 0.262∗∗∗ -0.082 0.026
(0.089) (0.052) (0.052) (0.034)

ATUT -1.671∗∗∗ -1.055∗∗∗ 0.250∗ -0.143∗∗∗

(0.173) (0.071) (0.121) (0.039)

LATE -0.542∗∗∗ -0.303∗∗∗ -0.0459 -0.0602∗∗∗

(0.049) (0.022) (0.026) (0.018)
Year-Month Yes Yes Yes Yes

Day of the week Yes Yes Yes Yes

Experience dummies No Yes No Yes
N 11824 49215 12028 50203
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Figure 1: Distribution of surgical skills

Note: Distribution of skills measure (i.e. post-operative morbidity standardised risk ra-
tio). Measure computed as the ratio between predicted and expected morbidity (deaths
and readmissions). Predicted and expected post-operative morbidity are obtained by es-
timating a hierarchical logistic model accounting for patients’ clinical and demographic
characteristics. Surgeon random effects for predicted post-operative morbidity. Estimates
using all prostatectomy patients from 2005 to 2007.

Figure 2: MTE curve – Normal with surgeon level SRR

(a) Length of stay (b) Adverse event

Note: Estimates of marginal treatment effects of robotic surgery, as opposed to traditional
surgery, on log length of stay (a) and probability of adverse event (b). The horizontal
axis in each plot is the percentile on the distribution of unobserved resistance to robotic
choice. Gray bands are 95% confidence intervals. Unobserved heterogeneity, modeled as a
function of the propensity score, p, parametrically under the assumption of K(p) is normal.
All specifications use the instruments Zdist Zdays as the excluded variables, and control age,
age squared, ethnicity, city indicator, ten comorbidity dummies (e.g. malignant neoplasm,
diabetes), distance to closest hospital, indicator of whether the closest hospital is a teaching
hospital, surgeon’s skills (measured in the period pre-robot), and year, month and day
of the week fixed effects. Standard errors are bootstrapped with 100 repetitions. SRR
computed using surgeon random intercept and included as a continuous measure.
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Table 12: Estimated coefficients - Skills measured with fixed effect model

(1) (2) (3) (4)
Length of stay Adverse Event Length of stay Adverse Event

Skills (FE) - 0.110∗∗∗ -0.0196∗∗∗

(0.004) (0.003)

Skills (SRR FE) -0.061∗∗∗ -0.009∗∗∗

(0.003) (0.002)
Skills (FE) * Propensity Score 0.132∗∗∗ 0.018∗∗∗

(0.008) (0.005)

Skills (SRR FE) * Propensity Score 0.083∗∗∗ 0.004
(0.009) (0.006)

N 49215 50203 49215 50203
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 13: Estimated effects - Skills measured with fixed effect model

Skills (FE) Skills (SRR FE)
(1) (2) (3) (4)

Length of stay Adverse Event Lenght of stay Adverse Event
ATE -0.535∗∗∗ -0.077∗∗∗ -0.554∗∗∗ -0.078∗∗∗

(0.030) (0.017) (0.024) (0.015)

ATT 0.411∗∗∗ 0.014 0.287∗∗∗ 0.012
(0.056) (0.027) (0.054) (0.028)

ATUT -1.445∗∗∗ -0.165∗∗∗ -1.362∗∗∗ -0.164∗∗∗

(0.073) (0.039) (0.067) (0.035)

LATE -0.394∗∗∗ -0.069∗∗∗ -0.444∗∗∗ -0.081∗∗∗

(0.025) (0.012) (0.017) (0.012)
N 49215 50203 49215 50203
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Figure 3: MTE curve – Normal with surgeon level SRR

(a) Length of stay (b) Adverse event

Note: Estimates of marginal treatment effects of robotic surgery, as opposed to traditional
surgery, on log length of stay (a) and probability of adverse event (b). The horizontal
axis in each plot is the percentile on the distribution of unobserved resistance to robotic
choice. Gray bands are 95% confidence intervals. Unobserved heterogeneity, modeled as a
function of the propensity score, p, parametrically under the assumption of K(p) is normal.
All specifications use the instruments Zdist Zdays as the excluded variables, and control age,
age squared, ethnicity, city indicator, ten comorbidity dummies (e.g. malignant neoplasm,
diabetes), distance to closest hospital, indicator of whether the closest hospital is a teaching
hospital, surgeon’s skills (measured in the period pre-robot), and year, month and day
of the week fixed effects. Standard errors are bootstrapped with 100 repetitions. SRR
computed using surgeon random intercept and included as dummy variable that takes value
1 if surgeons above median.
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Figure 4: MTE curve – Normal with sample restriction by experience

(a) Length of stay (b) Adverse event

Note: Estimates of marginal treatment effects of robotic surgery, as opposed to traditional
surgery, on log length of stay (a) and probability of adverse event (b). The horizontal
axis in each plot is the percentile on the distribution of unobserved resistance to robotic
choice. Gray bands are 95% confidence intervals. Unobserved heterogeneity, modeled as a
function of the propensity score, p, parametrically under the assumption of K(p) is normal.
All specifications use the instruments Zdist Zdays as the excluded variables, and control age,
age squared, ethnicity, city indicator, ten comorbidity dummies (e.g. malignant neoplasm,
diabetes), distance to closest hospital, indicator of whether the closest hospital is a teaching
hospital, surgeon’s skills (measured in the period pre-robot), and year, month and day of
the week fixed effects. Standard errors are bootstrapped with 100 repetitions. Include area
fixed effects (not interacted with propensity score). Sample restricted to surgeons working
in 2003.
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Figure 5: MTE curve – Normal with experience dummies

(a) Length of stay (b) Adverse event

Note: Estimates of marginal treatment effects of robotic surgery, as opposed to traditional
surgery, on log length of stay (a) and probability of adverse event (b). The horizontal
axis in each plot is the percentile on the distribution of unobserved resistance to robotic
choice. Gray bands are 95% confidence intervals. Unobserved heterogeneity, modeled as a
function of the propensity score, p, parametrically under the assumption of K(p) is normal.
All specifications use the instruments Zdist Zdays as the excluded variables, and control age,
age squared, ethnicity, city indicator, ten comorbidity dummies (e.g. malignant neoplasm,
diabetes), distance to closest hospital, indicator of whether the closest hospital is a teaching
hospital, surgeon’s skills (measured in the period pre-robot), and year, month and day of
the week fixed effects. Standard errors are bootstrapped with 100 repetitions. Include area
fixed effects (not interacted with propensity score). Model includes dummies for the first
year the surgeon is observed working.
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