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ABSTRACT
Computational models can offer mechanistic insight into cognition and therefore 
have the potential to transform our understanding of psychiatric disorders and their 
treatment. For translational efforts to be successful, it is imperative that computational 
measures capture individual characteristics reliably. Here we examine the reliability of 
reinforcement learning and economic models derived from two commonly used tasks. 
Healthy individuals (N = 50) completed a restless four-armed bandit and a calibrated 
gambling task twice, two weeks apart. Reward and punishment learning rates from 
the reinforcement learning model showed good reliability and reward and punishment 
sensitivity from the same model had fair reliability; while risk aversion and loss aversion 
parameters from a prospect theory model exhibited good and excellent reliability, 
respectively. Both models were further able to predict future behaviour above chance 
within individuals. This prediction was better when based on participants’ own model 
parameters than other participants’ parameter estimates. These results suggest that 
reinforcement learning, and particularly prospect theory parameters, as derived from 
a restless four-armed bandit and a calibrated gambling task, can be measured reliably 
to assess learning and decision-making mechanisms. Overall, these findings indicate 
the translational potential of clinically-relevant computational parameters for precision 
psychiatry.
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INTRODUCTION
Cognitive and neural processes are increasingly conceptualized in computational terms (Palminteri 
et al., 2017). Generative computational models offer the advantage of examining behaviourally 
unobservable, but important, latent processes that drive behaviour and can be closely linked to 
neurobiology (Huys et al., 2016; Montague et al., 2004). As such, they provide a mathematically 
precise framework for specifying hypotheses about the cognitive processes that generate 
behaviour. These features make modelling a powerful tool to provide mechanistic accounts into 
(a)typical behaviours, including those associated with psychiatric symptoms (Browning et al., 
2020; Montague et al., 2012). 

One area of computational modelling that has received particular attention is the reward and 
punishment processes underlying decision-making (Maia, 2009). In particular, two classes 
of computational models, respectively originating from computer science and behavioural 
economics, have been influential in characterizing the cognitive mechanisms underlying decision-
making: reinforcement learning (RL) and prospect theory (PT) (Dayan & Niv, 2008; Kahneman 
& Tversky, 1979; Maia, 2009; Niv, 2009; Schonberg et al., 2011; Sutton & Barto, 2018; Tversky 
& Kahneman, 1992). RL models describe how agents learn from rewards and punishments 
through trial-and-error (Sutton & Barto, 2018). Within the field of computational psychiatry – 
which aims to better understand psychiatric symptoms through computational methods – this 
set of models has perhaps been the most influential. For example, reward and punishment 
sensitivity (reflecting subjective valuation of the outcomes) and learning rate (reflecting how 
quickly individuals learn from better- or worse-than-expected outcomes) have been associated 
with distinct symptomatology and neural signals (Daw & Doya, 2006; Huys et al., 2021; Maia 
& Frank, 2011; Niv, 2009). A commonly-used RL task is the multi-armed “bandit”. On this task 
individuals choose between multiple slot machines with fluctuating, unknown probabilities of 
reward and punishment, with the goal of maximizing earnings (Daw et al., 2006; Seymour et al., 
2012; Speekenbrink & Konstantinidis, 2015; Yi et al., 2009). Participants must decide on each trial 
whether to persist with the previously sampled slot machine or explore others which may yield 
better outcomes. The mechanisms thought to underlie these decisions can be captured effectively 
by RL models (Aylward et al., 2019; Daw et al., 2006).

PT models, on the other hand, describe the cognitive processes driving decision-making biases 
under known risks, and have been extremely influential in understanding economic decision-
making (Kahneman & Tversky, 1979; Ruggeri et al., 2020; Schonberg et al., 2011; Sokol-Hessner 
& Rutledge, 2019; Tversky & Kahneman, 1992). These processes are often examined by asking 
participants to choose between a guaranteed outcome (e.g., £0 gain) and a 50% gamble with 
two possible outcomes (e.g., £30 gain or £10 loss). It is commonly observed that humans tend to 
prefer a sure payment over a risky payment with equivalent or higher expected value. For example, 
you may prefer an investment with a fixed return over one with a potentially higher but uncertain 
return. PT proposes that these observations can be accounted for by two different processes: 1) 
risk aversion – the preference for certain over uncertain gains, and 2) loss aversion – weighting 
losses more heavily than gains. Risk and loss aversion vary across individuals, and these differences 
have been associated with various psychiatric states. For example,  greater risk aversion has been 
observed in anxiety, while loss aversion has been associated with obsessive-compulsive disorder 
as well as suicidality (Baek et al., 2017; Brown et al., 2013; Charpentier et al., 2017; Charpentier et 
al., 2016; Hadlaczky et al., 2018; Hartley & Phelps, 2012; Klaus et al., 2020; Sip et al., 2017; Stauffer 
et al., 2014; Tobler et al., 2009; Tremeau et al., 2008). Importantly, computational modelling 
has allowed researchers to dissociate risk and loss aversion and their contribution to symptoms 
(Charpentier et al., 2017). 

Parameters from RL and PT models thus show promise in generating insights into the mechanisms 
underlying psychiatric symptoms. For such translational endeavours to be successful, however, it 
is vital that computational measures capture individual characteristics reliably (Browning et al., 
2020; Paulus et al., 2016). Specifically, the reliability of measures set an upper limit for detecting 
both relationships with other measures, e.g., symptoms, and the effect of treatment interventions 
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in e.g., randomized controlled trials, which may otherwise be obscured by poor test-retest 
reliability. However, as of yet, the psychometric properties of computational parameters have 
received limited attention (Ahn & Busemeyer, 2016; Browning et al., 2020; Nair et al., 2020; Paulus 
et al., 2016). Model-agnostic measures derived from reward processing tasks (e.g., percent correct) 
often have modest or poor reliability (Bland et al., 2016; Enkavi et al., 2019; Plichta et al., 2012). 
The few studies that have examined the reliability of PT and RL parameters based on gambling and 
various reward-processing tasks have reported either poor-to-good (Chung et al., 2017; Glockner 
& Pachur, 2012; Scheibehenne & Pachur, 2015) or poor reliability (Moutoussis et al., 2018; Shahar 
et al., 2019); although more recent studies have shown that higher reliability estimates can be 
achieved using hierarchical procedures (Brown et al 2020; Waltmann et al., 2022). Computational 
cognitive models are however often context-specific (Eckstein et al., 2022), suggesting that the 
reliability of computational decision-making processes may differ by task. However, no studies to 
date have reported the reliability of models derived from a bandit task with fluctuating (“restless”) 
reward and punishment probabilities (Daw et al., 2006) or an individually calibrated gambling 
task (Charpentier et al., 2017), despite these showing promise in computational psychiatry studies 
(e.g., Aylward et al., 2019; Charpentier et al., 2017). 

A complementary perspective to understanding the reliability of computational cognitive models 
can be obtained through prediction. Generative models offer a substantial advantage in that 
they can both explain and predict behaviour. Unlike model-agnostic measures, computational 
parameters fit to one dataset should be able to predict future behaviour in the same individual. 
In other words, computational models can additionally be assessed by their ability to forecast 
future behaviour, equivalent to out-of-sample validation. This type of validation assesses model 
generalizability and is often referred to as predictive accuracy (Busemeyer & Wang, 2000; Glockner 
& Pachur, 2012; Scheibehenne & Pachur, 2015), but it has rarely been used as a metric of reliability. 
The aim of the current study was to assess the reliability of model-agnostic and computational 
parameters derived from two widely-used decision-making tasks (a restless four-armed bandit 
and a calibrated gambling task) using standard measures of stability and reliability (respectively, 
practice effects and intraclass correlations; ICCs) and additionally out-of-sample predictive 
accuracy for model parameters.

METHODS AND MATERIALS
PARTICIPANTS

Fifty-four healthy participants were recruited from the UCL Institute of Cognitive Neuroscience 
Subject Database. Four participants were excluded for failing to complete the second session (final 
N = 50: 32 females [64%]; age range = 19–38; mean age = 25.16, SD ± 5.48 years; mean education 
= 17.38, SD = ±3.24 years). Participants reported no current or past psychiatric or neurological 
disorder, cannabis use in the past 31 days, alcohol consumption in the past 24 hours, or any other 
recreational drug use in the week prior to participation. Participants provided written informed 
consent and were compensated at the end of their second session with a flat rate of £30 and 
a bonus of up to £20 based on task winnings. The study was approved by the UCL Psychology 
and Language Sciences Research Ethics Committee (Project ID Number: fMRI/2013/005) and was 
performed in accordance with the Declaration of Helsinki. 

Sample size was determined by an a priori power analysis in G*Power (Faul et al., 2007). The 
power analysis was based on the smallest effect size of interest, r = 0.4, since reliability below 
this threshold is conventionally considered poor (Fleiss, 2011). Detecting an effect size of this 
magnitude, at the one-tailed 0.05 alpha level with 90% power, requires 47 participants.

STUDY PROCEDURE AND TASKS

Participants completed a battery of computerized tasks, including a restless four-armed bandit 
(Daw et al., 2006; Seymour et al., 2012) and an individually calibrated gambling task (Charpentier 
et al., 2017) over two sessions (mean test-retest interval = 13.96 days, SD = 0.20). On each trial in 
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the bandit task, participants chose one out of four bandits and received one out of four possible 
outcomes: reward, punishment, neither reward nor punishment or both reward and punishment 
(200 trials total). Win and loss probabilities fluctuated independently over time and between boxes 
(Figure 1a–b; Supplemental Materials). In the gambling task, participants chose between a 50–50 
gamble and a sure option without receiving feedback. Trials were classified as either mixed (50% 
chance to win or lose money gamble, or a sure option of 0 points) or gain-only (50% chance to win 
or receive nothing gamble, or a variable sure gain; Figure 1c; Supplemental Materials). An initial 
training phase (50 mixed and 40 gain-only trials) was used to create individually calibrated offers 
(centred on indifference points) in a second phase (64 mixed and 56 gain-only trials). Calibration 
failed for one participant resulting in N = 49 participants for this task. Both tasks lasted around 15 
minutes.

DATA ANALYSIS 

Data were processed in Matlab (R2019b) and analysed in SPSS (v25, IBM Corp, Armonk, NY) and 
R (v. 4.2.1). Computational modelling was performed with the hBayesDM package for R (v. 3.6.0; 
https://github.com/CCS-Lab/hBayesDM) (Ahn et al., 2017), which uses hierarchical Bayesian 

Figure 1 Four-armed bandit 
and gambling task. Example 
trial of the four-armed 
bandit task (a). On each trial, 
participants chose one out 
of four bandits and received 
one out of four possible 
outcomes: reward (green 
token), punishment (red token), 
neither reward nor punishment 
(empty box) or both reward 
and punishment (red and 
green token). An example of 
the win and loss probabilities 
fluctuating independently over 
time within one of the boxes 
(b). On each gambling task trial, 
participants chose between 
a 50–50 gamble and a sure 
(guaranteed amount of points) 
option (c). Trials were either 
mixed gambles (50–50 chance 
of winning or losing points 
or sure option of 0 points) or 
gain-only trials (50–50 chance 
of winning or receiving nothing 
or sure gain).

https://github.com/CCS-Lab/hBayesDM


34Mkrtchian et al.  
Computational Psychiatry  
DOI: 10.5334/cpsy.86

modelling in Stan (v.2.21.2). For all analyses, p < 0.05 (two-tailed) was considered statistically 
significant. Cohen’s dz (within-subject) effect sizes are reported for practice effects (Lakens, 2013). 

MODEL-AGNOSTIC TASK ANALYSES

Model-agnostic measures for the bandit task included the mean probability of repeating a choice 
after win-only, loss-only and no outcomes (‘neither’). A repeated-measures analysis of variance 
(ANOVA) was conducted with the within-subjects factors outcome (win, loss, neither) and session 
(session 1, session 2) to assess basic behaviour and practice effects. 

Model-agnostic measures for the gambling task included the mean probability of gambling on 
mixed and gain-only trials. It was predicted that gambling would be higher on mixed trials, which 
was assessed using a repeated-measures ANOVA with within-subjects factors gamble (mixed, 
gain-only) and session (session 1, session 2).

As a supplementary analysis, bandit and gamble model-agnostic measures were additionally 
derived from trial-by-trial mixed-effects logistic regressions for each session since previous 
studies have suggested that hierarchically predicted values can improve the precision of reliability 
(Brown et al 2020; Waltmann et al., 2022). Further details on all model-agnostic measures are in 
Supplemental Materials.

COMPUTATIONAL MODELLING

The bandit task data was fit with seven different RL models previously described in detail (Aylward 
et al., 2019; Supplemental Materials). Three PT models were fit to the gambling task (Ahn et al., 
2017; Charpentier et al., 2017; Kahneman & Tversky, 1979; Sokol-Hessner et al., 2009). Modelling 
was conducted on the second phase of the gambling task (i.e., on individually calibrated trials). 
The models were fit for each session separately, using separate hierarchical priors (group-level 
parameters), as this has shown to provide more accurate fits (Valton et al., 2020), and we wished 
to avoid artificially inflating reliability estimates. We also estimated model fits under a single 
hierarchical prior (session 1 and session 2 data together) as a sensitivity analysis (Supplemental 
Materials). Model comparison was performed with leave-one-out information criterion (LOOIC) 
where the winning model was the one with the lowest LOOIC. Several model validation checks 
were completed for the winning models, including examination of MCMC convergences, parameter 
recovery and recapitulation of real data (Daw, 2011; Kruschke, 2015; Wilson & Collins, 2019; 
Supplemental Materials; Figure S1-S8).

RELIABILITY ANALYSIS

Test-retest reliability was assessed with ICCs (ratios of intra-individual to inter-individual variability 
(Koo & Li, 2016; McGraw & Wong, 1996)), with values of <0.40 interpreted as poor, 0.4–0.6 as fair, 
0.6–0.75 as good, and >0.75 as excellent reliability (Fleiss, 2011). A two-way mixed-effects model 
based on single-measures and absolute-agreement ICC was used (fixed effect: testing time-
interval, random effect: subject), equivalent to ICC(A,1) (McGraw & Wong, 1996). 

We also specified an additional model that considers data from both sessions jointly, taking the 
hierarchical structure into account and estimating reliability directly within the model, which has 
recently been shown to improve the estimation of reliability (Brown et al 2020; Haines et al., 2020; 
Waltmann et al., 2022). For model-agnostic measures, this was achieved by estimating a single 
mixed-effects logistic regression with random intercepts and slopes, accounting data for both 
sessions jointly by including session as a second-level grouping factor with subjects nested within 
session (Brown et al 2020; Waltmann et al., 2022). This allows extracting variance components 
from the logistic regression to calculate a one-way random-effects, absolute-agreement, single-
measure ICC: ICC(1) in the McGraw and Wong (1996) convention. This was calculated for all 
bandit and gamble model-agnostic measures. For computational parameters, model-calculated 
Pearson’s r correlations were estimated between parameters from session 1 and 2 by fitting all 
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the data from both sessions together and embedding a correlation matrix between sessions in 
the winning RL and PT models, using an identical approach described in detail previously (Haines 
et al., 2020; Pike et al., 2022). This essentially results in a multivariate prior where the correlation 
between group-level parameters across session are also considered and the uncertainty of point 
estimates are accounted for in the model-calculated reliability estimate. Separate subject-specific 
parameters are estimated for each session as well, but these were not extracted to calculate 
reliability on as previous studies have suggested that this overestimates reliability (Waltmann et 
al., 2022). 

POSTERIOR PREDICTIVE PERFORMANCE 

To assess to what extent an individual’s future behaviour can be predicted using a generative 
model fit to their own task performance two weeks earlier, we calculated the probability of 
participants’ choices on each trial (i.e., the softmax output), given their session 2 data and 
model parameter estimates from session 1. Probabilities were averaged across trials for each 
individual. 

Since hierarchical parameter estimation produces ‘shrinkage’, effectively pulling parameter 
estimates from different individuals closer to each other (which improves estimation accuracy), it 
is possible that future performance may also be predicted above-chance using other participants’ 
parameter estimates from session 1 (e.g., participant A’s parameter estimates from session 1 
predicting participant B’s session 2 choices). We therefore assessed whether using an individual’s 
model parameter estimates from session 1 predicted the same individual’s choices on session 
2 better than using all other subjects’ model parameter estimates. To construct the latter 
measure, for each subject, we predicted trial-by-trial choices on session 2 based on parameter 
estimates from every other participant’s session 1 model, and averaged the probabilities across 
all participants. Additionally, we compared subjects’ own session 1 parameters in predicting 
their session 2 behaviour to the mean session 1 model parameter priors in predicting future 
behaviour.

DATA ACCESSIBILITY

All script code and data are available on OSF at https://osf.io/n7czx/.

RESULTS
FOUR-ARMED BANDIT TASK: MODEL-AGNOSTIC RESULTS

Basic behaviour and practice effects 

As expected, there was a main effect of outcome type on behaviour (F(2,98) = 117.39, p < 0.001, 
2 0.71pη = ; Figure 2a). The probability to repeat a choice was significantly greater after wins 

compared with both losses and outcomes on which neither wins nor losses occurred, and greater 
after neither compared with losses (all p < 0.001). There was no significant main effect of testing 
session (F(1, 49) = 0.01, p = 0.91, 2  0.001pη < ). There was a significant outcome-by-session interaction 
(F(2,98) = 3.12, p = 0.049, 2  0.06pη = ), reflecting slightly increased repeated choices after wins and 
decreased repeated choices after losses. However, the difference in the tendency to repeat a 
choice between session 1 and session 2 did not reach significance following any of the outcome 
types (loss: t(49) = 1.45, p = 0.15, dz = 0.21; win: t(49) = 0.87, p = 0.39, dz = 0.12; neither: t(49) = 0.54, p 
= 0.59, dz = 0.08), and therefore we do not interpret this result further. 

Test-retest reliability 

The model-agnostic measures exhibited fair-to-good reliability (Figure 2b; Table 1), which did not 
improve substantially when examined in separate trial-by-trial mixed logistic regressions (Table 
S1). However, reliability did increase, particularly for p(stay) after win and loss when estimated as 
part of a joint mixed-effects logistic regression (Table 1). 

https://osf.io/n7czx/
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FOUR-ARMED BANDIT TASK: MODELLING RESULTS

Model comparison indicated that the winning (most parsimonious) model was the five-parameter 
‘Bandit4arm_lapse’ (nomenclature from the hBayesDM package) model, with reward and 
punishment learning rate parameters, reward and punishment sensitivity parameters and a lapse 
parameter (final parameter captures random responding; Table S2), consistent with previous 
reports (Aylward et al., 2019). Three individuals were excluded due to difficulties in obtaining 
mean parameter estimates, as multiple peaks were evident in the posterior distribution of at 
least one parameter (Figure S2). The Bandit4arm_lapse model was therefore re-fit without these 
participants. Excluding these participants did not affect test-retest reliability inference. 

Practice effects

On session 2 there were significant increases in the reward sensitivity (t(46) = 3.00, p = 0.004, dz = 
0.44) and lapse parameters (t(46) = 8.88, p < 0.001, dz = 1.29), but not on any of the other parameters 
(reward learning rate: t(46) = 1.28, p = 0.21, dz = 0.19; punishment learning rate: t(46) = 1.74, p = 0.09, 
dz = 0.25; punishment sensitivity: t(46) = 1.28, p = 0.21, dz = 0.19; Figure 3a). However, there were 
no significant practice effects when the data was fit under a single hierarchical prior (Table S3). 

Test-retest reliability 

All estimated Bandit4arm_lapse model parameters, except the lapse parameter, demonstrated 
fair-to-good reliability (Figure 3b; Table 1). This did not substantially change when parameters 

Figure 3 Practice effects 
and test-retest reliability of 
the winning reinforcement 
learning model parameters 
derived from the four-
armed bandit task. Boxplots 
show point estimates of the 
Bandit4arm_lapse model 
parameters in session 1 and 
2, fit under separate priors (a). 
Scatter plots of the Bandit4arm_
lapse model parameters over 
session 1 and 2 are presented 
(b). SEM: standard error of the 
mean. * p < 0.05.

Figure 2 Basic behaviour, 
practice effects, and 
test-retest reliability of 
model-agnostic measures 
on the four-armed bandit 
task. Boxplots of the four-
armed bandit task showing 
probability to stay after a 
certain outcome in session 1 
and 2 (a). The probability to 
stay was significantly different 
after each outcome type 
(Loss<Neither<Win) but no clear 
practice effect was evident. 
Scatter plots of the model-
agnostic measures comparing 
behaviour on two testing 
sessions approximately 2 
weeks apart (b). Lightly shaded 
regions in Figure 2a represent 
within-subjects standard error 
of the mean (SEM). * p < 0.001.
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were estimated under a single hierarchical prior (Table S3). However, examining the correlation 
between parameters as estimated within a generative joint model showed good-to-excellent 
reliability, improving reliability across all but the lapse parameter (Table 1).

Posterior predictive performance 

Parameter estimates from session 1 predicted task performance on session 2 substantially 
better than chance (mean = 42%, chance = 25% accuracy; t(46) = 9.10, p < 0.001; Figure 4a), 
indicating that the model could predict future choices by using a generative model fit to the same 
participants’ data two weeks earlier. Using an individual’s parameter estimates to predict their 
own future choices was significantly better than when that prediction was based on the average 
of the other participants’ session 1 estimates (t(46) = 3.20, p = 0.003; Figure 4b). However, there 
was no significant difference between using an individual’s own session 1 parameter estimates 
compared with the session 1 mean prior parameter in predicting future behaviour (t(46) = 1.04,  
p = 0.30; Figure 4c). 

MODEL-AGNOSTIC P(STAY) 
MEASURES (N = 50)

ICC(A,1) ICC(1) PEARSON’S R

Summary statistics (Figure 2)

Win 0.46 (0.21–0.65) 0.46 (0.21–0.65) 0.46 (0.20–0.65)

Loss 0.54 (0.32–0.71) 0.54 (0.31–0.71) 0.55 (0.32–0.72)

Neither 0.66 (0.48–0.79) 0.67 (0.48–0.80) 0.67 (0.48–0.80)

Model-calculated reliability from joint hierarchical logistic regression 

Win 0.63

Loss 0.63

Neither 0.71

REINFORCEMENT LEARNING 
MODEL (N = 47)

ICC(A,1) ICC(1) PEARSON’S R

Model estimated separately per session (Figure 3)

Reward learning rate 0.60 (0.38–0.75) 0.60 (0.38–0.75) 0.60 (0.38–0.76)

Punishment learning rate 0.63 (0.42–0.77) 0.62 (0.41–0.77) 0.64 (0.43–0.78)

Reward sensitivity 0.52 (0.26–0.70) 0.50 (0.25–0.69) 0.56 (0.33–0.73)

Punishment sensitivity 0.45 (0.20–0.65) 0.45 (0.19–0.65) 0.46 (0.19–0.66)

Lapse 0.01 (–0.08–0.14) –0.43 (–0.64– –0.17) 0.05 (–0.24–0.33)

Model-calculated reliability from joint hierarchical Bayesian model

Reward learning rate 0.71 (0.53–0.84)

Punishment learning rate 0.85 (0.69–0.95)

Reward sensitivity 0.68 (0.48–0.84)

Punishment sensitivity 0.64 (0.37–0.85)

Lapse –0.01 (–0.65–0.68)

Table 1 Reliability of model-
agnostic and computational 
measures of the four-armed 
bandit task. All measures 
but the lapse parameter are 
significant at p < 0.05. Brackets 
represent the 95% confidence 
interval.
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GAMBLING TASK: MODEL-AGNOSTIC RESULTS

Basic behaviour and practice effects

As expected, propensity to gamble was significantly higher on mixed gambles (F(1, 48) = 13.71, p = 
0.001, 2  0.22pη = ). There were no significant main (F(1, 48) = 0.76, p = 0.40, 2  0.02pη = ) or interaction 
(F(1, 48) = 1.07, p = 0.31, 2  0.02pη = ) effects of session on the propensity to gamble (session differences: 
probability to gamble on mixed trials t(48) = 0.23, p = 0.82, dz = 0.03; probability to gamble on gain-
only trials t(48) = 1.51, p = 0.14, dz = 0.22; Figure 5a). 

Test-retest reliability 

Model-agnostic measures on the gambling task exhibited fair-to-good reliability (Figure 5b; Table 
2) and did not change substantially when examined hierarchically in separate mixed logistic 
regressions (Table S4). Calculating reliability within a joint mixed logistic regression numerically 
improved the reliability of the gambling model-agnostic measures (Table 2). 

GAMBLING TASK: MODELLING RESULTS

The winning model was the PT model (‘ra_prospect’ in the hBayesDM package) with loss aversion, 
risk aversion and inverse temperature parameters (last parameter represents choice consistency; 
Table S5), consistent with previous reports (Charpentier et al., 2017). A loss aversion parameter 
above 1 represents overweighting of losses to gains, while a risk aversion parameter less than 1 
indicates aversion to risk. Neither test-retest nor practice effects were substantially altered when 
the model was fit under a single hierarchical prior (Table S6). 

Practice effects

There were significant session effects on all PT model parameters (on session 2: decreased loss 
aversion: t(48) = 2.17, p = 0.04, dz = 0.31; decreased risk aversion: t(48) = 4.04, p < 0.001, dz = 0.58; 
increased inverse temperature: t(48) = 3.07, p = 0.004, dz = 0.44; Figure 6a).

Figure 4 Posterior predictive 
performance of the winning 
reinforcement learning model 
derived from the four-armed 
bandit task. Boxplots depicting 
accuracy of bandit4arm_lapse 
model in predicting choices (a). 
Model estimates from session 
1 (S1) predicted future session 
2 (S2) behaviour above chance 
(black boxplot). Both S1 and S2 
model estimates also predicted 
behaviour on the same session 
significantly above chance (blue 
and red boxplots). Predicting 
future performance (session 2 
data) using a participant’s own 
model parameter estimates 
was significantly better than 
using other participants’ S1 
model parameter estimates 
(b) but not when comparing 
against the mean S1 model 
priors (c). SEM: standard error of 
the mean. * p < 0.01.

Figure 5 Basic behaviour, 
practice effects, and test-
retest reliability of model-
agnostic measures on the 
gambling task. Boxplots show 
the probability to gamble based 
on the trial type in session 
1 and 2, with no significant 
session effects (a). Scatter 
plots of the model-agnostic 
measures over session 1 and 
2 (b). Lightly shaded regions 
in Figure 5a represent within-
subjects standard error of the 
mean (SEM). * p < 0.001.
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Test-retest reliability 

All estimated parameters demonstrated good-to-excellent reliability (Figure 6b; Table 2), and 
showed excellent reliability when estimating a correlation matrix within a joint model (Table 2).

Posterior predictive performance 

PT model parameters from session 1 predicted future choices at session 2 significantly above 
chance (mean = 68%, chance = 50% accuracy; t(48) = 12.08, p < 0.001; Figure 7a). Predicting future 
performance at session 2 was significantly higher when based on participants’ own parameter 
estimates from session 1 compared with model parameter estimates of other participants 

Figure 6 Practice effects and 
test-retest reliability of the 
prospect theory model derived 
from the gambling task. 
Boxplots show point estimates 
of the prospect theory model 
parameters in session 1 and 
2, fit under separate priors (a). 
Scatter plots of the prospect 
theory model parameters over 
session 1 and 2 are presented 
(b). SEM: standard error of the 
mean. * p < 0.05.

MODEL-AGNOSTIC P(GAMBLE) 
MEASURES 

ICC(A,1) ICC(1) PEARSON’S R

Summary statistics (Figure 5)

Mixed trials 0.63 (0.43–0.78) 0.63 (0.43–0.78) 0.63 (0.42–0.77)

Gain-only trials 0.59 (0.38–0.75) 0.59 (0.38–0.75) 0.60 (0.39–0.76)

Model-calculated reliability from joint hierarchical logistic regression 

Mixed trials 0.73

Gain-only trials 0.72

PROSPECT THEORY MODEL ICC(A,1) ICC(1) PEARSON’S R

Model estimated separately per session (Figure 6)

Loss aversion 0.68 (0.50–0.81) 0.68 (0.50–0.81) 0.72 (0.55–0.83)

Risk aversion 0.78 (0.55–0.89) 0.78 (0.64–0.87) 0.83 (0.71–0.90)

Inverse Temperature 0.80 (0.64–0.89) 0.80 (0.67–0.88) 0.84 (0.74–0.91)

Model-calculated reliability from joint hierarchical Bayesian model

Loss aversion 0.87 (0.77–0.94)

Risk aversion 0.90 (0.83–0.95)

Inverse Temperature 0.91 (0.85–0.96)

Table 2 Reliability of model-
agnostic and computational 
measures of the gambling 
task. All measures are 
significant at p < 0.05. Brackets 
represent the 95% confidence 
interval.
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from session 1 (t(48) = 8.38, p < 0.001; Figure 7b). This was also true when comparing between 
participants’ own session 1 parameter estimates with the mean session 1 prior for parameters 
(t(48) = 6.28, p < 0.001; Figure 7c). 

DISCUSSION 
Reliability has garnered increased attention in recent years, with worryingly low reliability across 
conventional measures from cognitive tasks and functional neuroimaging (Elliott et al., 2020; 
Enkavi et al., 2019; Noble et al., 2019; Nord et al., 2017; Rodebaugh et al., 2016). However, fewer 
attempts have been made to examine the reliability of computational cognitive measures. Here 
we assessed the psychometric properties of computational models derived from a restless four-
armed bandit and a calibrated gambling task. Overall, most parameters reflecting RL and decision-
making processes exhibited adequate reliability and predicted future performance well. These 
results provide promise for their use in clinical settings. However, this conclusion depends on the 
specific parameters assessed in each task, highlighting the complexities of translating tasks to the 
clinic. 

FOUR-ARMED BANDIT RL MODEL RELIABILITY 

Reward and punishment learning rates from the bandit task demonstrated good reliability while 
reward and punishment sensitivity showed fair reliability, suggesting that this task may be more 
suitable for assessing learning rates than sensitivity. Elevated punishment learning rates (faster 
learning in the face of negative outcomes) and lapse values have been associated with greater 
mood and anxiety symptoms, representing potential measurable mechanistic treatment targets 
(Aylward et al., 2019). However, the present study suggests that the lapse parameter, which 
exhibited poor reliability as assessed by the bandit task, may not be a suitable target. This parameter 
measures responding not captured by the model (including goal-directed and random exploration), 
and the sources of this ‘noise’ might differ across sessions. It is therefore perhaps unsurprising that 
this parameter was unreliable. Crucially, the lapse parameter showed poor recoverability, which 
places an upper limit on its potential reliability. Some of this poor recoverability may be explained 
by limited lapse variation, especially in session 1 (Figure S3). The distribution of the group-level 
standard deviation lapse parameter was biased towards smaller values here such that the lapse 
parameter did not vary greatly between individuals (Figure S5). This suggests that the lapse 
parameter could be replaced with a constant and inference on this parameter is not advised. 

Although no prior studies have specifically investigated ICC properties of the current RL model, 
one previous study found similarly poor reliability of the lapse parameter across six months in a 
go/no-go RL model in adolescents (Moutoussis et al., 2018). In contrast to our results, this study 
also reported poor reliability of both reward and punishment learning rates. These differences may 
arise for a multitude of reason, such as using different tasks (an orthogonalised go/no-go task 

Figure 7 Posterior predictive 
performance of the prospect 
theory model derived from 
the gambling task. Boxplots 
depicting accuracy of prospect 
theory model in predicting 
choices (a). Session 1 (S1) 
model estimates predicted 
S1 behaviour significantly 
above chance (blue boxplot), 
as did session 2 (S2) model 
estimates on S2 data (red 
boxplot). Importantly, model 
parameter estimates from S1 
predicted task performance 
from S2 above chance (black 
boxplot). Predicting future 
S2 performance using a 
participant’s own S1 model 
parameter estimates was 
significantly better than using 
other participants’ S1 model 
parameter estimates (b) and 
mean S1 model priors (c). SEM: 
standard error of the mean. 

* p < 0.001.
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versus a restless bandit task), testing time-windows (six months versus two weeks), populations 
(adolescents versus adults), or models. It is not possible to delineate these diverging results without 
systematically comparing these factors in one study. Importantly, however, we provide evidence 
that it is possible to achieve at least moderate reliability for some canonical RL parameters. 

Interestingly, the model-agnostic outcome measures of the bandit task exhibited similar reliability 
to the computational measures. Model-agnostic measures of cognitive tasks have often been 
reported to exhibit poor-to-moderate reliability (Enkavi et al., 2019; Hedge et al., 2018; Plichta et 
al., 2012; Rodebaugh et al., 2016). It has been argued that this may be due to their inability to 
capture the generative process underlying task performance (Huys et al., 2021; Price et al., 2019). 
Our results suggest that it should not be assumed that computational parameters will always 
provide greater reliability than non-computational ones. However, the model-agnostic outcome 
measures are only a proxy of the processes the bandit task assesses, as it is difficult to compute 
model-agnostic equivalents of some parameters, such as reward/punishment sensitivity. Indeed, 
models make explicit and falsifiable predictions of the components driving behaviour, which can 
be refined and used to simulate artificial data to generate new predictions. Thus, computational 
modelling is a more rigorous and preferable method for assessing behaviour than model-agnostic 
measures, which unlike computational methods, lack the mechanistic insights into the underlying 
processes generating behaviour.

GAMBLING PT MODEL RELIABILITY 

While reliability of parameters ranged from poor-to-good in the bandit task, parameters from 
the gambling task showed good-to-excellent test-retest reliability. These were also higher than 
the reliability of the model-agnostic measures, suggesting that computational models may offer 
advantages in psychometric properties here. In particular, the risk aversion parameter, which has 
previously been associated with anxiety (Charpentier et al., 2017), exhibited excellent reliability 
(ICC = 0.78), providing promise for use in clinical research. These results show higher reliability 
than previous studies (loss aversion r ≈ 0.25–0.61, risk aversion r ≈ 0.50–0.60, inverse temperature 
r ≈ 0.30–0.60; Chung et al., 2017; Glockner & Pachur, 2012; Scheibehenne & Pachur, 2015). These 
studies all used different estimation procedures, including hierarchical Bayesian, and employed 
both longer and shorter testing time-windows than the current study, suggesting that these factors 
may not fully explain the differences. It is possible that our results instead stem from different PT 
model specifications, as well as different task designs. Indeed, a strength of the gambling task is 
that we calibrated offers to each individual’s indifference point (Charpentier et al., 2017). A similar 
approach of dynamically updating parameter values to each individual during task performance 
has previously been suggested as a solution to unreliable cognitive tasks (Palminteri & Chevallier, 
2018). This may allow for removing any potential state influences across participants to extract 
more trait-like measures of the variables of interest (here risk/loss aversion). 

PREDICTIVE ACCURACY 

We also examined how well the models predicted future task performance, which provides 
complementary perspective on reliability, unique to computationally-informed measures.  Notably, 
for the PT model participants’ own parameter estimates from the first session were better at 
predicting their future performance compared with using parameter estimates from all other 
participants and from model priors. Individuals’ own RL parameters only provided an advantage 
in predicting future performance when compared with other’s parameter estimates but not model 
priors. It is likely that the RL model did not perform as well on this metric as the PT model because 
the RL model does not provide as close a fit to behaviour, potentially due to some participants 
performing at chance level. Overall, this indicates that individuals may also reliably differ in the 
cognitive mechanisms underlying their decisions, and offers reassurance that hierarchical estimation 
procedures are suitable for inter-individual inferences (Brown et al., 2020; Daw, 2011; Scheibehenne 
& Pachur, 2015). In other words, individuals show relatively unique computational decision-making 
profiles, particularly in the PT model. This is consistent with two previous studies using a different PT 
model and gambling task (Glockner & Pachur, 2012; Scheibehenne & Pachur, 2015). 
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IMPLICATIONS

The RL parameters showed relatively modest reliability, suggesting that these processes are 
more vulnerable to state influences or measured with less precision than PT parameters. A 
consequence of this is that larger sample sizes may be required to examine effects, as effect 
sizes would be expected to be lower, relative to PT tasks (Fleiss, 2011). Interpreting the marked 
difference in reliability between the PT and RL models is not straightforward, as these models 
measure complementary aspects of cognition. The bandit task is a learning paradigm that 
requires constant updating of optimal choices. It is possible that in the first session individuals 
had not yet stabilized on a cognitive strategy and were still learning the task structure, as 
indicated by lower evidence of the winning model in session 1 compared with session 2 (Table 
S2). It would be interesting to explore if an initial baseline session, would improve test-retest 
reliability. 

It should also be noted that we observed substantially greater reliability of RL (good-to-
excellent) and PT (excellent) parameters when estimated within the joint generative model, 
in line with previous studies (Brown et al., 2020; Waltmann et al., 2022). Similarly, calculating 
the reliability of model-agnostic measures directly from a joint logistic regression improved 
model-agnostic reliability estimates, although in the range of good reliability. Similar to the 
hierarchical estimation approach of separate sessions, joint estimation regularises estimates 
toward the group mean for that session, improving the accuracy of point estimates. However, 
joint estimation additionally considers the potentially correlated structure. While this can 
increase the within-subject precision, it can consequently inflate the reliability of point estimates 
extracted from joint models (hence why reliability was not calculated on the point estimates in 
these models; Waltmann et al., 2022). Estimating reliability directly within the model, however, 
takes the uncertainty around the point estimates into account, providing unbiased reliability 
estimates (Waltmann et al., 2022). This suggests that the increased precision (and here thus 
improved reliability) may stem from the greater information (including more data points) 
available in joint modelling. This analysis approach may therefore be preferred when the study 
design allows for it.

LIMITATIONS

A potential limitation of our study is the sample tested, as the reliability of tasks in healthy 
individuals may differ from that in clinical groups. Similarly, our results only speak to reliability over 
two weeks. Thus, it is possible that longer time periods may produce lower reliability, which should 
be assessed in future studies. Reliability over two weeks is particularly informative for interventional 
studies such as randomised controlled trials (e.g., for rapid-acting antidepressants or for early 
markers of response for traditional antidepressants/ psychotherapies). This time-window is also 
in line with other reliability studies aiming to establish reliability of measures for e.g., individual 
differences (e.g., Hedge et al., 2018; Nord et al., 2017), based on the assumption that measures 
should remain relatively stable over a short time-period.  

CONCLUSION

In summary, we show that commonly-used computational parameters derived from an RL 
‘restless’ bandit task and a calibrated gambling task exhibit fair-to-excellent reliability. Specifically, 
learning rates showed good reliability and sensitivity parameters showed fair reliability from the RL 
model, while loss aversion had good reliability and risk aversion and inverse temperature displayed 
excellent reliability from the PT model. These models can further be used to predict future behaviour 
in the same individuals, especially PT model parameters, indicating that the decision-making 
processes assessed in these tasks represent relatively consistent and unique characteristics of 
an individual. These findings take us one step closer to translating computational measures of 
behaviour into clinical application.
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