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Introduction 
Active-learning methods provide a promising way of 
running perceptual tests quickly while achieving high 
accuracy, at the cost of being computationally more 
expensive. Kontsevich and Tyler [1] used an active-learning 
approach to determine a psychometric function. For each 
trial, they chose the stimulus magnitude that was expected to 
be most informative about the mean and slope of the 
psychometric function. By using Gaussian Processes [2] and 
exploiting the commutativity of mutual information [3], 
active learning can be extended for use with more than two 
parameters, despite tough time constraints. In perceptual 
tests, the parameters for the next trial usually need to be 
chosen in an inter-trial interval of not more than 2 s. 

A shorter test duration is particularly beneficial when 
determining auditory filter shapes using notched noise [4] in 
large scale research studies or clinical practice. Typically, 
several thresholds need to be obtained for each centre 
frequency in order to determine the filter parameters. Shen 
and Richards [5] suggested an active-learning test to 
overcome this problem. They directly learned the parameters 
of a simple model of the auditory-filter [6], assuming the 
filter to be symmetric. In the present work, the goal was to 
estimate the masker level at threshold as a function of the 
deviation of the lower edge of the notch from the signal 
frequency (Δfl) and the upper edge of the notch from the 
signal frequency (Δfu). This allowed the data to be fitted 
using an asymmetric model of the auditory filter. 

Method 
Ten normal-hearing subjects (18-44 yr, mean 27 yr, 5 
female) were tested using their better ear. Each completed 
eight runs of a notched-noise active-learning test. 

During a run, the pure-tone signal frequency (fsig) and level 
(Lsig) were fixed, while the noise masker spectrum level 
(Lmask), Δfl and Δfu were varied. The signal parameters were 
fsig = 250, 500, 1000, 2000 and 4000 Hz for Lsig = 40 dB 
SPL, and Lsig = 30 and 50 dB SPL for fsig = 1000 Hz. The 
first and eighth runs used Lsig = 40 dB SPL and fsig = 1000 
Hz and the other conditions were run in random order. Each 
run consisted of 100 trials plus 20 catch trials with no signal. 
Twenty practice trials with Lsig = 40 dB SPL and fsig = 1000 
Hz were performed before the first run. 

A trial contained three intervals. The first, second and third 
intervals contained, respectively, the signal alone, the noise 
alone, and the signal plus the noise. The task was to indicate 
whether the signal was audible in the third interval. 

The signal consisted of three pulses, each with a duration of 
150 ms, including raised-cosine rise and fall times of 20 ms. 
The pulses were separated by 100 ms. The noise had a 
duration of 850 ms, with rise and fall times of 20 ms. The 
signal started 100 ms after the start of the noise. The noise 
contained two bands, one above and one below Lsig. Each 
band had a width of 0.4fsig, except that the lower edge 
frequency was limited to 50 Hz. Lmask was limited to values 
between 20 and 55 dB/Hz. Δfl and Δfu varied from 0 to 
0.8fsig under the constraint Δfl + Δfu ≤ 1.2fsig. 

For the first five trials the notch width was zero, and Lmask 
was increased to cover the range from the signal certainly 
being audible to certainly being inaudible. The next six trials 
used extreme values of Δfl and Δfu. After these, the 
parameters for the next trial were chosen to maximise the 
mutual information between the response and the parameters 
of the statistical model, as described in [3]. The underlying 
Gaussian Process [2] used to model the response 
probabilities as a function of the masker parameters had a 
constant mean that was optimized after each trial. Its 
covariance function was the sum of linear kernels in Lmask, 
Δfl and Δfu, and a squared-exponential kernel in Δfl and Δfu. 
The linear kernels captured the monotonicity in each 
dimension, and the additional squared-exponential kernel 
captured nonlinear perturbation effects. The likelihood 
function was a Gaussian cumulative density function, scaled 
to have a lapse rate of 0.02. This meant that the response 
probability as a function of Lmask resembled a typical 
psychometric function. The lapse rate allowed the model to 
recover from the effect of ‘wrong’ button presses. 

Stimuli were presented through Sennheiser HD 580 
headphones. Its transfer function, measured with a KEMAR, 
was taken into account when fitting auditory filters to the 
obtained threshold estimates. 

Results 
The values of Lmask for which the response probability was 
estimated to be 50% were taken as the thresholds. Auditory 
filters were fitted to the individual thresholds, and to the 
thresholds averaged across subjects. The model filter had a 
rounded-exponential shape [7] with a single exponential on 
the upper side (parameter pu) and a sum of two exponential 
on the lower side to model the fiter tail (pl for the main 
passband, t for the tail and w defining the transition between 
tail and the tip). Only pl and pu are discussed in this paper. 

The symbols in Figure 1 show values of pl and pu for each 
condition, based on the average thresholds. The lines point 
to values predicted by a hearing model [8] for zero hearing 
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loss. The actual p values were slightly smaller than predicted 
(except at 250 Hz), indicating somewhat broader auditory 
filters. All values corresponded to an outer hair cell loss less 
than 20 dB [8], i.e. within the normal range. 

 

Figure 1: pl and pu based on average thresholds. 
 
Figure 2 shows the parameter estimates for each subject for 
fsig = 500 Hz (circles). The scatter is typical of that obtained 
for runs 1 to 7. The individual data were considerably more 
concentrated around the model estimate (triangle) for the last 
run. There was one outlier with pl bigger than 50 for fsig = 
500 Hz, and another for a different subject for fsig = 4000 Hz. 
All points were within or close to the area bounded by an 
outer hair cell loss of 20 dB (dotted lines). This was also 
typical of runs 1 to 7, except for fsig = 250 Hz, for which the 
w and t estimates were probably less accurate. The goodness 
of fit of the parameter estimates, expressed as the root mean 
square difference between the thresholds predicted by the 
filter model and the obtained thresholds, was 3 to 4 dB for 
individual fits, and 1 to 2 dB for the mean data. 

 

Figure 2: pl and pu for each subject for fsig = 500 Hz 
(circles). The triangle shows the model prediction for zero 
hearing loss. The dotted lines enclose the area bounded by 
outer hair cell losses less than 20 dB. The arrow indicates 
that the value was bigger than 50. 

 
The auditory filter becomes broader towards the low-
frequency side with increasing level, and thus the ratio of 

pl/pu, representing the asymmetry, is expected to become 
smaller. The geometric means across subjects of pl/pu for 
fsig = 1000 Hz were 1.32 for Lsig = 30 dB SPL, 1.05 for 40 
dB SPL and 0.86 for 50 dB SPL (note, however, the 
difference to the fit to the average thresholds in Figure 1). A 
within-subject ANOVA on the logarithm of pl/pu confirmed 
the main effect of level, F(2,18) = 9.2, p = 0.002. 

Discussion 
Overall, the active-learning test yielded auditory-filter 
parameters for the average data across subjects that were 
close to expected values [4, 8]. The individual parameter 
values were also within or close to the expected range, with 
only two outliers out of 80 runs. However, a single run may 
not be accurate enough to quantify the asymmetry of the 
auditory filter. The scatter in Figure 2 is more likely to come 
from uncertainty in the filter estimates due to noisy 
responses than to true individual differences in the 
asymmetry of the auditory filter. The time taken for one run 
was about 10 to 15 minutes (120 trials). Extending this may 
not be practical for clinical applications. Solutions could be 
to use different parameters for the test, e.g. different ranges 
of Δfl and Δfu or other settings of the Gaussian Process, or a 
test that directly learns the parameters of the auditory filters, 
similar to [5]. Nonetheless the present method may be useful 
in large scale research studies, making it possible to sample 
informatively across multiple dimensions while keeping 
prior assumptions to a minimum. 

Acknowledgments 
The work was supported by the Engineering and Physical 
Sciences Research Council (UK, grant number RG78536). 
References 
 
[1] Kontsevich, L. L. and Tyler, C. W.: Bayesian adaptive 

estimation of psychometric slope and threshold, Vision 
Research 39 (1999), 2729-2737. 

[2] Rasmussen, C. E. and Williams, C. K. Gaussian 
Processes for Machine Learning. Cambridge, MA, MIT 
press, 2006. 

[3] Houlsby, N., Huszar, F., Ghahramani, Z., and Lengyel, 
M.: Bayesian active learning for classication and 
preference learning, arXiv preprint  (2011). 

[4] Glasberg, B. R. and Moore, B. C. J.: Derivation of 
auditory filter shapes from notched-noise data, Hearing 
Research 47 (1990), 103-138. 

[5] Shen, Y. and Richards, V. M.: Bayesian adaptive 
estimation of the auditory filter, Journal of the 
Acoustical Society of America 134 (2013), 1134-1145. 

[6] Patterson, R. D., Nimmo Smith, I., Weber, D. L., and 
Milroy, R.: The deterioration of hearing with age: 
Frequency selectivity, the critical ratio, the audiogram, 
and speech threshold, Journal of the Acoustical Society 
of America 72 (1982), 1788-1803. 

[7] Glasberg, B. R., Moore, B. C. J., Patterson, R. D., and 
Nimmo Smith, I.: Dynamic range and asymmetry of 
the auditory filter, The Journal of the Acoustical 
Society of America 76 (1984), 419-427. 

[8] Moore, B. C. J. and Glasberg, B. R.: A revised model 
of loudness perception applied to cochlear hearing loss, 
Hearing Research 180 (2004), 70-88. 

DAGA 2018 München

378


