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Abstract
System complexity within buildings research is high. Data
are increasingly high dimensional with multiple physi-
cal and socio-technical processes driving their generation.
Popular statistical and building simulation methods lack
a structured procedure for incorporating intuition, limit-
ing their potential for effect attribution in the study of
buildings. This can be addressed through the use of a Di-
rected Acyclic Graph (DAG); a graphical representation
of expert knowledge and assumptions, through which in-
terventions can be modelled, and causal assumptions are
made explicit. This paper introduces the process of DAG
development through expert elicitation, offering guidance
to built environment researchers interested in causal mod-
elling.

Key Innovations
• The value of a DAG to a Building Simulation practi-

tioner is discussed.
• Guidance in developing graphical models through

expert elicitation is provided.
• A set of learnings from a case study application are

discussed.

Practical Implications
A set of recommendations are provided that can sup-
port researchers to develop DAGs that can be used to
strengthen modelling decisions in Built Environment re-
search, increasing model transparency and the strength of
conclusions.

Introduction
Improving the energy efficiency of buildings is a crucial
step in global efforts to reduce Greenhouse Gas (GHG)
emissions (IEA, 2021). In the United Kingdom (UK), ac-
cording to the government’s Heat and Building Strategy,
a ‘fabric-first’ approach will prioritise building envelope
improvements in existing homes that fall below the gov-
ernment’s energy standard (HMG, 2021).
The improvement in home energy efficiency (HEE) of-
fers many co-benefits in addition to the reduction in GHG
emissions, such as warmer homes during the winter, espe-
cially for the fuel poor. However, concerns exist regarding
the potential for unintended consequences of HEE on in-

door air quality and the risk of indoor overheating (Petrou
et al., 2022).
With ambitious plans to improve the fabric thermal effi-
ciency of homes, research efforts aimed at understanding
the effect of HEE on indoor overheating have intensified
over the last decade. Modelling studies have suggested
that HEE measures can both increase and decrease over-
heating risk, depending on the type of measure and its in-
teraction with other factors, such as ventilation and solar
gains (Fosas et al., 2018; Mavrogianni et al., 2012). Em-
pirical measurements of indoor temperature from a pair of
identical houses with synthetic occupancy revealed that
the installation of internal wall insulation can increase
summer indoor temperature, and this can be partially mit-
igated by the use of night ventilation and shading (Tink
et al., 2018).
The real world performance of the English housing stock
was studied by Petrou et al. (2019) using measurements
from a sample of 800 homes monitored during the sum-
mer of 2011, and later by Lomas et al. (2021) based on
data collected in 750 homes during the summer of 2018.
The studies differed in their choice of dependent variable
and statistical tests, but took a similar approach of sequen-
tially assessing whether a statistically significant relation-
ship exists between the dependent variable and a set of
dwelling and household characteristics. While both stud-
ies resulted in several important findings, it is possible that
un-studied factors associated with both dependent and in-
dependent variables, or confounders, were present. Con-
founders may distort or mask the effect of interest, poten-
tially misrepresenting the underlying process and leading
to unwarranted conclusions.

Effect attribution in Building Science
Applied building scientists are often concerned with un-
derstanding the effect of an intervention, such as energy
efficiency retrofit, or the widespread adoption of heat
pumps, on desired outcomes, such as reduced energy de-
mand and greenhouse gas (GHG) emissions, better inter-
nal air quality, or improvements to the well-being and pro-
ductivity of occupants. To understand the mechanisms
that connect two or more variables is to characterise a
causal relationship, and albeit not necessarily explicit in
their causal attribution, there are several means to address
such questions in building science.
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Popular approaches that rely on the use of building per-
formance simulation tools to evaluate such mechanisms
and their outcomes require detailed modelling of heat and
mass transfer processes. However, computer simulations
are not always able to capture system complexity, and can
be time-consuming and expensive, in terms of research
time, necessary skill level, and computational resources.
Where parametric or optimisation methods are used, pa-
rameter dependencies are often not adequately consid-
ered, and the design space may be ambiguously defined
(Chen et al., 2022). Furthermore, the knowledge and ex-
pertise needed to develop a convincing simulation often
imposes strong assumptions on the model, with associ-
ated restrictions on the outputs. These factors contribute
to, but are not uniquely responsible for, the performance
gap between the predicted and observed effect of an inter-
vention, a common phenomenon in building science re-
search (de Wilde, 2014).
Another approach is based on the use of observational
data, both to develop data-driven machine learning mod-
els, and to determine whether a statistically significant dif-
ference exists between the quantity of interest for groups
of dwellings with and without an intervention (Zhu-
ravchak et al., 2022). A crucial limitation with this com-
monly used approach is that as discussed, confounding
can result in the inaccurate attribution of effect.
Across disciplines, a widely accepted method to deter-
mine the effect of an intervention is a Randomised Con-
trol Trial (RCT), where randomisation directly addresses
the problem of confounding and causality. However, the
many challenges associated with implementation of RCTs
in built environment research, including ethical concerns
and high implementation costs, have resulted in the scarce
use of this gold standard approach within the field.
Causal Inference techniques offer an alternative; the op-
portunity to bring together statistical analysis with domain
expertise and intuition about a particular phenomenon to
address the mechanistic relationships between variables.
They offer a natural means to bring together classical
physics and Bayesian methods, address the problem of
confounding, and go beyond the study of association to
quantify the causal effect of an intervention using obser-
vational data, graphical models and do-calculus (Pearl,
2009). A Directed Acyclic Graph (DAG), developed on
the basis of the understanding of multiple experts, may
be able to provide more weight to the conclusions drawn
in analysis of correlations in large data sets by highlight-
ing the theoretical underpinnings of model choices, and
provide a transparent representation of modelling assump-
tions that are straightforward to critique.

Causal Inference
Causal Inference is a logical strategy popularised and
given mathematical rigour by Judea Pearl (Pearl, 2009),
along with the statisticians and mathematicians such as
Granger (1969), and Goldberger (1972). Although well
established in fields such as epidemiology, econometrics,
and social science, causal inference is seldom utilised ex-

plicitly in building science (with few exceptions, for ex-
ample the work of Chen et al. (2022)). It exists at the
boundaries of intuition, statistics, and probabilistic rea-
soning, and attempts to make use of the combined force
of these three tenets to answer questions of why things
happen, which constitutes a much stronger epistemolog-
ical claim than simply stating a correlation (association).
Broadly, it is a strategy with which to reason about the ef-
fect of certain interventions or counterfactual queries, ex-
ploiting the notion of conditional probability coupled with
intuition to develop a theory of causation.
Pearl (2009) articulates what is called a general theory of
causation in the form of a Structural Causal Model (SCM).
An SCM is a representation of a system in terms of a set
of variables, each of which may influence one or more
other variables. The relationships between the variables
are functionally represented, and this system is depicted
in the form of a DAG (see Figure 1). A useful character-
istic of this framework is that it is not always necessary
to commit to a particular functional form of a variable, in
order to exploit the invariant characteristics of the struc-
tural equations. This means that causal effects can still be
estimated in both non-parametric and non-linear models.
Despite the fact that the data available to building sci-
ence are growing, and indeed there are very large, rich
data sets, the data alone are unable to capture the entire
system behaviour. They are still a partial depiction of a
highly complex and dynamic system, whose behaviour
neither statistical nor physical modelling is able to com-
pletely capture. A purely statistical model, especially in
highly complex systems, may not be robust to changes
in the behaviour of the underlying system, and a purely
physical model imposes hard constraints on the behaviour
represented, restricted by the knowledge of the modeller
(Berliner, 2003). Causal Inference provides a systematic
way to integrate knowledge of the data generating process
into models, without imposing hard, potentially limiting
constraints on the components of the model.
Within the field of built environment research, the use of
causal inference techniques and DAGs is scarce despite
the many potential applications, including: the devel-
opment of building performance simulation models that
better-incorporate diverse expert input; achieving deeper
understanding of variables leading to the generation of en-
ergy and indoor environmental data; and the integration
of models from domains that may not straightforwardly
be linked together, for example, a model for occupant be-
haviour may be integrated with a building physics model.
In a notable recent publication, Chen et al. (2022) pro-
posed the use of causal inference, together with building
simulations tools, to inform energy efficient building de-
sign. The authors introduced a four-step process that re-
lies on an automated approach to causal structure finding,
to enable the integration of domain knowledge and data-
driven techniques, resulting in a more efficient design pro-
cess.
Another application of causal inference is the study of
causal effects based on large observational data sets. To
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explore this under-researched area within the context of
Built Environment research, and attempt to answer a per-
tinent question in the field of indoor overheating, the CIM-
BER project (Pilot study on the application of Causal In-
ference Methods in complex Built Environment Research)
aims to investigate the causal effect of home energy effi-
ciency on summer indoor temperature in the English hous-
ing stock. The starting point for this analysis is the devel-
opment of a DAG. DAGs may be developed through ex-
pert knowledge of a system, or they may be learned from
the data. While DAG learning is a vast and expanding
field in computer science, which is beyond the scope of
this paper , this conference paper specifically focuses on
the former approach. In complex problem domains like
building science, it is highly valuable to employ methods
that effectively harness the collective knowledge of multi-
ple experts for model development. This expertise is not
available from the data alone, and this approach therefore
has the potential to significantly enhance coherence and
transparency, by leveraging the collective expertise avail-
able. The resulting model will provide a rigorous basis
from which to develop inferential analysis, giving addi-
tional weight to future machine learning and building sim-
ulation analyses.
This conference paper describes the process of develop-
ing a DAG appropriate for this pilot study through expert
elicitation. Reflections from this process can inform and
accelerate future DAG development within the field.

Causal modelling with graphical heuristics
A DAG is a type of causal diagram, which is a qualitative,
parsimonious summary of the process that generates the
data (Cinelli et al., 2022). DAGs are composed of nodes
(random variables), and directed edges (arrows) that de-
note causal paths between variables. An interpretation of
these edges offered by Pearl (2022), when for example di-
rected from variable X to variable Y , is that they represent
the answer to the question: what are the sources of varia-
tion we observe in variable Y ? These paths are necessarily
directed, because they denote the direction of causation,
and are acyclic, to denote the topological ordering of the
variables in the graph. The acyclic property thus means
that there can be no feedback loops between variables.
As discussed above, a confounding variable is one that
has an effect on both the independent and dependent
variables, and if one wishes to isolate the effect of the
independent on the dependent variable, their effect must
be controlled for. A graphical criterion that allows the
researcher to eliminate the effect of confounding is known
as the backdoor criterion (Pearl, 2009), which supports
the blocking of spurious (non causal) paths between
treatment and outcome. Judicious application of this cri-
terion further means that it is possible, assuming the DAG
is correct, to assert the causal effect of an intervention
on the outcome, or investigate counterfactual queries.
A simple DAG is illustrated as follows (see Figure 1).
A direct path exists between A and C, represented in
text as A → C. The direction of the arrow denotes the

direction of causality. From the figure, there exists an
additional open (backdoor) path between A and C, via B,
which is a common cause of both A and B. Any effect
on C due to A will also contain information about B,
which is confounding the relationship between A and C.
Controlling for B is this situation is necessary to obtain
an unbiased estimate of the Average Causal Effect (ACE)
of A on C (Cinelli et al., 2022). An overview of the
implications of different model structures, and the biases
that may be implied is available in Cinelli et al. (2022).
In the context of building science, there may be a direct
path between indoor temperature (C) and glazing fraction
(A), however this relationship may be confounded by
building orientation (B). As such, a DAG provides a
static visual summary of the model assumptions and
the variables that need to be measured in order to be
controlled (Greenland et al., 1999).
This provides a flexible counterpart to regression models,
which rely on strong assumptions about the relationships
between variables and their distributions, and may not
represent the underlying causal relationships in a system,
in particular their direction. Through the use of DAGs,
Causal Inference allows researchers to explicitly model
their beliefs about underlying causal relationships, and
conditional dependence structure within models without
necessarily requiring knowledge of the functional form of

Figure 1: A simple Directed Acyclic Graph, with two 

paths between Exposure A and Outcome C, produced us-
ing DAGitty.

relationships between variables or their distributions.

Eliciting a causal model for Residential In-
door Temperatures
To develop a DAG for the causal effect of home energy
efficiency on summer indoor temperature, a process of ex-
pert elicitation was used as shown in Figure 2. This pro-
cess is discussed in the following section.
Expert elicitation is a commonly used research tool, es-
pecially in contexts where there exists significant epis-
temic uncertainty due to a lack of data, or the data are
challenging or expensive to collect. There are thus prece-
dents in elicitation techniques across multiple disciplines.
Kuhnert et al. (2010) provide guidance in the context of
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• Research Question
• Data 
• Expertise needed
• Dependent Variable
• Explanatory Variable
• Estimand
• Time available

Causal ModelPlanning DAG co-creation

• Included/Excluded Variables
• Variable interpretation 
• Edges and absence of edges 
• Direction of effects
• Data suitability for model

Informing

What is Causal
Inference?

Why a:
• Directed 
• Acyclic 
• Graph? 

Considerations

Steps

DAG Development using Expert Elicitation

Pre-Workshop

Consensus checks

Workshop(s)

Key: 
How do DAGs represent 
models?

Figure 2: Schematic view of the iterative process of DAG development using Expert Elicitation.

Bayesian modelling of ecological models, arguing that ex-
pert knowledge should be utilised in models with the same
degree of rigour as the gathering and subsequent use as
empirical data. For this reason, this paper pays close at-
tention to this process, aiming to aid researchers in devel-
oping this rigour for the complex field of building simula-
tion.
Rodrigues et al. (2022) describe the process of DAG de-
velopment in health services using a workshop composed
of representatives of multiple stakeholder groups. The
workshop objective was to construct a DAG for an inter-
vention, made by a healthcare professional in the National
Health Service in England, and the journal article offers
guidance to practitioners interested in using a workshop
to elicit information from domain experts. Noting that
the problem space is substantially different, nevertheless,
a similar workshop format was followed for our DAG de-
velopment.
Planning
As highlighted in Figure 2, the first step in the process
is planning, with particular focus on the following ele-
ments: developing the Research Question and estimand,
along with the explanatory and dependent variables, as
well as determining the data requirements, time, and nec-
essary expertise to develop the model.
The datasets intended to be used for this causal analysis
are the linked 2011 English Housing Survey (EHS) and
Energy Follow-Up Survey (EFUS). The same sets of data
were used in the analysis by Petrou et al. (2019). The 2011
EFUS contains sub-hourly measurements of indoor tem-
perature from approximately 800 English homes (Hulme
et al., 2013). The monitored homes are a subset of the

EHS, a national survey that takes place every two years
and consists of household interviews and physical surveys
(DLUHC, 2021). It is useful to consider the available data
at this stage, because features (in this context) such as the
temporal and spatial resolution of the dependent variable
can influence the model structure. This helps participants
to make decisions about which variables to include in the
model and how they are related.
Initially, a single three-hour workshop was planned. How-
ever, it was not feasible to finalise a model within the
three-hour time frame and a follow-up was arranged.
The initial workshop was composed of three sessions:
informing, breakout group DAG co-creation, and whole
group consensus checking and evaluation in the context
of available data. The second workshop was composed of
two sessions, the first focussing on reminding participants
of the premise and progress of the project, and the second
about whole group consensus.
Participants were composed of department members with
expertise suited to input into the problem, along with two
facilitators. The intervention of interest was the effect
of energy efficiency on summer indoor temperatures in
UK residential building stock, hence invitees were com-
posed of eleven academic experts in building physics, in-
door overheating and air quality, climatology, and urban
health, all based within University College London. Al-
though the majority of attendees were able to join in per-
son, accommodation was also made for those who were
available online only. Prior to the workshop, the workshop
agenda, and information about the research project was
shared with prospective participants, and low risk ethics
approval was obtained.
Prior to the second workshop taking place, feedback was
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sought from both experts in causal inference, and in using
workshops for expert elicitation. It was suggested that im-
portant factors to account for in determining the approach
are time constraints, the pre-existence of models, the pur-
pose and scope of the model, and the desire to compare an
existing model to one that is developed by stakeholders.
The questions developed were thought to be appropriate
for the task, if ambitious, for the time allowed.
Informing
The initial workshop opened with a short overview of the
project, and an introduction to the basic principles and ra-
tionale for Causal Inference. Following this was an intro-
duction to DAG theory, such that participants had suffi-
cient knowledge and vocabulary to engage with DAG co-
creation. A simple synthetic example of confounding was
demonstrated to highlight how DAG structure leads to the
causal effect estimates through the addition of controls
(based on Figure 1(b) of Cinelli et al. (2022)). The in-
tended message for this exercise was to show that assum-
ing the DAG structure is correct, the issue of confounding
can be addressed. However, if the DAG is misspecified, it
could also lead to incorrect or biased estimates.
There was also a brief overview of the temperature time
series data available for each dwelling, its distributional
characteristics, and the time period it covered. However,
following the recommendation of Rodrigues et al. (2022),
the participants were not provided with detailed infor-
mation about the available household level data until the
“Consensus checks” stage, in order to avoid undue focus
on available, rather than causally relevant, variables in the
initial model development.
DAG co-creation
Following the informing segment of the initial workshop,
the participants were divided into two smaller groups for
co-creation. The subgroups were determined in advance
such that they were composed of participants from a range
of disciplines, and with an even distribution of seniority in
each group.
Before each co-creation session, participants were pro-
vided with a task and some initial content questions, as
shown in Table 1. Participants were also prompted to en-
sure they were clear about the activity. During the first
session, participants in each group were able to freely
develop their DAGs, with the support of a facilitator
who would record variables and relationships on DAGitty,
while also noting key discussion points. The facilitator
was not there to engage in discussion, other than to sup-
port the recording of the DAG. DAGitty (Textor et al.,
2016) is a piece of software developed by researchers for
the automated analysis of DAGs, facilitating quick and
easy testing of whether a set of variables can be used to
control for confounding in a causal relationship, and vi-
sualisation of the probabilistic relationships between vari-
ables.
Consensus checks
Following the DAG co-creation section of the first work-
shop, and during the second workshop, the primary objec-

tive was to develop the DAG as a whole group and obtain
consensus on its structure and content. There was there-
fore a group discussion to compare the approach taken by
each group, with a focus on drawing out differences in
modelling assumptions and the key focus between groups.
This discussion was guided using prompts contained in
Table 1.
A secondary objective of this step was to determine the
DAG variables that data exists for within the EHS-EFUS
surveys, other relevant datasets and any potential data
gaps. Participants were asked to keep in mind that the
model structure is what justifies the causal claims we wish
to make, and that the strength of the analysis lies in the va-
lidity of the model according to their expertise.

Workshop reflections
Attempting to develop a causal model for the effect of en-
ergy efficiency on summer indoor temperatures has been
instructive. Firstly, and perhaps most obviously, it has had
the effect of exposing the complexity of the issue to a
level that is beyond what one might expect. Highlight-
ing the multiple pathways and the conditional relationship
between variables revealed disagreements about the direc-
tion of effects and their relative importance, especially at
different spatio-temporal scales of analysis. This has im-
plications for analysing the EHS-EFUS survey data and
the relative importance of different controls that have been
applied in the past. In addition, this exercise offers a set of
learnings applicable to the broader application of Causal
Inference methods in Built Environment research. These
are detailed in the following sections.
Timing
The time required to elicit expert input and develop a DAG
will largely depend on the familiarity of the experts with
Causal Inference methods, and the complexity of the sys-
tem being studied. While system complexity will vary,
it is expected to remain high across most areas of built
environment research. For the case study described in this
paper, two workshops of two and three hours long were in-
adequate to finalise the DAG model. This highlights how
difficult it is to conceptualise a model of this nature, not
least because experts will have very deep understandings
of the problem space, which leads to the addition of a lot
of details and the consideration of multiple relationships.
Underestimating the time needed to complete the DAG de-
velopment was also noted as an issue by Rodrigues et al.
(2022).
While Koller (2009) noted that the time of experts needed
to construct the model can sometimes be considered too
valuable, participant feedback revealed a preference for a
longer time period to develop the DAG. Thus, a recom-
mendation of at least two four-hour sessions is made, with
a gap in-between to allow researchers time to reflect and
consolidate information.
Participants
As expected, experts in a specific area provided a more
nuanced picture of their domain, which validates the ap-

                                                                                                                                             

 

 

Proceedings of the 18th IBPSA Conference                                                                                                                     

Shanghai, China, Sept. 4-6, 2023                                                                 

 

 

1187
https://doi.org/10.26868/25222708.2023.1588



Rationale Prompt
DAG co-creation Is everyone clear about the intervention we are interested in?

Develop a DAG with key variables and direction of effect.
What are the key factors driving the assignment of the intervention?
Can we coherently combine our confounds into fewer variables?

Consensus checks How confident are you that x and y are causally/not causally related?
Do you think we have missed any important parameters or arrows?
What assumptions/knowledge underlie the causal relationships?
Does the DAG represent the model structure, and do you have any observations?

Table 1: Selected prompts used to elicit expert knowledge and develop consensus during DAG co-creation.

proach of having experts from several relevant disciplines.
It is interesting to note that despite efforts to ensure a sim-
ilar distribution in expertise between the subgroups, the
initial models produced were quite different. This could
potentially be due to the starting point chosen by each
subgroup or the presence of authoritative voices. It could
also be the case that experts drawn from the same disci-
pline and institutional department can have different men-
tal models for the same system.
While the use of subgroups of mixed expertise in this case
study was preferred, an alternative would be to create sub-
groups focused on each domain of expertise. This is ex-
pected to result in the development of different DAGs, bi-
ased towards particular model framing, that would then be
merged during the whole-group discussion.
Background theory
It is essential to provide participants with an introduction
to the key aims of Causal Inference, and especially the key
components and principles of a DAG. Working through an
example, such as the one provided in Figure 1, can be es-
pecially helpful to illustrate the difference between corre-
lation and causality.
The theory of causal graphical models needs to be com-
municated carefully to participants in advance of develop-
ing the DAG, including key vocabulary and the represen-
tation of relationships in the casual graph. In particular,
participants need to be aware that arrows denote a causal
direction, and that a bidirectional arrow indicates a latent
variable (Pearl, 2009).
It is also helpful to communicate the use of the backdoor
criterion, such that participants are able to follow the im-
plications of their modelling choices on the sufficient sets
implied by the model if using DAGitty. This can have
important consequences for the data and analysis that is
available once the DAG is developed.
Next, it is important to highlight to participants that it is
the absence, not the presence, of an arrow that encodes
the model assumptions. Hence, the lack of an arrow is a
much stronger statement than the presence of one, since
this asserts the conditional independence of the variables
(Pearl, 2009). In the absence of a causal model, all vari-
ables are assumed to be related (and there would therefore
be arrows between all variables).
Lastly, it is important that participants understand that the
DAG cannot contain cycles, and to acknowledge that this

imposes temporal limitations, as well as having conse-
quences for the structure of variables and their content.
Some participants may find this too restrictive, and de-
pending on the level of mathematical expertise it may be
helpful to discuss the possibility of state space modelling,
or Dynamic Bayesian Networks to overcome the temporal
limitations of a static DAG (for example, see Shiguihara
et al. (2021)).
Elicitation process
Following the advice of Rodrigues et al. (2022), DAGitty
was used to record participant inputs to the DAG, and
notes were taken to record key discussion points. DAGitty
is an appropriate choice since it is a straightforward tool,
readily understood by participants. It is also helpful be-
cause after the workshop, the model can be shared in
text format among interested parties, who can then load
it themselves and reflect on the model structure and its
implications.
Despite the ease of use of DAGitty, it would have been
helpful to have a note-taker, as well as someone who is
able to facilitate the DAG development, because it is chal-
lenging in a free-flowing discussion context to record par-
ticipant comments as well as ensure that the DAG is accu-
rately specified.
During the second workshop, participants made some use-
ful observations about the communication of the model.
Due to its overall complexity, it may be helpful when re-
minding participants of its contents to break it down into
smaller components, which can then be discussed indi-
vidually and built upon. This would certainly help with
clarity of communication and allow participants to incre-
mentally digest the model, rather than all at once.
DAG Amalgamation
Key to the process of developing a causal graphical model
is knowledge of the variables in the system of interest.
This is why the use of experts in the development phase is
appropriate, and can lead to confidence in model outputs
and consolidation of variable interpretation. It also leads
to robust discussion of the effect of interest and exposes
the different points of view held between different disci-
plines.
The iterative process of DAG co-development and con-
sensus checking (highlighted in Figure 2), is crucial to
capturing participant knowledge. To facilitate this pro-
cess and guide participants in responding to the prompts
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in Table 1, a dedicated worksheet was developed. The
worksheet contained questions designed to assist partici-
pants in assessing their causal assumptions, and the most
and least significant variables in generating the data fea-
tures. It also asked participants whether there were any
variables that could be combined into a single indicator,
whether they had any observations to add, and whether in
their view the DAG accurately represented the model. It
was suggested that it may be helpful in a future workshop
to get different groups to look at different levels of the
problem. This might have the benefit that in ensuring the
levels of the model are coherent, high level group struc-
ture may emerge, which may be exploitable. In particular,
one approach in this context could be to look at building
variables, occupant characteristics, and variables that are
external to the building.

Conclusion
Causal Inference techniques, including the use of Directed
Acyclic Graphs (DAGs), have the potential to improve
current research practices, both in data-driven and build-
ing simulation applications. This paper describes the pro-
cess of developing a DAG using expert elicitation, and re-
flects on its application in a case study on the causal ef-
fect of home energy efficiency on summer indoor temper-
ature. The simplicity of the concept of DAGs means that
it is possible to consider structural model effects without
the need to have specialised knowledge of statistical meth-
ods. This enables researchers who may have highly valu-
able expertise in one domain to consider the interaction of
the system’s various components, and co-develop a holis-
tic graphical model, without the need for a background in
statistics or machine learning. The process of developing
a DAG for this system has revealed several points of in-
terest to others. These are that the time needed to develop
these models may be large, yet researchers felt it was a
valuable exercise and a good use of their time. Next, that
it is necessary to deliver DAG theory to researchers with
care, such that they are able to appreciate how the DAG
structure leads to the addition of controlling variables and
the ability to assert causal, rather than associational, ef-
fects. For a situation as complex as an occupied build-
ing, the DAG quickly becomes highly complicated. In
the context of a workshop, communication of the model
should be done gradually such that participants have the
time to absorb the graph properties. This is useful to know
and can guide further research, as well as supporting ef-
fective communication in the modelling community and
more widely, building science researchers.
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