The Annals of Statistics

2022, Vol. 50, No. 4, 1960-1991
https://doi.org/10.1214/21-A0S2165

© Institute of Mathematical Statistics, 2022

LIMIT THEOREMS FOR DISTRIBUTIONS INVARIANT UNDER GROUPS
OF TRANSFORMATIONS

BY MORGANE AUSTERN!*? AND PETER ORBANZ2P

1 Department of Statistics, Harvard University, *maustern@fas.harvard.edu

2Gatsby Computational Neuroscience Unit, University College London, bporbanz@ gatsby.ucl.ac.uk

A distributional symmetry is invariance of a distribution under a group of
transformations. Exchangeability and stationarity are examples. We explain
that a result of ergodic theory implies a law of large numbers for such in-
variant distributions: If the group satisfies suitable conditions, expectations
can be estimated by averaging over subsets of transformations, and these es-
timators are strongly consistent. We show that, if a mixing condition holds,
the averages also satisfy a central limit theorem, a Berry—Esseen bound, and
concentration. These are extended further to apply to triangular arrays, to ran-
domly subsampled averages, and to a generalization of U-statistics. As appli-
cations, we obtain a general limit theorem for exchangeable random struc-
tures, and new results on stationary random fields, network models, and a
class of marked point processes. We also establish asymptotic normality of
the empirical entropy for a large class of processes. Some known results are
recovered as special cases, and can hence be interpreted as an outcome of
symmetry. The proofs adapt Stein’s method.

1. Introduction. Statistical models that can be characterized by symmetry, or transfor-
mation invariance, include stationary processes [42], graphon and graphex models of net-
works [2, 5, 9, 14, 30, 45], the exchangeable random partitions that underpin much of
Bayesian nonparametrics [24, 39], and rotation- and shift-invariant random fields [7, 26].
Examples from related fields are various models for relational data and preference prediction
used in machine learning [35], point process representations of nearest neighbor methods and
Voronoi tesselations [22, 23, 38], or self-similar stochastic processes [28]. Recent advances
in spin glass theory rely crucially on exchangeable arrays [36].

We consider estimation under such invariant models. For each example above, a canonical
estimator for expectations is known. We explain that these estimators are special cases of
a general class of averages. For such averages, the ergodic theorem of Lindenstrauss [31]
implies what a statistician would call a (strong) law of large numbers. Starting from this
result, we establish central limit theorems, Wasserstein Berry—Esseen bounds—that is, Berry—
Esseen type bounds that measure distance to a limiting variable in terms of the Wasserstein
distance—and a concentration inequality. We then develop several applications in detail.

1.1. Overview. The remainder of this section is an informal summary of our approach,
and of the main results. For the purposes of this introduction, we sidestep technicalities:
A key quantity throughout is an infinite group G. We assume for now that G is countable,
and postpone general definitions to Section 2.

Consider a random element X of a space X, and a real-valued function f. Suppose the
group G consists of measurable bijections ¢ : X — X. We can then transform X by ¢, where
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we use the notation ¢ (X) and ¢ X interchangeably. The purpose of this work is to understand
under what conditions the expectation E[ f(X)] can be estimated by

1
|An|

(1) Fu(f, X) = > f@X),

PpeA,

where A1, A, ... are finite subsets of G, and | - | denotes cardinality. (For uncountable groups,
[, integrates over a compact set A,.) Such averages occur in dynamical systems [20] and
statistical mechanics [37]. Various examples are used in statistics:

EXAMPLE.

(i) The window estimator for a random field on a grid [7, 26]. In this case, X = (X;});, jez
is a collection of real-valued random variables. Let f be a function that depends only on the
value at the origin, so f(X) = g(Xoo) for some function g. A transformation that shifts the
grid is of the form ¢ = (k, [) for some k, [ € Z. If we choose A, :={—n, ..., n}z, then

1

2 Fu(f, X) =
2) (s X) A

1
Y fXivkjrdijezr) = 5——= 2. &Xij)
(k.1)eA, @4+ D~ T

averages g over all locations on the subgrid of radius n around the origin. The group G is the
group Z? of all shifts, with addition as group operation.

More generally, X is a random object—such as a random sequence, matrix, field, or
graph—and f is a function that typically depends only on “a small part” of X. The group
G is a set of transformations that “move the domain” of f over X, and A, contains those
elements of G that cover a suitably defined sample, whose size is a function of n. The next
two examples choose A, as Sy, the set of all permutations of the set {1, ..., n}.

EXAMPLES.

(ii) The sample average over a random sequence X = (X1, X2, ...). Consider a function
f(X) = g(Xy) of the first entry, and let each permutation ¢ € S, transform X by permuting
entries, ¢ X := (X¢(1), R X¢(n), Xn+1, Xn+42,...). Then

1
[Snl

1 1
Y f@X)=—= Y g(Xg) = ;Zg(Xi)-

|
IS n peA, i<n

3) Fn(f. X) =

In this case, the group is G =, S;, the set of all finite permutations of N.

(iii)) The triangle density in network analysis [2, 5]. Here, X is a random undirected,
simple graph with vertex set N. Denote by X[iy, ..., ix] the induced subgraph on the ver-
tices iq,...,ix € N. Let g be a function defined on graphs with three vertices, and set
f(X):=g(X[1,2,3]). Suppose each ¢ € S, transforms the graph by permuting the first n
vertices, so (¢ X)[1,2,...]=X[¢(1),...,¢(n),n+ 1,n+2,...]. Then F, averages g over
all subgraphs of size 3 in the finite graph X[1,...,n]:

1
> (X[, ¢ (2),9(3)])

Fo(f, X) = -
(f, X) Z nn— D(n —

5 % > g(Xli, j. k1),

where the sum on the right runs over all distinct triples i, j, k < n.
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TABLE 1
Examples of invariant random structures and their ergodic special cases

G-invariant objects X  G-ergodic objects & explained by Eq. (7) specializes to

exchangeable sequences i.i.d. sequences de Finetti’s theorem [28]  law of large numbers

stationary sequence ergodic stationary sequ. [42] see [42], Theorem [.4.10  Birkhoff’s theorem [28]

exchangeable graphs graphon models [10, 17] Aldous—Hoover thm. [29]  graph limit convergence [10]

graphs generated by graphex models [14] Kallenberg’s representation empirical graphex [9, 45]
inv. point processes theorem [29]

exchangeable arrays dissociated arrays [29] Aldous—Hoover theorem  Kallenberg’s LLN [27]

Tools from ergodic theory. To characterize the behavior of [F,, we borrow from ergodic
theory: Two key conditions are

n— oo

) () ¢X=IX and (i) [pA,NALl/IAL 222521 forall ¢ €G,

where 4 is equality in distribution. If (4)(i) holds, X is called G-invariant. If it also satisfies
(5) P(X € A) €{0,1} forevery Borel set A with p A = A for all ¢ € G,

it is called G-ergodic. (Uncountable groups require more general formulations of (4)(ii) and
(5), see Section 2.) The same terminology is applied to the distribution of X, so a G-ergodic
probability measure is the law of G-ergodic random element, etc. Table 1 lists examples.

To motivate the conditions informally, first observe that I,, attempts to estimate E[ f (X)]
from surrogate values f (¢ X). That should require E[ f(X)] = E[ f (¢ X)], which is in turn
implied by (4)(i). Any valid estimator [F,, of E[ f(X)] must satisfy F,, ® E[ f(X)] in some
suitable sense for large enough 7, so it must also satisfy

Fu(f, X) R E[f(X)] =E[f(@X)] * Fu(f. ¢X).

That is true if ¢A, = A,,, which is guaranteed by (4)(ii). In statistics, this condition was first
used by Charles Stein, to characterize groups for which the Hunt—Stein theorem establishes
minimaxity of invariant tests [8]. Ergodicity can be motivated as follows: We hope to estab-
lish strong consistency of estimates, that is, ', ( f, X) — E[ f(X)] almost surely as n — oo.
That means the event {IF,,(f, X) — a} must have probability 1 for a = E[ f(X)], and O oth-
erwise. Since invariance implies E[ f (¢ X)] = E[ f (X)], these events are invariant sets for all
a € R (and indeed any invariant measurable set can be characterized in this way for some f
and some invariant X). In this sense, G-ergodic distributions form a class for which strong
consistency might hold, provided one can establish a suitable strong law of large numbers.
This law of large numbers is due to Lindenstrauss [31]: If (4)(ii) holds, and X is G-ergodic,

(6) F(f, X) —> E[f(X)] almost surely

for any function f with E[|f(X)|] < oco. The sets A, must satisfy certain additional fine
print, but they can always be modified to do so if they satisfy (4)(ii). Theorem 1 in Section 2
gives a proper statement.

The theorem can be extended to the G-invariant case. The two cases are related by a prop-
erty known as ergodic decomposition: G-invariant distributions are mixtures of G-ergodic
ones. More formally, if X is G-invariant, there is a random element & of the set of G-ergodic
distributions such that X |& ~ & (see Theorem 2 for details). If X is G-invariant, (6) becomes

(7) F.(f, X) =5 E[f(X)E] = f f(x)&(dx) almost surely.
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For example, a random sequence (X;);c7 is stationary if it is Z-invariant (adding elements
of Z shifts the index set). In this case, ergodic decomposition is a classic result of time se-
ries theory [42], and (6) specializes to Birkhoff’s ergodic theorem. An exchangeable (i.e.,
permutation-invariant) sequence is ergodic if it is i.i.d.—see Example (vii) for details. Thus,
X|& ~ & means X is “conditionally i.i.d.”, which is de Finetti’s theorem, and (6) is the strong
law of large numbers.

Sketch of the main results. Our results provide rates of convergence for I,. Like cer-
tain convergence results for stationary processes, they use a mixing condition to control
dependence within X: Recall that a typical mixing condition for a discrete-time process
(X1, X2,...) would be that any pair (X, Xi), for j <k, is approximately independent of
the tail (Xx4n, Xnik+1,...) for large n [6]. Informally, we replace the tail by (f (¥ X))y ec,
for a set G C G, and require

®) (f@1X), f($2X)) LL(f (¥ X)), |6  approximately

whenever ¢1, ¢ € G are far from G. The condition is tailored to second-order results, hence
the pair on the left. Since X | ~ &, conditional independence given & suffices. Section 3 gives
a precise definition.

Our first result is a central limit theorem: If E[| f(X )|?T¢] < 0o for some & > 0, and the
conditional mixing property above holds, then

JIAW(Fa(f, X) —E[f(X)IE]) S nZ  for Z ~ N(O, 1).

The asymptotic variance 12 is a random variable, independent of Z, and constant if X is
G-ergodic. That is Theorem 4. If E[| f(X) |*+2¢] < 0o, Theorem 6 bounds the approximation
error as

AT
dw( 'n '(Fn<f,X>—E[f<X>|s]),Z)5u<An,n>

for a suitable function u and the Wasserstein distance dyw. This result generalizes the Berry—
Esseen theorem (using dyw instead of total variation). In either case, the moment condition
can be relaxed to € = 0, at the price of stronger mixing.

In statistics, asymptotic normality results are often applied to quantify uncertainty. Theo-
rem 5 shows that, if Zj-¢ is the (1 — «)-quantile of the standard normal distribution,

/\ A

T Full. X”Z‘"J&—J) <o

holds under the distribution P of X, where 7 is an empirical variance that can be computed
from a sample of size n. In other words, the interval estimate above is a consistent confidence
interval.

In Section 5, we generalize [, along three lines: (i) f and X may change with n. (i1)
Averages may be subsampled or randomized. In the simplest case, that means replacing Aﬁ"
by a random subset A,, and generalizing F, to

limsupP(E[f(X)lfg‘] € |:Fn(f, X) =z —F—=

n— oo

B (fnr Xp) = IA y Z Fa@Xn) — B[ fu(X0)|E].

More generally, I, is defined by a randorrl\ measure 4, on A,, so that random subsets are
the special case where w, is uniform on A, . (iii) Each ¢ may be substituted by a vector
of transformations, with some number &, of elements, replacing G by G* and A, by Aﬁ”.
Our main results are a central limit theorem (Theorem 10) and a Wasserstein Berry—Esseen
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bound (Theorem 11) for F,.. We use the result for k,, -tuples to formulate a class of generalized
U-statistics (Corollary 12).

Since certain asymptotic properties of i.i.d. sequences generalize to G-invariant objects, it
is natural to ask whether finite-sample properties do so, too. Section 6 gives a concentration
inequality of the form

P(F,(f, X)>1) <2 forallt >0,

for certain constants w,, where > denotes probability under the joint distribution of X and
the (possibly randomized) average [),.

1.2. Applications. The remaining sections apply the theorems summarized above to ob-
tain new results for a number of specific models, and also highlight how certain known results
can be phrased as instances of invariance. We consider two specific types of invariance—
stationarity and exchangeability—in some detail because of their importance to statistics, but
also discuss other applications, to point processes and entropy.

For stationary random fields, the group G plays a dual role, as index set and a set of shifts.
Substituting a field indexed by the grid Z¢ into Theorem 4 recovers Bolthausen’s central limit
theorem [7]. Substituting other groups generalizes this result, as Corollary 7 illustrates for a
continuous field on G = R¢. Corollary 8 is a Berry—Esseen bound for Bolthausen’s theorem.
If G is uncountable, the estimator [F,, becomes an integral. In applications where computing
the integral is not be feasible, it can be discretized to a sum, by applying Theorems 10 and 11,
with w, chosen as almost surely discrete. Making p, nonrandom makes the discretization
deterministic. Corollary 16 illustrates both cases, again for a continuous random field.

Modeling assumptions made in statistics often imply some form of invariance under
the permutation group So.. Examples are i.i.d. sequences, Bayesian models appealing to
de Finetti’s theorem (which involve exchangeable sequences), stochastic block models and
graphon models (which generate exchangeable graphs), and finite and Dirichlet process mix-
tures (which generate exchangeable partitions). Theorem 17 is a general central limit theorem
for such models: Any Sso-invariant random object X satisfies

ﬁ(l Z f(@X) —E[f(X)lSoo]) 4 nZ wherenllZ~ N(O,]1).
n!¢€§”

The result does not require a mixing condition.

Some models do not make an invariance assumption on the data source, but rather use
invariant random objects as approximations or latent variables. One example are nonpara-
metric stochastic block models that increase the number of “communities” in the model with
sample size [15]. An observed graph with n vertices is explained by an exchangeable graph
X, whose distribution changes with n. Corollary 18 shows how to estimate a statistic, where
we choose the triangle density for illustration. Informally,

Tl—n (empirical triangle density(n) — population triangle density under X,,) 4 Z,

n

where 7, is determined by the law of X,,. Another example are graphex random graphs [9,
14, 45], which are not themselves exchangeable, but generated by a latent point process with
an exchangeability property. Section 8.5 explains how to apply Theorem 17 to such models
by extracting an exchangeable surrogate object. Corollary 20 is an example: The standard
estimator for the graphex equivalent of the edge density satisfies

/s (empirical graphex subgraph density(s) — graphex subgraph density) 4 nZz,

where s is the relevant notion of sample size.
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In Section 9, we obtain a central limit theorem and the speed of convergence for so-called
random geometric measures. These are point processes with dependence between neighbor-
ing points, and have been applied to nearest-neighbor methods and tesselations. Whether
points are neighbors is defined by shifting an “observation window” over the sample space.
Representing these shifts as elements of a group makes Theorems 4 and 6 applicable.

Section 10 concerns entropy: The entropy of a stochastic process is defined as a limit of
so-called empirical entropies, computed from the first n values of the process. This definition
can be extended to certain invariant random objects, by defining the nth empirical entropy
using the transformation set A,,. The fact that the limit exists is, in the classical case, known
as the Shannon—-McMillan-Breiman theorem. Lindenstrauss [31] has generalized it to the
invariant case. Theorem 23 establishes asymptotic normality: Under suitable conditions,

\/|An|(empirical entropy(n) — entropy) 4, nZ asn— oo.

2. Background and definitions. Throughout, G is a group, with identity element e. By
X, we always mean a standard Borel space, with Borel o-algebra B(X), and by P(X) the
space of probability measures on X, topologized by weak convergence. For a random ele-
ment X of X, and p > 0, define the norm || f||, := E[| f(X)|?1'/? for measurable functions
f : X — R. The set of functions with || f||, < oo is denoted L, (X). By f € L,(X), we refer
to a function f, rather than an equivalence class.

2.1. Conditions on the group. To explain the estimator (1) for an uncountable group G,
we must define a topology and a measure on G. Finite sets then generalize to compact ones,
and sums over group elements to integrals. To cohere with group structure, the topology must
make the group operation continuous. If that is the case, and the topology is locally compact,
second-countable, and Hausdorff, or lIcscH, then G is a lescH group. If G is countable, the
discrete topology is lcscH, and G is a discrete group. We always equip G with its Borel
o-algebra B(G). On every lcscH group, there is a o -finite measure | - | that satisfies

9) |p71A|=|A| forall¢ € G and A € B(G),

called a Haar measure. It is unique up to positive scaling, so c| - | is again a Haar measure for
c>0[28]. If aset A C G is compact, then |A| < co. Informally, Haar measures generalize
volume, and (9) shows that a set can be shifted without changing its volume. Examples of
Haar measures are Lebesgue measure on the groups (R, +), for » € N, or counting mea-
sure (cardinality) on a discrete group. Our results do not assume a specific scaling ¢, but in
examples we always choose | - | as cardinality if G is discrete.

Like volume, distance can be defined in a shift-invariant way: If G is lcscH, there exists a
metric d on G that is left-invariant,

(10) dig~t o7 )=d(,-) forallgeG.

We write B;(¢) :={¥ € G|d(y¥, ¢) <t} for a metric ball centered at ¢, and abbreviate by
B; := B;(e) a metric ball around the identity. One can always choose a left-invariant metric
on G such that B, “grows evenly” with n,

IBn+1\ Bul
(11) —— = 0(]),

|Bn \ Bn—l|
see [32]. If G and A are sets in G, we write GA :={¢pV¥|¢p € G,y € A}. A Folner sequence
is a sequence of compact sets A1, Ay, ... C G such that

|IGA, NA,;] n—oo

(12) A 1 for every compact G C G.
n
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If G is discrete, its compact sets are the finite sets, and (12) is equivalent to (4)(ii). A lcscH
group that contains a Fglner sequence is called amenable [20]. A Fglner sequence is tempered
if

(13)

U A'A,

k<n

<c|A,| forsomec > 0andallneN.

Not every Fglner sequence is tempered, but every lcscH group containing a Fglner sequence
also contains a tempered Fglner sequence [31], Proposition 1.4.

CONVENTION. We use the shorthand nice group for an amenable lcscH group G
equipped with a metric d satisfying (10) and (11).

EXAMPLES.

(iv) The group S of all permutations of N with finite support: Define S, as the group of
permutations of {1, ..., n}, and Sx := ,,cy Sp- The canonical metric on S is

(14) d(¢.¢'):=min{n eNlp(n.n+1,..)=¢(n.n+1,...)}.

The sequence (S,) is a tempered Fglner sequence: Each ¢ € G is in S, for n sufficiently
large, so ¢S, NS, =S, eventually, and (4)(ii) holds. Since Sk_lSn =S,, whenever k < n, the
sequence is tempered.

(v) The shifts of the r-dimensional grid Z" form the group (Z", +): An element j of the
group shifts a grid point i to i + j. Its canonical metric

(15) d(i, j) = min [ix — ji|

k<r
is left-invariant and satisfies (11). The balls B, = {—n, ..., n}", for n € N, form a tempered
Fglner sequence, and so do the sets {1, ...,n}".

(vi) Similarly, (R", +) is the shift group of R". Lebesgue measure is a Haar measure,
Euclidean distance is a left-invariant metric satisfying (11), and the balls B, and the sets
[0, n]" both form tempered Fglner sequences.

Recall from the Introduction that |A, | can be interpreted as sample size. If G is compact,
|A;| < |G| < oo. It is hence essential for asymptotics that G is not compact. Examples of
nice, noncompact groups include the groups above, the group (R, -) (which characterizes
self-similarity of stochastic processes), the group of translations and rotations of a Euclidean
space, and discrete and continuous Heisenberg groups [18]. See [20, 32] for more.

2.2. Invariance and ergodicity. 'We now let elements of G transform elements of a space
X. We must specify what that means: Permuting a matrix, say, could mean permuting rows,
or columns, or entries. Such a specification is called an action: A measurable action of G on
X is a jointly measurable map (¢, x) = Ty (x) that satisfies

(16) T,(x)=x and Tyy(x) =Ts(Ty(x)) forxeXandg,¢ €G.

The conditions ensure that the set of transformations Ty defined by G on X is itself a group.
We usually simplify notation and write ¢ (x) := Ty(x). A random element X of X with dis-
tribution P is G-invariant if

¢ (X) 4X or equivalently P =Po c,b_l forall ¢ € G.

We then call P a G-invariant measure. A Borel set A € B(X) is almost invariant if
P(@pA A A) =0 for all ¢ € G and all G-invariant P, where A denotes symmetric difference.
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The almost invariant sets form a o -algebra o (G), and we abbreviate conditioning on o (G)
as

E[-|G]:=E[|0(G)] and P(|G):= P(-|o(G)).

A probability measure is G-ergodic if it is G-invariant and P(A) € {0, 1} for all A € o (G).
This condition is equivalent to (5) if G is countable [20]. A random element is G-ergodic if
its distribution is.

2.3. Estimation. We now come to the general form of the estimator (1). For a group G
acting measurably on X, a Fglner sequence (A;) on G, and a Borel function f on X, define

1
x |/A F@x)lde|.

If G is discrete, IF,, simplifies to the sum (1). The cornerstone of our work is a result of
Lindenstrauss, which concluded a long line of work by Ornstein, Weiss, and others (e.g.,
[46]).

Fn(f,X) =

THEOREM 1 (E. Lindenstrauss [31]). If a random element X of a standard Borel space
is invariant under a measurable action of a nice group, and if (A,) is a tempered Foplner
sequence, then

(17) F.(f, X) =5 E[f(X)|G] almost surely for all f € Li(X),
where E[ f(X)|G] = E[f(X)] almost surely if X is ergodic.

Where convenient, we center IF,, around the limit as

(18) F.(f, X) :=F,(f, X) — E[f(X)IG].

The next result gives an interpretation of the limit: If X is invariant, it can be generated by
selecting an ergodic measure £ at random, and then drawing X from &. The limit E[ f (X)|G]
is the expectation of f under the instance of the latent measure & that has generated X.

THEOREM 2 (Ergodic decomposition, Varadarajan [44]). If a lcscH group G acts mea-
surably on a standard Borel space X, the set of G-invariant probability measures is convex.
Its set of extreme points is the set E of G-ergodic measures, and is measurable in P(X).
A random element X of X is G-invariant if and only if

(19) P[X € |Gl =£&(-) almost surely
for a random element & of E. The law of & is uniquely determined by that of X .

Thus, conditioning on o (G) means conditioning on &£. Another implication is that £ = P
almost surely if P is itself ergodic, and therefore

E[f(X)|G]= f f(x)de(x) =E[f(X)] if X is ergodic.

Taking expectations on both sides of (19) shows that P is G-invariant if and only if

P(Xe-)= /Em(-)]P’(S edm).

That provides a more geometric interpretation: The integral represents P as a generalized
convex combination of extreme points, also known as a barycenter. Recall that every element
of a polytope in Euclidean space is a convex combination of extreme points. The theorems
of Krein—Milman and Choquet generalize this property from polytopes to certain compact
convex sets [1]. Theorem 2 shows that, if the elements of the convex set are specifically
G-invariant measures, compactness is not required.
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EXAMPLES.

(vii) Let X be the space RY of real-valued sequences. Define an action of the permutation
group Sso as @ (x) := (X¢(1), X4(2), - - ), for x € X and ¢ € Suo. An exchangeable sequence is
a Syo-invariant random sequence X = (X;);en. It is ergodic if and only if it is i.i.d., a fact
known as the Hewitt—Savage 0—1 law [28]. It follows that & factorizes as & = 568’N , for some
random probability measure &y on R. Theorem 2 then takes the form

) = AP — QN yp
Pxer=[  mopcedm=[ = mORG edno.

which is de Finetti’s theorem [28]. Let f(x) = g(x1) be a function of the first sequence entry,
as in (3). Theorem 1 becomes

1 1 n—oo
o Y f@X)= ;Zg(xu — | gnEodx)) as.

T geS, i<n

For ergodic X, this is the strong law of large numbers for i.i.d. sequences.

(viii) Fix r €N, and let X =R% be the set of scalar fields x = (x;)jezr on an r-
dimensional grid. Define an action of G =7Z" on X as ¢ (x) := (xj+¢)icz for ¢ € Z". A sta-
tionary random field is a 7\ -invariant random element X of X. Recall from Example (v) that
A, ={-n,...,n}" defines a Fglner sequence. Write 2, :={—n,...,n}" to distinguish the
subset €2, of the index set Z" from the subset A, of the group 7Z". In this case, (12) can be
rephrased in terms of the index set: Since €2, := A, (0, ..., 0),

102, 1/12] =30 where 92, = 2, \ Q1.
In this form, the condition is well known in statistics [7, 26]. For a function f(x) = g(xo,....0)
at the origin, [, is given by (2). We also noted already that A, can alternatively be chosen
as {1,...,n}" . For the case r = 1 of stationary sequences, Theorem 1 then takes the form
n! Y i—18(Xi) — E[g(X1)|G], which is Birkhoff’s ergodic theorem [42].

3. Conditional mixing. This section formalizes the mixing condition sketched in (8).
The label “mixing” is used for a range of conditions, whose common denominator is typi-
cally that they quantify dependence using terms of the form |P(A) P(B) — P(A N B)|. Their
strengths and purposes vary—an extensive list of mixing conditions for stationary processes,
for example, is surveyed by Bradley [12]. Ergodic theory defines mixing conditions to ver-
ify ergodicity, which are typically much weaker [20]. Our notion of mixing more closely
resembles that used in random field asymptotics [7, 21].

Fix f e Lj(X). Given a set G C G, the events in X that can be formulated in terms of
(f(@X))pec form the o -algebra

6/(G) =0 (fod.d€G) =o( U (fod))‘]B(R)),
¢oeG

where B(R) is the Borel o-algebra of R. Write B;(G) := Ugei B/ (¢). The set of group
elements whose distance from G exceeds ¢ is G \ B;(G). The set of events we consider is

C(t):={(A,B) €ar(¢1,¢2) ®r(G)|G CG,p1,¢2 € G\B(G)}].
The mixing coefficient for f and P is the function

a(t):= sup |P(A)P(B)— P(ANB)| fort>0,
(A.B)eC()



LIMIT THEOREMS FOR INVARIANT DISTRIBUTIONS 1969

and P is mixing with respect to f if a(t) — 0 as t — oo. Similarly,

a(t|G):= sup E[|P(A|G)P(B|G) —P(AN B|G)’] fort >0
(A,B)eC(t)
is the conditional mixing coefficient, and P is conditionally mixing if «(¢t|G) — 0 as t — oo.
Both coefficients are decreasing in ¢, since C(t1) D C(rp) if t; < 1.

LEMMA 3. The mixing coefficients satisfy a(k|G) < 4a(k) for all k € N.

Thus, mixing implies conditional mixing. The first example below shows that the converse
need not be true. The second example describes a case where both properties hold.

EXAMPLES.

(ix) Any exchangeable sequence X = (X, X7, ...) is conditionally mixing with respect
to f :(x1,x2,...) — x1: By de Finetti’s theorem, its entries are conditionally independent.
For subsets F, G C N, that implies

(Xi)ier 1L (X})jeclG if ieflgijféG li —jl>1,

and hence o (k|G) = 0 for all k£ € N. It need not be mixing: Draw once from a random variable
Y,and set X; :=Y forall i € N. Then X is exchangeable, but dependence of X and X; does
not diminish as i grows.

(x) Let X = (Xj)jezr be a stationary random field with the Markov property: For each
ieZ, XL (X j)jezd\{i}l(x i)jeB, (i)- Suppose X satisfies the so-called Dobrushin condition,

1
¥ := sup sup |P(Xo€ AlXi€e B)— P(Xo€ A)| < —.
ild(i,00=1A,BeB(X) 2r

If so, it is mixing with respect to all coordinate functions: There are positive constants ¢; and
¢> such that a(k) < cje= 2k for all k e N (e.g., [21], 8.28). By Lemma 3, that also implies
conditional mixing. In general, if (X;) is a stationary sequence, «(-|G) can be bounded by
the classical o-mixing coefficients (e.g., [12]).

(xi) If X is conditionally mixing for f, it is conditionally mixing for g o f, for any mea-
surable function g.

4. Basic limit theorems. The central limit theorem requires conditional mixing and a
second-moment condition. The strength of each can be traded off against the other: The
theorems in this section assume either

(20) () E[f(X)?] < oo, (i) «(K|G)=0 forsome K €N,

or that there exists an € > 0 such that

(21) (i) E[f(X)*"] < oo, (i1) / a(d(e,d))lG)z%Idfbl < 00,
G
where e is the identity element of G. If G is discrete, (21)(ii) simplifies to

> Busi \ Byla(n|G) 2 < oo.
neN

We note only en passant that the quantity |B, \ B,| plays a crucial role in group theory,
where it is known as the growth rate of G [32].
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THEOREM 4. Let G be a nice group with tempered Fglner sequence (A,), acting mea-
surably on a standard Borel space X. If a G-invariant random element X of X and a function
f : X — R satisfy either (20) or (21), then

(22) VIAR(F,(f, X) — E[f(X)|G]) 4 nZ forZ~N(,1).

The asymptotic variance n* is a random variable distributed as
d
(23) L [ rP@)dgl forn’@)=E[/ (0 GX)IE],

and satisfies n* < 0o almost surely. It is independent of Z, and constant almost surely if X is
G-ergodic.

The rate of convergence in Lindenstrauss’ theorem is thus |A, |_%, and depends only on
the Fglner sequence. The choice of action does not affect the rate, but does affect the mixing
coefficient and constants. The ergodic decomposition property is visible in the independence
of n and Z: Theorem 2 shows E[-|G] = E[-|£], so n is a function of &, and constant if X is
G-ergodic. Informally, the randomness of Z is due to X |&, that of n is due to &.

In statistical terms, F, (X, f) is an estimate of E[ f(X)|G] computed from a sample of
size |A,|. Theorem 1 shows this estimator is (strongly) consistent, and Theorem 4 provides
the rate of convergence and shows the estimation error is asymptotically normal. That can
be used to obtain a consistent confidence interval, as the next result shows. The additional
condition on 7 ensures—in the nonergodic case, where n is not almost surely constant—
that its law does not place too much mass very close to 0, which could lead to effectively
degenerate behavior even if n > 0 almost surely.

THEOREM 5. Assume the conditions of Theorem 4, and additionally that P(n <t) — 0
if t \\ 0. Let (b,,) be an increasing sequence of positive integers satisfying

(i) by — o0, (i) By, | =o(y/1A4l), (i) |An \ By, Aul = o0(|Ax]),

and define the empirical variance

A2 1 / /
= X)—F,(f. X X) —TF,(f. X))|d¢'|| dob).
72 |An|/An/an(¢)(f<¢ ) = Ful(f. X)) (£ (@'X) = Fu(f. X))|do' || dp|

Forany a € (0, 1), let - be the positive scalar satisfying P(|Z| > zl_%) =«. Then

A

lim sup P(E(f(X)|G) e [Fn(f, X)+zi_a J%}) <a.

The left- and right-hand side in (22) can be compared in terms of the Wasserstein distance
dw . For two random elements Y and Y’ of R, this is

9

dw(Y,Y') = Z:E|E[h(Y)] —E[h(Y")]

where L are the Lipschitz functions on R with Lipschitz constant 1 (e.g., [40]). We denote
normalized moments of f by

Sp ::EH%

pr:u% for p > 0.

p
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The bound on dw depends both on the value of the integral in (21)(ii), and on the decay of its
tail, and we define

(24) T(b) = /(}\B a(d(e, $)|G) 77 |dg| for b= 0.

Condition (21)(ii) then amounts to 7(0) < oco. The next result can be read as a generalization
of the Berry—Esseen theorem (phrased in terms of dy rather than total variation). It quantifies
the speed of convergence in Theorem 4, and the coverage of the confidence interval.

THEOREM 6. Assume the conditions of Theorem 4, with n defined as in (23), and let Z
be a standard normal variable. If (20) holds, and K € N is the smallest number for which
a(K|G) =0, then

VAL = 5 |A, ABgA,|  max(si, 1)[Bk|?
dw< F (f,X),Z)SKS + K
" 2 A, V1AL

for a positive constant k. If f satisfies (21) for some & > 0,

VAL = A, — A, NBy, A
dW( | n|F(f,X),Z>§KS%+8| n| ||: | by, nl
n n

B
+ 1 max(s] l)t(O)<t(bn) n %)

Jfor a positive constant k , and any sequence by < by < - - - of positive scalars.
The choice of (b,) trades off |B,|, which increases with b, against t(b), which decreases.

EXAMPLE.

(xii) Let X be an i.i.d. sequence, and hence exchangeable and ergodic. For f € Ly(X1),
we have a(1|G) =0, and Theorem 4 is the elementary central limit theorem. Theorem 6
is a Wasserstein metric counterpart to the Berry—Esseen bound (which uses the total
variation metric, e.g., [40]): Hypothesis (20) holds, the first term of the bound satisfies
A, AB1A, = O(1/n), and the second term collapses to 1//n.

A less elementary application is a real-valued random field (X4 )gec that is stationary, that
is, invariant under the group G acting on the index set G. For the groups Z" and R", for
instance, substituting into Theorem 4 yields the following corollary.

COROLLARY 7. Let X = (Xy)pec be a stationary random field, and f a real-valued
function that satisfies 21). If G = (Z", +) for some r € N,

W(i Z f(Xi)—E[f(X)|Zr]>i>nZ asn— oo

i€{0,...,n}

forn? = Yoiez Elf (Xo) fF(XDIZ"]. If G = (R, +) instead, then

W(i/ £(Xp)\dt| —]E[f(X)|Rr]) L 0Z asn— oo,

n" Jio,n)r

where 772 = Jrr ELf (X0) f(X;)|R"]|dt|. In either case, n 1L Z.
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The case G =7" is Bolthausen’s central limit theorem [7]. Thus, Theorem 4 implies a
generalization of Bolthausen’s theorem to random fields indexed by nice groups, as the sec-
ond case illustrates. If X satisfies the condition ¢ < 1/(2r) in Example (x), it is conditionally
mixing with respect to each coordinate function, and the corollary holds for all functions
f(X) = g(Xo) with g € Lo (Xo).

If we quantify the approximation error using Theorem 6, additional properties of the group
play a role, and we hence consider a specific class: (Z", +) is a so-called finitely generated
nilpotent group of rank r. Such groups are nice, and each contains a finite set called a genera-
tor. The minimal number of elements of this set required to transform one group element into
another is a metric, the word metric, whose metric balls B,, satisfy (12) and 1/|B,| = O(n™").
We refer to [32] for details. Substituting into Theorem 6 yields the following.

COROLLARY 8. Let G be a finitely generated, nilpotent group of rank r € N, and
set A, =B, for the word metric of a finite generator. If there exist €,5 >0 such that

a(k|G) = Ok~"*Y) and f(X)/n € Latae(X), then
VA,
dw( |Anl

n

(Fu(f. X) = E[f(X)IG]), z) = 0(n™"CUF)  for Z ~N(0, 1),
where n is defined as in Corollary 7 and independent of Z.

For the case G = 7', the unit coordinate vectors in Z" are a finite generator, and the word
metric it defines is the metric (15).

5. Generalized limit theorems. This section extends our main theorems to a general-
ized version of the estimator F, (f, X). We begin with an informal overview; proper defini-
tions follow in Section 5.1. The generalized estimator we will define is of the form

1
i /A o Fn(Tu(, X)) pn(dgh),

and again involves a random quantity, now denoted X, a real-valued function f;,, and a group
action 7,. Additionally, u, is a random measure, and k,, € N. The estimator combines three
separate extensions of [F,:

e Triangular arrays. We permit the function f,, and the law of X, to depend on n. That gen-
eralizes an invariant random object X in a similar way as triangular arrays generalize i.i.d.
sequences (e.g., [28]). Changing X,, with n may involve changing the sample space X, and
the action 7,. An application example is a nonparametric network model in Section 8.3,
which uses m(n) parameters to explain an observed graph of size n. In this case, f, and
X,, are fixed, but m(n), and hence the distribution of X,,, depends on 7.

e Randomization. The set A, may be randomized, which we formalize as a random measure
wn on A,,. For example, if ¢,1, ..., ¢,j, are sampled with replacement from A,,,

=g ! Z 84, yields the average gt Z f(Pni X).
i< Jn i<Jn
More generally, if G is countable, i, may generate subsets (sampling without replace-
ment), multisets (sampling with replacement), or sets of weighted points. In the uncount-
able case, u, may be discrete (which discretizes the integral in [F,, to a sum), or generate
uncountable subsets. An illustration is Corollary 16, which subsamples a rotation group.
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U-statistics. Consider a function g : RF — R and a random sequence (Y1, Y2,...) in R.
A U-statistic can be defined in several equivalent ways (see Section 5.5), one of which is

nk Z g, .... Y,,).

i1,....ig<n

It can be expressed in terms of shifts: If f : (y;) — y; is the first coordinate function and
shifts in the set A, := {0, 1, ..., n — 1} act on the index set of ¥ by addition, we have

n > gL Y =AY g(f@iY).. . f(Y)).

i1yl <n D1y.ees dreA,

If we instead choose g as a function g : Xﬁ” — R and replace the set of shifts by a subset
A, of a general nice group G, we obtain a generalized U-statistic

1
|An|k”

Ak” g((;len, e ,¢an)|d¢|®k

for tuples ¢ = (¢1, ..., ¢x,). To average over tuples, we must choose 7,, as an action of
Gk, and we permit the dimension k,, to grow with n. Similarly as elementary U-statistics,
these generalized U-statistics are asymptotically normal under suitable conditions (Corol-
lary 12). A variant of this idea is used in the proof of Theorem 17, to approximate permu-
tations by tuples of shifts.

These generalizations can be used in combination with each other, and we hence formulate
results simultaneously for all three. Theorem 10 is a central limit theorem, and Theorem 11
gives the speed of convergence. The conditions of Theorems 4 and 6—invariance, a moment
condition, and conditional mixing—are still applicable in principle, but since they become
rather restrictive in the general case, we introduce the following relaxations:

Suppose T}, is an action of G**. Applying Theorem 4 would require invariance under all
tuples ¢ = (¢1, ..., ¢k,). The U-statistic above illustrates how strong this assumption is:
Even if (¥;);ez is stationary, the random field (g(Y;,, ..., Yy )i, ....i;, ez 1S not invariant
under shifts in Z¥. To obtain a more suitable condition, we observe that the field is invariant
under “diagonal” shifts

(eiy, ..o YD) = (8(i4j, ..., Yiy,+))) forjeZ.

More generally, if (ji, ..., j,) is any fixed tuple, applying this tuple as a shift may change
the distribution, but the shifted field (g(Y;,+;, ..., Yi+ ) is again invariant under diag-
onal shifts. The notion of invariance assumed in this section, defined in (27), generalizes
this property from Z to a general group G.

Recall that conditional mixing formulates conditions on pairs (¢, ¢) in G that are far away
from a set G. For tuples, this condition becomes stronger as k, grows—Iloosely speaking
because distances are larger in high dimensions. The marginal mixing condition defined in
Section 5.2 measures entry-wise distances, which tend to be smaller.

The bound on moments is relaxed to uniform integrability, similar to conditions assumed
by central limit theorems for triangular arrays.

Randomization requires an additional condition: To guarantee convergence, i, must not con-
centrate on an “unrepresentatively small” part of A,. Section 5.3 makes that precise.
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5.1. Definitions. Let 0 <k <k, <--- be integers. For each n € N, let X,, be a random
element of a standard Borel space X,,, and f;, : X;, — R a measurable function. If G is a
nice group with Haar measure | - |, the product space G*» is a nice group with Haar measure

| - |®% . Similarly, if (A,), is a tempered Fglner sequence in G, so is (Af”),-eN in G*. To
randomize averages, let u,, be a random measure on Gk that satisfies

(25) (i) juqiso-finite, (i) p,(A*) >0 almost surely.

(Formally, we equip the set of o-finite measures on G** with the o-algebra generated by
the maps > 1(A), for all Borel sets A C G*. By a random measure, we mean a random
element of this space (e.g., [28]).) Let T, : Gk x X,, — X,, be a measurable action of G*»,
and write

¢x =Ty (¢1.....¢1,.x) forxeX,and = (¢1,..., ¢, )€ G,
The diagonal action associated with T, consists of all transformations
(26) (b,....0)x=Ty(¢,...,0,x) fore¢eG.
The notion of invariance assumed in this section is
To((@, ... d). To(¥, Xn)) S T,(¥, X,) forevery ¢ € G and ¢ € G

or equivalently, in more concise notation,

27 (¢,...,¢)¢XnglﬁX,, forevery¢eGand1[f€Gk”.

That is a stronger requirement than diagonal invariance, but weaker than 7},-invariance. To
define conditioning, we denote by o, (G) the o-algebra

on(G) :={A C X, Borel|(¢, ..., »)A = A forall ¢ € G},
and abbreviate E[-|G]:=E[-|0,,(G)] and P(-|G) = P(:|0,(G)). We then consider the ran-

dom, conditionally centered average

(28) Fpo(fur Xn) 1=

o~ Akn) / Fr@X) — E[f(@X)IG] 1 (dg).

If k, =1, and wu,(: D=1 for all n, and if all X,, and all X,, are identical, we recover
0,(G) =0 (G) and F, =F,.

5.2. Marginal mixing. To formulate a suitable mixing condition, we modify the defini-
tions in Section 3: Again consider two elements ¢ and ¢’ and a subset G, now all in G*».
We measure how close the entries ¢; and ¢, are to the remaining entries of ¢ or ¢’, or to any
entry of vectors in G. To do so, we define the set of “all other” entries,

Eik(p, 9. G):=1{g;lj #i}U{¢jlj #k}Ulnjlm € G, j < kn}.
In terms of the metric d on G, the shortest distance from ¢; or ¢, to any of these is
(29) Sik(®, 9", G) =inf{d({¢i, di}. V)1V € Ein}.
For the given function f;, we then define the set of events
Cix(®) :=Joy, () ®0y, (¢) ® 0y, (G),

where the union runs over all pairs (¢, ¢’) and all measurable sets G in G*» with
Si.k(¢, @', G) >t. Recall that the conditional mixing coefficient was defined in terms of the
conditional P(:|G). Using Lindenstrauss’ theorem, the latter can be written as

P(A|G) =E[I{X € A}|G] = lim —/ I{¢X € A} do|.
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To measure the effect of transforming only by coordinates i and k, we substitute this by

) 1
Pix(AA) = im Al HeiyXn €A, ek yXn€A'dy|,
m m
where e;  :=(e,...,e, ¥, e, ..., e) has k, dimensions and v is the ith coordinate. We then

define the marginal mixing coefficient

o, (t|G) := sup sup  |P(A,A’, B|IG) —E[Pix(A, A)[{X, € B}|G]|.
i<kn (A, A, B)EC; (1)

Choosing (ky, fn, X,) as (1, f, X) for all n recovers o, (-|G) = a(-|G).

REMARK. Applying conditional mixing to tuples would measure distance between
(¢, ¢') and G in the product space metric on G*». Marginal mixing weakens the condition by
replacing this metric by (29). Loosely speaking, since (29) tends to be smaller, the condition
8ik(¢p,¢’, G) > 1 then tends to exclude more triples (¢, ¢’, G) in the definition of C;  than
the metric would, which results in a smaller supremum c,,.

If we specifically consider processes of the form X, = f,(f(¢1X), ..., f(¢r, X)), the
definitions of conditional and marginal mixing can be compared directly. In this case, the
intuition in the previous remark can be made precise.

PROPOSITION 9. Let X be G-invariant, f € Li1(X), and set anle". Then the
conditional mixing coefficient of (f(¢X))pec and the marginal mixing coefficient of

(Fn(f(@1X), ..., [(Pr, X)) gehn satisfy an(-|G) < a(-|G).

5.3. Spreading conditions for randomization. The random measure w, should not con-
centrate on a subset of Aﬁ” that is “too small”. That is formalized as follows: For A € B(G?/n)
and any measure v on G¥, define

T, (A, v) = [ K@) € Ao,

V(AR
Consider the random variable

1
To(A, |- |250) 0, (A7)

Informally, one would expect the integrals

r2(A, ¢) =

|, @) € Auata).

Tu(A, wy)
Tu(A, |- [®kn)

(A, $)in(dd) =
n (AT) /A "

to be bounded if 1, spreads out its mass sufficiently. As i, might be discrete even if the Haar
measure is not, bounds should be formulated only in terms of “sufficiently large” sets A. We
define the family of such sets as

%, :={A € B(G*")|A is connected and |pr; (A)| > 1 for all k < 2k, },

where pr; denotes projection onto the kth coordinate. A weak notion of boundedness suf-
fices for asymptotic normality: We call the sequence (u,) well-spread if the variables F,Zl are
uniformly integrable for large sets,

sup sup
n Aeyx,

2 o) B— o0
o TR 0 2 B)din(@)] =0
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A Berry—Esseen bound requires a stricter bound and a fourth-order condition: We similarly
define

1
T, (A, v) = m /Ai’“" I((¢1. b2, b3, 4) € AP (A, Ay, dd3, dby),

now for subset A of and a measure v on G¥*»_ and
%) :={A € B(G¥")|A is connected and |pr; (A)| = 1 for all k < 4k, }.
We call (u,,) strongly well-spread if

T, (A, pn)

S:=supS" <oo whereS" ;= sup | —2———
0 A LT WNEDS!

Aex:

1 b
with spreading coefficient S. Since the existence of higher moments implies uniform integra-
bility, strongly well-spread implies well-spread. Either condition can be applied to a single
random measure u, by setting u, := u for all n.

EXAMPLES.

(xiii) Let IT be a Poisson point process on G¥, for some k € N. Then the random measure
w(-) := [T N -|®k is strongly well-spread if
E[|TI N A|®¥]
sup _—
AB@Gh) Ak <00 AIZ

(xiv) Let G be discrete. For each n, let IT,, be a point process on G** with
M, N Ak (T, N A% | =m) L (®),...,®,) forallmeN,

where the ®; are drawn uniformly with or without replacement from Alf,”. The sequence
defined by, (-) := [T, N -|®* is strongly well-spread.

5.4. Results. If the dimension k, grows with n, we must quantify how much f,, changes
with n: For p > 0 and i <k,, define

1
ci,p(fu):= sup Eano¢—fno(e,...,e,w,e,...,e)(b\
Y eG,peGkrn

p’

where 1 is the ith coordinate. Hypotheses (20) and (21) are then replaced by one of the
following conditions: Either

(i) supa,(K|G) =0, (i) sup Z ¢i2(fn) < 00,
(30) ! " ik
(ii1) ( fa(pX n)Z) neN,peGhn is uniformly integrable
holds for some K € N, or
@) sup [ cnldle.)IG)Fdpl <co. (i) sup Y cizwelfi) <00,
n JG n .
31) i<k
(i) (fu (X)) neN.peGhn 1S uniformly integrable

holds for some ¢ > 0. In either case, (iii) implies (ii) if the sequence (k) is bounded. To
assemble the asymptotic variance, set

~ ) 1 _
Fooi () = Jim_ /¢ " (@1 i1V it bp) X ) ld BT

m— 00 |A
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Let ;,Lil be the ith coordinate marginal of u,, scaled to ,uj'l (A,) = VA,

. VA,
M;l(') = |7](|MH(A}’[""’A}’L7'7Al’la""AI’l)’
Mn(A ")
and set
nm = OOl ]Foo G n d d
7 ,Z<k f/A e i ElFci @ (67 9) (Gt @)

The central limit theorem then takes the following form.

THEOREM 10. Let (X,) be invariant in the sense of (27) for each n, and let (j1,,) be well-

spread and independent of (X ). Assume either condition (30) or (31) holds. If k,, = o(|A,| %),
and if the limits

_~ L
(32) n,,mﬁ)nm asn— oo and nm—2>n as m — oo

exist, then

\/ |An|@n(fn, Xn) i nZ asn— o0,

for a standard normal variable Z that is independent of 1.
The Wasserstein Berry—Esseen bound in Theorem 6 generalizes similarly the following.

THEOREM 11. Assume the conditions of Theorem 10 hold, require that (i) is strongly
well-spread, and define n as in (32). If condition (30) holds for some K € N,

VAL K(S" A cia)> ADIBg 2 | Ta g —n°
dw( Anlg, (o X, Z) <& A D cia)” A DB ‘ ek
n VA n
for a positive constant k. If (31) holds instead, set
Rn(b) = Z |B; 11 \B,|an(t|G)2£? forb eN,
t>b
and fix any sequence 0 < by < by < --- of integers. Then
Al 2 ﬁZ _772
aw(* 'n B X), Z) kR0 (D ciee ) (S AN+ ot T
i

. . kz1Bb, |
K<<2i:c,,4+2€) A 1)(5 A 1)72,1(0)W

for a positive constant k .

If we choose (k;, X;;, E) as (1, X, [¥,)) for all n, the conditions specialize to (20) and (21),
and the results to Theorems 4 and 6.

5.5. Generalized U-statistics. The generalized notion of invariance defined in (27) al-
lows us to formulate a useful generalization of U-statistics, denoted Xy in the next result.
Substituting these into Theorem 10 shows they are asymptotically normal.
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COROLLARY 12.  Consider a G-invariant random element Y of X, a function h : Xk —
R, and define Xy :=h(y1Y, ..., YY) for ¥ € Gk. Suppose there is an & > 0 for which the

conditional mixing coefficient of Y satisfies fGaﬁ (d(e, 9)|G)|d¢| < oo, and (X'Z;E),ﬁeGk
is uniformly integrable. Then

1_ d
A2 [ (g — B[y 1G4y 12

n

forn 1L Z and Z ~ N (0, 1). If we denote

. 1
Hi(¢) := lim W/Akl Xyt Wi 1.0 Vi1t (AL ld il d Wi | - - - [d k]
m m

m—0o0

the asymptotic variance is n°> = i j<k Jg Cov[H;(e), Hi(¢)|G]|d¢].

To clarify the relationship to U-statistics, recall that a U-statistic for an i.i.d. sequence
(Yi)iez 1s usually defined in one of two ways, namely

—1
n 1
Un = (k) Z h(Y¢(]),...,Y¢(k)) or Vn ::n_k Z h(Yil,...,Yik).
PeS, i1,....ix<n

The definitions are equivalent, in the sense that \/n(U, — V,;) — 0 in probability [41]. The

corollary shows n~12v, —E[V,]) i) nZ, if we choose G as Z and A,, as {I1,...,n}. Al-
though h(Y;,, ..., Y;,) satisfies the relaxed invariance (27), it is not ZF-invariant, since arbi-
trary shifts may break independence of (Y;) by duplicating indices.

6. Concentration. The theorems above show that certain asymptotic properties of i.i.d.
processes generalize to symmetric random objects. We show next that certain finite-sample
properties generalize similarly. We use the definitions of Section 5, but somewhat restrict
the spaces and functions involved: Fix two Borel spaces X and Y, two sequences ( f,) and
(gn) of measurable functions f, : X — Y and g, : Y — X, and let (X,,) be a sequence of
G-invariant random elements of X. We consider concentration for quantities of the form

gn(fu(@1Xy), ..., fuldk,X,)). To this end, define
Y":=(Yy)4eq Where Yy = fu(¢Xn).
That implies (Y (’g) 4 (Y $ ¢) for ¢ € G. We again work with (conditionally) centered averages:
For ¢ = (¢1, ..., ¢x,), set
hn(@Xn) = gn(Yg,, . Y ) —Elga(Yy,, ... Yy )IG] for ¢ e GH.

The average @n, as defined in the previous section, is then

~ 1
F,(h,, X)) = ——— hy (X)), (de).
(i Xo) =~ |, I @ Xt ()

EXAMPLE.

(xv) Let X := (X;)icz be a stationary, real-valued process, so X = RZ. Choose all fn as
the coordinate function (x;) — x¢ at index 0. If (g,) is any sequence of measurable functions

gn : R¥ - R, we obtain random fields Y" = (&n(Xiys s Xi)iy,....ivez, and
~ 1
Fo(hn, Xn) =~ D (&Koo, Xi) = E(gn(Xiy -, X))
i,..,iy<n

As we had already observed in the introduction of Section 5, each Y" is invariant under the
diagonal action Y" > (g,(Xi 44, - .., Xiy+¢)), for ¢ € Z, since X is stationary.
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A function f : Y¥ — R is self-bounded if there are constants 8, . . ., 8, the self-bounding
coefficients, such that

%|f(X) - f(x)| < Z(Siﬂ{xi #x]} forall x,x € Y*,

i<k
see, for example, [11]. We call f uniformly Li-continuous in G if
sup | f(@X) — fWX||, — 0 ase—0.

&, ¥eGk
d(¢i,i)<e fori<k

We measure interactions within a process Y = (Yy)pec as follows: Write £ for the law of a
random variable, || - ||ty for the total variation norm, and abbreviate Y4 := (Yy )y=¢. If G
1s countable, define

AlY]:= ) sup |L(YelYe =X20) = LYe|Yote = Yoto) | 7y -
$eG\(e} x.yeY®
Xtp=Y#¢

If G is uncountable, we discretize: For € > 0, a set C C G is an €-net if
i) eeC, (i1) d(d), ¢/) >e¢ for ¢, ¢ e C distinct, (i) U Bc(¢) =G.
¢peC

A decreasing sequence of nets is a sequence (C;);eN, Where C; is an €;-net and €; — 0.
Define

pL¥]:= sup<1 ~lim T A[(Y¢>¢ec,-]>,

i—00 |B€i|

where the supremum is taken over all decreasing sequences of nets for which the limit on
the right exists. Discretizing continuous processes on nets is a standard tool in the context of
concentration inequalities (see [11], Chapter 13). Note that p = A if the group is discrete. For
G =Z, itis known as the Dobrushin interdependence coefficient [43]. A continuous example
is a Markov process Y = (Y¥;);ecr on G = R, where

1
plY]= lim — sup |L(YolY: =x) — LXolY: = ¥) |1y

x,yeR

THEOREM 13. Let (A,) be a tempered Fplner sequence in G, let (c;) be the self-
bounding coefficients of h,, and require that (hy) is uniformly Li-continuous in G. Define

f = sup sup Anlitn (A" X (BNA) x A/ |AY)
" <k BEB©) |BNA,|

Then

(1(i p[Yn]))2|1:;|t2)> forallt > 0.
i<ky Ci n

P(Fp (hn, Xn) > 1) < ZE(exp(—

The coefficients 7, are only required if averages are randomized. If (u;) is nonrandom,
the statement can simplify considerably. For example, we have the following corollary.

COROLLARY 14. If i, =| - |®% almost surely for each n, then
~ 1— A
P(F,(hn, Xy) > 1) < Zexp<—(p—n)|glt2) fort>0andn € N.
(Zifkn ¢i)
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EXAMPLE.

(xvi) For illustration, compare to the i.i.d. case: Choose X, f and g as in Example (xv) at
the beginning of this section, and assume additionally that the sequence X is i.i.d. If (¢;) are
the self-bounding coefficients of g, the corollary shows
nt?

(Ci<kci)?

which is a version of McDiarmid’s inequality.

P(@n(h,X)zt)§Zexp<— > fort >0andn e N,

Theorem 13 implicitly assumes fairly strong mixing: If G is discrete, for example, then
a(n|G) < cra(n) < cp A[X] for some positive constants ¢ and ¢ and all n € N. The mixing
condition is hence no weaker than that required in the asymptotic case, and conditioning on
X, in the definition of A[X] means it is typically stronger.

7. Approximation by subsets of transformations. According to Theorem 10, [F,, may
be computed using only a subset of A,. We briefly discuss a few cases in more detail. First
suppose we “factor out” a compact subgroup K of G to obtain a subgroup H, and then com-
pute [F,, using a Fglner sequence of H. For exchangeable sequences, factoring Sy out of Sy,
amounts to including only every kth observation in the sample average, so rates slow by a
constant. The general behavior is similar.

PROPOSITION 15. Let G be generated by the union of a noncompact group H and a
compact group K, and let (A,LH) be a Folner sequence in H. Then A, := A;HK is a Folner
sequence in G. If X is G-invariant, and f € L, (X) satisfies (21) with respect to G, there exist
random variables n, ny € Ly(X) and an independent variable Z ~ N (0, 1) such that

1

V1A%

/AH(f(‘PD —E[f(X)|G])|d¢| > nuz

and
1 d
T |, @) —ELFOIG)1dgl 0z,
n n
where 1 is defined by (32). The ratio f := /|K] %H, and hence ny, is given by

1
1= /H /K E[£(X)(f(@X) — f(WX))Glldy|ldg| a.s.

For example, let X = (X;);crr be a continuous random field that is both shift- and rota-
tion invariant. Thus, G =R" x O,, where O, is the (compact) orthogonal group of order r.
Factoring out O, means we average only over shifts. Convergence then slows by a factor

1
(33) B 1= B0 [ (P09 - £OX +0)idb gl
One might also discretize A, (e.g., to avoid integration), or subsample it. For example:
A tempered Fglner sequence in R” x O, is given by ([—n, n]" x OQ,), [32]. If we discretize
[—n, n]" deterministically, and O, at random, we obtain the following corollary.
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COROLLARY 16. Let X = (X;);crr be a random field invariant under rotations and

translations of R", and require (21). Fix m € N. For z € 7", let ®f, ..., ©F be independent,
uniform random elements of Q.. Then
1

Z (f(®§<x+z>) E[f(X)|C]) > nuz

as n— 0o, for an almost surely finite random variable n,, 11 Z. Relative to [, de-
fined by integration over the entire set [—n,n]" x Q,, convergence slows by a coefficient

,3,%1 —1=(p* - 1)/(2m2n,%1), where B is given by (33).

If the random rotations ®% are not independent—for example, if one generates m rotations
once and uses them repeatedly—the rate may slow.

8. Applications I: Exchangeable structures. One of the most common distributional
symmetries is permutation invariance, often referred to as exchangeability. It can broadly be
categorized into three types: Finite exchangeability is invariance under S,, for some fixed
n € N [29]. This is an example of invariance under a compact group, and has no asymptotic
theory. Countably infinite exchangeability, or henceforth simply exchangeability, is invari-
ance under S,. This type is common in statistics and probability. By uncountable exchange-
ability, we refer to invariance under permutation groups of uncountable sets. Such groups
are not nice, and Lindenstrauss’ theorem is not applicable, but Section 8.5 gives an example
where reduction to our results is possible.

8.1. Exchangeability. The next theorem adapts our results to exchangeable structures,
including the examples in Table 2. In this case, the mixing condition can be eliminated.

THEOREM 17. Let X be a random element of a standard Borel space X, and invariant
under a measurable action of Sec. Let f be a function satisfying E[ f(X)?] < oo and

(34) Y limsup|| f(X) — f(z;; X)|, < o0,
ieN J

where T;j denotes the transposition of i and j.As n — o0,

(35) AT, (f, X) = ( Y f@X) [f(X)|Soo])inz,

tgeS,
where Z ~ N (0, 1) is independent of n. Define

F(¢) :=

where S :={¢ € Syl (i) =i}.

s |¢,€S,

The asymptotic variance satisfies
= Z Cov[F'(e), F/ (1;;)[Sec] < 00 a.s.
i,jeN
If in addition B[ (X)*/n*] < 00 and ;e limsup; | X095, < 0o, the Wasserstein
distance to the limit is
i}
4

2
dw(%ﬁn(f, X), Z) = 0(1]311§[% + Xlzmax<hmjsup

SX) = f(7i; X)
n
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TABLE 2
Examples of exchangeable random structures

Random structure X Ergodic structures CLT (35) due to

exchangeable sequence [29] i.i.d. sequences H. Biihlmann [13]

exchangeable partition [39] “paint-box” distributions

exchangeable graph [17] graphon distributions Bickel et al. [5], Ambroise and Matias [2]
jointly exch. array [29] dissociated arrays Eagleson and Weber [19], Davezies et al. [16]
separately exch. array [29] dissociated arrays

Typically, X is of the form (X;);cr for some countable set 7', and permutations act on
X by acting on T. If f depends only on a finite number of these indices—for example, if
X is a random matrix and f a function of a finite number of entries—(34) always holds,
although this condition is far from necessary. If X is conditionally mixing for f, the result
can be deduced from Theorem 4. The proof of the general case defines surrogate variables
Xy = (f(T1,i, 0 0 Ty, X)iy, i, for a suitable sequence (k;), and applies an idea sim-
ilar to the generalized U-statistics of Corollary 12.

REMARK. (a) Our definition of exchangeability as an arbitrary action of S., per-
mits trivial cases, for example: Mapping each ¢ € Sy, to the identity map of X is
a valid action. It makes all distributions exchangeable, point masses are ergodic, and
F,(f, X) =E[f(X)|G] = f(X) for all n. (b) Exchangeability can also be defined as in-
variance under the group S(N) of all bijections of N, as is often done in Bayesian statistics.
This definition is equivalent to ours, in the sense that any measurable action of S(N) and its
restriction to S, C S(N) have the same invariant and ergodic measures [34], but the group
S(N) is not nice.

8.2. Jointly exchangeable arrays. We discuss one class of examples in Table 2, the
jointly exchangeable arrays, in more detail. These are defined as follows: A collection
x = (Xiy,....i,)i1,....i,eN Of scalars is called an r-array indexed by N € N. The subarray in-
dexed by M C N is denoted x[M]. We let permutations ¢ of N act on x by permuting each
index dimension separately, ¢ (x) := (X¢(i)),....¢(,))- A jointly exchangeable array is a ran-

dom array X that is indexed by N = N and satisfies ¢ (X) 4 X for all ¢ € Seo.

The ergodic exchangeable arrays are characterized explicitly, by the Aldous—Hoover the-
orem [29]: To keep notation simple, assume » = 2. Then X is Syo-ergodic if and only if there
is a measurable function % : [0, 1] — R such that

d .
(36) X = (h(U,', Uj, Uij))i,jeN where (U;, Ujj)i, jeN ~iid Uniform[0, 1].

Thus, X is Syo-ergodic if 4 is fixed, and Seo-invariant if / is random. For r > 2, the function &

has additional arguments [29]. Kallenberg [27] first proved the relevant case of Lindenstrauss’
theorem: If X is Soo-ergodic,

1 n—00
o D F(Xi)nndi))inoniy) —> E[f(X)]  as. for f € Li(X).
T pES,

Eagleson and Weber [19] proved an early version of (35) for such averages (under stronger
conditions than Theorem 17). Under suitable additional assumptions, one can obtain a uni-
form result [16].

An exchangeable graph is an exchangeable 2-array with binary entries and almost surely
zero diagonal [17]. We interpret the array as the adjacency matrix of a random graph with
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vertex set N. Since that makes the range of 4 binary, one can eliminate one degree of freedom
in the representation above: An exchangeable graph is ergodic if and only if (36) holds for
a measurable function w : [0, 11> — [0, 1] and A(u, v, z) :=I{z < w(u, v)}. For undirected
graphs, w can be chosen to satisfy w(u, v) = w(v, u), and is called a graphon [10].

For a finite graph y with vertex set {1, ..., k} and the subgraph X[1,..., k] of X on the
same set, consider the subgraph probability 7(y) := P(X[1, ..., k] = y). Some authors inter-
pret (y) as a moment statistic [S]. For n > k and a graph x with vertex set {1, ..., n}, the
homomorphism density t(x,y) :=1/n!} 4.5 Tx[p(1),..., ¢ (k)] =y} is the (normalized)
number of times y occurs as a subgraph of x [10, 33]. If X is ergodic, and a finite subgraph

X[1,...,n] is observed as data, substituting into Kallenberg’s result above shows
(37) t(X[1,...,n),) == P(X[1,...,k]=-)=1(-) almost surely.
In other words, the sample homomorphism density #(X[1, ..., n], y) is a strongly consistent

estimator of 7(y). Borgs et al. [10] and Lovasz and Szegedy [33] have also obtained (37),
using different arguments. For these estimators, (35) is due to Bickel et al. [5] and Ambroise
and Matias [2].

8.3. Stochastic block models with a growing number of classes. Suppose we choose £ in
(36) as follows: Fix some m € N. Choose a measurable function 7 : [0, 1] — {1,...,m} and
a symmetric function v : {1, ..., m}2 — [0, 1]. Foreachi <m, set w; ;=P (U) =1i), where
U is uniform in [0, 1]. We can read (7;);<5 as a distribution on m categories, and v as a
matrix (v(i, j))i, j<m. Define a random undirected graph with vertex set N as

X (@, v) = [{Ui; <v(@ W), w(UN)}); _jen-

Since this is a special case of (36), X (77, v) is an ergodic exchangeable graph, represented by
the piece-wise constant graphon w = v o (7 ® ). A family of such distributions, indexed by
some range of pairs (i, v), is a stochastic block model with m classes (e.g., [2]). Since each
law is specified by a finite vector (7r;) and matrix v, the model is parametric. Nonparametric
extensions let m grow with sample size (e.g., [15]): Choose an increasing functionm : N — N
and a parameter sequence (", v"),cn such that X, := X (", v") has m(n) classes. An ob-
served graph on n vertices is then explained as the finite subgraph X,[1, ..., n].

In the nonparametric case, no asymptotic normality results seem to be known, but can
easily be obtained from our results. Since X,, changes with sample size, Theorem 17 is not
applicable, but Theorems 10 and 11 can be used instead. As a concrete example, let y be the
complete graph on three vertices. In this case, P(X,[1, 2, 3] = y) is often called the triangle
density. If vertex 1 is in class i, but the classes of 2 and 3 are unknown, the probability that
Xn[1,2,3] is a triangle is

Ei(n):=E[fX)Ir"(U])=i]= > n;‘(v"(i,j) > n,?v”(i,k)u"(j,k))
j=m(n) ke<m(n)

Applying Theorems 10 and 11 to f(x) :=I{x[1, 2, 3] = y} yields the following.

COROLLARY 18. Let Z be a standard normal variable. As n — o0,
N 1

s (n(n ~Dn—2)
where the sum runs over all distinct triples iy, i2,i3 < n, and

nfl: Z rrl-”Ei(n)(Ei(n)— Z n;’Ej(n)) almost surely.

i<m(n) Jj<mn)

S I Xulit iz, i3] =y} — P(X,[1.2.3] = y)) %z,

3
The Wasserstein distance to the limit is 0(77,7311_% Il f(Xn) ||2 ).
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The simplest SBM is an Erdds—Rényi (ER) graph, where each edge is an independent
Bernoulli variable with success probability p, that is, v := p is constant. This model has
been thoroughly studied, and we can relate the corollary to some known results.

EXAMPLES.

(xvii) If X is an ER graph, 7(X[1, ..., k], -) satisfies a degenerate central limit theorem,
with n =0, see [2]. To see this in the corollary, set X, := X for all n. We can then consider
the limit n,, Z. Since E;(n) does not depend on i nor n, we obtain 7, = 0.

(xviii) Let each X, be an ER graph, with edge probability p(n), and let p(n) — 0. In
principle, Corollary 18 holds: The limiting triangle density is 0, and 1, = 0. However, more
bespoke results rescale by 1/4/p(n) to make small-scale behavior visible [25]. These do
not follow from Theorem 10, since the variables I{ X, [1, 2, 3] = y}/p(n) are not uniformly
integrable.

8.4. Separate exchangeability. A random r-array X is separately exchangeable if it is
invariant under the action

¢x = Xp1(i1),ersr (ir) forall x e X and ¢ = (¢, ..., ¢,) € S:;o

Comparing to (26) shows that joint exchangeability is the diagonal invariance corresponding
to separate exchangeability. Some models for relational data in machine learning assume sep-
arate exchangeability for matrices whose rows and columns are indexed by distinct sets (e.g.,
consumers and products), and joint exchangeability if the sets are identical (e.g., vertices of a
graph) [35]. Separate exchangeability is the stronger property, and results in a faster rate and
simpler asymptotic variance.

COROLLARY 19. Let X be a separately exchangeable r-array, and let f € Lo(X) be a
function that satisfies (34). As n — oo,

1
AT (f, X) = T ( Y f@X) —E[f<X>|Sgo]) 4z,

]
(nh)r pcsr

where Z is standard normal and independent of n. The asymptotic variance satisfies
n* = Var[ f(X)[S,] < oo almost surely.

EXAMPLE.

(xix) The convergence rate for homomorphism densities is in general n~'/? if a graph

is exchangeable, but n—lif it is Erd6s—Rényi (e.g., [2]). Corollary 19 shows that is a con-
sequence of additional symmetries in ER graphs, since they are not only jointly but even
separately exchangeable.

8.5. Graphex models. Caron and Fox [14] have proposed a class of random graphs
that, with extensions and refinements by other authors [9, 45], are referred to as graphex
models. Recall from (36) how an ergodic exchangeable graph is generated by a graphon
w: [0, 11> > [0, 1] and independent uniform variables. A graphex model is defined simi-
larly, by a symmetric measurable function  : Rio — [0, 1] and a unit-rate Poisson process
IT={U, V1), (Ua, V3),...} on Rio. Let U;j, fori < j € N, again be i.i.d. uniform elements
of [0, 1]. Define a random countable subset X, of R2>o as

(V,',Vj)EXw <~ U,-j<a)(U,-,Uj).
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This set is interpreted as a graph, in which vertices V; and V; are connected if the pair (V;, V;)
isin X, . The set X, thus functions as a form of adjacency matrix, but each vertex is identified
by the value V;, rather than the index i. A subgraph is not selected as an n x n submatrix, but
by placing a rectangle [0, s)? in the plane: The subgraph g, (X,,) for s € (0, oc] is

(i,/))egs(Xo) & (Vi, V) eX,NI0,5)%

Suppose an instance g,(X,,) with N vertices is observed. Veitch and Roy [45] have shown
that one can estimate the restriction | ;2 of w, provided s is known: Subdivide [0, s)? into
quadratic patches /;;, and define a piece-wise constant function @, on [0, 5)? by specifying
its value on each patch as

1 1 i
c?)s|1,»j =1{(, j) € G} where [;; := [lTS’ lﬁs) % []N s, %s)

This estimator is consistent on bounded domains [0, t)z, in the following sense: Regard
as a function ]R2>0 — [0, 1], with constant value 0 outside [0, s)2. Generate X &, according to
(8.5), using a Poisson process and uniform variables that are independent of X,,. Then

(38) g(Xs,) > g1(X,) ass— 0o,

for every fixed ¢ € (0, 0o) [45]. If f is a measurable function of finite graphs, the Veitch—-Roy
estimator of E[ f(g;(X))] is therefore

fs =E[f(g:(X5,))lgs(Xo)]-

The distributional convergence in (38) implies fAs — E[f(g:(Xy))] almost surely as s — oo.
We illustrate how to obtain rates for a simple example: Fix ¢ > 0. For a finite graph g,
choose f as

1 1
(39) f(g) = t—zledge setof g| hence f(g;(Xy)) = t_2|Xw N[0, 1)?|.

The function (w, t) — E[ f(g:(X,))] is then similar to the edge density in a graphon model.
Consider the random sets

Von =XoNm,m+1)x[n,n+1) form,neN.

If we choose s € N, we have

r 1 . 1
=5 Y Plli))egXo)lgX) == Y Vil
(i,j)€gs(Xw) 5% mon<s
It follows from the construction of X, that the random array (|V,|)m.» is jointly exchange-
able and ergodic. We can hence apply Theorem 17, and obtain the following corollary.

COROLLARY 20. Letw: R2>0 — [0, 1] be a measurable and symmetric function, and fix
t > 0. Define f as in (39). Then, for Z ~ N(0, 1),

V5(fs —E[f(&(X)]) > nZ ass — oo,
where n2 =4Cov[| X, N]O, 1]2|, | Xo N[0, 1] x [0, 2]]|G] is a finite constant.

The random set X, is invariant under an uncountable permutation group that transforms
each axis R [14], and is in fact ergodic [29]. That is an example of uncountable exchange-
ability, as described at the beginning of this section. The local counts |V, | are a device to
reduce uncountable to countable exchangeability, and hence to invariance under a nice group.
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9. Applications II: Marked point processes. Random geometric measures are point
processes whose behavior at a given point may depend on points nearby. They originate
from so-called germ-grain models in physics [22], and are used to study for example, nearest
neighbor methods and Voronoi tesselations [23, 38]. Theorems 4 and 6 are directly applicable.

9.1. Setup. The following definitions are adapted from those of Penrose [38], with some
simplifications: Consider two Polish spaces, X (which we think of as a set of points) and
Y (a set of marks or covariates), both equipped with their Borel o-algebras. Denote by M
the space of o-finite measures on X x Y, equipped with the o-algebra generated by the
evaluation maps, and by F the set of finite subsets of X x Y. Let © : X xY x F — Mbe a
measurable map, and W C X x Y a compact set. Loosely speaking, ¢ assigns to each marked
point (x, y) ameasure p(x, y, F) that depends on a set F' of points near x, and on their marks.
These nearby points are collected by using W as an observation window, which is moved over
X x Y by elements of a group: Let G be a nice group that acts measurably on X. We extend
the action to one on X x Y by defining

(40) d(x,y):=(p(x),y) forallg €G, (x,y)eXxY.
For compact Ay, Ay, ... C G, write A, W = {(¢(x), y)|p € A,, (x,y) € W}. If I is a point
process on X x Y, then

1

(41) ()= o

> G,y Ty for M, :=TINA,W
(x,y)ell,

is a random measure on X x Y. The sequence (v,) is called a random geometric measure if
[T is invariant under the action (40), and if the sets I1,, are almost surely finite. See [4, 38] for
similar definitions.

9.2. Asymptotic normality. A central theme in the literature on random geometric mea-
sures is the limiting behavior of statistics of the form

vn(h):=/X Yh(x,y)vn(dx,dy) forh:XxY—R.
X

Such results typically require that the window does not collect any point more than once.
A simple condition that excludes such repetitions is as follows: Require (i) that G contains
a subgroup H such that ¢ (W) N (W) = @ for distinct ¢, ¢ € H, and (ii) that HW = GW.
Informally, HW “tiles” the set GW C X of points reached by the window. We also require
that (iii) the set {¢ € G|p (W) N W # @} is compact. If G = X = R?, for example, one might
choose W =[-1, 1]2 and H = {(2i,2))|i, j € Z}. The relationship to our results becomes
clear if we define

LFy= [ hEY) Y pey M dy)

x (x,y)eFNW

and

f(F):= /;(XYh(x’, y') Z p(x,y, I(dx', dy")

(x,y)eFNW

for F € F, and observe that v,(h) ~ mfAmH fn(@(ID)|dep| =F,(fu, IT). We apply
Theorem 4 and 6, and obtain the following proposition.
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PROPOSITION 21. Regquire that (i)—(iii) above hold, and that the sets A,, in (41) form a

tempered Foplner sequence. For each n, let o™ (-|G) be the conditional mixing coefficient of
Il and f,. If

sup/Ga(”>(d(e, $)|G)T|dp| <oo and | fu(TH2TE |, < o0
n
holds for some ¢ > 0, then as n — 00,

V1A, NH| (v, (h) — E[v, (h)|G]) 4, nZ forZ~N(0,1),
where 172 = [ Cov[f(I1), f(¢ID)|Glld¢| and n 1L Z. Moreover,

(«/m
n

dw (vn(h) = E[va ())|G)), z) - o(

max {1,

1 3
Ty L)

9.3. Relationship to existing results. Versions of the result above are known in the case
where X is R”, G = R" consists of shifts, and A,, is the Euclidean ball B,, [22, 23, 38]. These
are not phrased in terms of conditional mixing, but instead use a “stabilization condition” (e.g.
[4]). The next result translates stabilization to mixing conditions. There is no standardized
definition of stabilization; the one we state below is similar to Definition 2.4 of Penrose [38],
which he calls power-law stabilizing of order g. For (x,y) e X x Y and F € F, let F; be the
truncated set {(x, y) € F|d(x, X) < t}. The stabilization radius of 1 is

R(x,y, F):=inf{r > O|lu(x, y, F) = u(x,y, Fr)},
where we use the convention inf @ = oco. If

(42) sup sup s?P(R(x,y,IT) >s)<oo forsomegq > 1,
s>0 (x,y)eW

W 1s polynomially stable of order gq. The condition implies conditional mixing if the metric
balls in G do not expand too quickly.

PROPOSITION 22. Let I1 be a Poisson process, and let . be polynomially stable of order
q. If the metric balls B, in G satisfy sup,.yn~"|B,| < oo for some r > 0, then

2+¢

r.

sup[ga(”)(d(e,@l(@)ﬁldqﬁl <00 whenever q >
n

That holds in particular for the groups R, since an r-dimensional Euclidean ball has vol-
ume |B,| = (/7n)"/ I'(5 + 1). Geometric group theory provides further examples: A group
that satisfies sup, .7~ |B,| < 0o and is also finitely generated is said to be of polynomial
growth [32]. Nice groups of polynomial growth include Z¢, the groups in Corollary 8, or the
discrete Heisenberg groups (e.g., [18]).

10. Applications III: Entropy. The entropy of a stationary process is defined as a limit.
This limit exists almost surely, by the Shannon—-McMillan-Breiman (SMB) theorem [42]. It
has a natural generalization to invariant processes (e.g., [20]), which again converges almost
surely [31]. An adaptation of Theorem 4 gives conditions under which it is asymptotically
normal. In this section, we assume G is discrete, and finitely generated, which means there is
a finite subset G C G such that G is the smallest group containing G. That is, for example,
true for Z" (choose G as the set of unit coordinate vectors), but not for So.
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10.1. Entropy. LetY be adiscrete random variable with mass function p(k) := P(Y =k)
for k e N.If Y7, Y, ... are i.i.d. copies of Y, the law of large numbers guarantees almost sure
convergence

1 n—00
—;log(p(Yl) X - x p(Yp)) —— —E[log p(Y)] =: H[Y].

The constant H[Y] is the entropy of Y [28]. If X = (X;);e7 is a stochastic process with values
in the finite set [K], the entropy can be defined similarly: If p, is the joint mass function of

(X1,...,Xn), and X is stationary and ergodic, there is a constant 2[ X] > 0 such that
1

43) ——log pp (X1, ..., Xy) = h[X] almost surely.
n

This is the SMB theorem, and 2[X] is again called the entropy, or the entropy rate [42]. The
term —% log pn (X1, ..., Xy) is the empirical entropy.

10.2. Entropy of invariant distributions. Let G be countable, and (A,) a tempered Fgl-
ner sequence with |A,|/log(n) — oco. Let X be a G-ergodic random element of X. To de-
fine entropy, regard (¢ X)ge as a stochastic process on the group, and discretize its state
space: Choose a partition A := (A1, ..., Ag) of X into a finite number of Borel sets, and write
A(x) =k if x € Ai. Let p, be the joint mass function of (A(¢X))gea, - Then there is a constant
h;[X] > 0 such that

n—oo

log pn((A(X)) yea,) — M[X]  almost surely.

hy(A, X) :=—

! ™

This result is again due to Lindenstrauss [31]. To recover (43), choose X as a stationary
process (X;)iez, and Ag := {x = (x;)iez|xo = k}.

10.3. Asymptotic normality. Suppose G admits a total order < that is left-invariant (i.e.,
¢ <y ifand only if m¢p < wyy for ¢, ¥, m € G). The process values indexed by aset G C G
are predictive of the value at ¢ if

Ly(G) :=log P[M@X) MY X), ¥ € G]
is large, where P denotes probability under the law of X. The scalar

pm = sup | Le(A) — L.(ANBy)|,
AcCG
measures how well the value at the identity is predicted by values within a radius m. Recall

that the definition of mixing in Section 3 uses pairs ¢1, ¢ in G. We extend it to k-tuples: For
k € N, define

C(t,k):={(A,B)€of(P1....,00) Q0 (G)IG CG,¢1,...,r € G\B(G)},

and a (7, k) :=sups pyeci.i) |P(A, B) — P(A) P(B)|. The mixing coefficient in Section 3 is
hence a(t) = (¢, 2).

THEOREM 23. Let G be a finitely generated, nice group with left-invariant total order,
and let X be G-ergodic with sup ¢ |Le(A) |24+ < 00 for some ¢ > 0. Choose a tempered
Folner sequence satisfying |A, A By, A,|/|Anl — 0 and /|An|pp, — 0O, for some sequence
(by) of positive scalars. If

44 ZIBilrn?ilil(pm+a(i —m, [By|)¥7) < 00
ieN -
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holds for the mixing coefficient of the function f := A, then

V1A (Bn (X, X) — by [X]) 4 nZ asn— oo,

where the asymptotic variance is independent of Z and satisfies

Z Cov[L.({y <e}), Lo({ < ¢})] <oo almost surely.
¢eG

Condition (44) can be interpreted as follows: The proof represents 4, as

10g pu(M@X))gep,) = Y Lol € Anlyy < 4)),

PpeA,

and approximates it by the average I, of f'(X) = Ly({y/| < ¢} NB(¢, m)). The approx-
imation error is a function of p,,, and decreasing in m. Mixing, on the other hand, involves
tuples in B,,, and since «(-, |B,,|) is nondecreasing in |B,,|, a smaller m means better mixing.
Informally, dependence within the process is both beneficial (it makes predicting one value
from others easier) and detrimental (it reduces mixing).

REMARK. (a) Left-invariance of the order is not required for asymptotic normality, but
simplifies n. Provided it holds, n does not depend on the choice of <. (b) Examples of groups
satisfying Theorem 23 are (Z", +) and the groups in Corollary 8, or discrete Heisenberg
groups [32]. (c) Existence of a total order implies ¢™ # e for all m € N, unless ¢ =e. In
algebraic terms, G is torsion-free [32].
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SUPPLEMENTARY MATERIAL

Supplementary Material to ‘Limit theorems for distributions invariant under groups
of transformations’ (DOI: 10.1214/21-A0S2165SUPP; .pdf). The supplement [3] contains
proofs of all results in this article, and further auxiliary results that are used in the proofs.
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APPENDIX A: PROOF OVERVIEW AND AUXILIARY RESULTS

The proofs are presented in three parts, for the basic limit theorems in Appendix B, for
the general ones in Appendix C, and for all other results in Appendix D. The basic results
(Theorems 4 and 6) are special cases of the general ones (Theorems 10 and 11), but we prove
them first to clarify the approach. The general proofs require changes, but follow the same
layout.

A.1l. Proof overview. The proofs of the main results, Theorems 4, 6, 10 and 11, use
Stein’s method [e.g. 7]: For the function class

() Fi={t € C*R) [ [[tlloo < 1, It'lloc < v/2/m, [[t"]lo0 < 2}

and a real-valued random variable W, Stein’s inequality guarantees

) dw(W,Z) < sup|E[Wt(W) —t'(W)]| for Z ~ N(0,1) .
teF

The distance dy metrizes convergence in distribution for variables with a first moment [e.g.
7]. One can therefore establish a central limit theorem for a sequence (W,,) of such variables
by showing dy (W,,, Z) — 0, and hence by showing that the right-hand side of (2) vanishes
as n — oo.

Basic case. In broad strokes, Theorems 4 and 6 are proven as follows:

« Choose W =W, as a suitably scaled version of n(n)~'F,, where n(n) is a (for now
unspecified) positive random variable.

« To upper-bound (2), split W at a cut-off distance b,, in G, into a short-range and a long-
range term. Adapting (2) to these modifications yields a refined bound, in Lemma 7. The leg
work of the proof is then to control each term in this bound.

+ Stein’s method involves the notion of “dependency neighborhoods” [7]: A set, say N (i),
of indices for a random variable X; such that X; 1L X; if j ¢ A (4). In our proofs, the
neighborhood is the area within the cut-off b,,, but terms inside and outside the neighborhood
are not completely independent. We hence bound long-range terms using conditional mixing.
» Split f into small and large values at a threshold +,,. Since no fourth moment is assumed,
large values must be controlled explicitly.

« The resulting bound is a function of 7(n). Choose n(n) as an approximation to the
quantity 7 defined in the statement of Theorem 4.
The central limit theorem then follows by showing that the bound vanishes as n — oo, and

the Berry-Esseen bound by additionally requiring a third and fourth moment, and substituting
these into the bound.

REMARK. Limit theorems for random structures often require a condition called stable
convergence [e.g. 4]. That is not required here; instead, the proof shows that n(n)~'F,
converges to Z conditionally on ¢(G), which is then used to obtain convergence of F,, to
nZ. That is possible because 7 is constant given o (G). In terms of Theorem 2, 7 is a function
of ¢, and hence o(G)-measurable.

General case. Proving Theorems 10 and 11 requires a number of modifications:

« Since the dimension k,, of the group may grow with n, we work with surrogate functions
that depend only on the first few entries of ¢ € G*».

+  Working in G*» complicates the dependency neighborhoods.

* Since IAFn is now random, we must also control the probability of selecting elements of
the dependency neighborhood, using the spreading conditions.



A.2. Comments on other proof techniques. Central limit theorems can be proven with
a range of tools, including Fourier techniques, Lindeberg’s replacement trick, or martingale
methods. Unlike Stein’s method, these do not seem adaptable to our problems. In the case of
concentration, the Efron-Stein inequality and other standard techniques similarly fail. There
are several obstacles: (i) Topology of the group. Many martingale proofs, and the Efron-
Stein approach to concentration, combine observations into blocks, and control dependence
between blocks via an isoperimetric argument (i.e. block boundaries are of negligible size).
That applies to some groups, such as G = Z, but fails even for G = Z2. Bolthausen [1] used
Stein’s method to address an instance of this problem. (ii) Lack of a total order. Replacement
arguments (e.g. Lindeberg’s method and the Efron-Stein inequality) rely on the left-invariant
total order of Z to replace random variables sequentially. That makes them inapplicable,
for example, to permutation groups. (iii) Group size, since replacement arguments require
countability.

REMARK. Martingales are applicable if G contains compact subgroups G; C Go C ...
such that G = U,,G,,. That is the case for Sy, with G,, =S,,. If so, (G,,) is a Fglner sequence,
and (IF,,) is a reverse martingale adapted to the filtration o(G1) D 0(G2) D . ... That implies
(17). The corresponding case of Theorem 4 (with more restrictive moment and mixing
conditions) follows from the reverse martingale central limit theorem. Such arguments are
used in [6] for convergence, and in [3] for asymptotic normality. However, the method has
limitations even for G = S... For example: If (X;) is an exchangeable sequence and h a
function of two arguments, (h(X;, X;));; is an exchangeable array, but even with proper
normalization, -, ; h(X;, X;) is not a reverse martingale unless (z,y) = h(y,z).

A.3. Auxiliary results. We begin with a result that allows us to bound the Wasserstein
distance dy. Recall that £ denotes the set of Lipschitz functions with constant 1. It is a
standard result that

3) dw(X,Y) = félzl]E[h(X)] —E[n(Y)]] = nf B[ X" = Y]],

where the infimum is taken over all couplings (X', Y”’) of X and Y. This identity is
sometimes known as the Kantorovich-Rubinstein formula. In analogy to dy, we define the
conditional (and hence random) distance

(X, Y|G) := sup [E[(X)|G] — E[(Y)[G]|
€
The next lemma shows how it relates to dy.
LEMMA 1. Let X and Y be random variables in Li(R), defined on an abstract
probability space (2, A,P). Then
dw(X,Y|G)=inf E[|X' - Y'||G]  P-as.,

where the infimum runs over all couplings (X', Y") of the conditional variables X |0 (G) and
Y|o(G), and

dw(X,Y) < Eldu(X,Y|G)] = dw(X.Y[G)] .

PROOF. Since both random variables are real-valued, we can choose regular conditional
distributions p for X and ¢ for Y. That is, p,, = P(+|G)(w) holds for P-almost all w € 2, the
map w — p,, is measurable, and the same holds for ¢ and Y. We can then apply (3) pointwise
in w, which shows that [P-almost surely,

ilellzlE[h(X)\G}(W) —E[R(Y)|G](w)| = dw(pw,qw) = nfE[X" Y],
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where the infimum is taken over all (X’,Y”) with marginal distributions p,, and g,,. That
shows the first identity. The second claim holds since

dw(X,Y) = Sup [E[(X)] - E[h(Y)]] = Sup [E[E[1(X)|G] - E[1(Y)|G]]|
< E[ilellz [E[(X)|G] — E[1(Y)|G]|] = E[dw(X,Y|G)],

where we have used the tower property and the relation supE < Esup. O

Conditioning in dy, lets us swap a random variable Y (which in the proofs will be the
asymptotic variance) between arguments:

LEMMA 2 (Random scaling). Let X, Y, and Z be random variables in La(R), such that
Y is 0(G)-measurable. If Y > ¢ almost surely for some ¢ > 0,
dw (X, Z/Y) < ||ldw(XY, Z|G)|1 /c.
PROOF. The second part of Lemma 1 shows that dy (X, Z/Y") < ||dw(X, Z/Y|G)||1. Fix
any € > 0. Since Y is o(G)-measurable, there is a coupling (X', Z’) of the conditional

variables X |o(G) and Z|o(G) such that E[| XY — Z'||G] < dw(XY, Z|G) + ¢, now by the
first part of Lemma 1. This coupling satisfies

E[|X'Y/Y — Z')Y||G] < E[|X'Y — Z'||G]/c < (dw(XY,Z|G)+¢)/c.
Since e is arbitrary, it follows that dy (X, Z/Y) < ||dw (XY, Z|G)||1/c. O

We must repeatedly use bounds of the form [|[E[«|G]||; < || || ﬁa(kﬂ(@)ﬁs to “separate

off” conditioning. The next two lemmas capture all cases needed in the proofs, for both € = 0
and € > 0. The first version applies to conditional mixing. Recall this involves a pair ¢1, ¢
of distance at least k from a set G C G, which here is of finite size m. The lemma shows that,
if a transformation 7 does not move the pair too close to (7, the desired inequality holds.

LEMMA 3 (Conditional mixing bound). Let X be G-invariant, Y a real-valued random
variable, and h: X¥*2 x R — R a measurable function with E[|h(X, ..., X,Y)|] < co. Fix
¢17 ¢2a ¢17 ey @ZJm S G’ and set

HT;:h(@le?_,,71/)mX,T_1d)1X,7'_1¢2X,Y) fortreG.
Let 7 be an element of G. If
YU X|o(G) and k< min d(T_lﬁf)z',%’)

i<2,j<m

for both T = and the identity T = e, then
|E[HAG, Y]~ E[H|G.Y]||, < 4]|Hr — He|l2:a(k|G)7=

forany € > 0.

PROOF. Case I: |H; — H.|| finite. We approximate h by a step function
) Wi (s e, 0) =N cl(s €As,« €Bi, e €C)),

for some N € N, measurable sets A; in X, B; in X2 and C; in R, and scalars |c;| < ||h]]oo-
Define H analogously to H,, by substituting h* for h. Fix any 6 >0. Since h is
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integrable, h* can be chosen to make ||h — h*||; arbitrarily small, and hence such that
|(Hr — He) — (HE— H})||1 < 9. If we abbreviate

L =T, (01 X, 0 X) Lo, (Y) (I, (61X, ¢2X) = I, (1 (01X, $2X)))

and E; :=E[L;|G,Y], we have |E[H* — H!|G,Y]|: < 32N, |¢i]|| Eil|1 for some Nje N.
Using the definition of conditional mixing, we have

> i< lalll il < E[Zi\Ei>O‘CiHEi’ +Zi|Ei§0‘ciHE’iH

=< Zi|Ei>0 |ci|E[E] —EuEigo |ci[E[E]
o) < max|[eil (| 50 Billt + 1 24 5,<0 Eillr)
< 2|Hy — Hel|oo a(k|G) .

Since the right-hand side does not depend on ¢ or ~*, that implies
\E[H, — H|G, Y]y < 2| Hy — H. oo o(K[G) .
Case 2: ||Hy — H¢||oo infinite. For r > 0, define
AH:=H,—H, AH,:=AH -I{AH <r} AH,:=AH — AH, .

The triangle inequality gives |E[H, — H|G,Y]|1 < ||AH,||1 + ||AH,||1, and case 1 above
implies || AH,||; < 2ra(k|G). Since ||h| 2+ is finite, we can assume ||AH ||2+= < 1 without
loss of generality. By Holder’s inequality,

IS < AR AT > e < 273

We hence obtain |[E[H, — H,|G,Y]||; <2ra(k|G)+ 2r~% = 4a(k|G)= by choosing
r=a(k|G)=-. O

The second version is the analogous result for marginal mixing coefficients. As in
Section 5, €; r = (e,...,e,T,e,...,e) denotes a vector with k;, entries and 7 as the ith entry,
and ¢; ; is defined as in (29).

LEMMA 4 (Marginal mixing bound). Let X be a random element of X,,, invariant under
the diagonal action of G*, and Y a real-valued random variable. Let h: XfLJFQ XR—=R
be measurable, with E[|h(X,...,X,Y)|]<oco. Fix ¢y, ¢s,%1,...,1,, € GF. For any
1,7 <k, set

HY = h(p1 X, X iy X, €5 XY)  forT€G,
where Let w be an element of G. If

YU X|o(G) and k<6ij(eirdr,ejrPo {1, %))

for both T = m and the identity T = e, then
|E(HY |G, Y] - EIHI (G, Y|, < 41HY - H ||z (kIG) 7

forany e > 0.

Since the proof is almost identical to that of Lemma 3, we only highlight the requisite
changes.
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PROOF. If |HY — HY [|oo is finite, again use (4), now with measurable sets A; in X7’
and B; in X%, and define Hy 7* by substituting h* for h. For § > 0 given, choose h* such that
I(HY — HY) — (HZ* — HZ*)||; < 8. If we change the definition of I; to

L= Lo, (@1 X, o 5, X) 10, (V) (I, (60X, X) — L, (41 X, 050 2X)
repeating (5) shows ZigM leil | Bl < QHHfrj — HéjHoo oy, (k|G), and hence
IE[H — HI|G,Y]|1 < 2| H — HY ||oo an(k|G) .

If HHZFJ —HY |l is infinite, we set AH := HY — HY, Repeating the argument in the
previous proof shows [|AH,[|; < 2ra,(k|G) and [[AH,[|; < 2r~32 for any r > 0, and hence
[E[HY — HE|G, Y|l < 4o (k|G)2+=. O

The next result is used to relate mixing to the growth of volume under the metric d. We
phrase this in terms of a generic function g, which is later chosen as ¢ — «(t|G)2+ in the
basic case, and t — o, (¢|G) 2+ in the general case.

LEMMA 5. Let g:[0,00) — [0,00) be a measurable function. Then

ZiZm IBi+1\ Bilg(7) <
Je\s,,_, 9(d(e, ))|de]

forallmeN.

PROOF. Abbreviate r := sup,; % Then

ol Beet \Bilg(i) < ¥ BABila(i) <7 [ a(d(e.0))]ds] .

where we have used (11). ]
Finally, we note that assuming E[f(X)|G] = 0 incurs no loss of generality:

LEMMA 6 (Conditional centering). Let X be G-invariant, and p > 1. For any g € L, (X),
the random function f(s):=g(*)—E[g(X)|G] is o(G)-measurable random element of
L,(X). Foralln €N,

Fo(f,X)=F,(9,X) and a;(n|G)=ay(n|G) almost surely,

where oo (n|G) is the conditional mixing coefficient defined by (+,X).

PROOF. For p>1, L,-norms contract under conditioning [5]. That makes f a o(G)-
measurable random element of L, (X). Since f(¢pX) = g(¢X) — E[g(X)|G] for any ¢ € G,
we have IF,,(f, X)) =F,,(g, X ). To prove the second claim, consider events A € o ¢({¢1,¢2})
and B € 0¢(G), for any G C G and ¢1,¢2 € G\ B4(G). Fix any § > 0. By definition of
of, we can choose sets S; € g4(¢1,$2), sets T; € 0(G), and constants ¢; € [0, 1] such that
1>, ¢ll(S;,T;) —I(A)|[1 < 4. As the sets T; are in o(G), we have

I>=;¢i(P(Si, T, BIG) — P(S:, Th|G) P(B|G)) |11
=132, cl(T3) (P(Si, BIG) — P(Si|G)P(BIG)] |1 < a(t]G) ,

where the final inequality uses the definition o and ¢; € [0, 1]. As 0 is arbitrary, this implies
I1P(A, B|G) — P(A|G)P(B|G)[|1 < a(t[G). O



APPENDIX B: PROOFS OF THE BASIC LIMIT THEOREMS

We first adapt the upper bound on d,, given by Stein’s inequality to our problem in B.1,
and then apply it to prove the limit theorems in B.2.

B.1. Bounds on the Wasserstein distance. By Lemma 6, it suffices to establish
Theorems 4 and 6 for elements f of

Ly(X,G):={f(+)=9(+) —E[f(X)|G]|g € Lp(X)} .
Given f € L,(X,G), we choose the variable W in Stein’s inequality as

W= YR (1,X) = L [ f(6X)ldo) where = n(n)V/]AL]

n(n)

Here 7(n) is for now any positive, o(G)-measurable random variable, but will be chosen in
the next section as a specific approximation to the asymptotic variance. For a fixed element
¢ € G, conditional mixing allows us to control dependence for elements ¢’ far away from ¢.
To treat terms close to ¢ separately, we choose b > 0, and decompose W into long-range and
short-range contributions,

Wf::nin/AnH{d(qﬁ,qﬁ’)zb}f(qs’X)ydqs’y and AL =W -W7.

For our purposes, Stein’s inequality then takes the following form.

LEMMA 7. Assume the conditions of Theorem 4, and define W as above, for a o(G)-
measurable random element n(n) of (0,00). Then

Eldy(W, Z|G)] < fSEHE[nLn /A FeX )W) |de||G] |

©) +sup[E[ [ r@x) @) — 1) = A W) asli6] |

2=l rex)atias 6]

F 2] [ rex)ag - B ex)ALIG)
=@+ () +(©)+(d)
where Z is a standard normal variable and b > 0.
PROOF. The triangle inequality yields
IE[W (W) — ' (W)|G] |1
= (B[ [, 252 (ew) W)+ 1W;) ¢ (W) o | |

< ||E[ [, L2 ww)—uwi)—r wlas|6]

+ e[/, 2 uwiaole]]),



Using t € F, the first term can be bounded further as

FOX) (W) =t W)
|E [/A

Uik

—t'(W)ldel |G,

< / F@X) (W) —t(W)) —A t'(W)‘dngGml

Tin

+ E[t’(W)(l—/ LO8) Aflagl) |G|

<

n

T, Elfa,f(6X)A7|de||G]
TRVEY T ST}

n

S ]

2,1 é ®
Fy 2] [ 16X)A7 ~ElFX0A]IGlIdgl |,
Substituting into the right-hand side of (2) yields the result. O

The main work of the proof is to control the terms (a)—(d) in Lemma 7. To handle large
values of f, we split the function in its range, into

(7) (@) = f@){| f(2)] <7} and f27(2):= f(2)I{|f(x)| >~}
The next result refines the terms (a)—(d) using Lemma 3, and by handling f<7 and f 27

separately.

LEMMA 8. Require the assumptions of Lemma 7. Fix b >0 and v >0, and let T be
defined as in (24). Choose p,q > 0 to be such that 1 + l = 1. Then

f(X il f(X
W, ZI6)] < 4| 25, .m0 + 4Bl | o 2
8By | f(X = s
2 me*H (e / a(d(e,¢)/6) = dlo
n(n)” [(X) 12| An & ByAn|
Q/W(EH 77L7(n) H H H2 |Anf )
<’Y € 1
+ a2 EE o (otd(e 0)[G) 7 dg)
PROOF. To bound (a), fix any 6 > 0. Then
twehy —tw? )
@ ) (j+1)6
) HE[ F@X WG|, < s mas) HE[ (o) ‘G} H1
An apphcatlon of Lemma 3 to the summand gives
FEX) W) —tW( 1) 0) FEX) W) =t W, 1)) B
E Gl|| <4 a(jo|G)z+e .
il " o]l =] " e
By Holder’s inequality,
F@X) (W) —tWE ) 5) )
H jﬁ(n) - s S H n(n HHth(WJ%) B t(W&l)‘;)H”E



8

and since ¢ is Lipschitz, Ht(Wﬁ;) — t(W8+1)5)\\2+5 < HW;% — W(‘z]’.ﬂ)&Hnge. In summary, the
right-hand side of (8) is bounded by

HWJJ W¢ a(j6|G) =+

2 f(X)
rhs (8) <4 m ZjEHBbV(SJ HWHQ—&-E (G+1) 5H2+£

Since that holds for any (b € G and § > 0, we conclude
f(X f(X
4H G)35 |dg| = 4”
.. [, ol I6) 0] =

For (b), we decompose f = f<7 4 f=7. The triangle inequality gives

T(b) )

” H2+5

HW) — t(W)) — ALY (W)
Ui

B[/ f(6x) dgl|6]

HW) — t(W) — AP (W)
n

<|[[f > (6x)

n

o],

W) — t(WP) — ALY (W
n

t
+ [l rex)”
Since ¢ is an element of F, it satisfies

9) t(z+y) —t(x) —yt'(x)| <2ly| sup [t'(2)] forz,yeR
c€lza+y]

|d¢\\@ H —: (b1) + (b2).

and sup |¢'(2)] < 4/2/m < 1. Choosing y = AZ’ yields
1
on <2[E[- [ 172(6X)1a7] 1del|G] ||

x| Ja: Hd(d, ') < b}dg||dg|

F27(X) H
(1) ll2+4e |A,

<2| %

H2+s

om0

H2+s n(n) H2+a

For (b2), fix p,q > 0 with 1/p 4+ 1/q = 1. A Taylor expansion gives

HW) — H(W0) — AL (W) < %sup\t”(w)](Af)Q < (A%

Substituting (A})? = (= [, T{d(¢,¢') < b} f(¢'X)|d¢'|)? into (b2) yields
<Y (pX)H{d(¢,v),d(¢,m) <b}f(¥X)f(7X)|G
(bz)SH/As [F=7(0X)Hd(¢, %) (n%) H@X)f(rX)| }\dﬁf)Hd%ﬁHdW\Hl
8|By| || £(X) |2 f =
< |An|‘ ol Hpm ) [ e (d(e,9)[G)dlgl
To bound (c), write n; := | seB, 11 )|d¢>\ again apply the triangle inequality, which yields
= 1100? = Jaz 1A B, &) b} (6X)F(6'X)|GC]lde||dd|
CREN. n(n)? I
n(n) —nj m — [az |An| " E[{d(¢,¢) < b}f(6X)(¢/X)[C]|dd]|de|
SEH 77(")2 H + H n(n)2 Hl
nm)? =15 |1 || LX) ||| An & ByAn|
SEH n(n)? H H ‘2 |An|
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For (d), we again use f = f<7 + f=7 and the triangle inequality. For a pair (¢1, ¢2) of group
elements, abbreviate

Fh = o (P61 7 ¥(62X) —Elf/(01X) 1 (6:X)|G))

and define Fd)zlz52 as Ffl‘;; — ny . For any quadruple ¢1,...,¢4 €G,

5

HCov F<7 F |G

S F |G, < a(d((d1,¢2),(¢3,64))|G)

H4+2€

LS atdte.oie)

n(n) |lat2e

holds by Lemma 3, which implies
H/ < |d¢1||d¢2|H 4By
A,xA,B, For TAn] VIAn|

For 27, we obtain

do|)z .

>’Y |d¢1||d¢2 f>7 f o
| fyonm Foren ] <2l 52 )50 ), = @0
and hence
1By f< X) |2
d <4 2+< | d d’
@5 <a 2| EER] | (fatde.6)16)7 o))t + @)
Rearranging terms within (a)+(b)+(c)+(d) yields the statement. ]

B.2. Proof of the limit theorems. We first prove the central limit theorem under
hypothesis (21). The result under hypothesis (20), and the Berry-Esseen bound, then follow
with minimal adjustments.

PROOF OF THEOREM 4 ASSUMING (21). Set S,, := /|A,|F,(X), and let Z ~ N(0,1)
be independent of (X, 7). We must show .S, SnZ. By Lemma 3,

1] < / IELF(X)£(6)|G] 1 |do)

S ||f(X ||2+E ZbGN |Bb+1 \ Bb’a(b’G);? < 00 ,

which shows 7 < oo almost surely. Since nZ and S, :== \/|A,|F,(X) have first moments,
S, = 1 Z holds if dy(S,,nZ) — 0, as n — co.

To show that is the case, we may assume f € L;(X), by Lemma 6. We first choose
suitable sequences (7,,) and (b, ). By definition, |A,,| — cc. Set 7,, := |A,,|'/®. That implies
Yn — 00, and hence || f=7"(X)||21e — 0. Since |A,,| diverges, we can choose a divergent
sequence (b, ) such that

|An 4 By, An

’an| < |An’1/127 ‘an|||f2’yn(X)H2 and |An| —0.
Collecting terms in Lemma 8, we then have
. |Bbﬂ |'Yn > (X _ . |AnABy Ay

The next step is to construct 7(n) in Lemma 8 as an approximation to 7. To this end, we
set Uy, := max {7, 7, 7(bn) }'/® and vy, := max {ry, 7, 7(bn) } 1/
have u,, — 0 and v,, — 00, and observe that

. As n — oo, we hence

(10) () u, < vy, eventually (11) (rn + 7+ 7(bn )) —0 (i) vp,P(n <up)—0.

TL
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Set n(n) :=nl{n € [un,vyn|} + upl{n & [un,vs]}, and note that n(n) LL Z. Then
dw(Sn;1Z) < dw(Sn,n(n)2) +dw(n(n)Z,n2)
< dw(Sn,n(n)2) + 112111l (0 = wn){n & [un, vn] Hl1 -
Since we have already shown ||%||; < oo, the last term satisfies
Z||11|(n — wn)I{n & [tn,vn]}|1 — 0 as uy — 0 and v, — co.

It thus suffices to show dy (Sy,7(n)Z) — 0. Using the Markov inequality we note that

2
Pt 2ty <)+

n

Using Lemma 2 with Y = -1,
n(n)

dw(Sn,n(n)Z) < vnE[dw( Z’G)}

since 1/n(n) > 1/v,,. Substituting W = %;) into Lemma 8 gives
vaB[du (285, Z|G)] < = (5[] (X)]3,.7(ba)

X) H;-&-E/}/"T(O)
Uny/|Anpl

2 T
27w (u2 P (1 & [, ]) | ()| 37) + 42T

8|By,,

+ 4By, 1727 (X) 242 £ (X +

VIAn|
< ity (IO, r(Ba) + max(| O 7(0). Dl + )
+UnP(77<un)—|—”7Z}2‘1.

This final bound vanishes as n — co: The first term by (10), the second since u,, — 0 and
vy, — 00. That shows dy (Sy,,n(n)Z) — 0, which implies dy (S, 7Z) — 0 and completes the
proof. O

Since the Berry-Esseen bound assumes a third and fourth moment, it can be proven by
applying Lemma 8 directly:

PROOF OF THEOREM 6. The sequence (b,,) is given by hypothesis. Fix any divergent
sequence (7y;,) in (0, 00). For each 7,

IFCOLIFOO <3l lss) < 15X s

We can hence apply Lemma 8 with p = % and ¢ = 3, and Theorem 6 follows for n — co. [

PROOF OF THEOREM 4 ASSUMING (20). There is a finite k£ € N such that a(k|G) =
We can hence repeat the argument in the above for by = by = ... := k and € = 0, which again
yields dy,(Sy,n(n)Z) — 0 for n — co.

O
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B.3. Derivation of the confidence interval. We now prove Theorem 5. Using the
centered average I, the statement of the theorem can be phrased as: Under the conditions
of Theorem 4, and assuming 7j,, is defined using a suitable sequence (b,,),

limsupP(@n(f,X)‘ > i zl_g> <a
n—oo A. 2

A

Since we assume the hypothesis of Theorem 4, we can reuse part of its proof: The
scaled average S, in that proof assumed E[f(X)|G] = 0. Since we now use F,,, we have
Sn=+vVA,F,(f,X). We hence already know that dy(S,,nZ)— 0 for the asymptotic
variance 7, and the key to obtaining a confidence interval is to show that this also implies

(12) dw(Sn, M Z) — 0
for the empirical variance 7),,. The proof has three steps:

1. We first show that (12) holds if ||n? — 72]|1 — 0.

2. The main technical work is then to show ||n? —H2||; — 0, which we do using similar
arguments as the proof of the central limit theorem.

3. Given (12), we deduce the result.

PROOF OF THEOREM 5. Step I. Since 7, is, by its definition, independent of Z, the
triangle inequality shows

dw(Sn;nZ) < dw(Sn,nZ) + dw(n 2,70 Z) < dw(Sn,nZ) + [0 =il Z]]1 -
Since dy (Sp,nZ) — 0, (12) holds if || — 7, ||1 — 0. For any € > 0, we have

17 =i ll1 < M| (n = ) L(max(n, fn < €)1 + [|(n — 7n) M(max(n, 7n) > €)1

2 22
<24 Im nn||1’
€

so it suffices to establish ||n? — 72 ||; — 0.

Step 2. We first observe that, similarly to the bound of term (c) in the proof of Theorem 4,

R 1 / / / 1 ?

[ (o, M0 <o) F@X) 5@ Ol + (1 /. ox)aal) |,
A,ANA,B

<17 (x) g A e AnBe. |

[Anl

Applying the triangle inequality to ||p? — 72|, hence gives

A 1

]I d / bn / /
I = il < = [ HASDZ0) coviox), o) @ jaga

Hlas [ 16,6 <) [FOX) A (X) ~ B X5 (6X)[6)] 0o
’An| Az !

2
+ B[ ([ r@x)ia0)) ~EO7]
A, ANA,B
+ O R0 R

=:(a)+ () + () + Hf(X)H%W
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Since |A, A A,By,|/|An] — 0 as n— oo by hypothesis (iii), the last term vanishes
asymptotically We bound each of the remaining terms individually. For term (a), abbreviate

= [yep, 12(®)]dg]. Then
(a) < E[ - / . |An|71]1{d(¢, ¢/) < bn}cov[f(¢x)7f(¢IX)|G]
SO0 B (o) + 4] FCO 3 22 2P

Since 7(b,) — 0 by hypothesis (i), that implies (a) — 0 as n — co. Term (c) satisfies
() < 4[| f(X)]]2

< X201 F (X)[2+¢7(0)
B VA

and hence (c) — 0 as n — o0, by hypothesis (ii).

For term (b), we have to argue similarly as in the proof of Theorem 4: Since we do not
assume a fourth moment exists, we must split f. To this end, define <7 and f=7 as in (7),
and choose a sequence (7, ) of positive scalars satisfying

~E(f(X)|G)ldgl |,

2 IByp,l

’YTL /|ATL|

Yn — 00 and —0 asn — 00 .

For a pair ¢1, ¢ € G, abbreviate
Fon = (S (01X) 7 (62X) = E[f 7 (¢1X) f<7 (62X)|G]) -
For any two pairs (¢1, ¢2) and (¢3, ¢4), we then have
|CovES - EsnlGllly < 4757 GO p.0(dl(61.62) (65.64))|G) =

by the conditional mixing bound in Lemma 3. That implies

< [d9111dd)| 4By, | ) o< 2 . 1
H/AnxA B, ¢1¢2 |An| H1 - \/|A7an T )H4+28(~[G a(d(e,@\@) + d¢’>
4By, "Yn / e 1
< ——=—(/ al(d(e,®)|G)2|do|)= .
DBl ([ a(d(e.0)|G)7 dg))
The residual term FSOO — F¢_ o satisfies
S n |d¢1||d¢2 >
H/A,LXA B, ¢1¢2 ¢1Z’2) AL <2‘B ’Hf o )HQHf(X)H27

and combining the two shows

By,
0 <4l ([ a(d(e, )67

In summary, (a) + (b) + (c) — 0 holds as n — co. That implies || — 72 || — 0, and we have
established (12).

Step 3. By definition of the Wasserstein metric dy,, we can find a sequence of couplings
(Sn,MnZ) that satisfy |[S, — 2|1 < 2dw(Sn,MnZ). The hypothesis P(n <t)— 0 for
t \, 0 implies there is a sequence (t,,) of positive reals that satisfies

do|)? +2|By, ||| £77 (X)), ]| F ()|, = 0

n—o0

tn, ——0 and ||n—1,|1 =o(t,) and dW(Sn, MnZ) = o(tn\/ P <ty)) .
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The truncated empirical variance 7j,, := min(7),, t,,) then satisfies

n—oo

17 — all1 < tnP(fn <tn) —— 0.

Since also

Q=i noos, o

N In ~ tn tn
Pin <tn) < P(n<5)+ P(ln—in| 2 5) < P(n<5)+27— :

it follows that dy (Sy,, 1 Z) < dw(Sn,MnZ) + tn P(Nn < t,) — 0. To express probabilities in
terms of 7,, we define a sequence (€,) as €, =t/ P (N, < t,). Then €, = o(t,), and the
triangle inequality shows

_ Tin
P([Fu(f, X)| > mz1_§>
< P(IVIAWFu(£,X)] > Tz s — en) + P (il — il 15 > €n)
< P<|17nZ‘ > nnzl,g — 2en) + P( ‘ | AL F ﬁnZ’ >€n) + P(’ﬁn — ﬁn|zl,% > en)
<@)+@®)+ ().
We again bound each term successively. By Markov’s inequality,

, . ~ A1-2 7 = 7nll1 tn P (1 < tn)zl—%
) = P(\nn — fn|z1-2 > en> < <

€n €n

= 21-¢ P(ﬁn<tn) — 0.

Since the coupling (S, 7, Z) is chosen to satisfy |[\/|An|Fr — 721 < 2dw(Sn, %),

) = PR X) — 2] > ) < A0 =],

o IVIAEL(f X) = i Z]] + 110 = ol 2dw(Snsin) + tn (il < tn)

S < — 0.
€n €n
Finally,
@) = P(|inZ] >iinz1-5 —2e0) = P(|2] > 21-5 - 2ﬂ) < P(|2]> 215 - 2ﬂ)
2 n ln

< P(}Z\ > 212 — 24/P(in <tn)) = a+on(l).

Substituting the upper bounds on (a’), (b’) and (c’) into the bound above, we obtain

limsupP(‘Fn(f,X)‘> T zl,%>§a,

V1A

which is the statement of the theorem. O
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APPENDIX C: PROOFS OF THE GENERAL LIMIT THEOREMS

We next prove Theorems 10 and 11. Recall that the proof in the basic case adapts Stein’s
inequality in Lemma 7, bounds the constituent terms individually, and then deduces both
limit theorems from this bound. The structure in the general case is similar: Lemma 10 below
substitutes for Lemma 7, and the main work is again to upper-bound each term on its right-
hand side, which we do in Sections C.3—C.6. The theorems are then deduced in Sections C.7
and C.8. Although the steps remain similar, the terms in the bounds change:

» The generalization of invariance to (27) makes the dependency neighborhoods (which
above were balls of radius b,, around group elements) more complicated.

+  The fact that k, may grow with n complicates terms involving f,. Their moments are
handled using telescopic sums A}, defined below.

+ Large values of f were previously controlled using f(x)I{|f ()| <~} and its remainder.
Similar quantities now have to be phrased in terms of h;, and the coefficients c; .

+ Randomized averages have to be phrased in terms of (i, see the definitions of P, and
E,., below.

» Since we have to control the influence of randomization by p,,, spreading coefficients S™
or S, appear in the bounds.

« Since we make no specific restrictions on how a group action may apply the entries of
a vector ¢ € G*~, arguments that compare pairs of such vectors often have to compare all
possible combinations of coordinates.

As a result, the bounds become lengthy, and we first introduce some additional notation to
summarize quantities that occur frequently.

C.1. Notation. Recall that sequences (k) and (b,,) are given by hypothesis. In addition,
we will use a non-decreasing integer sequence (k/,) with k], < k,,. In the proofs, the functions
fn always appear in a centered form, which is the (random) function

hn(Xn) := fo(Xn) — E[fn(Xn)|G] .
We frequently have to restrict random measures to subsets. If y is a random measure on G*»
and A a measurable subset, write
p(e NA)
p(A)

provided y(A) > 0 almost surely. Since P, (+|A) is almost surely a probability measure even
if 41 is not, the usual rules of conditioning apply and explain expressions such as P,(«|A,Y")
for a random quantity Y. If f is a measurable function on G*», set

E, [f ()| A] := / F($)Puldp] A) = M(lA) /A ().

The distance dy (W,,, Z) in Stein’s inequality is then applied to

Bu(+]A) =

A,
W i= Y B, (@ X0 AR]

Recall from the proof overview that Stein’s method considers dependency neighborhoods

around an index ¢. We generalize these to sets of coordinates of a vector ¢ that are similar to
Y eG,

Ib,k(¢>¢) = {ng d(¢a¢z)§b} forkgkn7b>0
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Two types of averages of h,, appear in the upper bounds on dy. One holds entries outside a
neighborhood 7, (¢, @), of size I := |Z;, (1, @)|, fixed,

_ 1
hePk(9X,) = lim

— hn(0X,)|d0|%! .
m—oo [Ap,|! /{eeAﬁmei@ for i € Ty 1 (10,0)}

The other appears in particular in the context of moments. It fixes the first k,, — ¢ entries, and
can be written as a telescopic sum

hi(0Xn) = gy, (0 Xp) — g ($X,)

with summands

gt ($X,) = lim

m—00 ’Am‘l

/ B(D1s- s Bryis O 1 01) X ) |01 - -0
Al
Higher moments of h,,/n(n) are controlled using a sequence (~y,,) with -y, — co. That leads

to bounds involving the terms

o (dXn)I{|h% (0 Xn)| < ynci2(hn)} H
n(n) P

fori<k,.

More generally, for any function f,, on X,, and the coefficients c; ; defined in Section 5, we
write

Mp(fn>:: ;ggk H%Hp and Cp(fn):zzzlci,p(fn)-

Terms in the bounds that quantify the behavior of 1, involve vectors ¢» € G*» whose entries
are “not too close” to each other. To this end, we write

o) := rr;gnd(¢i,¢j) :
i#]

In particular, we must consider 1. () := pp(* N{P|0(¢p) > b, }). This is again a random
measure on G*~, with

(13) Py (¢ € +|Ay) =By, [{p € - 0(¢) > ba}|A}] .
Moments of y,, are controlled using a sequence (3,) with 3, — oo. They lead to rather
complicated terms, which we encapsulate using the sets

A
By, |

sup
i<k,

Vig,(n) i={w e G~

P (d(@i,107) < bl AK 9) < KB }

In words, a random vector ¢ is generated by P, , conditionally on its entries not being too
similar (hence P, ), and the set contains those vectors 1) unlikely to have an entry similar to
¢;. Finally, for a strongly well-spread sequence, the spreading coefficient S™ was defined in
Section 5. A similar coefficients in the well-spread case is

1 / 2k
"= _— AlAZ) | .
Sw Aegj,%eNE[Tn(A,|°|®k”)PM"®M’L((¢’¢ ) S ’ n )]
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C.2. Main lemmas. We first bound the error incurred by excluding vectors whose
entries are close to each other, i.e. of substituting ) for py,:

LEMMA 9. For a positive random variable n(n) with n(n) Lg X,, and a standard
normal variable Z*, write

Bljin) i= 5B, [ (6, )| AL

Then

C1(;(7) B, ISi

k2
ldw(E (1), Z°|G) — dw(E(uy,), Z*1G) 1 < n) w

PROOF. By definition of the Wasserstein distance,
ldw(E(pn), Z7|G) = dw(E(pz), Z¥|G)l[1 < [|dw(E(pn), E(pn)|G)ll1

< 1B Gum) ~ Bl < [ 55T E 10(6) < buha(@Xa) AR

We bound the final term: Since p,, and X, are independent, we can apply the definition of
the spreading coefficient S}, to obtain

| SR, [HO(6) < b} (X, ) AR |

< M (725 E[V|An| Py, (0() < b | AT )]
k‘%Ml hﬁ )‘Bb ’
< i) supE[[52L P ({6, ' &, € By, | AL)]
’An‘ i#]
ki Mi (725) By, |S2
< )
\/lAn\
which yields the desired result. O

The main bound on the Wasserstein distance is formulated in terms of 1 :

LEMMA 10. Let n(n) be a positive random variable with n(n)1LgX,, and F the
function class (1). Let

W= Ll SR [ (0X0) | AR
For given sequences (by,) and (k!,), abbreviate

Wi¢ = 7,‘(:) o [h¢ ok (¢'X,)|AN]  and Ai:W*_Wi-
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Then, for an independent variable Z* ~ N (0, 1),
[dw (W™, Z*|G) ||,

<sup [E[VAL S B, (A (60X, ) (W) A

teF

|,

+sup B[R B (B (68X (0 — t(WE) = ALY (W) A%

21— 5 B o8 A 6]

ol

1

|An

o [P (X)) AL — B[Rl (¢ X,)A? |G) |A%]

‘1'

PROOF. By Stein’s inequality, dW(W* Z*) <sup |[E[W*t(W*) — t/(W*)]|. We decompose
the right-hand side: Since h, =) . h

zn’

[EIW (W) — ¢ (WGl < ||E[XA 5 B, [ (@ X, )t (W) AL |G]

Iy

o[,

* HE[\/‘TZ By [hz (X)) (t(W™) —t W¢’ ‘Ak ] (W)

n(n)
The final term can be bounded further using the triangle inequality as

B[ 5B [ () (107 — (W) [ak] = (7)) |
< |G B [ (X (V) — (W) — A (W) Ak 6]
+ e, v (1 - B, [@%((J/)Xn)Ai!Aﬁ”])\G] H1
2 B A SR, [ X)) 1w ) - A v lake]|
+\/>H \é‘(*:i E[E,. [h (X)) A% |AR]|G]
G B [ (@ X) AT, — Elli (6X,) A |G| AL |
where (%) uses the fact that sup,eg |'(z)] < \/2/7. -

C.3. Bounding the first term in Lemma 10. We proceed to bound each term on the
right-hand side of Lemma 10. For the first term, we observe:

LEMMA 11. Assume the conditions of Theorem 11, and define a random measure

i (+) = [ Al P, (67 @1 € | ATE) on G. Then

|FociChn Xy ©)lp < cip(hn)  and  Elpi? (In, )] < Si[By
hold for i,n,b € Nand p e R.

PROOF. The first statement follows from the definition of , as
”Foo i(hn, Xn,e)|| = Hhm \Am\kn/Aknhn(¢1:i—le¢i+1:k,,LXn)_hn(ﬁbXn)’d(vb‘Hp

1
< hIn A ‘k / ||hn(¢1:i—1€¢i+1:ann) - hn(¢Xn)||p|d¢’ < Ci,p(hn) .
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Since E[E :-i[I,]] = [An|E[E,, op, []I¢f1¢<€Bb|A$Lk"]] < 8}|Bpl|, the second statement
also holds. O

LEMMA 12. Assume hypothesis (30). Then

A, Ti , )
sup||E [V B [ (0 XU W) ARG] || < KiCa(ay) Sy cocia (),

teF n(n)
where K1 = O(|Bg|S}). If hypothesis (31) holds instead,

sup B[V S [ (6 X)W A% |6 |
< KoCoye(ay) [ 2= yrehs Cote (ay) IR (br)
+ K3|an|02(n ;))Zk;<i0i,2(n]& )

where Ko = O(S)}) and K3 = O(S}}).

PROOF. We prove the (harder) case of hypothesis (31) first, and then modify it for (30).

Similar to VVZ?;, we abbreviate

W = Y lg | meebE (g x,) Ak

n(n)

so that in particular W;fl = VVZ-fn w - Forallte F,

B[ lBy [ (6 X0 [ Al ] 6]

(14) >

n(n)
(%)
< SB[V, (B (@X0)IWE - W, 1|Ak]]

B[ e [ﬁ;wxn)t(vv;é’nk) [ax)te]],

n(n)

where (x) holds since ¢ is 1-Lipschitz. To bound the first term on the right-hand side, we use
the definition the Lipschitz coefficients of h,, to obtain
]

Z’LE[ 17|(‘:)H|EN:L[
< SE[|AE g [T, >sz( T esa () | A2
< Bo, | 220 20 <j<k, 612( )692( )
where 7, (¢, @) = Lo, i, (i, &) \ Ly, 1o (D, @).

To bound the second term, consider the vector ¢ € G*» in (14). We define a sequence
(¢"7)jen in G*» whose coordinates differ increasingly from the ith coordinate of ¢ as j
increases: Set ¢ = ¢. For j > 1, choose

i Je - if d(¢, d;) & [5,5 +1)
b any d)z] with d( Zjvd)i) > dlam(An) 1fd(¢k7 d)z) [.]7] + 1)

for each k < k,,. By definition of ;;;, we have ¢ = ¢ for j < b,,. Then

o IR P St L]

(X[ Wi =W .

n(n)
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< 3 T, B0 B0 XK V) = 6081, G,
5 S, [ELAETR (697 X,) R (69 X)W 6]

<4\/>ZJ,J>b 2 612+5( )‘A ‘H zyk W%Hk HZ—i—a 2+E(J‘G

A e (5) g, i GIG) VAW d(@y 1) € [, + 1)}

Here, (*) is obtained using Lemma 3, and the fact that

sup|t'(z)] < /2/m and suplt(z)] <1

z€R reR

Since that is true for any ¢ € G*~, using the definition of S” we conclude
>, ¢]|
< 4\/% > Ci,2+s(%) > Cj,2+s(%)

X BB, (1) & T, k, (00, 8)HAnla T (d(;, 8))[G)|AZ)]
+437; ¢i24e(5055) 2 BB (V[ Ana T (d(by. ,)/G) [ Ak)]
<4} 022+€( ))3n< n(n ))

B[V, (R (pX)tWE . )|AL)

1

\ A

> ish, Oéfﬁs( |G)|Bi+1\By] -

That establishes the result under (31). If (30) is assumed instead, the second term of Eq. (14)
vanishes by Lemma 3. We hence have

sup B[V 3, B (6 X1 2) A% 6] |

teF

< [Bk|Sy Zizk;qgkn Ci,2(n Z))Cjﬁ(n}(LZ)) )

which shows result also holds under (30). ]

C.4. The second term in Lemma 10. The strategy is to use a Taylor expansion, and to
bound

B () (W) — 1w ) — ad ()| < 2P g (a2

As h!(X,,) might not admit a third moment we first upper-bound it using the sequence (7).
To bound |hé, (X )I(hE (HX) < Yncia(hn))l (AZ;)Q, we must control the probability that
random triples ¢, @', ¢” € G satisfy

(15) d(¢;, #}),d(p;, d)) <b, and @' €Vig, (n)
for some i < k,, and 5,1 < k/,, and either
A6) () mind(@,¢) € [k.k+1] or (i) mind(¢}, ) € [k k+1].

1#4
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We quantify these as follows: The upper bound on the term in Lemma 10 must be established
for fixed values of n and 3,,. Given such values, we choose a constant S5 (k,,) that satisfies

AL ||E 0 [[{, &", ¢" satisties (15) and (167)}| A%~
Bry1 \ Bi|[Bs, |k
A, |2 HEM§3 [I{¢,¢", ¢" satisfies (15) and (16ii)}| A3~ ]
|Bi+1 \ Bi||Bs, | kn
Similarly, we choose a constant S such that
!A ||

for all n,meN and i, j < k.

2 (Kn)

I < Sy (kn) -

and

|, = [I{d(;, ¢";) <mand & & Vi, (n)}AZ]|, < S5

LEMMA 13.  Assume (30) holds. Then for t € F, and any p,q > 0 satisfying 217 + % =

e,

A, s . *
it HE( nl(n) lEu: (hh (@ X,) (E(W )_t(Wz‘i) _ A¢ ¢ (W)) |Ak
HeF

2 ox
<K mcﬁz(n’zﬁ)) S5 (kn) 3= Lip(om)

+ KaS5Ca(5m)? + KsCo(ihs) 3, 5 (Ml T{2ulfn) > 4,3

where K1 = O(|B|?) and K2 = O(|Bk|) and K3 = O(S?|Bg|). If (31) holds instead,

e,

sup (LA TR, (5 (6:,) (V) — 1(WE) — A7) AL
HeF
LIS

< I
aSaS| \/m Clate)g n(n Z i,p(1+%) ) (7n)

+ Ko |By, [S5Ca (425)" + Ks[By, |Ca (5 n))ZiCi,Q( a@Xe) { Ba(@) > 1)
where K1 = O(R,,(0)) and Ko = O(1) and K3 = O(S}}).

PROOF. Suppose first (30) holds. Since h,,(X,,) may not have a third moment, we upper-
bound it using the sequence (7, ). By the triangle inequality,

[E[A S B (B (63 (W) — ) — ALE (V7)) |AL]

G|,

=T
< |E[AAT 5 B, [T1( 55 > 3| ARG,
T [E[LAL S B, [T E0X)| < 5} | AR (] |, -

We again bound each term separately. Since ¢ € F, it satisfies (9), hence
VIAL
B[ s [T s G|,

n(n)
<2 E[YAE, - [7] (6, [I{ B0 5 5 1A [|AK]]:.

(n)

Y >y} Af]




For all ¢ € G*» and i € N we have, by definition of Am,

ZiE[WE%UE;@X JI{E@XDl o 3| AS || AR]]

(n

< A (e (BalXedy PateXo) >»yn}>E[E%m{d<¢i,¢;> <bu}Ak,¢]])

i

dj<h C@?(%) .

Using the definition of S}, this implies

IE] ‘12”| > i B [TH{‘%‘ >y} | ARG,

{\f; 2¢X ))l > ’Vn}) )

<Sn|Bb ’CQ(n(n )Zici,Q(
To bound the second term, we abbreviate
Wi =By, [{e € Vi(Ba)}hit " (¢/ X) | AS 6]
and  A? :=F,. [{$' € Vi(5n)} (hn(@'X,) — """ (¢ X,.)) | Akn,

n(n

Again using the triangle inequality, we have

B[R 5 B (11|59 < o, 3| ARG,

<[|E[ A5 B [ (201 B2 1<y, b ((W2) — (W) | AL 6]

n(n)

+HE[L o R, {h;<¢xn>ﬂ{rfiif;€§

HB[YAIS B, [ (0 X,)
I{

=:(a)+ () + (0,

and must bound (a)—(c) further. Since ¢ is 1-Lipschitz,

Ry (X0n)
C,Qh)

(@) SE[*/"TZ Ey.. | B (6X0) [T{] 2=

<23 cia(5y) Cier, iz (o)
E[|AL|E, g2 [1{d(¢;, ;) <bn, ¢ & Vip, }|AZ"]]

<20, (5)? SUp (| An Bz [{d(;, ;) <bn, &' & Vi, }AZ]].

<'7n} ‘ W;Z ‘ ‘ Aﬁn] ]

Cl 2 (hn)

(n)
Analogously, we have

(b) < 2By, | Yycia () X, iz (555)

¢] -

Iy

<y} (ad, - A%)r (W) Ak (6],

(< (H(Win) =t (W) = AL {(W) | AL ] [C] |,

sup 55, 7B An B, g2 [I{d(¢3, ¢5) Sba, o & Vig, AT

2¥)

To bound (c), we first observe

(© < 5 sup W (@) [E [ 5B, R (#X)11

¢X'L
n(n) Cz 2(

1]

<y} (AL)? | Ak

21
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We again have to control interactions between elements of G*~. In addition to the element ¢
in (c), fix two further elements ¢’ and ¢”, and a list 4°, . . ., 4" constructed forb=0, ..., b,
as follows:

. Setp? = ¢".
» Choose wz = 1/;2_1 if either
min {J( 2717 ¢)7 J('l:bzila ¢,)} ¢ [b7 b+ 1) or k g Ibn,k;L (¢a ¢”) .

« Otherwise, choose 2 such that d(v?, ¢) > b, and d(2p%, ¢') > by,.

Note such a sequence always exists. Abbreviate
7 /'7bn’k:L
G(@) = [hn(¢'X0) = BE" (¢ X0) [ I{@ € Vi(Ba)).

An application of the triangle inequality and of Lemma 3 yields

H]E \hn ¢X )lﬂ{lh (¢X ‘<’Yn}G( ) ( // |G Hl

<leE bl 'H{"% el <9, }G(¢)G ()| O]

- Bl Xl <,y 6(¢) G|
<AL g142) () Xk r2n142) (g om0 ()

{¢" € Vi(Ba) i (min {d(e}, &), d(¢}. $)}IC),
where the final term sums over j € T, s (¢, ¢')andl € Ibmk/ (¢, »"). By Taylor expansion,
we hence obtain

(© < & sup /(@) B[ AL 5 8, (15 (S X B0 <o, (32)2 AL ]

z€eR n(n)

<A ik, jk<k! Pz’,q(1+§)(%)0k,2p(1+g)(%) 5,2p(142 (n}(ln )Zbam (0|G)
B, z5 [d(7, @) € b,b+ 1], ¢",¢" € By, (¢), {ep" € Vi(Bn)}AT] ||,
T4 i<k i<k Vig(1+2) (W) Chap(1+2) (%)ngp(Hg) (%) “E (b|G)
[, o5 [d(#7, ) € [b,0+ 1], 8", &' € By, (6),I{¢" € Vi(Ba)} 4]

< e (i) (27) (i Tipa) () S (KR (0))

This establishes the result under hypothesis (31). If (30) holds instead, we modify the proof
above as follows: There is now some K € N such that b,, = K for all n, and that any two
elements separated by a distance of at least K are conditionally independent. In this case,

(Sk’ k| By,

B[R, [R(6X) (W) — (W) — A # (W) Ak ]|
/ 2
_ k| Bgl

T VA

(Zi Ci,2q (n}(LZ) ))2 (Zi Lipa+2) (%)) S5 (kz,)
+ 2 Zz Ci2 (77

}(LZ )% CJ}2(%)
E[|An|E 02 [I{d(¢;, #).;) <K, & Vig, HA"]]

n hn Xn) hn Xn)
+ 25 Buclkl, 5, i (oS 2T | ) My ()
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and the result holds under (30). ]
C.5. The third term in Lemma 10.

LEMMA 14. Fix p,q > 0 such that % + % = 1. If (30) holds,

VAR (B, [h(@X.)A% AR (6],

n(n) n, K n Y
<EH(7WH +K102(n(n))2j>k; cja( (n)) + 3 A |02(77}(ln)) ,
where K1 = O(S"|Bg|) and Ko = O(S?|Bg|?). If (31) holds instead,

VIMIB[E,,. [ha(¢Xa) A% | A% [G]

Iy

o k| By
n}fﬁ)) 2ok, G2 (n}%) + K15,

< KBy, |Ca

ey SR SR )

n)?

where K1 = O(1) and Ko = O(S)}) and K3 = O(1).

PROOF. Assume first that (31) holds. We use the abbreviation
GF (@) :=h, (' X,) — /_z;?’“b"’k(q.’)'Xn). By the triangle inequality,
1(n)? — |An| 3, E, 2 [E[h, (0 X,)G* (¢')|G]| A7 H

n(n)? 1
i 7¢,,bn .k, 7®,,bn.kn
_ ([ VAR Z By [l ($X0) (" (' X0) — B (/X)) |G A
an - n(n)?
T b, — | Anl 20, B 2 [E[RG, (X)) G* (¢)|G]| AR
(n)?

!

_.|_

+ B[ e

,
=:(a)+(b)+ ().
We can further bound terms (a) and (b). By definition of the Lipschitz coefficients,

< AR B2 (Y iez,, . (60t N, s (008" 2y )2 (i) AR ]
(@) < Z H (n)? H1
< SEIBI o e )

To bound (b), abbreviate H (¢, ¢') := Iy (X ) (hn(¢' X,) — his"*"*" (¢/ X)), and consider
the index set

(18) T (b, 9") = {i,jld(¢;, d;) <bn}.

Then for all ¢, ¢’ € G*» such that J (¢, @') = {i,j}, let 4,9’ be two elements of G*» such
that, for the same index pair (3, j),

For the remainder of the proof, denote the concatenation of two vectors as

[¢a¢} = (¢1a---a¢m»¢1,---»¢n) f0r¢:(¢17"'7¢m)7¢:(d}la"'ad}n) .
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Using a telescopic sum, we have
[ [y H (6, 8)|C] — B 555 H (v, %) |C] |
< Zfi&l B[y (H (W10, @r1, ) 8) = H([$120410, Grr2, 1. 8)) |G

+ 3020 B [k (H (% [, Dy, ) — H (W, 1011, B0, ) |G 4

()
< 83 ot () e (g HE( U1, @], (9, i1, ¥10-1))|G)

+82l7@ Cl 2+s( n(n )) 12+5(n(n)) 721+5( ([’l,b;,(ﬁ“, [¢a¢2+1:knv¢,1:l—1])|G) .

where (*) is follows from Lemma 3 and inequality

H ﬁ (H([¢1:l7 ¢l+1:kn]7 d)/) - H([d’l:l—i—la ¢l+2:kn]7 d)/)) H

14-<
< 2¢194( ]Z ))Cj,2+a( ’En)) .

By definition, Fm7i(hn, X, qbi)IFoo,j(hn, Xy, @) is the average of H (1), 1") over the set of
pairs (2, 1,b’) satisfying (19). Therefore, for (i,5) = J (¢, ¢'),

H(¢,9)|G] — B[y Foc.i(hn, Xp, ;) F ,j(hn,Xn,¢;-)lG]H1

<8217A1Cl2+s( )CJ2+€(}(L7) 2+E( (&1, 10, d141.4,])|G)
+821¢]Cl2+s( )Cz2+a( ) ”E( ¢l7[¢l+1k ,0:))|G )

For all 4, j < k,,, we hence obtain

HE H{j(¢v¢ )={id}} (H(e,d' ) o,i (R, Xn, @, )]Foo J(thmd’

A

i n(n)?

;

2]{} an n 2%e
< 32(Xycrape (7)) R0l S By \BulShai™ (m]G).
We can then upper-bound (b) as

K{J(¢,¢")={3,i}} (H($,¢')—Foo.i(hn, X0, F oo ; (hn, X0, .
|HAn|EM§2[{ ( )=14,5} }(H( )n(n)2( Foo s ( ))‘A?Lk ]H1

T (¢,¢") {03} (H(9,0')—Foo i (b, X, Foc s (B, X0, ) | A 2k,
+ H ’An‘Elﬁ?Q [ n(n)? ‘An ]

=:bj;+ b5 >(b).

We have already obtained a bound for b above. For bl], the Cauchy-Schwartz inequality
yields

3 0% < | A My () ZUE[E o [I{T (¢, ) G {i,5}}| A% H

< AR M (5

2
n(n) ) )

Substituting the bounds for (a) and (b) so obtained back into (17) then completes the proof
under hypothesis (31). If (30) holds instead, correlations between elements separated by a
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distance exceeding some constant K have no effect. In this case,

[ 7) (1 5 B [ (8 X AT [ AT ] ]
S \/>( e ;)zn ]+ SuIBrl 35 Xk <y, G2 (i) iz (i)
S* B |2kA 2
SRR ()°)
which completes the proof. O

C.6. The fourth term in Lemma 10. The final term in Lemma 10 represents variation
of n(n), and we upper-bound it in terms of its variance. As in the proof of the basic case,
n(n) can be thought of as an empirical variance, and its variance is a fourth-order quantity.
Since the fourth moment of h,,(X,,) may not exist, we control it using the sequence (y,).
To bound the standard deviation, we have to consider interactions between quadruples

®1,...,¢, of random elements of GF~. Once again, n, by, 3, and k, are fixed. For a
quadruple of indices i, 7,1, m, we consider the events

(20) d(¢1,i7 ¢2,j) < bn d(¢3,l7 ¢4,m) < bn

(21) and ¢ €Vig, ¢€Vjp, ¢3€Vip, Gy€Vng, .

Since n is fixed, we can then choose a constant S} such that
ATBL e [B s ({1, by satisfy (20), (21) and ¢, } s, € A} A ] || < 5

holds for every Borel set A C GF» with [pr;(A)| > 1 for all j < ky,.

LEMMA 15.  Fix p,q > 0 with 5, + = 1. Assume (30) holds. Then

5 AT, [ (X0 AF, — B[R (6X)A% 6| A% ]|,

2 \
<K1\/|T iaes) () Wi+ 12 ”02(W}EZ))+K3[02(,7}(‘;;)) 1Bk|So

) IFsoi(hny X, €) |2
@)Zi (E[ n(n)2

where K1 = O(|Bg|2) and Ky = O(S™Bk|?) and Ks = O(S"|Bk|). If (31) holds
instead, then

+ 0o B (hn, Xos )| > i (o) 1)

n

3, MR, [ (@ X0 AL, — EIR (6X,) A% G| AR

5)?)

<K1<|Bb 156 Cove (5 )+ ‘B‘b"l‘k"cﬂe(

h
k2 IBs,, [Ru(b2)C5 (o
+ K>S), : [A,] - ( )

+ K3 [By, e (27) 3, (B[ sl Xu P Fo b X )l pucia(hud ) 2

n(n)?
By, |]<;412F421(1+§) (n)

Ky Si
VA Vel

for K1 = O(8™) and Ky = O(1) and K3 = O(S™) and K1 = O(R2(0)).
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PROOF. First suppose (31) holds. As in Lemma 14, we abbreviate

H(, ') = hi ($Xn) (7 (¢ X)) — iy " (¢/ X))

where we now keep track of the index ¢. We conditionally center H,

H(¢,¢',i):=H(o,¢',i) —E[H(¢,¢,)|G].
Interactions between IAFOO . for different values of 7 involve terms of the form

Fij(9,0,7) = Foo,i(hn, X ) {Fo i(Fin, X, @) < Teisa(hn(Xn))}
X Fos (s Xy VU Foc (s Xy ¢') < 72 (B (X)) }

for ¢, ¢’ € G and some threshold 7 € (0, co]. We again center conditionally,

Fij(¢.¢',7) = Fij(¢,¢/,7) — El[F;§(¢, ¢, 7)|G]

Abbreviate J;; =I{j € I, j (¢;, '), (¢, @) €V; 5, XV} g, }. Using the triangle inequality,
we obtain:

S | YA, . (7 (X, A%, — Bl (6X,) A% G| A% ]|,

n(n)
_Z,]H n)zE ®2[ (¢¢ )’Aka]Hl
+ 3005 e B (1= i) H (9. ¢.0) | A7
=105+ bij -
Consider a;; first. By the triangle inequality

i < B[ oo [ €Ts, i, (1, )M EIH (@, &, 1) |G)—E[| Fis (8, 8}, ) |G| | AZ] |

[ o [T (81, 00)]|

:;au_f_a..

\1

1

To bound aw, we proceed similarly as in the proof of Lemma 14: Recall the index set

T (d,¢") in (18). If ¢, ¢’ € G~ satisfy J (¢, ¢') = {i,j}, we have
|7 E[H (9.8 0)|G] ~ E[[F(9. 6,0 |G]) |
<83z e (i) ciore ()@ (Al 8 Do, D|G)
+ 83 clave () cizee (5 37) @ (AW, (B 11, #)IG) -

Applying Lemma 3 and the definition of the random measure p, gives
A, ..
2igE [vlv(n)LEuﬁ{H{J(Q ¢ )={i,j}}

|E[[H (¢, ¢, i)||G]—E[|[Fi;(¢h;, ¢y, 00)| |G| ’AQkH

<3257 Bl (55 cpc (7)) Sy, [Bist \ Bl = ([G)
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Again similarly to the proof of Lemma 14, we obtain
S B[, T (6, 6)) ¢ (i}
* BT (6, ¢,1)I|G] B[ Fis(¢,, ¢}, 0) |G| |42
)| A BB [T (6, 8) ¢ {71} AZ] |

< SR Ay )

<4|Bb ‘ Mg(

Hence
nk Bb 2 2 €
iyl < 3283 RB (5, e ()2 sy, [Bigt \Bilad (i]G)
483|an|2ki 2
+ SR My ()
To bound ay;, abbreviate Ji; :=1{¢ € Vi 5,9’ € Vj 3.,d(¢;, $;) <bn}. Then

Fij(¢,,¢;,00)=Fi;(d,,0)vn) ‘A% ]H
1

n(n)?

ay < |||An|E, 22 [

+ AR g [7 7 e | A2

The first term can be bounded using Cauchy-Schwartz, as
F v¢;'7 _FU ¢i7¢;7 n
132, |A[E e [T L

IFoi(hn, X, €) I [Foo i (hin, Xn, )| > e 2(hn)} 1\ 3
§4Zmin{i,j}§k;<E[ = o;(Zn)Q - ])

¢j2 (25 JE[E, 02 1{¢; ' &) € By, }|AZ™]]
< 88,IBu, [(X; 2 (oizy)

54 (Bl g Foo i (s X, €) P Foc (o, X )] > a2 (hn)}])

A

N =

The second term involves four-way interactions, so some abbreviations are helpful: Set
Ci = HFoo,z(hna Xna e)H{‘Foo,z(hna Xna 6)| < 7nci,2(hn)}”4+25 and FZ&Z ‘= min {Foo,i”)/n}-
For ¢, ¢’ 1,4’ € G and indices i, 7,1, m, we have

|COVIEFL ; (s X, S)FL (s X s @), T (s Xt 0)FL (s X, )]

<AGGGGman (d((9,9), (4,4)|G)

Therefore, by definition of S}, we have

Y. AE, g [{¢' € Vs, d(d;, ) < by }W!A% ]

i<kn,j<k,

[

<8Il (515 Bin\By F(16))* iy, GG




28

In summary, we can upper-bound a - as

1
B, |k’ - 2
ik ks, i < 87'\7‘%] (54 5, 1Bis1\Bilaz " (i !G)) ik ik, GG

+880 By, [(X; ci2(4))

n(n)
Zi (EHFoo,z(hnu Xna 6) |2]I{|Foo,z(hn7 Xnv 6)| > ’Vnci,Q(hn)}])
An upper bound on the final term ZZ j (bi;) is, by Cauchy-Schwartz,

2(3; m(%))zs;]pE[EungAnM{qb’ & Vi(Bn), d(y, B;) < bp YA,

0 |-

and we have hence obtained all terms in the bound under hypothesis (31). If (30) holds
instead, there is again a constant distance K beyond which correlations vanish, and

5) + By, |S5Si (s cia ()

Bk|[2k *
(b) < 2| \/||AT V A Zigkn,jgk; GG s

which completes the proof of the lemma. O

85" |Bk|*k:
(a) < SSifRuclha pg2 (o

C.7. Proof of the central limit theorem. We complete the proof of Theorem 10 by
showing dy (/| An|Fr (hy, Xn),nZ)— 0. We first note that

n—oo

(22) Hnmn 2l =220 forallmeN.

That is the case since, for every € > 0, we have
El[ T = 1iml] < & + Bl {0 — 0| > €3) + E [T, oI [T s — 1| > €3]
< e+ Elnn [, — 1l > €}]

+ Bl (X cip(hal{|72 — 02l > €))7,

and (22) follows by uniform integrability of (f,($Xn)?)e.n
We next must specify suitable sequences of coefficients 7, 5y, kn, k,, and b, for which
the relevant terms in the bounds in Lemma 9 and 10 converge to 0 as n — co. We first choose

(7n) and (B,) to satisfy

Such sequences exist, since k2/+/|An|— 0. Because of (22), (b,) can be chosen to
additionally satisfy

n—o0

175, = 5, Il =0
In addition we ask that (k/,) and (b,,) satisfy
r =By, |k, S5 — 0

. h
= By, [k}, 3, ci2 (B, (60X )H{ﬁ >m}) — 0
7“;11 =By, (Zk’ <ici,2+€(hn)> — 0
rh 1= By, | 4 Ry (by) + Ky, — 0

\/\T
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as n — oo, which is possible since S5 — 0 as 3, — oo. Consequently, we can choose
sequences (6,,) and (&,,), with §,, — oo and &, — oo such that

6n/ed =0 and  6,r) /3 I forj=1,...,5.
Because of (22), these sequences can be chosen to additionally satisfy

On n—00
3 ||77b n nb ||1 —0.

Let 7 be the asymptotic variance, as in the hypothesis of the theorem. Given (&,,) and (6,,),
we construct the sequence (7(n)),, as

n(n) :=nl{n € [un, vn]} + enl{n & [tn, vn]} .
Then using Lemma 2 we obtain

dw(Sp,n(n)Z) < 6,E [dW(n(n
To apply Lemma 9 and Lemma 10, we note that

supz ng(hl (pXn){

Recall that the constants S, S5, etc by definition depend on the specific choice of the
sequence (k) and (3,,). With the sequences satisfying:

Sy <K.B,SI  SI<K]BAS'  S;—0.
Moreover, we have Zigkn,jgk’ GG < z—é [Zl ci,2+5(hn)}2 and
>3 17 (X ) {1, (9X0)| < Amci2 (i) M < 225 c2,i(n) -

Substituting into Lemma 9 and 10, we then obtain an upper bound on E [dw( 2o A ‘G)] and

Z|G)]  for  Sp:= /AL Fp(hn, Xy) .

hcj(’ff | >n}) =0 as 7y, — 00 .

hence, as shown above, on dy (S, Z) as claimed.

C.8. Proof of the Berry-Esseen theorem. To prove Theorem 11, let i) be the random
measure defined in Eq. (13). We consider the variable

W= YA, i (@X,)|Ak] = VRIS B, 5 (@X,)]AR],

and similarly define W* by substituting z for i, as in Lemma 10. If (b,,) is the increasing
sequence chosen in the theorem, Lemma 9 shows
K2 Ch () B, 53

(W, 2) = dw(W*, 2)| < S
|Asl
(If hypothesis Eq. (30) is assumed, we can in particular choose b, = K for all n and some K.)
We can apply Lemma 10, where we choose 1(n) := 7 and k!, := k,, for all n. In Lemma 12—
15, we can set p = % and g = % The constants S5, S} and the weak spreading coefficient S},
can then be bounded in terms of the (strong) spreading coefficients as

S5 <S" Sp<S” Sy <S",
and substitute these into the bounds in Lemma 12-15. The sequences (/3,,) and (), which
respectively controls moments of (1,,) and ( a0ny > are relevant in the proof of the central limit

theorem; here, we can set 3,, = 7, = oo for all n, and note that
175 (X)L A, ($ X0 )| Svnciz (i) Hisae ) = 10 (@Xn) s o) < cisars) (%)

and ; < cq449¢ ,( ) Substituting all terms into Lemma 10 completes the proof.




30

APPENDIX D: OTHER PROOFS

This appendix collects the proofs of all results aside from the main limit theorems—on
mixing coefficients, concentration, and applications—in the order they appear in the text.

D.1. Properties of mixing coefficients.

PROOF OF LEMMA 3. Fixn € N and (4, B) € C(n). Using the triangle inequality,
E[|P(A|G)P(B|G) — P(AN B|G)|]

<2 sup E[I(C)(P(A|G)P(B|G)— P(ANBI|G))] < 2 sup (a+Db)
Ceo(G) Ceo(G)

where we have abbreviated
a:=E[I(C)P(A|G)P(B|G) — P(A)P(BNC)]

and b:=E[P(A)P(BNC)-1(C)P(ANB|G)] .

It follows from the tower property that
b < !P(A NBNC)—P(A)P(BN C)| <a(n),
and therefore b < a(n). Similarly,
a < |E[P(A)P(BNC)—I(A)P(BNC|G)]|
<|P(A)P(BNC)—-E[I[(A)P(BNC|G)]| < klggoa(k) =0.

In summary, E[|P(A|G)P(B|G) — P(AN B|G)|] <4a(n). Since that is the case for all
n € Nand (A, B) € C(n), we conclude a(n|G) < 4a(n) O

To relate marginal and conditional mixing coefficients, we use Lemma 3:

PROOF OF PROPOSITION 9. Fix 4,5 < k. We can choose a subset G C G and vectors
o, ¢’ 9,1’ € GF such that §; ; (¢, ¢, G) >t and §; ; (v, 9, G) >t and

. ifl=i =
7/’12{7T¢ e ¢f={w¢] v for some 1 € G .

¢,  otherwise ¢,  otherwise
For Borel sets A C R? and B C R“, Lemma 3 shows
E[I[(Xg, Xg) € A X € B)|G] — E[I[(Xy, Xy) € A X € B]|G]
< a(t|G).

Iy

Substituting into the definition of P; ;(-) gives
|P(A, B|G) — E[P; ;(A)I{ X, € B}|Gy]| < a(t|G)
for all 4, j < k, and hence o, (t|G) < a(t|G) as claimed. O
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D.2. Concentration. To prove concentration, we use the “exchangeable pairs” variant
of Stein’s method, in this form due to Chatterjee [2].

PROOF OF THEOREM 13. The proof strategy is to regard E, [h,(¢pX,,)|AF] as an
integral, approximate this integral by sums, and establish concentration of each sum. These
sums are constructed as follows: For each m € N, let C,,, be an ¢,,-net with ¢, = 1/m. Let
Am be a partition of G into a countable number of measurable sets; we write \,,,(¢) for the
set containing a given ¢ € G. Clearly, this partition can be chosen such that

each ¢ € Gy, is in a separate set of A, and A (4) C By, (9) -

Since A, partitions G, the product )\fg ‘= Am X ... X Ay, partitions Gk, and we discretize
the integral as

Snm =Y gectn B, [A%(¢)|Aﬁ”] hn (9 Xn) -

For each fixed n € N, the approximation error satisfies

[Snm = By [hn(@Xn)| AR < sup  [[ha(@Xn) — ha(@/ Xa)[1 = 0.
¢, €GFn
d(Pl,p;)<ém, i<kn

Thus, || Xnm — Eu, [hn (¢ X5) }Aﬁ"] || = 0 as m — oo. Since hy, is L;-uniformly continuous,

P(|E,, (P (X 0)|[AR] | > | ) < limsupP(| S| > ¢ ’ tn) fort>0.

Now apply the method of exchangeable pairs: Consider the sets of vectors

A (@) = {(1, ..., Pk,) € AR |1 € A (9) )

Recall that X2,,,,, is self-bounded by hypothesis. For each i < k,,, the self-bounding coefficient
i8 X gectn GEu [Am i(¢;)|Akn]. Using [2, Theorem 4.3], we obtain

(1= Al(Xp)pec,))t?

P(Smn 2 tlpim) - < QE[GXP(_ZMQZ-ciEmA;ﬂ@)A#])Zﬂ
(1- A[(X¢)¢>ecm])t2”

2Byl (Siei)® /1

where the second inequality uses the definition of 7,,. That holds for any m, and any
decreasing sequence (C,,) of nets. For m — oo, we hence obtain

< 2E[exp(—|Al

P(IE, (ha($X0)|AE)| 2 ] ) < 2B [exp(~|An] 25105

as claimed, where we have substituted in the definition of p,,. O

D.3. Approximation by subsets of transformations. Recall that we may assume
E[f(X)|G] = 0 without loss of generality, by Lemma 6.

PROOF OF PROPOSITION 15. Set f':= f — E[f(X)|G]. By Theorem 10,

\/|A7’d¢‘ = nz.
For the measures (y,,) chosen as un( )=
do| = nuZ d do| < nZ .
ALNH \/m‘ 9| NH an \/|A7| o] n
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Since the random variables n and 7y satisfy

Kl —? = K / E[f(X) f(6X)|G]|dé| —
H

_ /H /K E[f(X)[f(6X) — f(60X)]|G]|d0]|do)|

almost surely, the result follows. O

D.4. Applications. We first establish Theorem 17, on exchangeable structures. The idea
of the proof is to represent (f(¢X))es, approximately, by a certain random field X, on Z*
that is invariant under diagonal action of shifts. That allows us to apply Theorems 10 and 11.
The proof can be read as an example of the generalized U-statistics in Corollary 12.

PROOF OF THEOREM 17. For ¢ € N, we denote

di:zlimsup”f(X)—f(Tin)HQ and dﬂn):zlimsup”WHT
J J

Consider the segment [i] = {1,...,i}, and write sl = {¢ € Sp|¢i] = [i]} for the set of
permutations that leave it invariant.

Step 1: Approximation. We define
]a(l') = ”}EPOO @ Z¢e§£}j fQz),

and use fi(¢X) as a surrogate of f(¢X) that depends only on the image ¢[i]. Averaging out
the kth coordinate gives

FoF(a) = Jim 2 iem [ (k)
We will show that for any increasing, divergent sequence (k,),
S es, (F(0X) = f(0X)) 250 asn—oo.
Indeed, since (f —f*) =37, (f**'—f*), we have
19 Yoes, (F6X) = P @X)} < 1€ Loes, (F(0X) = T (0X)]I;
< 5 g ues, EL(f(0X) = [ (6X) (f($X) = ™ (0X))]
< B Dokhy Db eS, E[(f*(0X) = [* (X)) (f(¥X) = f* (¢ X))]
Consider the summands on the right-hand side. Observe that
E[(F*(6X) = F*7H(0X)) F™ (X)) =0
and  E[(f*(¢X) — f*H(6X)) [ ™ (X)) =0
whenever 1)(m) = ¢(k) for & < m. Each summand is hence bounded as
[E[(/*"(X) = [H(6X))(f (¥ X) = [ (v X))]|
= [E[(/* 1 (0X) = FH (X)) (f (v X) = 7 (X ) = [ ( X) + o™ (0 X)] |
< || OX) = FE(@X)|, || f (0 X) = Fo (0 X) = o ( X) + Fom (0 X
<2dyd, .
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Substituting into the bound yields
15 Y pes, (F(6X) = P (0 X))][}
< BoF 2okzk, 2omeN 2gupes, HO(K) = ¢(m)}dydm
< 2(Xgsk, d) (Lmendm) — 0.

It hence suffices to show ‘S—\/j > oS, fFr (¢X) is asymptotically normal if k,, = o(n'/*).

Step 2: Representation by random fields. For each n € N, we construct a scalar random field
X, on ZF» as follows: For j = (j1, ..., j) € Z*, define the permutation Pji=Tij, O OTkjp-
Note that ¢;[k] = j. Then

P (5X) it § # j forall 1 £ k

X, =Y
" ( J) 0 otherwise

jezr.  Where Yj:—{

is a random element of X,, := R%"" . The shift (i, (%5)jezin ) = (Tj4i)jezrn 1s an action of
the group ZF» on X,,. Since X is exchangeable, X, is by construction invariant under the
diagonal action of Z*~, and its marginal mixing coefficients satisfy o, (t|/G) = 0 for all ¢ > 0.
Theorem 10 then shows convergence as in (35) holds, for n1LZ.

Step 3: Berry-Esseen bound. The reasoning is similar: For k € N, we have
dy (W\/ZZ¢GSHJC<¢X>7 W@ngn fk(¢X)) < 2( Elzk dl(n)) ( ZmEN dim (1))
We denote 1?(n) := Di<k Cov[F! (X, e)F/ (X, $)|G], and observe that

7% (n) —n°
et

IN

‘ S22k men CovlE! (X, )™ (X, ¢)|C] H
2

<2 (ZmEN dm(n)) Zzzk di(n).
Substituting into Theorem 11 gives

(S o 10X),2) < C(5 £ 50, i)
VAISn| £=ses., 4) = MR T Zazp V)

for some C' < 0. O

PROOF OF PROPOSITION 21. Write L := {¢ € G|¢(W)NW # &}. Observe that, if we
choose ¢ to be an element of H \ (A,, N H) that is such that ¢(W) N A, W # &, then we
have ¢ € A,IL NH. This implies that

VIR BT~ (g |, Fomaion]

(An & AL)OH]

(34> Bit1 \ Bilau(i|G) 7 — 0,

- | A 1 HJ iEN
1 _ d
and Theorem 4 shows T S, cm f(o(ID) = E(f(ID)|G)d|¢| = nZ. O
PROOF OF PROPOSITION 22. By hypothesis, sup,;-qi~"|B;| < oo, polynomial stability
holds with index g > w, and II is a Poisson process. We have to show that

€

[ e (de.9)]6)7 |dg| < oo



34

For b € N, a subset G; C G, and F € F, define
fop(F) = fu(FNBy) Y(G1) = (fn(o(I]))pec, Yo(G1) := (frp(o(ID)))gec, -

Write £( «) for the law of a random variable. Then
|£r () ~ LRG|, < POVG) £ WG SB[ YD IRy, 11,) > b)
(z,y)eGLWNIL

An application of Campbell’s theorem for Poisson processes [5] shows there are constants
C1,C2>0and v :=|{¢ € H|p(W) NG W # @}| such that

23)  ||[L(Y(G1)) — L(Y(G1))]|,, < Crv supWP(R(a:,m,Hn) >b) < COyyb™7.

(z,m)e

Let d be the Hausdorff metric induced by d, and denote d-balls by B. Take Gy := {¢,¢'}

with elements ¢, ¢’ € G and let G5 be another subset of G with d(G1,G2) > b. Then there is
(3 < oo such that

LV (G2)) = LY, 212 (G2 € PY(Ga) # Vi, )2 (G2)
(24) < X jsp P(Y(Bj1(G1) \ B;(G1)) # Yeios (Bja (G1) \ Bj(G1))

b
<C3) 5000 +3)790G +b) '

where the second inequality applies the union bound, and the third follows by substituting the
growth rate and the definition of stability into Eq. (23). Whenever 1 and G satisfy |G1| <2
and d(G1,G2) > b, and A, B are measurable sets, there is hence a constant Cy such that

|P(Y(G1) € A,Y(G2) € B) — P(Y(G1) € A)P(Y(G2) € B)|
<NL(Vey2(Gr)) = LYV (G1)) v + 1£(Yi(G, 62)-b/2(G2)) = LY (G2))[lav
<Cu(3)""
The first inequality holds by independence of Y} /5(G1) and Yy, ¢,)—p/2(G2), the second

follows from Eq. (23) and (24). That implies o™ (b|G3) < Cy4(b/2)"~9, and hence the desired
result since g > 24E<y, O

PROOF OF THEOREM 23. Since the group is countable, we can define an order < on G
by enumerating the elements of A,, as ¢7, @5 ... and declaring ¢} ;| < ¢} for all ¢ € N. For
the process (S), define the o-algebras

To(6) = 0{Sy |¢/ € Au¢/ <0} and  T(9):=0{Sy ¢ <}
With these in hand, we define functions
fn(S;¢) = log P(S4|Tn(9)) — Ellog P(Ss[Tn(#))]
gm(S,¢) == log P(S4|T(¢) N Br) — Ellog P(S|T(¢) N Bin,)]

An application of the chain rule then yields

A (log P(5a,) ~ Bllog P(Sa,)]) = A= Tgen, Ju(5.0).
Now consider a ¢ such that 7,,(¢) N B, = 7 (¢) N By,. Then
[/n(S,¢) = gm(S,9)|l2 < pm -
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The number of ¢ € A,, for which that is not the case is
{¢ € An|Tn(¢) NBm #T(¢) NBr}| < |An A BrAy

Denote M), :=supyeg ace || 1og P(X|Xa)|lp. For any ¢,¢" € G that satisfy d(¢,¢’) >i
and any k£ € N, we have

Cov [fn(sa ¢) - gm(57 ¢)a fn(S7 ¢/) - gm(57 ¢/)]
< 4min(pm, pr)? + 8min(pm, pr) Ma + 4MZ, %5 (i — k, [Bp|) .

Therefore for any sequence (b,,) satisfying % — 0 and b,, — oo we have

T Soea, fnlS:0) = 9,(8,6) = 0.

Let o™ be the mixing coefficient of g,,. Then o' (i) < (i — 2m, |B,,|). Theorem 10 hence
implies

T e, om(@X) SrmZ for = 35, Covlgn(X), gm(6X)]

Since 1, meee, 7, the result follows. O
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