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ABSTRACT
Stargardt macular dystrophy (Stargardt disease; STGD1; 
OMIM 248200) is the most prevalent inherited macular 
dystrophy. STGD1 is an autosomal recessive disorder 
caused by multiple pathogenic sequence variants in the 
large ABCA4 gene (OMIM 601691). Major advances in 
understanding both the clinical and molecular features, 
as well as the underlying pathophysiology, have 
culminated in many completed, ongoing and planned 
human clinical trials of novel therapies.
The aims of this concise review are to describe (1) the 
detailed phenotypic and genotypic characteristics of the 
disease, multimodal imaging findings, natural history of 
the disease, and pathogenesis, (2) the multiple avenues 
of research and therapeutic intervention, including 
pharmacological, cellular therapies and diverse types 
of genetic therapies that have either been investigated 
or are under investigation and (3) the exciting novel 
therapeutic approaches on the translational horizon that 
aim to treat STGD1 by replacing the entire 6.8 kb ABCA4 
open reading frame.

INTRODUCTION
Stargardt macular dystrophy or Stargardt disease 
(STGD1; OMIM: 248200) is one of the most 
common macular dystrophies.1–8 STGD1 was first 
described by Karl Stargardt in 1909 and is charac-
terised by bilateral progressive loss of visual acuity 
(VA) and central vision.9 There are three presenta-
tions of STGD1, childhood onset, adulthood onset 
and late onset, with earlier presentation being asso-
ciated with a worse prognosis.3 7 10–20

STGD1 typically presents with a variable degree 
of macular atrophy and yellow-white flecks at 
the level of the retinal pigment epithelium (RPE) 
(figure  1).8 10 11 14 21 However, there are a broad 
range of manifestations resulting in a large spec-
trum of clinical presentations, onset, progression, 
psychophysical and electrophysiological findings, as 
well as variable prognosis.6 10–13 15–20 22–32

The global prevalence of STGD1 has been esti-
mated at 1 per 6578.33 Due to the progressive 
nature and often early onset of STGD1, patients 
typically face long-term health-related finan-
cial, emotional and psychological implications. 
Although information on the economic burden of 
STGD1 alone is not available, these impacts have 
been studied in a broad range of inherited retinal 
diseases (IRDs).34 Some studies estimate the total 

cost is over US$27.5 billion per year among people 
aged 40 years and younger with eye disorders.35 36

In 1997, disease-causing sequence variants in 
the ABCA4 (ATP binding cassette subfamily A 
member 4; OMIM: 601691) gene were identified 
as the cause of STGD137; with more than 2000 
variants found to date. The carrier frequency for a 
disease-causing variant in ABCA4 may be as high as 
1:20; although the true prevalence of retinopathy 
attributed to ABCA4 variants is likely much higher 
than that of STGD1, given it can also cause other 
phenotypes including cone dystrophy, cone-rod 
dystrophy and rod-cone dystrophy.1 3 6 7 22 38 More-
over, the bone spicule pigmentation of ABCA4-
associated retinopathy attributed to severe cone-rod 
dystrophy (formerly retinitis pigmentosa inversa) is 
now widely accepted as a sign of late-stage cone-rod 
dystrophy and peripheral degeneration, rather than 
rod-cone dystrophy.39

An increasing amount of research on the clin-
ical and molecular genetics of STGD1/ABCA4 has 
been performed over the past 15 years. This has 
facilitated a growing understanding of the under-
lying pathophysiology, which has resulted in both 
completed and ongoing trials, as well as a broad 
range of planned clinical trials.6 7 40–42 Many 
types of interventions have been explored to treat 
STGD1, including pharmacological treatments, 
regenerative cell therapies43 44 and gene replace-
ment/supplementation therapy.45 46 Increasingly, 
precision medicine focusing on particular vari-
ants and mechanisms has been gaining attention 
(including gene editing).7 42 47

The aim of this review is to describe the pheno-
typic and genotypic characteristics, imaging find-
ings, natural history and pathogenesis of the 
disease. Additionally, the characteristics of partic-
ular ABCA4 variants, a pathogenicity assessment 
and a concise overview of the therapeutic land-
scape—past, present and future—will be presented.

DISEASE OVERVIEW
Gene family/gene function
The ABCA4 gene is a large, highly polymorphic gene 
with an estimated size of 6819 bp encoding a 2,273-
amino acid protein, including 50 exons.37 ABCA4, 
formerly described as ABCR, is a member of the ABC 
transporter gene superfamily, encoding the retinal-
specific transmembrane protein, a member of the 
ATP-binding cassette transporter superfamily.3 6 48 
ABCA4 contains two transmembrane domains, two 
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glycosylated extracellular domains and two nucleotide-binding 
domains (figure 2A).3 6 48

ABCA4 is localised along the rim of the rod/cone outer 
segment discs and is involved in the active transport of retinoids 
from photoreceptor to RPE in the retinoid cycle.48–51 The visual/
retinoid cycle involves a series of enzyme-catalysed reactions 
that convert all-trans retinal, generated with photobleaching 
of rhodopsin/cone opsin, back to 11-cis retinal.48 50–53 All-trans 
retinal is released from the light-activated rhodopsin/cone 
opsin into the rod/cone outer segments to form a complex with 
phosphatidylethanolamine (PE), resulting in N-retinylidene-PE 
(N-ret-PE).6 48 54 This complex is then actively transported to 
the disc surface by ABCA4 (figure 2B,C). ABCA4 has also been 
shown to be expressed at lower levels in the RPE, where it may 
serve a similar function for the recycling of retinaldehydes.54

Molecular genetics
The vast allelic heterogeneity of ABCA4 is clearly demonstrated 
by the number of reported sequence variations (>2000) to date, 
resulting in macular dystrophy, cone dystrophy, cone–rod and 
rod–cone dystrophy.3 6–8 Due to this heterogeneity, establishing 
genotype–phenotype correlations is highly challenging. Like-
wise, the identification of ABCA4 genetic characteristics related 
to intronic variants remains largely elusive, despite genetic 
sequencing advances. Deep intronic variants have been shown to 
significantly account for the missing heritability in STGD1 and 
have been associated with late-onset disease and mild pheno-
type.55–57 However, due to the highly polymorphic nature of 
the ABCA4 gene, the genetic and pathogenic features of deep 
intronic variants remain difficult to characterise.

Null variants or variants predicted to be more deleterious 
are generally associated with earlier onset disease and charac-
terised by a more severe, rapidly progressive phenotype, often 
with more generalised retinal involvement.6 8 11–13 16 25 26 32 
Milder variants, such as missense variants, are often associated 
with later onset disease, typically milder, more slowly progres-
sive and more likely isolated to the macula.58 Although certain 
missense variants can produce severe functional effects similar to 
nulls (eg, p.Leu541Pro/p.Ala1038Val (complex), p.Glu1022Lys, 
p.Cys1490Tyr, p.Glu1087Lys, p.Thr1526Met, p.Arg1640Trp 
and p.Cys2150Tye p.Cys2150Tyr).13 16 25 26 58 The interaction 
between the variants (including disease-causing and benign vari-
ants) may also affect function.59 Nevertheless, certain missense 
variants, including p.Arg2030Gln, are commonly observed 
in the mildest ABCA4-associated phenotype, late-onset/foveal 
sparing STGD1 (FS-STGD1).14 26

While ABCA4 allelic heterogeneity is high, there are founder 
variants associated with STGD1 in various racial and ethnic 
groups as well as differences in clinical features related to 
ABCA4-retinopathy.6 There have been larger cohort STGD1 
studies featuring the genotypic profile and phenotypic correla-
tions for the White populations in European/North American, 
although there are a limited number of studies for the Latin, 
Asian, African and other populations.5 8 32 60 61 However, further 
studies are required to better understand the clinical difference 
and effects across different ethnic and racial groups.

A category of rare hypomorphic alleles has also been charac-
terised, which are typically observed in milder phenotypes with 
better prognosis.62 Lee et al showed that these hypomorphic 
variants can modulate the severity of the phenotype irrespective 
of the severity of the allele in trans.62 Notably, the mechanism 
of hypomorphic alleles or milder variants has been attributed 
to either reduced function of the ABCA4 protein produced in 

normal amounts (ie, missense variants) or reduced production of 
a normal functioning protein (ie, splice variants). The aberrant 
splicing in the ABCA4 gene and resulting variants, whose patho-
genicity was previously unknown, has more recently been reclas-
sified as pathogenic based on midi-gene and fibroblast assays.63 64

Molecular mechanisms
Failure of transport due to ABCA4 dysfunction or mislo-
calisation leads to the inefficient removal of N-ret-PE from 
photoreceptor outer segments, resulting in an accumulation 
of bisretinoid compounds in the outer segment discs and ulti-
mately in toxic levels of bisretinoid A2PE in photoreceptor 
membranes.48 49 A2PE is hydrolysed to form the highly toxic 
metabolite N-retinylidene-N-retinyl-ethanolamine (A2E), which 
accumulates as a major component of lipofuscin in RPE cells, 
and ultimately causes RPE dysfunction and death, with subse-
quent photoreceptor dysfunction/loss (figure 2D).53

Previous studies of STGD1 mouse models (ie, ABCA4 
knockout) support the aforementioned pathogenesis; however, 
there are limitations such as lack of a macula in mice and the 
mild phenotype in mouse models showing a later-onset disease 
with slower degeneration than that of typical patients with 
STGD1.51 65 Moreover, there is data from multimodal high-
resolution imaging studies in humans that in some cases photore-
ceptor cell loss may precede RPE cell dysfunction/loss.17 19 20 66 67

Clinical aspects
Patients with STGD1 commonly present with progressive bilat-
eral central vision loss. The onset is often in the first or second 
decades of life.11 12 24 The onset relates to the disease severity; an 
earlier onset disease is associated with more deleterious variants 
compared with adult-onset disease, which is more frequently 
due to missense variants.11–14 16 25–27

Comprehensive investigations are crucial for clinical diag-
nosis and monitoring, including fundus photography, fundus 
autofluorescence (FAF) imaging, spectral-domain optical 
coherence tomography (SD-OCT) and electrophysiological 
assessment.1 3 6 7 Likewise, clinical classifications are useful to 
assess the disease severity associated with a particular genotype 
group.11 12 19 20 23 25 32

At an early stage, ophthalmoscopy can reveal a normal retina 
or minimal retinal abnormalities, including foveal reflex abnor-
mality, white macular dots and RPE disturbance, with or without 
vision loss.15–17 Retinal imaging with FAF, SD-OCT and electro-
physiological assessment (including pattern, full-field and multi-
focal electroretinograms; PERG, FFERG, mfERG) are useful for 
diagnosis.42 68–70 Notably, children with STGD1 may not have 
retinal flecks on funduscopy or FAF at the early stage, but over 
time may develop these flecks associated with increasing macular 
atrophy.15 16 In very early childhood-onset disease with relatively 
preserved vision, macular atrophy involves the parafovea and 
spares the foveola, and these changes are preceded by fine, 
symmetrical, yellowish-white dots at the central macula in some 
cases and/or characteristic loss of outer nuclear layer transpar-
ency on SD-OCT.15–17

Electrophysiological assessment is particularly helpful in 
providing better-informed advice on prognosis.11 A classification 
of three functional phenotypes based on electrophysiological 
findings is well-established: group 1—severe PERG abnormality 
(macular dysfunction) with normal FFERGs; group 2—severe 
PERG abnormality with additional generalised cone dysfunction 
on FFERGs and group 3—severe PERG abnormality with addi-
tional generalised cone and rod dysfunction on FFERGs.11 22 A 
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Figure 1  Representative cases of Stargardt disease (STGD1). Typical findings of Stargardt disease (STGD1; A–C). Fundus photograph of the 
right eye showing macular atrophy with yellow-white flecks at the level of the retinal pigment epithelium (RPE; A). Fundus autofluorescence (FAF) 
imaging identified an area of decreased autofluorescence (DAF) at the macula and multiple surrounding foci of abnormal AF (B). Spectral-domain 
optical coherence tomography (SD-OCT) demonstrated marked loss of outer retinal layers and RPE at the macula, with multiple hyper-reflective foci 
corresponding to flecks (C). A broad range of FAF patterns and progression over time in STGD1 are presented, with corresponding fundus photographs 
(D–T). FAF pattern can be classified into three types based on the area(s) of DAF and the background features (heterogeneous or homogeneous): type 
1 (Baseline; F) to type 2 (follow-up; G), type 1 (baseline; J) to type 2 (follow-up; K), type 2 (baseline; M) to type 2 (follow-up; N), type 2 (baseline; P) to 
type 3 (follow-up; Q), type 3 (baseline; S) to type 3 (follow-up; T). Genetic information (ABCA4, Transcript ID: NM_000350.3; ENST00000370225.4): 
Case 1 (top row; : c.4139C>T, p.Pro1380Leu. Case 2 (second row; D–G): c.3322C>T, p.Arg1108Cys; c.6079C>T, p.Leu2027Phe. Case 3 (third row; 
H–K): c.768G>T; c.2588 G>C, p.Gly863Ala. Case 4 (fourth row;I–N): Unavailable. Case 5 (fifth row; O–Q): c.1622T>C, p.Leu541Pro; c.3113C>T, 
p.Ala1038Val; c.617_618delCG, p.Ser206ArgfsTer320. Case 6 (bottom row; R–T): c.5461–10T>C. *Permission to reuse the figure for publication in the 
journal has been obtained by the licensed content publisher, Springer Nature (Number: 5415100406042; License date: 23 October 2022).
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longitudinal ERG study has confirmed the prognostic implica-
tions of the aforementioned ERG groups, with group 1 having 
the best prognosis; group 2 having an intermediate or vari-
able prognosis; and group 3 having the worst prognosis.11 All 
patients with initial rod ERG involvement demonstrated clin-
ically significant electrophysiological deterioration; whereas, 
only 20% of patients with normal FFERGs at baseline showed 
clinically significant progression over time.11 These findings are 
supported by the association with genotype grouping (eg, group 
3 is associated with a greater prevalence of null variants), and are 
also relevant in the design, patient selection and monitoring of 
potential therapeutic interventions.11 16 20

STGD1 with a later age of onset has been increasingly 
recognised. Patients with late-onset STGD1 often develop 
the FS phenotype (FS-STGD1).10 14 71 FS-STGD1 thereby is 

characterised by relatively preserved VA and foveal struc-
ture and function in the early and intermediate stages of the 
disease.14 SD-OCT often exhibits outer retinal tubulation at 
the edge of atrophy, suggesting that the primary site of degen-
eration of this phenotype is the RPE and choroid.14 On the 
other hand, patients with foveal atrophy can manifest photo-
receptor cell loss at the fovea at the early stage. Therefore, 
the presence of two distinct phenotypes—non-FS-STGD1, 
which is primarily childhood-onset and adulthood-onset 
STGD1, and FS-STGD1—suggests more than one disease 
mechanism in ABCA4-associated retinopathy.14 The fact 
that a different distribution of disease-causing variants 
exists between these two phenotypes appears to support this 
hypothesis.14 26

Figure 2  Molecular mechanisms of STGD1 (ABCA4-retinopathy) a schematic of ABCA4 protein structure (A), the visual cycle (B), transport (C) and 
failure of transport leading to retinal degeneration (D). The ABCA4 gene transcribes a large retina-specific ABCA4 protein with two transmembrane 
domains (TMD), two glycosylated extracellular domains (ECD) and two nucleotide-binding domains (NBD) (A). All-trans retinal is released from the 
light-activated rhodopsin/cone opsin into the rod/cone outer segments (B) to form a complex with phosphatidylethanolamine (PE), resulting in N-ret-
PE, then this complex is actively transported to the disc surface by ABCA4 (C). Failure of this transport results in accelerated deposition of a major 
lipofuscin fluorophore (A2E) in the RPE, which causes RPE dysfunction and cell death, with subsequent photoreceptor cell loss over time (D).
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Natural history
Natural history studies play a key role in advancing under-
standing of disease progression.20 24 Over the past 8 years, 
multicentre, international, large-cohort studies (>250 subjects) 
have been conducted: the retrospective and prospective Natural 
History of the Progression of Atrophy Secondary to Stargardt 
Disease (ProgStar) studies.24 The aims were to characterise the 
natural history and identify sensitive, reliable and clinically rele-
vant outcome measures, which could be employed in clinical 
trials.24 27–31 Here, we focus on FAF, given it has been prioritised 
in clinical trial endpoints to date.24 72 73

In a ProgStar retrospective study of a subset of 224 eyes 
(mean age, 33.0±15.1 years), the total mean area of definitely 
decreased autofluorescence (DDAF) at the first visit was 2.6 mm2, 
and the mean progression of DDAF was 0.51 mm2/year.72 In a 
prospective study with 12 months of observation, the mean area 
of DDAF at baseline was 3.93 mm2, and the estimated progres-
sion of DDAF was 0.76 mm2/year.73 The rate of progression was 
dependent on the initial size of the lesion in both studies, as 
previously reported by other longitudinal studies.12 74

FAF imaging may serve as a monitoring tool for interven-
tional clinical trials that aim to slow anatomical disease progres-
sion.20 42 67 Lesion size at baseline appears to be a strong predicting 
factor for lesion growth and can be partially accounted for by 
square root transformation.12 20 42 67 75

Studies using en face SD-OCT and OCT angiography (OCTA) 
have shown that the area of photoreceptor ellipsoid zone (EZ) 
loss was 1.6-fold greater than the area of RPE atrophy, which 
suggests that photoreceptor degeneration may precede RPE loss 
in STGD1.76 Moreover, OCTA showed that choriocapillaris 
vascular density was abnormal even beyond the areas of photo-
receptor EZ and RPE loss, supporting a complex chorioreti-
nal-RPE pathophysiology due to ABCA4 dysfunction.76 These 
findings may also be useful for developing end points in clinical 
trials.

THERAPEUTIC APPROACHES
Although there are currently no proven cures for STGD1, there 
are multiple treatment avenues being investigated. In addition to 
retinal prosthesis,77 there are clinical trials of pharmacological 
agents, stem cell therapy and genetic therapies (see summary in 
table 1).3 6–8 40–42 45 Pharmacological therapies are arguably the 
most advanced and closest to potential approval as meaningful 
treatments.6 7 42

Pharmacological therapy
Several pharmacological agents have been specifically developed 
that target different aspects of the retinoid cycle and are poten-
tially beneficial in slowing or preventing progression in STGD 
(figure 3A), with some studies also reporting improvements in 
retinal and/or visual function (table 1).3 6 8 42

The aims of these agents are either (1) lowering the forma-
tion of toxic products of the retinoid cycle by reducing delivery 
of vitamin A or inhibition of various enzymes participating in 
the cycle, including drugs such as emixustat,78–80 ALK-001, LBS-
008, STG-001, fenretinide and A1120; or (2) directly targeting 
toxic metabolites such as A2E or pathways activated by these 
metabolites (eg, the complement cascade), including soraprazan 
and Avacincaptad pegol.

These drugs aim to impede formation of A2E and lipofuscin by 
either slowing the rate of vitamin A dimerisation (ALK-001),81 82 
enhancing lipofuscin removal (soraprazan), imposing compet-
itive inhibitory mechanisms on the retinal binding protein-4 

(LBS-008 (tinlarebant), STG-001, fenretinide, vutrisiran and 
A1120), or modulating the activity of RPE65 (emixustat).78

Many of these drugs have been or are currently in phase 1/2 or 
3 trials (LBS-008: NCT03735810, emixustat: NCT03772665 
and NCT03033108, ALK-001: NCT02402660) (table  1). 
Avacincaptad pegol, a complement C5 inhibitor, is also being 
investigated in a phase 2 trial (NCT03364153). Additional phar-
macotherapeutic agents directly or indirectly targeting the visual 
cycle have been developed, including the complement-mediated 
response to accumulated by-products of the visual cycle.83

Cellular therapies
For the management of advanced disease, cell replacement 
strategies offer potential benefit. A phase 1/2 clinical trial 
(NCT01469832) of human embryonic stem cell (hESC)-
derived RPE cells for treating severe advanced STGD1 has been 
completed.43 84 Findings from the UK site of this trial identi-
fied subretinal hyperpigmentation consistent with the survival 
of viable transplanted hESC-derived RPE cells.84 Borderline 
improvements in VA were noted in 4 of 12 patients; however, 
microperimetry did not demonstrate evidence of func-
tional benefit at 12 months.84 A phase 1 clinical trial testing 
the long-term safety and tolerability of hESC-derived RPE 
(NCT01625559) showed no adverse events, with favourable 
results.85 Further trials are anticipated, including evaluation of 
combined RPE and photoreceptor transplants, which are either 
derived from hESCs or induced pluripotent stem cells (iPSC).

Trials involving autologous bone marrow-derived stem cells 
(BMSC; NCT01920867, NCT03011541, NCT03772938) are 
at various stages of completion. One study (NCT01920867) 
showed improvement in 61.8% of the eyes treated, with 76.9% 
of patients exhibiting VA improvement. Other studies involving 
BMSC treatment (NCT03772938, NCT03011541) are still 
active with no results yet reported.

Genetic therapies
Gene replacement therapy has been increasingly applied to 
photoreceptor diseases, aiming to slow or prevent further 
degeneration and/or improve function in early to intermediate 
stage disease.7 40–42 86 Preclinical studies in gene replacement 
showing phenotypic improvement in abca4−/− mice have subse-
quently encouraged the development of human gene therapy 
trials.87 88 Adeno-associated virus (AAV) vectors have been 
the leading choice for gene delivery in human gene therapy; 
however, the AAV capsids exhibit limited cargo capacity. The 
ABCA4 gene is far larger than the current AAV vector capacity.87 
Considering the larger cargo capacity of lentiviruses, subretinal 
injection of a lentiviral vector delivering ABCA4 (SAR422459) 
was developed. The StarGen phase I/II trial for this therapy 
(NCT01367444) was terminated early, with a longer-term 
follow-up study ongoing (NCT01736592).89 Although there 
were no safety concerns in either of these trials, there was no 
evidence of visual improvement.46 90

Optogenetics represents a genetic therapy for advanced 
disease, where residual non-photoreceptor cells are made light 
sensitive by using AAV to deliver often an opsin-related phot-
opigment.91 This approach is being explored in a Phase II clinical 
trial in STGD1, with AAV2 carrying a multicharacteristic opsin 
gene expression cassette (NCT05417126).92

Future treatment options
In addition to treatments currently undergoing clinical trials, 
there are several therapeutic approaches on the horizon for 
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Table 1  Summary of therapeutic trials for Stargardt disease (STGD1; ABCA4 retinopathy)

Mechanism Treatment Route Phase
ClinicalTrials.gov 
identifier Title Summary results

Inhibition of vitamin A 
dimerisation

ALK-001 Oral Phase 2 
tong-term 
follow-up

NCT04239625 Open-Label Extension: Tolerability and 
Effects of ALK-001 on Stargardt Disease

Active study

Inhibition of vitamin A 
dimerisation

ALK-001 Oral Phase 2 NCT02402660 Phase 2 Tolerability and Effects of ALK-001 
on Stargardt Disease

Reduction in growth rate of atrophic lesions, no change 
in BCVA, no reports of night blindness or impaired dark 
adaptation

Inhibition of vitamin A 
dimerisation

ALK-001 Oral Phase 1 NCT02230228 Phase 1 Safety Study of ALK-001 in Healthy 
Volunteers

RBP4 Inhibition STG-001 Oral Phase 2 NCT04489511 Study of STG-001 in Subjects With Stargardt 
Disease

Reported AEs: 6 patients low dose: 1 dry eye, 1 subretinal 
fluid, 1 skin disorder;
4 patients high dose: 1 chromatopsia, 1 delayed dark 
adaptation, 2 night blindness, 1 visual impairment, 1 
dry skin

RBP4 Inhibition Tinlarebant Oral Phase 3 NCT05244304 Study to Evaluate the Safety and Efficacy of 
Tinlarebant in the Treatment of Stargardt 
Disease in Adolescent Subjects Lesion(s) in 
Adolescent Subjects With STGD1

Active study

RBP4 Inhibition Tinlarebant Oral Phase 1 
Phase 2

NCT05266014 Dose-finding Study Followed by 2 year 
Extension Study to Evaluate Safety and 
Tolerability of Tinlarebant in Adolescent 
Subjects With Stargardt Disease

Preliminary safety results: 9/13 patients delayed dark 
adaptation, 9/13 xanthopsia/chromatopsia, 1/13 night 
vision impairment. No clinically significant findings in 
relation to general health. 8/13 gain in BCVA, trend for 
preventing/slowing atrophy on FAF, 6/13 narrowing of 
EZ defect

RBP4 Inhibition Vutrisiran Subcutaneous Phase 3 Not yet registered THEIA-A: A Phase 3 Global, Randomised, 
Double-Masked, Placebo-Controlled Study 
to Evaluate the Clinical Outcomes, Efficacy 
and Safety of Vutrisiran in Patients with 
Stargardt Disease Type 1 (STGD1)

Upcoming trial

Inhibition of visual cycle 
(RPE65)

Emixustat Oral Phase 3 NCT03772665 Safety and Efficacy of Emixustat in 
Stargardt Disease

No meaningful differences between treatment groups 
regarding macular atrophy

Inhibition of visual cycle 
(RPE65)

Emixustat Oral Phase 2 NCT03033108 Pharmacodynamic Study of Emixustat 
Hydrochloride in Subjects With Macular 
Atrophy Secondary to Stargardt Disease

Dose-dependent suppression of rod b-wave amplitude 
recovery post photobleaching, confirming emixustat’s 
biological activity. AE: dark adaptation (11/23, 47.8%), 
erythropsia (5/23, 21.7%), vision blurred (4/23, 17.4%), 
photophobia (3/23, 13%), visual impairment (3/23, 13%), 
headache (2/23)

Inhibition of visual cycle 4-Methylpyrazole Intravenous Phase 1 NCT00346853 Phase 1 Pilot Study of 4-MP to Treat 
Stargardt Macular Dystrophy

No effect on dark adaptation in healthy probands, further 
studies suspended because substance doesn't seem to 
inhibit the visual cycle strong enough

Removal of lipofuscin Soraprazan Oral Phase 2 EudraCT 
2018-001496-20

A multinational, multi-centre, double-
masked, placebo-controlled proof of 
concept trial to evaluate the safety and 
efficacy of oral soraprazan in Stargardt 
disease

Active study

Induce Autophagy Metformin Oral Phase 1 
Phase 2

NCT04545736 Oral Metformin for Treatment of ABCA4 
Retinopathy

Active study

Inhibition of complement 
C5

Zimura Intravitreal Phase 2 NCT03364153 Zimura Compared with Sham in Patients 
With Autosomal Recessive Stargardt 
Disease (STGD1)

Active study

Supplements Omega-3 Fatty 
Acids

Oral NCT03297515 Therapeutic Potential of Omega-3 Fatty 
Acids Supplementation in Dry Macular 
Degeneration and Stargardt Disease

Increase of BCVA in the active group after 24 weeks, 
score of a questionnaire on perceived vision and 
subjective mood higher in the active group at week 24, 
CAVE: patient cohort Stargardt+dry AMD, results not 
shown separately

Supplements Docosahexaenoic 
acid (DHA)

Oral NCT00420602 DHA Supplementation in Patients With 
STGD3

No beneficial effect over 8 years, poor compliance

Supplements DHA Oral Phase 1 NCT00060749 Effect of DHA Supplements on Macular 
Function in Patients With Stargardt Macular 
Dystrophy and Stargardt-like Macular 
Dystrophy

No effect on macular function

Supplements Saffron Oral Phase 1 
Phase 2

NCT01278277 Saffron Supplementation in Stargardt’s 
Disease

Short-term supplementation was well tolerated and 
had no detrimental effects on the electroretinographic 
responses of the central retina

Gene therapy (ABCA4) SAR422459 Subretinal Phase 1 
Phase 2 
Follow-up

NCT01736592 Phase I/II Follow-up Study of SAR422459 
in Patients With Stargardt’s Macular 
Degeneration

Treatment was well tolerated. No clinically significant 
changes in visual function tests were found to be 
attributable to the treatment. Reduction of flecks in 
one eye. 1 case of ocular hypertension. 27% of treated 
eyes showed exacerbation of retinal pigment epithelium 
atrophy on FAF.

Gene therapy (ABCA4) SAR422459 Subretinal Phase 1 
Phase 2

NCT01367444 Phase I/IIA Study of SAR422459 in 
Participants With Stargardt’s Macular 
Degeneration

Favourable safety profile

Optogenetics vMCO-010 Intravitreal Phase 2 NCT05417126 Safety and Effects of a Single Intravitreal 
Injection of vMCO-010 Optogenetic Therapy 
in Subjects With Stargardt Disease

Active study

Continued
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STGD1.93 Anti-sense oligonucleotide (AON) treatments have 
exhibited great potential for the personalised treatment of 
patients that carry one of the ABCA4 splice variants.55 57 Phase 
I/II clinical trials for the use of an AON-based therapeutic 
intravitreal injection to treat Leber congenital amaurosis 
(NCT03140969, NCT03913130), retinitis pigmentosa and 
Usher syndrome (NCT05085964) were conducted, but two of 
these studies (NCT03913130, NCT05085964) were terminated 
early for reasons unrelated to safety. Research involving the 
application of AON-based therapy has recently shown promise 
at preventing further deterioration in Stargardt disease models.94

Other therapeutic methods being explored include gene 
therapy systems that use alternative delivery vectors. As 
mentioned above, there are fundamental limitations to using 

AAVs in STGD1, principally cargo capacity, as well as concerns 
about immune reactions to the viral vector itself.95 96 Thus, 
future treatment methodologies that employ non-viral vectors—
such as cationic lipids and lipid nanoparticles (LNPs)—would 
be potentially safer than viral vector options with respect to the 
absence of immunogenic viral proteins. LNPs have also shown 
robust capability to condense and deliver various nucleic acid 
molecules up to several million nucleotides,97 while concurrently 
protecting the DNA/RNA cargo from unknown chromosomal 
position effects.98 99 However, the level of expression and trans-
fection efficiency for non-viral vectors is typically much lower 
than viral vectors. Recent strategies such as PEGylation of LNPs 
or use of a pH-sensitive amino lipid have been shown to mark-
edly enhance efficiency and targeting of ocular delivery.100 101 

Mechanism Treatment Route Phase
ClinicalTrials.gov 
identifier Title Summary results

Stem cells hESC Derived RPE 
(MA09-hRPE)

Subretinal Phase 2 
Follow-up

NCT02941991 A Follow-up Study to Determine the 
Safety and Tolerability of Sub-retinal 
Transplantation of Human Embryonic Stem 
Cell Derived Retinal Pigmented Epithelial 
(hESC-RPE) Cells in Patients With Stargardt’s 
Macular Dystrophy (SMD)

Active study

Stem cells hESC Derived RPE 
(MA09-hRPE)

Subretinal Phase 1 
Phase 2

NCT01345006 Sub-retinal Transplantation of hESC Derived 
RPE (MA09-hRPE) Cells in Patients With 
Stargardt’s Macular Dystrophy

No evidence of adverse proliferation, rejection, or 
serious ocular or systemic safety issues related to the 
transplanted tissue. 13/18 px (72%) had patches of 
increasing subretinal pigmentation. BCVA improved in 
ten eyes, improved or remained the same in seven eyes, 
and decreased by more than ten letters in one eye, no 
similar improvements in untreated FE. Vision-related 
quality-of-life measures increased 3–12 months after 
transplantation.

Stem cells hESC Derived RPE 
(MA09-hRPE)

Subretinal Follow-up NCT02445612 Long Term Follow-up of Sub-retinal 
Transplantation of hESC Derived RPE Cells 
in Stargardt Macular Dystrophy Patients

Active study

Stem cells hESC Derived RPE 
(MA09-hRPE)

Subretinal Phase 1 
Phase 2

NCT01469832 Safety and Tolerability of Sub-retinal 
Transplantation of hESC-RPE Cells in 
Patients With SMD

Focal areas of subretinal hyperpigmentation, no evidence 
of uncontrolled proliferation or inflammatory responses. 
No meaningful improvements in BCVA, no benefit in 
microperimetry at 12 months, one case of localised 
retinal thinning and reduced sensitivity in the area of 
hyperpigmentation. No significant change in participant-
reported quality of life.

Stem cells hESC Derived RPE 
(MA09-hRPE)

Subretinal Phase 1 NCT01625559 A Phase I, Open-Label, Prospective Study 
to Determine the Safety and Tolerability of 
Sub-retinal Transplantation of hESC-RPE 
(MA09-hRPE) Cells in Patients With SMD

No serious AEs occurred throughout the 3 year period 
following the injection of hESC-RPE cells. The functional 
and anatomical results were favourable, compared with 
the natural course of SMD reported in the ProgStar study.

Stem cells hESC Derived RPE subretinal Phase 1 
Phase 2

NCT02749734 Clinical Study of Subretinal Transplantation 
of Human Embryo Stem Cell Derived 
Retinal Pigment Epitheliums in Treatment of 
Macular Degeneration Diseases

Active study

Stem cells hESC Derived RPE subretinal Phase 1 
Phase 2

NCT02903576 Stem Cell Therapy for Outer Retinal 
Degenerations (sub retinal injections vs 
hESC RPE seeded on a polymeric substrate 
implanted in the subretinal space)

Active study

Stem cells Autologous bone 
marrow-isolated 
stem/progenitor 
cells

Intravitreal Phase 1 NCT03772938 Stem Cells Therapy in Degenerative 
Diseases of the Retina

No results from STGD group to date

Stem cells Autologous bone 
marrow derived 
stem cells (BMSC)

Retrobulbar, 
subtenon, 
intravitreal, 
intraocular, 
subretinal and 
intravenous

NCT03011541 Stem Cell Ophthalmology Treatment (SCOT) 
Study II

Active study

Stem cells Autologous BMSC Retrobulbar, 
subtenon, 
intravitreal, 
intraocular, 
subretinal and 
intravenous

NCT01920867 Stem Cell Ophthalmology Treatment Study 21/34 eyes (61.8%) improved, 8/34 eyes (23.5%) 
remained stable, and 5/34 eyes (14.7%) showed 
continued progression. The average central vision 
improvement following treatment was 17.96% and 
ranged up to 80.5%. Of 17 patients treated, 13/17px 
(76.5%) showed visual acuity improvement in one or 
both eyes, 3/17px (17.6%) showed no net loss, and 1px 
worsened as a consequence of disease progression; 
94.1% of patients had improved vision or remained 
stable. There were no AEs.

AE, adverse event; AMD, age-related macular degeneration; BCVA, best-corrected VA; FAF, fundus autofluorescence ; VA, visual acuity.

Table 1  Continued
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Figure 3  Current and future treatment agents for STGD1 A schematic showing (A) current pharmacological STGD1 treatment agents and 
(B) novel genetic therapies for STGD1. (A) Schematic showing the normal visual cycle (pink) and failure of transport due to ABCA4 dysfunction 
(blue). Agents (RPE65 inhibitors, deuterated Vitamin A, RBP4 antagonists) lower the formation of toxic products of the retinoid cycle by enzymatic 
inhibition, reducing delivery of vitamin A, or antagonising the retinoid binding protein 4 (RBP4). (B) Schematic showing non-integrating episomal and 
integrating nuclear gene therapies. The ABCA4 gene is expressed in retinal photoreceptors and the transporter is localised at the rim of rod and cone 
photoreceptors at the outer segment (OS), which connects to the inner segment (IS) via connecting cilium (CC). To target disordered transport due to 
ABCA4 dysfunction, adeno-associated virus (AAV) therapies deliver the large 6.4 kb ABCA4 gene (>4.7 kb AAV cargo limit) to the nucleus by splicing 
together fragments of the ABCA4 gene, wherein the transgene remains in an episomal state. Gene editing therapies cut or alter single nucleotide(s) 
within the ABCA4 gene via techniques such as CRISPR-Cas, which targets specific variants. Gene coding replaces the entire ABCA4 gene via an 
engineered transposase, enabling its application to all variants, including exonic and intronic nucleotide variants, as well as structural variants.
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Other approaches being developed include either using dual or 
triple AAV vectors to deliver full length ABCA4 to the nucleus by 
splicing together fragments of the cDNA.102–104

Novel CRISPR-based molecular tools have also emerged as 
a therapeutic option for STGD1 (figure 3B).105 Recently, gene 
editing via CRISPR/Cas9 has been employed to correct patho-
genic variants of ABCA4 in human iPSCs (hiPSC) for STGD1 
patients.106 However, there are potential safety concerns asso-
ciated with gene editing methods being developed for STGD1, 
namely the introduction of double-stranded breaks (DSBs) in the 
genome during editing. Gene editing systems such as CRISPR/
Cas9 create DSBs, which run the risk of triggering error-prone 
endogenous DNA repair mechanisms that could otherwise 
cause unwanted effects.107 108 However, systems that exploit 
transposon-based mutagenesis—such as fish-derived Sleeping 
Beauty109 110 and insect-derived PiggyBac111—may circumvent 
this issue. A potential drawback for such methods is that the 
DNA recognition sequence may be found throughout the human 
genome and thus the gene would not be targeted to a specific 
site. Thus, an ideal transposon-based system would be one that 
is mammal-derived and absent of immunogenic effects, with the 
capability to insert genetic material of unlimited size at a site-
specific genomic target.

By combining features of the above systems, there is poten-
tial for developing much needed novel gene therapies that can 
transport a larger size DNA cargo (and avoid the introduc-
tion of DSBs) for STGD1 and other common IRDs such as 
USH2A-associated retinitis pigmentosa and Usher syndrome. 
For example, a novel DNA integrating platform developed by 
SalioGen Therapeutics—Gene Coding—combines many of the 
above-mentioned features (figure  3B). The technology uses a 
tissue-specific and cell-specific nanoparticle (NP) to co-encap-
sulate mRNA encoding a synthetic bioengineered, mammalian 
transposase and a DNA element containing the gene of interest 
for a specific disease target. Notably, the DNA element can 
contain large genetic cargos, such as ABCA4, or a combina-
tion of several genetic factors, since the NP does not have size 
limitations.

Several potential benefits of this type of technology are 
currently under investigation. First, NPs that target specific cell 
types such as photoreceptors and RPE are being developed.112 
Second, the NP capability to deliver large gene cargos is being 
exploited to deliver single or multiple genetic components and 
regulatory elements to control gene expression. Third, the 
non-viral nature of the DNA integration system may decrease 
the immunogenicity seen with viral delivery systems. Finally, 
in contrast to AAV therapies and non-viral gene editing tech-
nologies and gene therapies, the transposase avoids unwanted 
genomic effects by avoiding DSBs113 while integrating thera-
peutic genes at polynucleotide sites in the genome. All of these 
potential attributes may be important in treating degenerative 
retinal disorders such as STGD1, which is caused by multiple 
pathogenic variants in large genes.

CONCLUSIONS
STGD1 is one of the most common IRDs, presenting in child-
hood, early adulthood and in later life. This ABCA4-associated 
retinopathy is highly heterogeneous both clinically and geneti-
cally. The deep clinical and genetic characterisation that has been 
undertaken over the last 15 years has improved understanding 
of underlying disease mechanisms, natural history and outcome 
metrics, allowing multiple therapeutic trials to be conducted. 
Further trials are anticipated, including pharmacological in the 

immediate term, with innovations towards the development of 
novel gene therapy approaches on the horizon.
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