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ABSTRACT
The last decade has witnessed a rapid growth of the field of exoplanet discovery and characterisation. However, several big
challenges remain, many of which could be addressed using machine learning methodology. For instance, the most prolific
method for detecting exoplanets and inferring several of their characteristics, transit photometry, is very sensitive to the presence
of stellar spots. The current practice in the literature is to identify the effects of spots visually and correct for them manually or
discard the affected data. This paper explores a first step towards fully automating the efficient and precise derivation of transit
depths from transit light curves in the presence of stellar spots. The primary focus of the paper is to present in detail a diverse
arsenal of methods for doing so. The methods and results we present were obtained in the context of the 1st Machine Learning
Challenge organized for the European Space Agency’s upcoming Ariel mission. We first present the problem, the simulated
Ariel-like data and outline the Challenge while identifying best practices for organizing similar challenges in the future. Finally,
we present the solutions obtained by the top-5 winning teams, provide their code and discuss their implications. Successful
solutions either construct highly non-linear (w.r.t. the raw data) models with minimal preprocessing –deep neural networks and
ensemble methods– or amount to obtaining meaningful statistics from the light curves, constructing linear models on which
yields comparably good predictive performance.
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1 INTRODUCTION

In the coming decade, exoplanet atmospheric spectroscopy will un-
dergo a revolution with a number of upcoming space and ground-
based instruments providing unprecedented amounts of high-quality
data. Most notable are of course the Extremely Large Telescopes
(e.g. Gilmozzi & Spyromilio 2007; Nelson & Sanders 2008; Johns
et al. 2012) on the ground and the James Webb Space Telescope
(Gardner et al. 2006) and the Ariel space telescope (Tinetti et al.

★ E-mail: n.nikolaou@ucl.ac.uk

2016a). One of the outstanding challenges to high-precision spec-
trophotometry of exoplanets is the presence of stellar noise. Here
we will address in particular the presence of occulted star spots
in the spectro-photometric light curves of the Ariel space mission.
The chromatic dependence of spots and faculae can adversely affect
the measured exoplanetary transmission spectrum (through a bias-
ing of the derived transit depth) as well as affect other light curve
parameters, such as limb-darkening and the mid-transit times. This
is discussed in detail in (e.g. Sing et al. 2015; Nikolov et al. 2013;
Rabus et al. 2009; McCullough et al. 2014; Rackham et al. 2018,
2019; Zellem et al. 2017; Iyer & Line 2020, and references therein).
There exists a large body of literature on modelling star spot signa-
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tures in photometric and radial velocity data (e.g. Boisse et al. 2012;
Dumusque et al. 2011, 2014; Lanza et al. 2011; Aigrain et al. 2012;
Herrero et al. 2016; Zhao & Tinney 2020; Gilbertson et al. 2020;
Lisogorskyi et al. 2020). Recently, Rosich et al. (2020) proposed a
correction of the chromatic effects using Bayesian inverse modelling
of long duration spectro-photometric time-series data with promis-
ing results. Carter et al. (2008) and Morris et al. (2018) propose
detecting star spots on transit light curves using methods based on
Fisher information and the ratio of the ingress duration to total transit
duration, respectively. To our knowledge, there exists no method de-
signed to directly correct light curves of transits with crossing stellar
spots.

In this publication, we explore the use of machine learning tech-
niques to detect and correct for spot crossings in simulated data of
the Ariel space mission. In particular, we report on the top five results
of the 1st Ariel Mission Machine Learning Challenge (henceforth:
the Challenge), which was concerned with the task of correcting
transiting exoplanet light curves for the presence of stellar spots.
The primary goal of the Challenge was thus to investigate if machine
learning approaches are in principle suited to correcting star spot
crossings in spectro-photometric light curves across a large range of
stellar and planetary parameters as well as observational signal to
noise regimes.

To date, the use of machine learning approaches in exoplanets
is still nascent but a burgeoning interest has seen the successful
application of machine learning –and deep learning, in particular– to
a variety of exoplanetary problems. These include (but are not limited
to) the detection of exoplanet transits in survey data (e.g. Shallue
& Vanderburg 2018; Pearson et al. 2018; Osborn et al. 2020), the
predictive modelling of planetary parameters (Lam & Kipping 2018;
Alibert & Venturini 2019), instrument de-trending (e.g. Waldmann
2012; Morello et al. 2014; Gibson et al. 2012; Morvan et al. 2020) and
the modelling and retrieval of atmospheric spectra (e.g. Waldmann
2016; Márquez-Neila et al. 2018; Zingales & Waldmann 2018; Cobb
et al. 2019; Nixon & Madhusudhan 2020; Himes et al. 2020).

As with many problems in the field of exoplanetary science, the
issue of star spot crossings is characterised by a combination of
challenges: (i) a large amount of data to process1, (ii) low signal to
noise ratio, (iii) an underlying pattern which is non-linear and whose
parametric form is a-priori unknown, (iv) the available information
comes in multiple forms (time dependent and independent), and
finally (v) a high degree of degeneracy. These issues are commonly
addressed by machine learning approaches.

This takes us to the second objective of the Challenge: promoting
the interaction between the astrophysics and the machine learning
communities. To this end, the Challenge targeted both audiences by
being officially organized in the context of the ECML-PKDD 2019
conference2 and also having a strong presence in the joint EPSC-DPS
20193 conference via a dedicated session. The Challenge ran from
April to August 2019. In total, 123 teams participated and it attracted
the interest of researchers from both communities –as evidenced from
the top-5 ranked teams and the solutions they submitted. As such,

1 As Ariel is an upcoming space mission, the data in our case are obtained
via simulations.
2 ECML-PKDD, the European Conference on Machine Learning and Princi-
ples and Practice of Knowledge Discovery in Databases, is one of the leading
academic conferences on machine learning and knowledge discovery, held in
Europe every year.
3 The European Planetary Science Congress (EPSC) and the American As-
tronomical Society’s Division of Planetary Science (DPS) held a Joint Meet-
ing at 2019.

we consider the secondary objective of the Challenge has been met
successfully. Building up on this success, a 2nd Ariel Data Challenge
was organized in the context of ECML-PKDD 2021 and a 3rd one is
currently under preparation.

But what of the main goal of the Challenge, i.e. automating the
extraction of useful parameters from transiting exoplanet light curves
in the presence of stellar spots? A large number of solutions outper-
formed our baselines and approached average precisions of 10 ppm
in photometric flux for correctly predicting the relative transit depth
per each wavelength from the noisy light curves. This was the case,
despite exploring a generally high stellar spot coverage scenario (high
activity stars), as discussed in Section 3.2. Again, building up on this
success, the 2nd Ariel Machine Learning Challenge (2021) produced
solutions that surpassed this performance (see Figure 3), on a dataset
generated under a more realistic noise model covering full instrument
systematics simulated under the ArielRad Mugnai et al. (2020) and
ExoSim Sarkar et al. (2021) packages.

The solutions of the top-5 ranking teams that participated in the
Challenge are presented in detail in this paper. Most solutions amount
to constructing highly non-linear (w.r.t. the raw data) models with
minimal pre-processing using deep neural networks and/or ensemble
learning methods4. As we will see however, there exist comparably
good –in terms of the precision of the obtained predictions– ap-
proaches that involve obtaining meaningful (i.e. informed by physics)
statistics from the light curves and then training models that are linear
w.r.t. them.

Just like the Challenge itself, this paper also intends to serve a
dual purpose. Its primary goal is to describe the research problem
of obtaining good predictions of the relative transit depth per each
wavelength from simulated Ariel-like light curves distorted by pho-
ton noise and stellar spot noise, along with the solutions provided
by the Challenge’s winners and their implications. More specifically,
the objective is to cover in detail a broad and diverse set of methods
to attack the problem. Its secondary aim is to promote interaction
between exoplanetary scientists and machine learning researchers.
As such it is written in a language accessible to both audiences and
–we hope– it contains useful information for exoplanetary scientists
wishing to organise their own machine learning challenge or to refine
their knowledge of machine learning methods and use them in their
own work.

2 EXOPLANET BACKGROUND

Due to the interdisciplinary nature of this article, we here provide
a very brief high-level introduction to transmission spectroscopy of
exoplanets. Readers familiar with the field can safely skip this section,
for a more in-depth review to exoplanetary spectroscopy we refer the
reader to the relevant literature (e.g. Madhusudhan 2019; Tinetti et al.
2012; Sharp & Burrows 2007).

When a planet orbits its host-star in our line of sight, we will
observe a regular dimming of the stellar flux when the planet passes
between us and the host-star. This is referred to as a transit event.
Similarly, when the planet is eclipsed by the host star, we will observe
a small dip due to the loss of the planet’s thermal or reflected light.
In Figure 1a, we show a schematic view of a transit and the resulting
dip in the stellar flux time-series, also known as a ‘light curve’. The
depth of this light curve, 𝐷, is typically of the order of 1% for a

4 Ensemble methods are machine learning algorithms that construct powerful
predictive models by combining multiple weaker predictors (Polikar 2006).
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Correcting Transiting Exoplanet Light Curves for Stellar Spots 3

Jupiter sized planet and a Sun like star. To first order, this dip can
be described by the ratio of the planet to stellar radius, 𝐷 = 𝑅𝑝/𝑅∗
(also referred to as ‘relative radius’). For an in depth explanation of
the transit geometry, see Seager & Mallén-Ornelas (e.g. 2003).

When a planet harbours an atmosphere, some of the stellar light
will ‘shine through’ the planet’s gaseous envelope (Figure 1b). De-
pending on the atmospheric composition some light will be absorbed
and/or scattered at specific wavelengths of light by the atmospheric
gases, clouds and aerosols. This leads to a wavelength dependent
‘loss’ of stellar flux observed, which is equivalent to a perceived
increase in planetary radius from an observational viewpoint. An
accuracy of ca. 1 in 104 in flux measurements is typically required
for a Jupiter size planet to observe this effect. Figure 1c is a simu-
lation of the resulting transmission spectrum of a hot-Jupiter planet
as observed by the Ariel Space Mission. The transmission spectrum
includes absorption signatures of H2O, CH4, CO as well as Rayleigh
scattering and collision induced absorption by hydrogen and helium
(Changeat et al. 2020, fig. 1).

3 THE CHALLENGE

3.1 Data Generation

For the purposes of the Challenge, we used the Ariel target-list pro-
duced by Edwards et al. (2019) to generate simulated light curves
for all the 2097 planets in the list. For every planet we produced 55
light curves, one for each wavelength channel corresponding to Ariel
Tier 2 resolution (between 0.5 and 8.0 𝜇m). In addition, all the light
curves covered observations of 5 hours, centred around the transit,
with a time step of one minute. In reality, wavelength binning and
time resolution will differ across targets of Tiers 1, 2 & 3 of Ariel
Edwards et al. (2019). But here we opted to treat all targets as Tier 2
to make the dataset accessible to all the participants without the need
of renormalisation (which would require knowledge on the transit
modelling).

The simulated light curves were computed as follows:

(i) As a first step we calculated the limb-darkening coefficients
(using the quadratic law) for every host star in the target list and
for every wavelength channel. We used the EXOTETHYS package
(Morello et al. 2020) and the stellar parameters for temperature and
gravity provided in the target list, assuming zero metallicity for all
the stars (the effect of metallicity is not strong). Also, we did not use
the Ariel throughput as in this study we were only interested in the
narrow wavelength channels, and any intra-channel variations due to
the Ariel throughput are minimal.

(ii) We then calculated the planet-to-star radius ratio, 𝑅p/𝑅∗, for
every planet in the target list and for every wavelength channel.
This calculation was made using the TauRex atmospheric retrieval
framework for exoplanets Waldmann et al. (2015) and the planet
parameters for temperature, mass and radius (all provided in the
target list), assuming the presence of water vapour and methane in
the atmosphere with abundances that varied uniformly at random
from planet to planet between 0.001% and 0.1%. The values for
the abundances were an arbitrary choice, as the scope of using a
spectrum was only to include some variability, of any kind, in the
𝑅p/𝑅∗ parameter from one wavelength channel to another.

(iii) The next step was to define the spot model parameters for
every host star in the target list. These parameters were:

• Spot coverage: This parameter corresponds to the percentage
of the stellar surface that is covered by spots. We set this parameter

to 10% for every host star in the target list. In reality this parameter
decreases with stellar temperature and initially we incorporated
this in the model. However, it became clear that in the more realistic
case, the number of spots that influence the light curves is very
small, leading to almost noise-free data. For this reason, we chose
to use the fixed value of 10% in order to have a stronger spot
effect on our data. This choice resulted in a simulated dataset with
many more spot-crossing events than in a real dataset, suitable for
the purposes of the challenge. We further justify this choice and
discuss its implications in Subsection 3.2.
• Spot temperature: This parameter corresponds to the effective

temperature of the spots, which is naturally lower that the effective
temperature of the star. We calculated this parameter for every host
star in the target list as a function of its temperature (𝑇∗, provided
in the target list), as described in Sarkar (2017), adjusted from
Andersen & Korhonen (2015):

𝑇spot = 𝑇∗ − (0.0001343 × 𝑇2
∗ − 0.6849 × 𝑇∗ + 1180.0) (1)

• Spot contrast: This corresponds to the contrast between the
brightness of the stellar surface and the brightness of the spots. We
calculated this parameter for every host star in the target list and for
every wavelength channel by integrating the respective PHOENIX
stellar models (Husser et al. 2013) within each wavelength channel
and dividing them.

(iv) Following the definition of the spot model parameters we
created a set of spots for every host star in the target list. The spots
were generated one by one, until the 10% surface coverage was
reached, and it was given three parameters:

• Latitude - uniformly at random generated number between
-85 and 85 degrees5

• Longitude - uniformly at random generated number between
0 and 360 degrees
• Angular diameter - randomly generated using a log-normal

distribution, as described in Sarkar (2017), based on Bogdan et al.
(1988):

𝑑𝑁

𝑑𝐴
= 𝑀𝐴 exp

[
− (ln 𝐴 − ln⟨𝐴⟩)2

2 ln𝜎𝐴

]
(2)

where 𝑁 is the number of spots, 𝐴 is the area of the spots,
𝑀𝐴 is the maximum of the distribution (adjusted to result in 10%
of total coverage), ⟨𝐴⟩ = 0.62 × 10−6𝐴1/2⊙ is the mean of the
distribution, and 𝜎𝐴 = 3.8 × 10−6𝐴1/2⊙ is the standard deviation
of the distribution.

(v) With the set of spots generated for each star in the target list,
we used the KSint package (Montalto et al. 2014) to generate the
spot-distorted light curves for every planet in the target list and for
every wavelength channel. The input parameters for each light curve
were: the set of spots, (number, position and dimensions of all the
spots), the spot contrast parameter, the limb-darkening coefficients,
the planet-to-star radius ratio, the stellar density (calculated from the
stellar mass and radius provided in the target list), and the planet
orbital parameters (period and inclination, provided in the target list)

5 We did not constrain the latitude further, in order to produce all possible
scenarios: cases with spot-crossing events, cases with unocculted spots only,
and cases with both occulted and unocculted spots. This variety was created
by the combined effect of the uniform latitude distribution, the distribution
of sizes and the limit on the total area covered by the spots. A more restricted
latitude would cause spot-crossing events in most cases, therefore the solutions
would tend to ignore the effects of unocculted spots.
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Figure 1. Left: Schematic of an exoplanet transit. The planet passes in-front of the star, obscuring some of the star’s light. This leads to a characteristic dip in
stellar flux observed as a function of orbital phase. Middle: Schematic view of transmission spectroscopy whereby some of the stellar light ‘shines through’
the gaseous envelope of a planet. Right: A simulated transmission spectrum of the Ariel mission. Blue are the observed data points and green is a theoretical
atmospheric model. Figures courtesy of C. Changeat and adapted from Changeat et al. (2020).

and a viewing angle to make sure that the transit happens at the
middle of the observation.

(vi) The final step was to add Gaussian noise to the light curve.
No additional instrument systematics were assumed, as we aimed
for the challenge to focus on correcting for the noise resulted from
the stellar spots. The standard deviation of the Gaussian noise added
was calculated from the overall noise on the transit depth estimation
provided in the target list. This noise value depends on the stellar
magnitude, the stellar temperature, the wavelength channel and the
characteristics of the Ariel instrument. It is beyond the scope of this
work to describe exactly how this level of noise is estimated. We
refer the interested reader to Edwards et al. (2019) for a detailed
description.

This process resulted in generating data for 2097 simulated ob-
servations, consisting of 55 light curves each (one per wavelength).
We repeated the process 10 times with different instances of the spot
set (step 4). This resulted in 20970 simulated observations consist-
ing of 55 light curves each, distorted by stellar spots. Finally, for
each instance of the spot set, 10 different instances of additive Gaus-
sian photon noise were introduced (step 5). This resulted in 209700
simulated observations consisting of 55 light curves each, distorted
by both stellar spot and photon noise. These 209700 simulated ob-
servations formed the final dataset of the Challenge. The different
instances of the spot set were included to mimic multi-epoch ob-
servations, were the spot pattern is expected to change, while the
different instances of additive Gaussian photon noise were included
to mimic continuous observation were the spot pattern is not expected
to change. Note that the two sources of noise (spots and Gaussian)
are treated as independent. Most of the generated light curves only
contained a single transit event, however a small number of them in-
cluded planets with small enough orbital periods to allow for multiple
transits6.

Naturally, these details were unknown to the participants and nei-
ther were they used in the baseline solution. The aim of the Challenge
was to infer the relative radii, either by explicitly modelling and sub-
tracting, or by learning to ignore the photon and/or the stellar noise
(or both).

6 In case the light curve contained multiple transits, one of them was centered.

3.2 On the choice of the 10% spot coverage

It should be noted here that population studies of exoplanetary at-
mospheres tend to focus on low-activity stars (for which a 10% spot
coverage is high). This is because no robust methodologies for re-
moving noise from stellar spots exists at the moment. However, here
we chose to simulate a 10% spot coverage as an example of a “hard
case” to be addressed by the methodologies presented.

As we shall see, the results produced by these methods are en-
couraging in terms of being able to deal with relatively active stars.
However, we should also note that the true stellar activity distribu-
tions, intensities, and morphologies are likely to be more complex
than those simulated in this work.

Although the Challenge was organised in the context of Ariel,
the methods presented here can be useful tools to analyze data from
future missions as well, one of the outcomes of this work is that there
is no longer need to preclude younger or more active stars from future
studies. This, in turn, can allow for population studies of exoplanets
based on a larger and more representative sample.

Finally, we also need to note that even with a 10% spot coverage on
the star (uniformly distributed), a very large fraction of the simulated
transits did not suffer from spot-crossing events.

3.3 Dataset Description & Problem Statement

Each datapoint (a.k.a. an observation or an example in machine
learning terminology) consists of a set of 55 noisy light curves
(one per wavelength, corresponding to Ariel Tier 2 target reso-
lution). Each light curve is a time series of 300 timesteps cor-
responding to 5 hours of observation by Ariel. We shall denote
with 𝑥𝑖 𝑗 (𝑡 ) the relative flux at timestep 𝑡 ∈ [1, 2, . . . , 300] of the
light curve at wavelength 𝑗 ∈ [1, 2, . . . , 55] of the 𝑖-th exam-
ple. By x𝑖 𝑗 = [𝑥𝑖 𝑗 (1) , 𝑥𝑖 𝑗 (2) , . . . , 𝑥𝑖 𝑗 (300) ]⊤ we denote the en-
tire light curve at wavelength 𝑗 of the 𝑖-th example. Finally, with
X𝑖 = [x𝑖1, x𝑖2, . . . , x𝑖55] we denote all 55 light curves of the 𝑖-th
example.

Along with the light curves, 6 additional stellar and planetary pa-
rameters (all knowable in advance) were provided: the orbital period,
stellar temperature, stellar surface gravity, stellar radius, stellar mass
& stellar 𝐾 magnitude. We shall denote these as 𝑧𝑖1, 𝑧𝑖2, . . . , 𝑧𝑖6, re-
spectively, for the 𝑖-th example. Finally, with z𝑖 = [𝑧𝑖1, 𝑧𝑖2, . . . , 𝑧𝑖6]
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(a) 0.7𝜇m (b) 5.6𝜇m

(c) 0.7𝜇m (d) 5.6𝜇m

(e) 0.7𝜇m (f) 5.6𝜇m

Figure 2. Examples of simulations including both stellar spots & faculae for two of the 55 wavelength channels, 0.7 𝜇m and 5.6 𝜇m. (a) & (b), stellar surface
simulations of a spotty star. Grey line shows the planet transit trajectory. The stellar surface limb brightness varies with wavelength. (c) & (d) Normalised
observed flux as the planet transits across the star without stellar photon noise. Blue shows the perfect transit across a spotless star; red shows the transit across
a spotty star. (e) & (f) same as (c) & (d) but with stellar photon noise added.

we shall refer to all the additional parameters of the 𝑖-th example
collectively7.

The noisy light curves and the 6 additional stellar and planetary
parameters all constitute the quantities known in advance that we
can use to alleviate the problem of stellar spots. In machine learning
terminology they are the features (independent variables) in our
prediction task.

The goal is to construct a model that uses these to predict a set of
55 real values, the relative radii [𝑅𝑝/𝑅∗]𝑖 𝑗 (one per wavelength 𝑗 ,
for any given datapoint 𝑖). In machine learning terminology this is a
multi-target regression task. The relative radii to be predicted are the
targets (dependent variables) of the multi-target regression problem.
For convenience, we shall henceforth denote the relative radius at
wavelength 𝑗 of the 𝑖-th example, [𝑅𝑝/𝑅∗]𝑖 𝑗 , with 𝑦𝑖 𝑗 . Finally, with

7 The values of the extra parameters provided were the same as those used
to produce the simulations and no associated uncertainties were used.

y𝑖 = [𝑦𝑖1, 𝑦𝑖2, . . . , 𝑦𝑖55] we shall refer to all the relative radii of the
𝑖-th example collectively. Note the planet to host star relative radius
𝑅𝑝/𝑅∗ is directly connected to the transit depth of the light curve,
as the latter is equal to

( 𝑅𝑝

𝑅∗

)2.

The value of the 55 targets is known only for the training ex-
amples (the statistical sample). The goal of the learning task is –
ideally– to construct a model 𝑓 (X, z) = ŷ such that E[𝐿 (y, ŷ)] is
minimized, where 𝐿 (y, ŷ) denotes some measure of difference be-
tween the predictions ŷ and their corresponding true values y and
E denotes expectation over the joint distribution of X, z, y, i.e. –in
statistical terminology– the underlying population from which the
sample is drawn.

Once models are trained, they are evaluated on a separate test set.
The predictive performance of a model on a previously unseen test
set (drawn from the same distribution as the training set), serves
as a proxy for its performance in the population, the latter being
intractable. The features of the test set examples {(X𝑖 , z𝑖) |𝑖 ∈ 𝑇𝑒𝑠𝑡}
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were provided to the participants and they had to upload their model’s
predictions {ŷi |𝑖 ∈ 𝑇𝑒𝑠𝑡} on them. The ground truth {y𝑖 |𝑖 ∈ 𝑇𝑒𝑠𝑡} for
the test set examples was unknown to the participants in the duration
of the Challenge. It was only used to produce a ranking score for their
submitted solution, which we describe in the the next subsection.

3.4 Evaluation

All datapoints generated for a uniformly random set of 1677 out of the
2097 of the total planets (i.e. about 80% of the generated datapoints)
were used as training data. All datapoints generated for the remaining
420 planets were used to form the test set (i.e. were only used for
evaluation). That is, the training and test sets not only contained no
datapoint in common, but they also contained no datapoint from the
same planet in common.

After producing a model (i.e. a solution to the problem), the partic-
ipants could upload the predictions of the model on the Challenge’s
website. Subsequently, this would assign a score on the model based
on the quality of the predictions. The participants were ranked on a
leaderboard on the basis of their best solution and the progress of
each participant’s solutions in time was tracked to inform them of the
impact of each change they made on the resulting model’s predictive
performance. The leaderboard ranking determined the winners of the
Challenge that would receive prizes (top 2 participants) and the top-5
participants whose solutions we will present in Section 4.

The score assigned to each solution was a weighted average of the
absolute error per target (i.e. on the relative radii) across all test set
examples 𝑖 and all wavelengths 𝑗 :

𝑆𝑐𝑜𝑟𝑒 = 104 −
∑
𝑖∈𝑇𝑒𝑠𝑡

∑55
𝑗=1 𝑤𝑖 𝑗2𝑦𝑖 𝑗 | 𝑦̂𝑖 𝑗 − 𝑦𝑖 𝑗 |∑

𝑖∈𝑇𝑒𝑠𝑡
∑55

𝑗=1 𝑤𝑖 𝑗

106, (3)

where 𝑦𝑖 𝑗 is the true relative radius and 𝑦̂𝑖 𝑗 the predicted relative
radius of the 𝑗-th wavelength of the 𝑖-th test set example and the
corresponding weight 𝑤𝑖 𝑗 is given by:

𝑤𝑖 𝑗 =
1

𝜎𝑖 𝑗
2𝛿𝐹𝑖 𝑗

2 , (4)

with 𝜎𝑖 𝑗2 being the variance of the relative stellar flux caused by
the observing instrument at the 𝑗-th wavelength of the 𝑖-th example
and 𝛿𝐹𝑖 𝑗

2 the variation of the relative stellar flux caused by stellar
spots in the 𝑗-th wavelength of the 𝑖-th example. The value of 𝜎𝑖 𝑗
is an estimation based on an Ariel-like instrument, given its current
design, while 𝛿𝐹𝑖 𝑗

is calculated based on stellar flux 𝐹𝑠𝑡𝑎𝑟
𝑖 𝑗

and the
spot flux 𝐹𝑠𝑝𝑜𝑡

𝑖 𝑗
in the 𝑗-th wavelength of the 𝑖-th example:

𝛿𝐹𝑖 𝑗
= 0.1

(
1 −

𝐹
𝑠𝑝𝑜𝑡

𝑖 𝑗

𝐹𝑠𝑡𝑎𝑟
𝑖 𝑗

)
. (5)

As we see, both sources of noise (photon & stellar spot) are
wavelength-dependent and target-dependent (they depend on the star,
therefore are different for each datapoint).

The higher the score, the better the solution’s ranking. The max-
imum achievable score is 10000 (if 𝑦̂𝑖 𝑗 = 𝑦𝑖 𝑗 ,∀𝑖, 𝑗). The score is
not lower-bounded (i.e. can be negative), but even naive ‘reasonable’
models (e.g. predicting the average target value for all test datapoints)
would not produce scores below 4000.

The weights 𝑤𝑖 𝑗 of each target were unknown to the partici-
pants8. A sensible strategy would thus be to try to predict all of
them reasonably well. In other words, to train a model to minimize
an unweighted loss 𝐿 (y𝑖 , ŷ𝑖) like the Mean Squared Error (MSE),
𝐿 (y𝑖 , ŷ𝑖) = (ŷ𝑖 − y𝑖)2, the Mean Absolute Error (MAE), 𝐿 (y𝑖 , ŷ𝑖) =
|ŷ𝑖 − y𝑖 |, or their relative error counterparts: 𝐿 (y𝑖 , ŷ𝑖) =

(
ŷ𝑖−y𝑖

ŷ𝑖

)2
or

𝐿 (y𝑖 , ŷ𝑖) = |ŷ𝑖−y𝑖 |
ŷ𝑖 , respectively. Indeed, this is the approach taken

by the top-5 participants and in training the baseline model.

3.4.1 Comparison with Current Practice

To assess the usefulness of the proposed machine learning-based
solutions, in this paper we have included a comparison with the stan-
dard (non-machine-learning-based) approach for obtaining estimates
of 𝑅𝑝/𝑅𝑠 in the literature. In particular, we obtain least-squares fits
of transit models using the PyLightCurve package (Tsiaras et al.
2016) on the entire test set, treating the stellar and transit parameters
(orbital inclination, period, semi-major axis, stellar surface temper-
ature, gravity) as known, with the aim of estimating 𝑅𝑝/𝑅𝑠. Limb-
darkening coefficients are computed using the EXOTETHYS pack-
age (Morello et al. 2020) from the stellar gravity and temperature
while assuming zero metallicity. This way, we are using all infor-
mation available to the competition’s participants -and only that- on
the test set examples. Of course, such a model would be optimal in
the absence of spots, but in this case the estimates of 𝑅𝑝/𝑅𝑠 will be
biased because of the presence of spots.

As we will see in Table 1 the transit model fitting solution using
PyLightCurve, achieves a score of 9467 under the competition’s
score metric of Eq.(3)), which corresponds to a Mean Absolute Error
on the estimated (𝑅𝑝/𝑅𝑠) of 0.00664 ± 0.00006 on the test set.
Factoring for the weights of Eq.(4), the average weighted MAE is
0.000533. Note that all top-5 solutions described in Section 4 attain
a score higher than 9467 (i.e. better). The baseline solution of the
competition given in Section 3.7, however, does not. Interestingly,
all of the solutions that outperform our baseline also outperform the
transit model least square fit solution.

3.5 Rules, Logistics & Organization

To allow for the broadest possible participation, the set of rules of the
Challenge was the minimal possible. There was no restriction on the
models, algorithms or data preprocessing techniques, neither on the
programming languages, environments or tools used for their imple-
mentation. The participants were also free to use data augmentation
techniques, pretrained models or any prior domain knowledge not
included in the provided dataset. Finally, they were free to choose
their own way of splitting the training data between training and
validation sets.

The participants were limited to 1 submission every 24 hours.
This was a measure taken to limit traffic on our website and –most
crucially– to prevent the extend to which the solutions would be
overfitting to the test set. Indeed, although the test set contains previ-
ously unseen examples by the model and the participants could not
have access to the ground truth itself, the presence of a leaderboard
is effectively causing some information leakage from the test set.
Simply put, just adapting the strategies to the ranking score signal,

8 For transparency of the evaluation process, the 𝑤𝑖 𝑗 coefficients of the test
set examples, along with the ground truth (target values 𝑦𝑖 𝑗 ) became available
after the end of the Challenge.
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Correcting Transiting Exoplanet Light Curves for Stellar Spots 7

participants could increase their scores by effectively overfitting on
the particular test set. Limiting the number of daily submissions al-
leviated this effect. In retrospect, an even stronger strategy to prevent
this would have been to only use part of the test set to produce the
leaderboard ranking score during the Challenge and only use the
full test set to produce the final ranking after the Challenge closes.
In future machine learning challenges we will adopt this evaluation
scheme. For now we should keep in mind that small differences in the
ranking scores of solutions presented in Section 4 are not necessarily
indicative of true generalization (i.e. ability to predict well on new
examples).

The participants were allowed to form teams, provided they par-
ticipated in only one entry. The remaining rules handled how prizes
would be split among teams, how ties would be handled and ensuring
that any winning entry would have to beat the baseline model.

3.6 Description of Solutions

To facilitate comparisons among the solutions discussed in the paper
and to demonstrate the typical steps of training and evaluating models
using machine learning methodology, we split the description of the
solutions into 3 parts: (i) preprocessing, (ii) model / architecture, (iii)
training / optimization.

The ‘preprocessing’ part will describe any transformation of the
raw data (either in terms of features or of observations) before giv-
ing it as input to a learning algorithm. The ‘model’ part is concerned
with the general class of models (i.e. their parametric form) which the
learning algorithm is exploring (e.g. deep neural networks of a given
architecture9, random forests of 10 trees of maximal depth 5, linear
models of the form 𝑦 = 𝑎𝑥1 + 𝑏𝑥2 + 𝑐). Finally, the ‘training’ part is
concerned with the specifics of the optimization of the parameters
of the model (i.e. the weights of the neural network, the derivation of
the decision trees or the inference of the linear coefficients 𝑎, 𝑏, 𝑐 in
the examples below). It covers the hyperparameters used in the learn-
ing/optimization algorithm, along with the loss function it minimizes
and the final evaluation method.

Wherever necessary, we will clarify the purposes behind mod-
elling choices or training methodologies in all solutions described.
However, a detailed treatment of models like deep neural networks
(DNNs) is beyond the scope of this paper. We direct the interested
reader to Goodfellow et al. (2016) and Chollet (2017).

3.7 Baseline Solution

As a baseline machine learning solution, we trained a fully connected
DNN10 on a sample of 5000 training examples selected uniformly
at random. The neural network uses all 55 noisy light curves, X𝑖 to
predict the 55 relative radii directly. It does not make use of any of
the additional stellar & planetary parameters z𝑖 .

3.7.1 Preprocessing

The noisy light curves have undergone the following preprocessing
steps:

9 By the term “architecture" we collectively refer to the number, type and
connectivity of the neurons comprising a neural network.
10 Fully connected DNNs are the earliest and most popular type of DNN ar-
chitecture. They are also known as multi-layer perceptrons (MLPs) or ‘dense’
neural networks.

i) Each light curve was smoothed using a moving median of win-
dow 3 (i.e. each value replaced by the median of itself and its two
adjacent values). This was done to remove flux values that are obvious
outliers.

ii) In any light curve, any value (relative flux) that was above 1
was clipped to 1. This was done because the maximal relative flux
during transit is 1.

iii) All values were normalized for the transit depths to lie roughly
within the range [0, 1]. Doing so allows for faster and more stable
training of models like DNNs. The normalization was carried out per
wavelength and was performed as follows:

First, we computed the average transit depths per wavelength from
the target values 𝑦̄ 𝑗 on a sample of 10000 random training examples.
For every wavelength 𝑗 , we then applied the transformation:

𝑥
(𝑡 )
𝑖 𝑗
← (𝑥 (𝑡 )

𝑖 𝑗
− (1 − 2𝑦̄2

𝑗 ))/2𝑦̄
2
𝑗 .

This was done to have the maximal relative flux values at exactly 1
and the transit depths around 0, leveraging the fact that the transit
depths of the light curves are the squares of the relative radii (targets).

3.7.2 Model/Architecture

We used a fully connected DNN with 5 2D-hidden layers, all of which
consisted of 1024 units × 55 channels, the j-th channel receiving as
input the light curve x𝑖 𝑗 for each example. After these, we added a
flattening layer followed by a linear layer of 55 outputs, the j-th output
corresponding to the predicted relative radius 𝑦̂𝑖 𝑗 of each example.
All other activation functions were rectified linear units (ReLUs).

3.7.3 Training/Optimization

No batch normalization, regularization or dropout was applied in
the training of the baseline model. The 5000 observations used were
split into 4020 training and 980 validation examples (i.e. approxi-
matelly 80% training & 20% validation split) in such a way that the
two sets contained no planets in common. The model was trained by
minimizing the average MSE across all wavelengths using the Adam
optimizer (Kingma & Ba 2014) with a learning rate of 10−4 decaying
with a rate of 0.01 and a batch size of 128. All remaining hyperpa-
rameters were set to default Keras(Chollet et al. 2015) values. The
model was trained for a maximum number of 5 epochs without early
stopping.

4 TOP-5 SOLUTIONS

By the end of the Challenge, 13 out of the 123 participating teams had
beaten the score attained by the baseline solution we just presented.
In this section, we will present the top-5 ranked solutions. Their
relative ranking in the final leaderboard and scores they achieved
under Eq.(3), along with the weighted mean absolute error in terms
of relative radius are shown in Table 1. The table includes the re-
sults of the non-ML-based standard practice of fitting least-squares
transit models on the test set light curves using PylightCurve, as-
suming the stellar & planetary parameters as known. As we see,
although this method outperforms the competition’s baseline, it is
outperformed by all solutions that score above the baseline, includ-
ing -of course- the top-5 solutions presented here. The results suggest
that machine learning approaches can indeed outperform the current
standard practice in the field, if implemented correctly.

For reference, Table 1 and Figure 3, which shows the progress
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8 N. Nikolaou et al.

made towards the Ariel mission’s desired precision in recovering the
relative radius from light curves contaminated with stellar spots, also
include the results of the 2nd Ariel Machine Learning Challenge.
Note that results across the two Challenges are not directly compa-
rable, as the data were generated under different assumptions: in the
2019 Challenge (the focus of this work) instrument systematics were
ignored, whereas in the 2021 Challenge, full instrument systematics
were taken into account during the dataset simulation (Mugnai et al.
2020; Sarkar et al. 2021), resulting in a more challenging modelling
problem. As we see the solutions achieve a weighted MAE of the
order of 10−5–10−4, despite exploring a high stellar spot coverage
scenario (high activity stars), as discussed in Section 3.2. The analy-
sis of top solutions of the 2021 Challenge will be the focus of future
work.

4.1 SpaceMeerkat’s solution

SpaceMeerkat is comprised of James M. Dawson, an Astrophysics
PhD student at Cardiff University. SpaceMeerkat’s solution is a 1D
convolutional neural network, designed to retain architectural sim-
plicity, while exploiting the power of GPU accelerated machine learn-
ing. The largest gain in the model’s predictive power came from the
extensive testing of different prepossessing operations.

4.1.1 Preprocessing

The data was split into 80% training and 20% test sets. In order to
remove outlier flux values in the raw light curves, an initial smoothing
was conducted on each time series x𝑖 𝑗 . The mean flux value in
each non-overlapping bin of width 5 was calculated in-place along
each time series leaving each observation Xi as a smoothed multi-
channel array of dimensions 60× 55. A normalisation operation was
performed on the training set prior to its use for training machine
learning models. For each of the 55 wavelengths, the medians across
all datapoints of the lowest 1% of flux values in each light curve
for a given wavelength were calculated. These 55 percentile medians
(henceforth ‘median offsets’) are therefore equal to

𝜅 𝑗 = med{P1% (x(𝑡
′ )

𝑖 𝑗
)}, (6)

where P1% (x(𝑡
′ )

𝑖 𝑗
) denotes the 1st percentile of the set of all flux val-

ues 𝑥 (𝑡
′ )

𝑖 𝑗
, 𝑡′ ∈ {1, 2, . . . , 60} for a given datapoint 𝑖 and wavelength 𝑗 ,

and 𝑚𝑒𝑑{·} denotes median across all datapoints 𝑖. The light curves
were then divided by 1 minus the median offsets and the resulting
flux values were thus

𝑥
(𝑡 ′ )
𝑖 𝑗
← 𝑥

(𝑡 ′ )
𝑖 𝑗
/(1 − 𝜅 𝑗 ).

This normalisation allowed the data to lie roughly within the range
[0, 1] but with leniency for allowing the existence of extremely shal-
low or deep transits. Any remaining flux values above the normalisa-
tion range were clipped to 1. This was done to encourage the model
to focus on the lower flux valued regions where most of the transit-
depth information lies. The preprocessing of light curves makes use
of Astropy11, a community-developed Python package for Astron-
omy (Astropy Collaboration et al. 2013, 2018).

11 http://www.astropy.org

4.1.2 Model/Architecture

The model used in this solution is a convolutional neural network
(CNN) (LeCun et al. 1995)12. The data is presented to the CNN as
a 1D vector and 1D convolutions & pooling operations are applied
in order to maintain a principled simplicity to the final solution. The
architecture of the CNN is shown in Table 2. The model was built
using PyTorch 0.4.1(Paszke et al. 2019), an open source machine
learning framework for Python users. The output of layer ‘Lc5’ in
Table 2 is concatenated with the additional stellar & planetary param-
eters: the orbital period, stellar surface gravity, stellar radius, stellar
mass & stellar 𝐾 magnitude, i.e. [𝑧𝑖1, 𝑧𝑖3, . . . , 𝑧𝑖6] for each example,
to form the 1D linear input for layer ‘Lc6’. The additional parameters
did not undergo any normalisation and were presented to the network
in their raw form.

4.1.3 Training/Optimization

The CNN was trained for 75 epochs (i.e. was presented with the en-
tire training set 75 times), on a single NVIDIA TITAN Xp GPU. The
model was trained using batches of 256 examples. Rather than pre-
senting the CNN with examples of dimensions 60× 55 (as generated
by the preprocessing step), each example was flattened into a single
vector of length 3300. Initial investigation showed that 1D convo-
lutions over the flattened inputs produced significantly better results
than 2D convolutions over the 2D preprocessed inputs. The model
was trained by minimizing the MSE loss (see §3.4) using the standard
Adam optimiser and an initial learning rate of 1 × 10−3 decaying by
10% the existing rate, every epoch. No early stopping was used, as
we observed no increase of the validation error during training to
indicate the presence of overfitting. No additional form of regular-
ization (e.g. batch normalisation, dropout, or explicit regularisation)
was used in the training procedure. All remaining hyperparameters
were set to default PyTorch values. The code for this solution is
publicly available on GitHub13.

4.2 Major Tom’s solution

Major Tom took second place on the ARIEL ML challenge score-
board. The team composed of machine learning researchers from the
Data Science Research and Analytics (DSAR) group at the Univer-
sity of Tuebingen (Germany). The goal of the team’s solution is to
provide an easy to use ML tool, with minimal data preprocessing
effort and a fast inference step. The result is a fully-integrated deep
learning solution whose final code is publicly available online14.

4.2.1 Preprocessing

The main motivation behind this solution was to create a robust sta-
tistical model that can handle outliers and noisy data. Therefore, we

12 CNNs are designed to excel in tasks in which translational invariance is
important, i.e. we are looking for particular patterns anywhere in the input
data. As such, they are especially popular in image-based tasks. However,
they are very successful even outside this setting, as they effectively reduce
the number of trainable parameters of a neural network (compared to a feed-
forward DNN of the same depth). This means they are more computationally
efficient to train and more resistant to overfitting.
13 Solution by SpaceMeerkat (Ranked 1st): https://github.com/
SpaceMeerkat/ARIEL-ML-Challenge
14 Solution by Major Tom (Ranked 2nd): https://github.com/unnir/
Ariel-Space-Mission-Machine-Learning-Challenge
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Top-5 Solutions of 1st Ariel Machine Learning Competition (2019)

Team Rank Score Weighted MAE Difference w.r.t. 1st place (%)

SpaceMeerkat 1 9813 0.000187
Major Tom 2 9812 0.000188 +1%
BV Labs 3 9808 0.000192 +3%
IWF-KNOW 4 9805 0.000195 +4%
TU Dortmund University 5 9795 0.000205 +10%

PyLightCurve Least Squares 14 9467 0.000533 +185%

2019 Baseline 15 8726 0.001274 +581%

Top-5 Solutions of 2nd Ariel Machine Learning Competition (2021) - For Reference

Team Rank Score Weighted MAE Difference w.r.t. 1st place (%)

ML Analytics 1 9931 0.000069
TU Dortmund University 2 9920 0.000080 +16%
Deep Blue AI 3 9911 0.000089 +29%
Aalen University 4 9901 0.000099 +43%
Major Tom 5 9899 0.000101 +46%

2021 Baseline 27 9617 0.000383 +455%

Table 1. Final leaderboard showing rank, score under Eq.(3) and mean weighted absolute error in terms of relative radius achieved by each of the top-5 entries
and the baseline on the test data for the 1st Ariel Machine Learning Challenge (2019). We have included the results of the standard practice of fitting least-squares
transit models on the test set light curves using PylightCurve, assuming the stellar & planetary parameters as known. Results of the 2nd Ariel Machine
Learning Challenge (2021) are also shown for reference.

Figure 3. Progress made towards the Ariel Mission’s desired precision in terms of transit depth (10 ppm) by the 1st & 2nd Ariel Machine Learning Challenges.
The winning solution of the 2021 Challenge (red) has a 61% lower weighted MAE compared to the winning solution of the 2019 Challenge (teal). The solutions
of both challenges achieve a weighted MAE of the order of 10−5–10−4, despite exploring a high stellar spot coverage scenario (high activity stars). Note that
results across the two Challenges are not directly comparable; in the 2019 Challenge (the focus of this work) instrument systematics were ignored, whereas in
the 2021 Challenge, full instrument systematics were taken into account during the dataset simulation, resulting in a more challenging modelling problem.
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10 N. Nikolaou et al.

Name Layer/Operation Dimensions Filter

Input None (256,1,1,3300) None
Conv1 1D convolution (256,32,1,3300) (1,3)
ReLU ReLU None None
AP1 1D average pool (256,32,1,1650) (1,2)
Conv2 1D convolution (256,64,1,1650) (1,3)
ReLU ReLU None None
AP1 1D average pool (256,64,1,825) (1,2)
Conv3 1D convolution (256,128,1,825) (1,3)
ReLU ReLU None None
AP1 1D average pool (256,128,1,275) (1,2)
Lc1 Linear (256,1,1, 35200) None
ReLU ReLU None None
Lc2 Linear (256,1,1, 2048) None
ReLU ReLU None None
Lc3 Linear (256,1,1, 1024) None
ReLU ReLU None None
Lc4 Linear (256,1,1, 512) None
ReLU ReLU None None
Lc5 Linear (256,1,1, 256) None
ReLU ReLU None None
Lc6 Linear (256,1,1, 60) None
Output None (256,1,1,55) None

Table 2. The CNN architecture used in the solution by the SpaceMeerkat
team (Ranked 1st). The table follows the standard PyTorch format. The 1st
column lists the name of each layer/operation, the 2nd column its type, the
3rd the dimensions of its output tensors (hence inputs to the next layer). These
follow the convention (batch size, number of channels, height, width). The
filter column shows the dimensions (height, width) of kernels used to perform
the convolution and pooling operations. Layer ‘Lc6’ is notable as this is where
the additional planetary parameters z are introduced into the network.

deliberately do not apply any heavy preprocessing to the data beyond
the rescaling of the features and the targets. Since all measurements
in time series x𝑖 𝑗 are mostly distributed around 1 (see, for example
Figure 5), we used the following rescaling of the data, in order to
emphasise the differences between measurements:

𝑥
(𝑡 )
𝑖 𝑗
← (𝑥 (𝑡 )

𝑖 𝑗
− 1) × 1000.

We apply a similar transformation technique to the target variable 𝑦:

𝑦 𝑗 ← 𝑦 𝑗 × 1000.

4.2.2 Model/Architecture

We used a multiple-input and multiple-output DNN model with fully-
connected (FC), Batch Normalization (BN) (Ioffe & Szegedy 2015),
and Dropout (Srivastava et al. 2014) layers15. The final architecture
is presented in Figure 4. It consists of two separate branches. The
first branch uses as input the light curves X𝑖 , and the second, the
additional stellar & planetary parameters z𝑖 . After several non-linear
transformations, the outputs of the two branches are concatenated
into one and higher level non-linear features combining information
from both are extracted. The output layer has 55 neurons, the 𝑗-th
neuron mapping to the (rescaled) predicted relative radius 𝑦𝑖 𝑗 of a
given example. We utilized exponential linear unit (ELU) activations
in all but the last two layers, where ReLUs and linear activation
functions are used, respectively.

15 Both batch normalization and dropout are commonly used techniques to
prevent overfitting in neural networks.

4.2.3 Training/Inference

We train the DNN using the NAdam optimization algorithm (Dozat
2016) and a cyclic learning rate as described in Smith (2017). The
number of epochs was set to 1000, and the batch size to 3048. We
selected the MSE as the loss function. We train the proposed model
using 10-fold Cross-Validation with early stopping based on the val-
idation loss with the patience equals to 20. The neural network was
implemented using the Keras/Tensorflow deep learning framework
(Abadi et al. (2015)). The entire training step took ≈ 30 hours using
a single NVIDIA P100 GPU.

For the inference step, we used an ensemble consisting of all 10
models produced in the cross-validation steps; the final prediction is
the average of all estimates from the 10 models.

4.3 BVLabs’ solution

The team BVLabs took third place in the challenge. It is comprised
of researchers and data scientists from the Jožef Stefan Institute and
Bias Variance Labs. The team’s solution relied on denoising the input
data, the use of tree ensembles and fully-connected neural networks.

4.3.1 Preprocessing

For each star-planet pair, we have 10 stellar spot noise instances and
for each stellar spot noise instance we have 10 Gaussian noise in-
stances. The data for each star-planet pair can therefore be represented
as a tensor with dimensions (10, 10, 55, 300). For a fixed stellar spot
noise instance, we computed the element-wise mean flux matrix over
the 10 Gaussian noise instances which decreases the noise in the data.
This can be seen as aggregating multiple measurements of the same
target to decrease the variance of the observation. We are left with
tensors with dimensions (10, 55, 300). Next, we compute element-
wise medians over the 10 stellar spot noise instances, leaving us with
tensors with dimensions (55, 300). An example of the result of this
denoising process is presented in Figure 5a.

The maximum flux (without noise) is always 1, whereas the min-
imal flux gives information about the planet radius. To further com-
pensate for the noise, we do not use the minimal flux directly. Instead,
we calculate two values: the minimum of the average of 3 consecutive
flux values, and the median of the 10 lowest flux values. An example
of the extracted values is shown in Figure 5b.

We also estimated the amount of energy that stars emit at operating
wavelengths of the ARIEL spacecraft. Tinetti et al. (2016b) list the
5 operating ranges of ARIEL. We divided each range into 11 bins of
equal length, to get the estimates of the 55 wavelengths. To calculate
the energy at a given wavelength, we used Planck’s law

𝐵(𝜆, 𝑇) ∝ 1
𝜆5

1

exp
(

ℎ𝑐
𝜆𝑘𝐵𝑇

)
− 1

,

where 𝜆 is the wave-length, ℎ is the Planck’s constant, 𝑘𝐵 is the
Bolzmann’s constant and 𝑐 is the speed of light. The star temperature
𝑇 was one of the 6 stellar and planetary parameters (see Section 3.1).
In total we used 171 (3 · 55+ 6) features: 3 features for each of the 55
channels (the 2 extracted from the flux values and the energy emitted)
and the 6 stellar and planetary parameters.

4.3.2 Model & Training

Our best performing model was a heterogeneous ensemble consisting
of three models. The first model was a random forest of 500 trees
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Figure 4. The deep learning model architecture proposed by the Major Tom team (Ranked 2nd). The model has two separate inputs: one for the measurements X𝑖 ,
the second for the additional stellar & planetary parameters z𝑖 . The two branches are subsequently concatenated and higher level non-linear features combining
information from both are extracted.
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Figure 5. Preprocessing of the light curves by the BV Labs Team (Ranked 3rd). Image (a) shows the light curve before (blue) and after (red) noise instance
aggregation. Image (b) shows the features extracted from the denoised data. Both images show the data for star-planet pair 113, channel 25.

(Breiman 2001), as implemented in scikit learn(Pedregosa et al.
2011). The second model was an extreme gradient boosting (Fried-
man 2000) ensemble of 150 trees, as implemented in the xgboost li-
brary(Chen & Guestrin 2016). For both methods the parameters were
optimized with cross-validation, and a separate model was learned
for each channel. The third model was a multi-target (one model
for all 55 channels) fully connected neural network with one hidden
layer of 100 neurons. We used batch normalization, dropout (with a
rate of 0.2) and ReLU activations. The network was optimized with
the Adam optimizer for 1000 epochs, with a constant learning rate
10−3. As the loss function, average MSE across all targets was used.
The network was implemented in PyTorch.

The weights of these 3 models in the final heterogeneous ensemble
were optimized manually, with the best results obtained with a weight
0.15 assigned to the random forest, 0.25 to XGBoost and 0.6 to the
neural network. The code is available online16.

4.4 IWF-KNOW’s solution

IWF-KNOW took the fourth place on the ARIEL ML challenge
scoreboard, and comprised of researchers and data scientists from

16 Solution by BV Labs (Ranked 3rd): https://github.com/bvl-ariel/
bvl-ariel.

the Space Research Institute (Austria), Know-Center (Austria) and
the University of Passau (Germany). In contrast to the other top
scorers who relied on deep learning approaches, their solution is
based on a set of linear regressors, each of which is fast to train and
easy to interpret (see Figure 6). The corresponding scripts can be
found on Zenodo17.

4.4.1 Preprocessing

We re-indexed the examples X𝑖 , each of size 300 × 55, in a new
matrix X𝑝,𝑘,𝑙 , where 𝑝 ∈ {1, 2, . . . , 2097} indexes the planet, 𝑘 ∈
{1, 2, . . . , 10} the stellar spot instance, and 𝑙 ∈ {1, 2, . . . , 10} the
photon noise instance. To reduce the photon noise, we averaged
the examples X𝑝,𝑘,𝑙 over the photon noise instances 𝑙 belonging
to the same planet 𝑝 and stellar spot noise instance 𝑘 , yielding the
noise-reduced example matrix X̃𝑝,𝑘 = 1

10
∑10
𝑙=1 X𝑝,𝑘,𝑙 . X̃𝑝,𝑘 was of

size 300× 55 and comprised of the light curves for each wavelength.
Subsequently, we calculated the differences between the maxima and
minima of each light curve in X̃𝑝,𝑘 . The maxima were assumed to be
1 as the light curves were already normalized, and the minima were
estimated as the 1𝑠𝑡 , 5𝑡ℎ, and 10𝑡ℎ percentiles. This yielded estimates

17 Solution by KNOW-IWF (Ranked 4rd) available under the
DOI 10.5281/zenodo.3981141: https://doi.org/10.5281/zenodo.
3981141.
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Figure 6. Regression pipeline of IWF-KNOW (ranked 4th). The light curves on the left are two examples in X̃𝑝,𝑘 . The minima of the light curves were estimated
using the 1𝑠𝑡 , 5𝑡ℎ , and 10𝑡ℎ percentiles. Subsequently, the minima were used to calculate the dips of the light curves Δ𝐹𝑝,𝑘, 𝑗,𝑟 . The square root of all light
curve dips Δ𝐹𝑝,𝑘, 𝑗,𝑟 belonging to the same planet 𝑝 (i.e. including all wavelengths 𝑗 and all stellar spot instances 𝑘), and additionally the stellar and planetary
parameters 𝑧𝑝,1, . . . , 𝑧𝑝,6, were then gathered in the feature vector f∗𝑝 . The feature vector was z-score normalized (not shown in the graphic). Eventually, linear
regressions were used to calculate the relative planet radius for each wavelength 𝑗.

Δ𝐹𝑝,𝑘, 𝑗,𝑟 of the dip of the relative light curve caused by a transit
of planet 𝑝 for stellar spot noise instance 𝑘 , wavelength 𝑗 , and 𝑟 ∈
{1%, 5%, 10%} corresponding to the 1𝑠𝑡 , 5𝑡ℎ, and 10𝑡ℎ percentiles.
As the true dip Δ𝐹𝑝, 𝑗 of the relative light curve is approximately
equal to the quadratic relative planet radius

( 𝑅𝑝, 𝑗

𝑅∗, 𝑗

)2, we took the
square root of Δ𝐹𝑝,𝑘, 𝑗,𝑟 to obtain estimates of the relative planet
radii:

𝑅𝑝, 𝑗

𝑅∗, 𝑗
≈

√︃
Δ𝐹𝑝,𝑘, 𝑗,𝑟

We then built a feature vector f𝑝 comprised of the estimated rela-
tive planet radii belonging to planet 𝑝:

f𝑝 =

[√︃
Δ𝐹𝑝,1,1,1%, . . . ,

√︃
Δ𝐹𝑝,𝑘, 𝑗,𝑟 , . . . ,

√︃
Δ𝐹𝑝,10,55,10%

]
The feature vectors f𝑝 were augmented by the stellar and plane-
tary parameters provided. For that, we averaged the 6 stellar and
planetary parameters 𝑧𝑖1, 𝑧𝑖2, . . . , 𝑧𝑖6 over all photon noise and
stellar spot noise instances belonging to the same planet yielding
z𝑝 = [𝑧𝑝,1, 𝑧𝑝,2, . . . , 𝑧𝑝,6]. The averaged stellar and planetary pa-
rameters z𝑝 were then appended to the feature vectors f𝑝 yield-
ing the augmented feature vectors f∗𝑝 . The length of f∗𝑝 was 1656,
which resulted from 55 wavelengths, 3 percentile-based dip estima-
tions, 10 spot noise instances, and 6 stellar and planetary features
(55 × 3 × 10 + 6). Strictly speaking, the averaging was not neces-
sary as the stellar and planetary parameters were the same for all
instances of a planet (i.e. no noise was added to the stellar and
planetary parameters). Finally, the extended feature vectors f∗𝑝 were
z-score normalized18, separately for the training and test set, thus
avoiding information leakage from the test set into the training set.

18 This type of normalization, also known as ‘standardization’ is performed
by subtracting for each feature of a given example the mean value of that
feature across all examples and dividing by its standard deviation.

We also re-indexed the scalar targets 𝑦𝑖, 𝑗 in the training set as
𝑦𝑝,𝑘,𝑙, 𝑗 . Subsequently, we aggregated targets by averaging over all
stellar spot noise instances 𝑘 and photon noise instances 𝑙 belonging
to the same planet 𝑝, yielding the targets 𝑦𝑝, 𝑗 . However, averaging
was again not strictly necessary as all photon noise and stellar spot
noise instances of a planet had the same relative radius in the provided
dataset.

4.4.2 Model & Training

We set up a multiple linear regression model per wavelength 𝑗 ,
resulting in 55 regression models:

𝑦𝑝, 𝑗 = 𝛽0, 𝑗 + f∗T𝑝 𝜷 𝑗 + 𝝐 𝑗

with 𝜷 𝑗 being the parameter vector of the model for wavelength 𝑗 ,
𝛽0, 𝑗 the intercept term, and 𝝐 𝑗 the error term.

The parameters 𝛽0, 𝑗 and 𝜷 𝑗 of the regression model were deter-
mined using least-squares estimation, which requires the estimation
of the covariance matrix of f∗𝑝 . Because of the relatively large size of
f∗𝑝 , we estimated the covariance matrix with the shrinkage method
from Ledoit & Wolf (2004), which computes the shrinkage coeffi-
cient explicitly. The parameters were found using all examples from
the training set. Following this, we used the regression models to pre-
dict all relative radii of the planets 𝑝 in the test set with wavelength
𝑗 :

𝑦̂𝑝, 𝑗 = 𝛽0, 𝑗 + f∗T𝑝 𝜷 𝑗

The predicted relative radii 𝑦̂𝑝, 𝑗 were re-indexed to the original
indices 𝑦̂𝑖, 𝑗 by copying 𝑦̂𝑝, 𝑗 to all corresponding stellar spot noise
instances and photon noise instances.

The only hyperparameters in our model were the percentiles used
for estimating the minima of the light curve dips. We found these
parameters by trial and error and refrained from fine tuning them
further.
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4.5 TU Dortmund University

The team from TU Dortmund University, consisting of researchers
working on applying machine learning algorithms in astro-particle
physics, landed the 5th place on the leaderboard, going under the
alias ‘Basel321’ during the Challenge. Their implementation is pub-
licly available19. It embraces three central ideas: i) the preprocessing
simplifies the input time series, yet retains much of their information
in auxiliary features; ii) the baseline architecture is largely retained,
but consists of 2 input branches: one using as input these auxilliary
features and the other using as inputs the stellar and planetary param-
eters; and iii) a bagging ensemble is created, in which each member
is trained on data that have undergone slightly altered preprocessing.

4.5.1 Preprocessing

Figure 7 shows how the input data are simplified by the use of z-
scaled piecewise aggregate approximations (PAA) Keogh & Pazzani
(2000), of which the lost information is retained in the auxiliary
features 𝜇, 𝜎 and 𝜖 . These features describe each time series on a
global level, while the PAA output captures the local shape. Namely,
the PAA output is simply the average flux value in each of 𝑛paa equal-
sized segments. The z-scaled PAA representation facilitates learning
due to the decreased number of dimensions and due to the uniform
scale in each dimension. These properties are particularly relevant
in dense neural networks like the baseline solution, which can suffer
from a large number of model parameters if the input dimension is
large.

4.5.2 Model architecture and training

A fully connected DNN is trained on the extracted features and the
planetary and stellar parameters. The architecture used, shown in
Figure 8, is similar to the baseline, but it includes one branch for the
auxiliary features and one for the planetary and stellar parameters.
Figure 8 also lists the associated hyperparameters.

Multiple instances of the above architecture, were then combined
in a bagging ensemble. To increase the diversity, each ensemble
member shifted its input by a different number 𝑛 ∈ [0, 𝑛paa) of time
steps. This alteration is performed already before the preprocessing,
so that each ensemble member uses different PAA segments. The final
prediction was the median among all ensemble members’ predictions.

4.5.3 Observations

Regarding the feature representation extracted in the preprocessing
step, we observed the following: i) a linear regression on the z-
scaled PAA representation is already able to outperform the baseline
solution; ii) it is critical to maintain the information lost during this
type of preprocessing – this is achieved by the auxiliary features; and
iii) the use of shifting segments has remedied the fact that one set of
PAA segments may not be optimal for all observations.

5 WHAT THE WINNING MODELS TEACH US

We should stress again that the final score differences among the top-5
ranked solutions, as shown on Table 1, are statistically negligible and

19 Solution by TU Dortmund University (Ranked 5th): https://
bitbucket.org/zagazao/ecml-discovery-challenge

should thus be regarded as equivalent in terms of predictive power
in our simulated data. Having clarified this, these solutions provide
us with some interesting insights with regards to the problem.

First of all, we observe that all 5 solutions make use of the addi-
tional stellar and planetary parameters (orbital period, stellar tem-
perature, stellar surface gravity, stellar radius, stellar mass & stellar
𝐾 magnitude). This shows that these features indeed contain relevant
information for uncovering the transit depths in light curves contam-
inated by the presence of stellar spots. Moreover, this information is
not redundant given the noisy light curves20.

Another interesting observation is that most solutions involve the
use of highly non-linear nonparametric or overparameterized21 mod-
els w.r.t. the original features, like DNNs and/or ensembles of learn-
ers. More specifically, 4 out of 5 teams use deep learning approaches
(SpaceMeerkat, Major Tom, BV Labs & TU Dortmund University)
and 3 out of 5 (Major Tom, BV Labs & TU Dortmund University
teams) use ensemble learning methods. The Major Tom team does
not apply any preprocessing of the data provided beyond feature nor-
malization, leaving all feature extraction to be implicitly performed
by the DNN, using appropriate regularization techniques (batch nor-
malization & dropout) to prevent overfitting.

In contrast to this, the IWF-KNOW team relied on the extraction
of non-linear features from the original inputs informed by domain
knowledge. They then trained simple linear models in this new feature
space.

The above are indicative of the non-linear nature of the problem.
They also showcase the flexibility of machine learning and computa-
tional statistics methods in building models that capture this nonlin-
earity. One can extract informative features given domain knowledge
to capture it and then use simple and explainable models like linear
regression trained on them. Alternatively, one can simply use pow-
erful overparameterized models, like DNNs and ensemble methods
to implicitly learn transformations of the original feature space that
are useful for the purposes of predicting the transit depth.

Extracting a small number of meaningful features informed by do-
main knowledge (IWF-KNOW & BVLabs) or appropriately summa-
rizing the light curve information using signal processing techniques
(SpaceMeerkat & TU Dortmund University) allows for simpler mod-
els to be trained in the lower-dimensional extracted feature space.
This allows for faster training and can also ultimately reduce overfit-
ting.

A more detailed look into how the 5 solutions control for over-
fitting also reveals they follow quite different approaches. Space-
Meerkat uses a CNN rather than a fully connected DNN to reduce
the number of effective learnable parameters. Major Tom uses a fully
connected DNN but controls for its complexity via batch normaliza-
tion, dropout and the use of an ensemble of trained DNNs, rather
than a single model. BV Labs also make extensive use of ensembling

20 It should be noted here, that the participants were given the ’exact’ stellar
and planetary parameters used to simulate the data. In reality, these are known
with an associated degree of uncertainty which has not been taken into account
here. We would therefore expect a degradation in terms of the performance of
the algorithms to some degree, unless retrained on data accounting for these
uncertainties.
21 The term ‘nonparametric’ applies to models that are not restricted to a
predetermined number of parameters. They can therefore adjust their com-
plexity to the data at hand. Ensemble models can fall in this class. The term
‘overparameterized’ refers to parametric models having a number of learn-
able parameters that exceeds the number of datapoints. DNNs can fall in this
class. Through appropriate use of regularization methods it is possible to
avoid overfitting even when fitting models of such high complexity.
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Figure 7. The TU Dortmund University team (Ranked 5th) simplifies the raw data with piecewise aggregate approximations (PAA) of z-scaled time series. The
information lost during these transformations is retained in auxiliary features. Namely, the z-scaling produces time series with zero mean and unit variance,
but the original means 𝜇 ∈ R and variances 𝜎 ∈ R of each channel and observation are kept. The PAA consists of only one average value in each equi-sized
segment, but the overall reconstruction errors 𝜖 ∈ R are maintained.
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Figure 8. The first three layers of model used by the TU Dortmund University team (Ranked 5th) derive abstract features from each time series that is represented
by a PAA. The auxiliary features 𝜇, 𝜎 and 𝜖 and the stellar parameters are also fed into the network. The last four layers combine these different kinds of inputs.
A randomized parameter search has been employed to tune the number of layers and their size.

and their neural network learner also uses batch normalization and
dropout. The fact that they operate on a much lower dimensional
feature space (only 171 features per datapoint) also aids in reduc-
ing overfitting. IWF-KNOW use linear regression models, which are
characterized with high bias (i.e. more prone to underfitting than
overfitting). They also operate on a lower-dimensional space (1656
features per datapoint) and apply shrinkage. Last but not least, TU
Dortmund University makes use of an ensemble which is interest-
ingly built on data having undergone slightly different preprocessing.
Training on perturbed inputs results in making them more robust to
overfitting.

Two of the top-5 teams (BV Labs & IWF-KNOW) made use of
the fact that the training data contained multiple datapoints corre-
sponding to the same planet under (10 different photon noise and
10 different stellar spot noise instances). They treated the two noise
sources as independent and averaged these out or took the median
to obtain less noisy light curves. This was a sensible thing to do and
such a scenario would indeed occur if multiple observations of the
same target were to be obtained.

Finally, ignoring outlier flux values via smoothing/downsampling
the light curves (SpaceMeerkat), clipping values above 1 (Space-
Meerkat & BVLabs) or by extracting summary statistics from the
light curve and using them as features (SpaceMeerkat, BVLabs,
IWF-KNOW & TU Dortmund University) proved a useful strategy in
building more robust models.

6 CONCLUSIONS

Correcting transit light curves for the effects of stellar spots is a
challenging problem, progress in which can have a high impact on
exoplanetary science and exoplanet atmosphere characterization in
particular.

The primary goal of the Ariel Mission’s 1st Machine Learning
Challenge was to investigate the existence of fully automated solu-
tions to this task that predict the transit depth with a precision of the

order of 10−5–10−4 with the use of machine learning and compu-
tational statistics methodologies. The secondary goal was to bridge
the machine learning and exoplanetary science communities. As we
saw, both of these goals were met with success.

The aim of this work is to serve as a starting point for further
interaction between the two communities. We described the data
generation, the problem outline and the organizational aspects of the
Challenge. We intend this to serve as a reference for the organisation
of future challenges in data analysis for exoplanetary science. In the
interests of communicating the modelling outcomes of the Challenge,
we also presented, analyzed and compared the top-5 ranked solutions
submitted by the participants.

As evidenced by the top-5 entries, the Challenge indeed attracted
the interest of both exoplanetary scientists and machine learning ex-
perts. The participants cover an impressive breadth of academic back-
grounds and the submitted solutions an equally impressive range of
approaches, from linear regression to convolutional neural networks.

The solutions obtained demonstrate that it is indeed feasible to
fully automate the process of efficiently correcting light curves for
the effect of stellar spots to the desired precision. One key insight
obtained is that additional stellar and planetary parameters (orbital
period, stellar temperature, stellar surface gravity, stellar radius, stel-
lar mass & stellar𝐾 magnitude) can greatly improve the derivation of
correct transit depths in the face of stellar spots. Moreover, although
the scenarios examined where characterized by high spot coverage
(10%), the results suggest that it is possible to successfully correct
even such “hard cases". This, in turn, suggests that younger or more
active stars need not be excluded from atmospheric population stud-
ies due to data analysis limitations. Planets orbiting such stars can
thus be targeted by future space missions.

Good solutions can be obtained by a wide range of modelling
methodologies. They include simple, easily interpretable models,
like linear regression, built on features derived from clever feature
engineering, informed by exoplanet science theory. Other solutions
amount to training complex machine learning models using deep
learning or ensemble learning, which automate the extraction of
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useful features from minimally preprocessed –even raw– data. In the
latter case, especially for DNN models it is crucial to take measures to
prevent overfitting. These can include dimensionality reduction, en-
sembling, use of convolutional filters, batch normalization, dropout,
training using perturbed data and combinations thereof.

The next steps of this work include refinement of the proposed
solutions to handle more realistic simulated data, possibly involving
both stellar spots and faculae (areas of the host star characterized by
increased temperature). Upon successful performance on these, the
provided solutions can then be used in the analysis pipeline of Ariel
data or adapted to other instruments.
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