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Summary Statement 

Development can progress in “jumps”, with sharp transitions between successive cell states.  

We show that jumps can be induced by the emergence of collective signalling in the cell 

population. 

 

Abstract 

Development can proceed in “fits and starts”, with rapid transitions between cell states 

involving concerted transcriptome-wide changes in gene expression.  However, it is not 

clear how these transitions are regulated in complex cell populations, in which cells receive 

multiple inputs.  We address this issue using Dictyostelium cells undergoing development in 

their physiological niche.  A continuous single cell transcriptomics time series identifies a 

sharp “jump” in global gene expression marking functionally different cell states.  By 

simultaneously imaging the physiological dynamics of transcription and signalling, we show 

the jump coincides with the onset of collective oscillations of cAMP.  Optogenetic control of 

cAMP pulses shows that different jump genes respond to distinct dynamic features of 

signalling.  Late jump gene expression changes are almost completely dependent on cAMP, 

while transcript changes at the onset of the jump require additional input.  The coupling of 

collective signalling with gene expression is a potentially powerful strategy to drive robust 

cell state transitions in heterogeneous signalling environments.  Based on the context of the 

jump, we also conclude that sharp gene expression transitions may not be sufficient for 

commitment. 

 

Introduction 

The changes in gene expression occurring during developmental progression are not 

constant paced.  In diverse developmental contexts, from plants, to Dictyostelium, to 

neurons, to adult and embryonic stem cells, developmental progression occurs by rapid and 

concerted transcriptome-wide switching from one gene expression state to the next 
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(Antolovic et al., 2019; Artegiani et al., 2017; Giri et al., 2022; Jang et al., 2017; Moris et al., 

2016; Nelms and Walbot, 2019; Rukhlenko et al., 2022; Saez et al., 2022).  These rapid 

transitions imply a powerful and general mechanism for cells to robustly “commit” to a 

specific state in the presence of complex tissue signalling, by making cells insensitive to 

signals promoting alternative states, and by promoting coherence in the establishment of 

the new state.    

 Sharp switching between transcriptome states has usually been revealed by single 

cell transcriptomics methods.  Although these approaches allow transcriptomes to be 

sampled from many cells at a time, and so enable classification of cell states, the 

measurements require disrupting the cells and their dynamic population structure.   

Consequently, it is unclear how rapid cell state switching is organised and coordinated in 

space and time within physiological cell contexts. 

 Here we investigate the coordination of rapid cell state transitions using the social 

amoeba, Dictyostelium.  These cells enter their developmental programme upon exhaustion 

of their food source.  After a few hours of starvation, cells begin signalling to each other 

using extracellular cAMP, which acts as a chemoattractant and drives the aggregation of the 

cells into a multicellular mound.  Over the next 15-20 hours, the mound undergoes a series 

of morphogenetic transitions, resulting in the generation of the mature final structure- a 

fruiting body with spores suspended over the substrate by a stalk.  In addition to these 

morphogenetic transitions, the cells change a substantial proportion of their transcriptome 

as they transition from the feeding state to the final structure.  Time series analysis of 

transcriptomes at the population level reveals, as in other systems, that developmental 

progression is not constant paced (Parikh et al., 2010; Rosengarten et al., 2015).  More 

recently, single cell transcriptome analysis of the mound stage revealed discrete states 

during the cell fate bifurcation process, indicating the concerted switching of the 

transcriptome within single cells (Antolovic et al., 2019).  

 Gene expression changes are regulated by a variety of signals: the onset of 

development is regulated by nutritional signalling (Jaiswal and Kimmel, 2019), quorum 

sensing (Clarke and Gomer, 1995) and cAMP (Cai et al., 2014; Corrigan and Chubb, 2014; 

Masaki et al., 2013), with other signals operating later during development (Williams, 2006).  

Despite the involvement of multiple signals during early development, most assays remove 

this signalling complexity, by plating cells from well-mixed cultures in non-nutrient buffer at 

uniform density.    This removes the natural heterogeneity in developmental time within a 

Dictyostelium colony, and the complex external regulation experienced by each cell is 

reduced to a time-dependent wait for the onset of cAMP signalling.  

 To understand cell state switching in a more physiological context, we instead 

consider the early developmental programme in a mimic of the Dictyostelium physiological 

niche.  The cells normally live in the soil, feeding on bacteria, and this is simulated in the lab 

by plating cells on a lawn of bacteria on an agar plate.  As cells clear the bacteria, they 

create a plaque, in which the starving cells then undergo development.  This niche-mimic 

contains the full asynchronous spectrum of developmental states, and more closely 
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resembles the natural signalling complexity, in which nutrition (bacteria), cAMP and 

variations in cell density (quorum signalling) co-exist.    We contextualise a sharp transition 

in transcriptome content- the jump- which occurs at the transition between the unicellular 

and multicellular stages of development.  The jump emerges as a sharp spatial boundary in 

the colony as collective cAMP signalling begins.  Jump gene expression requires cAMP 

signalling, however different jump genes respond to cAMP with different dynamic 

behaviours.  Post-jump gene expression is almost completely dependent on cAMP, while 

early jump genes require additional signalling inputs.  The jump differentially recruits cells 

separated by only minutes in developmental time, challenging the standard view of 

development as a synchronous timer-based process.  Based on the context of the jump, we 

infer that gene expression changes at the jump do not constitute commitment. 

 

 

Results  

Understanding the regulation of cell state transitions during development requires defining 

cell states in the unperturbed physiological context.  To define the major transitions during 

developmental progression, we collected a continuous single cell transcriptomics time 

course of Dictyostelium development.  To capture development in a continuous manner, we 

collected cells from colonies of cells feeding on their bacterial food source (Figure 1A).  In 

this context, cells feed on bacteria, and migrate further into the bacteria to acquire more 

food.  Cells left behind starve, which triggers their developmental programme: single cells 

aggregate together by chemotaxis towards periodic signalling waves of cAMP, to form 

mounds.  Subsequently, the mound goes through a series of morphogenetic steps, 

ultimately generating the final structure, with spores suspended above the substrate by a 

stalk.   We collected a continuous streak of cells, from the bacterial zone through to the 

mounds, then generated single cell transcriptomes for 4743 cells. 

 To visualise the data, we reduced its dimensionality to two components combining 

principal component analysis (PCA) and elastic embedding to retain both local and global 

data structure (Chen et al., 2019).  To identify the direction of developmental time within 

the data, we labelled plots with panels of genes representative of specific stages of 

development (Figure 1B):  the top plot shows expression of ribosome protein genes, which 

are strongly expressed during feeding but become repressed during starvation.  The middle 

panel shows expression of aggregation-specific genes and the bottom panel displays 

expression of genes upregulated after aggregation.  Expression of markers of the two 

principal fates, stalk and spore, occurs in the far right of the plot (Figure 1C).  Overall, these 

data indicate developmental time proceeds from North West to South East along the 

backbone of the fish-shaped distribution (Figure 1D).   This inferred directionality of 

developmental time is supported by overlaying expression of an independently generated 

population transcriptomic dataset (Katoh-Kurasawa et al., 2021) (Figure  S1A and B), and  

expression of genes with cell cycle control functions, which label clusters in the 

undifferentiated zone and spore branch, consistent with known cell cycle activity 
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(Muramoto and Chubb, 2008) (Figure S1C).  The distributions of M and S-phase gene 

expression are broadly similar, consistent with studies showing Dictyostelium lack a G1 

(Muramoto and Chubb, 2008; Zimmerman and Weijer, 1993). 

 

Cell state transitions during early development 

The distribution of cells in this space reveals several key features.  As cells differentiate, they 

encounter a region with few cells- “the jump”- indicating a rapid change in the global 

transcriptome of cells (Figure 1D).  This “jump” is clearly observed in a 3D density plot of the 

data (Figure 1E), where peak heights correspond to cell density in gene expression space.  

After the jump, cells accumulate at a bottleneck, where their transcriptomes become 

similar, before undergoing a second rapid transcriptome remodelling, similar to the jump, as 

they separate into the spore and stalk fates, in agreement with earlier observations 

(Antolovic et al., 2019).  Hierarchical clustering implies cells here proceed from the 

bottleneck into a mixed transcriptional intermediate state (Figure S1D; cells marked in 

purple), in which spore and stalk markers can both be expressed, albeit with little overlap 

within individual cells, before the complete fate separation occurs. 

 In this study, we consider the first jump.  To test if this jump is a biological effect or 

an effect of the non-linear data representation, we also represented the data using linear 

dimensionality reduction: PCA.  In PCA, the PC1 axis reflects developmental time (Figure 

S1E), with the jump clearly apparent in several higher order principal components (Figure 

1F, Figure S1E), indicating it is not an artefact of the elastic embedding procedure.  The jump 

is also clear in clustering of cell-cell Pearson correlations (Figure 1G), which reveals two 

major clusters, corresponding to the cells before and after the jump. 

 To gain insight into the gene expression changes occurring during the jump, we 

carried out unbiased hierarchical clustering on the whole dataset.  The clustering revealed 

the sharp changes in global expression profiles occurring during the jump and identified four 

major clusters (Figure S1F top panel), which are highlighted on the 2D embedding plot 

(Figure S1F bottom panel):  two clusters of cells before the jump and two after the jump.  

Based on gene expression signatures, these clusters represent cells that are feeding (red), 

starving (green), aggregating (blue) and mound stage (purple).  Our inference here, also 

apparent in Figure S1A, is that the jump occurs at the onset of aggregation.  This is 

consistent with population transcriptomic data based on morphologically-staged time series 

that show substantial transcriptome changes between single cell and multicellular stages 

(Katoh-Kurasawa et al., 2021; Parikh et al., 2010).  However, the implication from our 

continuously-sampled data showing few cells caught within the jump is that the transition is 

concerted within individual cells, with two clearly demarcated attractor states (Figure 1D-F), 

features not resolvable using population average data.  The majority of changes before the 

jump are repressive, with 66% of transcripts down-regulated in two waves before the jump 

(Figure S1F).  Transcript clearance might result from transcriptional repression followed by 

constitutive RNA turnover, or by induced RNA decay.  Concerted transcriptome shifts within 

a cell, based on transcriptional repression, would require the half-lives of repressed 
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transcripts to be matched, to enable synchrony.  This is not consistent with data showing a 

broad heterogeneity in turnover times for different mRNAs during starvation (Muramoto et 

al., 2012), implying the jump requires an induced RNA turnover mechanism.   

 To more precisely contextualise the jump with developmental progression, we used 

live imaging of transcription of jump marker genes, using transcriptional reporters inserted 

into endogenous gene loci.  We identified jump markers in the transcriptome data that are 

representative of cells at different stages of the jump (Figure 2A).  The cafA gene, which 

encodes a calcium binding protein, is induced prior to the jump.  carA, the cAMP receptor 

gene, is expressed slightly later, with detectable induction before the jump.  The csbA gene, 

which encodes a cell adhesion protein, is expressed post-jump.  To directly visualise 

transcription of these markers during development, we inserted MS2 (Bertrand et al., 1998) 

and PP7 (Larson et al., 2011) stem loops into the endogenous gene loci, then used the 

cognate fluorescent MCP and PCP stem loop binding proteins to visualise nascent 

transcripts as spots at the site of transcription (Figure 2B) (Tunnacliffe and Chubb, 2020).  

Genes were imaged in pairs, with simultaneous imaging of both MS2 and PP7-tagged genes, 

with carA-MS2 imaged alongside both cafA-PP7 and csbA-PP7 to benchmark the spatial 

context of expression for each gene.  To ensure physiological regulation, and to 

contextualise transcription with normal developmental progression, cells were directly 

imaged in the developmental colony.  Both cafA and carA were strongly induced in cells 

before the onset of cell aggregation.  In contrast, csbA only showed abundant 

transcriptional events in the zone of the colony undergoing aggregation. 

 

Regulation of jump gene expression by cAMP 

Developmental gene expression can be influenced by multiple signals, notably starvation 

time (Jaiswal and Kimmel, 2019) and extracellular cAMP (Cai et al., 2014; Corrigan and 

Chubb, 2014).  To what extent are these signals, which are spatially heterogeneous in the 

niche, driving the gene expression changes at the jump?  As both transcriptomics and the 

imaging imply jump genes such as cafA and carA are induced just prior or at the onset of 

aggregation, this suggested cAMP signalling may be responsible for the jump. To test this, 

we imaged transcription of jump genes in the colony (Movie S1), with parallel tracking of 

cAMP signalling, by mixing the transcriptional reporter cells with cells expressing the cAMP 

reporter, Flamindo2.  Flamindo2 is an intensiometric cAMP reporter that dims in 

fluorescence when it binds to cAMP (Ford et al., 2023; Hashimura et al., 2019; Kundert et 

al., 2020)(Movie S2).  We obtained time series data simultaneously recording the 

physiological dynamics of both transcription and signalling, in the unperturbed colony, from 

the undifferentiated cells through to the cells at the aggregation stage of differentiation, 

over millimetre length scales (Figure 3A).  Data are represented with the horizontal axis 

representing the position of each cell in the colony (Figure 3B).  Undifferentiated cells are on 

the left, with the differentiating cells on the right.  The vertical axis represents imaging time.  

For carA, the undifferentiated cells only showed sparse and sporadic transcription (Figures 

3B and S2A), with transcription becoming strong and oscillatory in the more differentiated 
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cells.  The region of strong transcription coincided with the domain of cAMP fluctuations 

which showed oscillatory behaviour (Figure 3C-E, S2B-D), and continued as the signalling 

cells merged into an aggregate towards the end of the time series (observed as the 

constriction of fluorescence at the top right of Figure 3C).  The carA expressing cells mark 

the zone in the colony where aggregating cells peel away from the rest of the population:   

the population that was spatially continuous at the onset of imaging separated gradually as 

the aggregate formed.   

To what extent are the oscillations temporally and spatially coupled?  A quantitative 

analysis of carA transcription indicated carA induction occurs at the same region at which 

cAMP relay is occurring.   This was revealed by substantial overlap in the inflections of the 

curves summarising transcription and signalling activity (Figure 3F, S2E).  The period of the 

cAMP and carA transcription oscillations was similar, however the phases of transcription 

and signalling waves are offset (Figure 3G, S2F).  A cross correlation analysis revealed a lag 

of 4-5 minutes between the peak of the cAMP wave and the peak of transcription, possibly 

reflecting signalling lags from receptor to gene, such as transcription factor shuttling times 

(Cai et al., 2014), in addition to the time for transcripts to build up at the locus.  Overall, 

these data imply induction of carA by collective cAMP signalling.  

To directly test the role of cAMP in inducing jump transcription, we imaged carA 

transcription together with signalling in acaA- mutants (Figure 4A), which lack the adenylyl 

cyclase that synthesizes cAMP during early development.   These mutants show a loss of 

cAMP signalling using the Flamindo2 reporter (Figure 4A right panel). The rare sporadic carA 

transcriptional events were still observed, with slightly enhanced activity further from the 

bacterial zone, however the gene did not show the strong induction of transcription 

observed in the wild-type developmental collective. 

To test to what extent cAMP signalling is sufficient to induce jump gene expression, 

we exposed cells across the colony to periodic pulses of cAMP using the optogenetic 

adenylyl cyclase, bPAC from the soil bacterium Beggiatoa (Stierl et al., 2011).  To effectively 

control the experiment in the absence of exogenous cAMP signalling, we used acaA- cells, to 

prevent cAMP signals propagating across the colony, and to allow test (activated) and 

control (not-activated) cells to be compared in the same conditions.  We activated bPAC at 6 

minute intervals with blue light pulses along the entire starvation axis of the developmental 

collective.  This pulse frequency was used to mimic the normal excitable cAMP signalling 

pulses occurring around the onset of cell aggregation.  This regime of pulsing caused the 

induction of bright carA transcription spots in activated cells, but not in no light controls 

(Figure 4B).  When examined over the whole collective, the induction process revealed 

other features of the niche that influence cell responsiveness (Figure 4C). Firstly, the 

induction was not immediate- the cells required around 30 minutes of pulsing before 

showing strong induction, indicating some requirement for priming.  Secondly, the induction 

was spatially restricted, with the less differentiated cells at the left of the colony not 

showing carA induction, implying repression by some feature of cell context in this zone.  So 

D
ev

el
o

pm
en

t •
 A

cc
ep

te
d 

m
an

us
cr

ip
t



although these data indicate oscillatory cAMP signalling drives the jump, the responsiveness 

of cells depends on their context in the niche. 

 

Jump genes have different regulatory inputs 

Temporal coupling was also observed between cAMP oscillations and the cafA gene (Figure 

5 and S3), however cafA showed different behaviour compared to carA.  Transcription of 

cafA was observed in areas of the cell population without oscillatory cAMP signalling, 

although stronger transcription was observed in the zone where cAMP oscillations were 

detected (Figure 5A-C).  The transcription was also oscillatory, however, unlike carA, the 

gene was repressed at the higher cAMP oscillation frequencies occurring later in the time 

series (Figure 5A and S3A).  A further difference between carA and cafA was apparent in the 

offset between transcription and signalling, with cafA transcription maxima delayed from 

cAMP maxima by 90 seconds or less (Figure 5D, S3F). 

 To directly test the role of cAMP in inducing cafA transcription, we imaged cafA 

transcription and cAMP signalling in acaA- mutants (Figure 5E).   The rare sporadic cafA 

transcriptional events were still observed.  However, the gene failed to show the strong 

induction of transcription normally observed in wild-type cells.  Unlike carA, the cafA gene 

was not induced by optogenetic pulses of cAMP synthesis with a 6 minute periodicity 

(Figure 5F left panel).  Therefore, although strong induction of both genes requires cAMP, 

carA and cafA show distinct kinetics of coupling to cAMP signalling.  Our observations that 

cafA transcription is repressed at high cAMP frequencies (Figure 5C), together with the 

observed induction of transcription in cells not undergoing robust cAMP oscillations (Figure 

5A) suggest cafA may respond to lower levels of cAMP and/or lower frequency pulses, with 

repression of the gene at high signal amplitudes/frequencies.  To explore this further, we 

repeated the optogenetic activation experiments for cafA transcription, this time using a 10 

minute pulse interval (Figure 5F right panel).  With this reduced cAMP pulse frequency, we 

observed induction of cafA transcription in the niche.  The induction was not fully 

penetrant, with strong transcription induced in 3 out of 8 experimental replicates, however 

the results are suggestive that cafA gene is responsive to cAMP, but at lower amplitudes or 

frequencies of stimulation.  This would be consistent with its expression earlier in 

development than carA, when cAMP signalling is more unstructured and infrequent (Ford et 

al., 2023). 

 The coupling of cafA transcription to cAMP may follow the rules inferred for the 

transcriptional oscillations of the csaA gene (Cai et al., 2014; Corrigan and Chubb, 2014).  

With the caveat that csaA oscillations were observed with cells differentiating in buffer, 

rather than in the niche, the gene was proposed to show two step regulation, with 

activation and repression at different stages of the cAMP oscillation cycle.  The effect of this 

scenario is that the gene is switched off at high cAMP wave frequencies, as the repression 

occurs before the activated state has sufficient time to be productive.  Transcription of cafA 

is repressed at high cAMP frequencies (Figure 5), in addition to showing activation 

independent of cAMP oscillations, much like csaA.  In contrast, the carA gene is not 
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inactivated at high signal frequencies (Figure 3), suggesting a more simple one step model, 

in which the gene activation mirrors the level of cAMP (with a lag) but no explicit repressive 

input.  

 We then further tested the requirement for cAMP signalling for a broad set of genes 

changing their expression at the jump.  To define this set of genes, we intersected high 

temporal resolution population transcriptomic datasets from synchronous developmental 

protocols (Katoh-Kurasawa et al., 2021) with our own continuous single cell transcriptome 

data from the physiological colony (Figure S4).  We categorised genes into three profiles 

(Supplementary Table 1): repressed at the jump (pre-jump genes), induced spanning the 

jump (“jump” genes such as carA and cafA) and induced after the jump (post-jump). 

Comparing the population transcriptomic data on wild-type and acaA- cells reveals effects 

of cAMP removal on all three categories. 85% of pre-jump genes fail to be repressed 

without cAMP signalling (Figure S4B; 46/54 genes).  For jump genes, 16/22 showed partially 

reduced expression, with the remainder losing induction completely (Figure S4C).  Post-

jump genes almost entirely showed complete lack of normal developmental expression, 

with only 1/82 genes (csbC) retaining detectable induction (Figure S4D).   Overall, these data 

indicate that erasure of the undifferentiated state requires cAMP and the post-jump state is 

effectively absent without cAMP.  In contrast, as also implied by the sporadic transcription 

observed in our niche imaging, and the resistance to optogenetic cAMP stimulation we 

observed for recently starved cells, induction of the transcripts spanning the jump state 

requires a mixture of cAMP signalling and other inputs. 

 

Collective signalling separates cells of a similar developmental age 

In the developmental niche, cells that peel off to join streams of aggregating cells are 

initially spatially directly adjacent to cells of a similar developmental time (eg. Figure 3B).  To 

quantify this, we captured low magnification time series of the developmental colony 

(Figure 6A).  The cells advance into the bacterial zone at a constant rate of around 1.9 µm 

min-1, which is slightly slower than they migrate in vitro in buffer (Chubb et al., 2002).  The 

events in which cells peel off to form streams and then mounds occur around once every 4 

hours (Figure 6B,C) although this can be as much as 10 hours.  This may be an 

underestimate of the variability, with rare mounds forming well behind the normal band of 

mound formation, in the zone containing fruiting bodies. Overall, this variation implies the 

absolute time of starvation, which reflects the continuous clearance of the bacteria away 

from the starving cells, is not a precise predictor of the time at which the cell enters 

multicellular development, which is a discrete event.  As a consequence, cells entering 

mounds will vary in developmental time by the size of the interval between peel-off events.  

To contextualise this variation in timing- the normal starvation time before aggregation 

onset in synchronous developmental protocols is 4-6 hours, depending on the strain used, 

and standard experimental variation.  As a result, cells entering late into a mound will have 

experienced around two-fold (or sometimes considerably more) extra nutrient deprivation 

than cells early into a mound (schematic in Figure 6D).  This represents a substantial 
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spontaneous heterogeneity in cell signalling history, which may underlie the observed sub-

clustering of cell gene expression states just before the jump (Figure 1E).  This heterogeneity 

may have functional consequences: nutrient-deprived cells tend to adopt the stalk rather 

than spore fate (Thompson and Kay, 2000).  The spontaneous formation of mixed-age 

mounds by the jump would therefore provide a straightforward source of nutritional 

heterogeneity to facilitate robust cell type patterning. 

 

 

Discussion 

There are key features of cAMP signalling that well suit its ability to drive a sharp change in 

cell state.  As with many tissue signalling processes in more complex systems (Deneke and 

Di Talia, 2018; Dieterich et al., 2006; Ender et al., 2022; Liu et al., 2022; Pond et al., 2022), 

signalling by cAMP is excitable: as one cell is activated, it releases more signal to its 

neighbours, which then further spread the signal (Ford et al., 2023; Gregor et al., 2010; 

Tomchik and Devreotes, 1981).  This signal relay will enable coordinated switching of a cell 

population into the new state, necessary for an organised response.  In addition, the genes 

induced at the jump, as exemplified by carA (which encodes the cAMP receptor) provide the 

potential for positive feedback.   The ability of a signal to induce its own receptor, in 

addition to the induction at the jump of other genes required for cell aggregation, will 

further strengthen cAMP signalling between cells.  This mutual interaction allows an 

amplification ideally suited to rapidly lifting a cell out of one state and into the next.   

One consideration is that cells would need to be able to perceive cAMP to get the 

amplification process started, which will require a cAMP receptor. Consistent with this 

requirement, feeding cells can show basal levels of expression from the carA locus 

(Muramoto et al., 2012), so there will be the potential to detect early arriving cAMP.  A 

further issue is that although induction of transcript clearance and post-jump transcription 

appear dominated by cAMP regulation, the induction of most genes spanning the jump, 

notably cafA, is also modulated by other inputs.  This makes regulatory sense- for a cell to 

embark on a sharp state transition, multiple inputs would provide more robustness to this 

decision.  Overlying a collective signal over a timing mechanism (starvation) means the cell 

will only jump when there is a sufficient quorum to make the transition to multicellularity 

worthwhile, whilst allowing sufficient time to not miss out on another opportunity to feed. 

Sharp state transitions or jumps have been implicated as “commitment” points 

(Mulas et al., 2021).  Definitions of commitment vary, but a standard usage implies some 

resistance against cells reverting to their former state.  This usage may not apply to the 

jump we are considering here.  Differentiating Dictyostelium cells can de-differentiate 

rapidly in response to the reapplication of their nutrition source (Finney et al., 1987; Nichols 

et al., 2020).  De-differentiation of most cells in the population is complete within no more 

than a day and cells retain the ability to de-differentiate until they terminally differentiate- 

many hours after the jump.  This indicates the jump itself presents no absolute barrier to 

cell state reversion.  However, de-differentiation is usually induced by experimental 
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disaggregation of developing structures.  If nutrition is applied to intact structures, or cells 

around the onset of multicellularity, they de-differentiate poorly, if at all (Katoh et al., 

2007).  This resistance to dedifferentiation can be considered commitment but is likely to 

result from the stability of the signalling across networks of cells, rather than any stable cell 

autonomous state resulting from the jump.  Indeed, mutant cells which generate unstable 

mounds show signatures of de-differentiation (Katoh-Kurasawa et al., 2021), suggesting the 

differentiating state is stabilised by cell interactions, not directly by gene expression state.  

Does this relate to cell state transitions in general?  To an extent, perhaps.  Ground state 

mouse embryonic stem cells can populate preimplantation blastocysts with high efficiency- 

yet slightly more differentiated cells can reset with a low frequency to contribute to 

chimeras, although most are lost by cell competition (Alexandrova et al., 2016).  Another 

consideration is that mammalian development requires much more time, and perhaps more 

cell state transitions than Dictyostelium development, so developmentally advanced cells 

may no longer have the machinery to interpret the signals promoting an earlier state, 

meaning de-differentiation can only be enforced by more aggressive approaches, such as 

forced transcription factor expression. 

The single cell gene expression data reported here reveal unexpected sources of 

cellular heterogeneity.  Whilst the effects of dimensionality reduction need also to be 

considered, the cells appear heterogeneous in the feeding state before becoming more 

heterogeneous prior to the jump.  This increase in heterogeneity was previously observed in 

cells differentiating in buffer, which was suggested by modelling to result from the effect of 

transcription repression on transcriptional noise (Antolovic et al., 2017).  Starving cells 

reduce their overall transcriptional output (Mangiarotti et al., 1981), as might be expected 

in a context opposed to extensive biosynthesis, which may provide the driver for the 

increased noise.  We show here that there is another potential layer of heterogeneity 

arising from differences in starvation time of cells undergoing the jump.  This heterogeneity 

could conceivably contribute to variable responses of cells to signals later in development. 

Indeed, based on the effects of experimental nutrition deprivation on perturbing cell fate 

allocation (Thompson and Kay, 2000), this spontaneous heterogeneity in nutritional history 

for cells entering the multicellular stage may contribute to the overall fate diversity 

between cells in the final developed structure.  Input to fate choice will also likely include 

differences in cell cycle position, which can be a functional source of heterogeneity for cell 

type allocation in Dictyostelium (Gomer and Firtel, 1987; Thompson and Kay, 2000) and 

other differentiation systems (Pauklin and Vallier, 2013).   

While the pre-jump heterogeneity is largely consistent with the long-held notion that 

fate choice during development requires differences between cells in feeding and 

starvation, it is not clear why this heterogeneity should then become reduced before the 

onset of fate marker expression- the bottleneck.  This constriction of cell variability 

resembles previous single cell transcriptome measurements in the mound (where cell fate 

bifurcation first becomes detectable), which identified a compact population before the 

branching into spore and stalk trajectories (Antolovic et al., 2019). The most likely 
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explanation is that the cells at this stage are aggregating or recently aggregated and 

regardless of their final fate, will be challenged with expressing the components required for 

enacting the single cell to multicellular transition.  These transcripts dominate the measured 

transcriptome and are shared by all cells (Antolovic et al., 2019).  Based on the sensitivity of 

single cell transcriptomics, these might be expected to obscure the more variable transcripts 

conveying information to cells for fate allocation.  Alternatively, the cell-cell differences 

required to inform fate may be better represented in the proteome. 

 

 

Materials and Methods 

Cell handling 

Cells were cultured on lawns of Klebsiella pneumoniae on plates of SM agar (Urushihara, 

2006). For transcriptomics, we used the wild isolate strain NC4 (from Pauline Schaap, 

Dundee).  For genetic modifications, we used the Ax3 strain, and an Ax3 derivative 

expressing the nuclear marker, H2Bv3-mCherry under the control of the endogenous rps30 

promoter (Corrigan and Chubb, 2014).  All cells were used from a master stock and cultured 

for no more than 10 days.  For DNA transformations, we used an electroporation protocol 

based on H50 buffer (Paschke et al., 2018), with selections in standard HL5 axenic growth 

medium at 22°C, in tissue culture dishes.  Selection used 20 µg/mL G418 for 

extrachromosomal expression vectors and either 10 µg/mL blasticidin S or 35 µg/mL 

hygromycin for gene targeting vectors. 

 

Molecular biology 

To image transcription, PP7 repeats were inserted into endogenous cafA, carA and csbA 

genes.  For PP7 targeting with PP7 cassettes, fragments containing 24 PP7 repeats (Larson et 

al., 2011) and a blasticidin S resistance (bsr) gene (Faix et al., 2004) were inserted at the 

junction of the promoter and coding sequences of the genes, slightly downstream of the 

translation start codon. For carA-PP7, we used the carA-MS2 targeting vector described 

previously (Muramoto et al., 2012), and replaced the BamHI fragment containing MS2-bsr 

with a BamHI fragment containing PP7-bsr.  For cafA-PP7, we generated a targeting vector 

with targeting arms cloned as follows: -297 to +281 (promoter, with +1 marking the ATG), 

+284 to +1310 (coding sequence); for csbA: -373 to +274 and +288 to +1148, with HindIII 

and BsrGI used for cloning promoters, and SpeI and NotI for coding sequences, with PP7-bsr 

inserted using BsrGI and SpeI.  Dual transcriptional reporter cell lines with carA-MS2 and 

either cafA-PP7 or csbA-PP7 were generated in Ax3 carA-MS2 knock-in cells (Muramoto et 

al., 2012) pre-modified by Cre recombinase expression to remove the bsr.  Single reporter 

lines for carA-PP7 and cafA-PP7 were generated in H2Bv3-mCherry labelled cells.  Labelling 

of the MS2 and PP7 repeats was enabled by expression of extrachromosomal plasmids 

expressing GFP or TdTomato tagged MCP and PCP stem loop binding proteins  (Antolovic et 

al., 2019).  For stable uniform Flamindo2 expression, we targeted a codon-optimised 

Flamindo2 gene into the act5 gene of Ax3 cells as previously described (Ford et al., 2023). To 
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disrupt the acaA gene, we used hygromycin selectable acaA targeting vector (Tweedy et al., 

2020).  For bPAC, a codon-optimised bPAC gene (Ford et al., 2023) was expressed from the 

extrachromosomal vector pDM1203 (Paschke et al., 2018), in Flamindo2-expressing acaA- 

cells.  All plasmids and cell lines will be deposited at dictyBase. 

 

Single cell transcriptomics 

For a continuous scRNAseq timecourse, we took a scrape of feeding fronts of NC4 cells, 

from inside the bacterial zone through to the mound stage of development.  Cells were 

inoculated into ice-cold KK2 buffer (20mM KPO4, pH 6.0), and disaggregated by gentle 

pipetting.  To remove bacteria, cells were centrifuged at 720g for 2 minutes, then 

resuspended in ice-cold KK2.  Single cell transcriptomes were derived using the Chromium 

Single Cell A Chip platform (PN-1000009) based on (Nichols et al., 2020).  Detailed 

information on sequencing, downstream processing and data analysis is in the 

Supplementary Methods.  Transcriptomes from 2671 and 2072 cells, from two replicates, 

were used for further analysis.  Sequencing data are available at GEO: GSE220242.  Code for 

scRNAseq data analysis is available at https://github.com/Vlatka22/scRNAseq_Pipeline. 

 

Imaging and image analysis 

For imaging gene activity with signalling, transcriptional and signalling reporter cells were 

mixed at a 1:2 ratio, and spotted onto lawns of Klebsiella on diluted SM agar plates (1 SM : 

19 H2O). After 3 days for colonies to form, agar pads were excised and inverted onto 

imaging dishes (µ-Dish, Ibidi, 81156). Imaging used an inverted spinning disk confocal 

microscope (3i) using a 63x oil lens, with a Prime 95B CMOS camera (Photometrics).  We 

captured 14 to 16 z slices, with a 0.4 µm step size and 2x2 binning.  3D stacks were captured 

every 45 or 60 seconds at multiple xy positions across the cell population, with fields of view 

stitched to generate a complete view of the early developmental niche.  GFP and 

mCherry/TdTomato were excited with 488 nm and 561 nm lasers, respectively, with laser 

powers optimised for best resolution alongside maintained cell health. For bPAC activation, 

transcriptional reporter cells were mixed 1:2 with bPAC-expressing cells.  Activating bPAC 

used a 3D stack with a 488 nm laser every 6 or 10 minutes.  This illumination had the dual 

function of activating bPAC and collecting transcription spot data.   

 For low magnification imaging of feeding front dynamics and mound formation, we 

spotted Ax3 cells on bacterial lawns on 1:5 diluted SM agar plates, allowed 3 days for 

colonies to form then captured images every 5 minutes for up to 25 hours. Images were 

captured using a Dino-Lite digital microscope version 2.0 in a humidified chamber.  We 

tracked the x position of the feeding front and mound position every 5 frames.   

Spot detection was based on the approach from (Corrigan et al., 2016). To identify 

cAMP waves, we masked signal from the transcriptional reporter cells, which are more 

variable in their background intensity than the Flamindo2 cells.  The intensity of the 

remaining cell-containing pixels (representing primarily the Flamindo2 signal) was averaged 

at each timepoint.   Detailed analysis protocols and methods to compare signalling and 
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transcription distributions are described in the Supplementary Methods, including minimal 

modifications to the code from (Corrigan et al., 2016). Image analysis code for processing 

steps downstream of spot detection (with links to spot and signal intensity data) is 

accessible at https://github.com/Vlatka22/ImageData_Analysis. 
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Fig. 1. A jump in developmental progression 

A) The Dictyostelium developmental niche. Left panel: cells are plated on a bacterial lawn 

with uncleared bacteria on the left. To the right, bacteria are cleared, cells enter the 

multicellular state, which goes through morphogenesis to the final fruiting body formation 

(far right).  The white rectangle illustrates the continuous region sampled for transcriptome 

analysis. Right panel shows a schematic of the sampled life cycle stages. Scale bar 0.5cm. B) 

4743 cells positioned in two-dimensional (2D) space, with each cell coloured by the mean 

expression of the following gene sets: i) ribosomal protein genes (78 genes), ii) aggregation 

genes (200) and iii) genes upregulated in aggregates (215). C) Expression of stalk (tps3) and 

spore (pspA) transcripts in 2D transcriptome space. Scale shows log10 of transcript counts 

(UMIs). D) Summary of transcriptome map, showing the jump, bottleneck and cell fate 

separation. E) Cell density landscape of D. Landscape “height” represents cell abundance at 

specific transcriptome states. Few cells are found in the jump region, and cells accumulate 

in the bottleneck (Fig. S1D). F) Validation of the jump using PCA. Principal components (PCs) 

3 and 4 are plotted against PC1. Each dot is a cell. Colours in left panels are the mean 

expression level of the aggregation gene set. Colours in the right panels correspond to 

relative cell density. PC1 approximates developmental progression. Separation of two cell 

populations (the jump) is clearly visible in both PC1-PC3 and PC1-PC4 space. Aggregation-

specific gene expression increases just after the jump (see also Fig. S1E).  G) Two main cell 

states revealed by a cell-cell correlation matrix, with two distinct clusters visible.   
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Fig. 2. Matching jump transcripts to niche context 

A) Expression of specific genes around the jump.  2D transcriptome maps are coloured by 

the mean expression level of the indicated genes. B) Imaging nascent transcription in the 

developmental niche of genes that change expression during the jump.  On the left are the 

undifferentiated cells, on the right are cells beginning to show collective chemotaxis.  Top 

two panels show transcription of cafA-PP7 and carA-MS2 in the same cells.  Yellow rings 

highlight cells with spots corresponding to nascent transcription.  Bottom two panels show 

transcription of carA-MS2 and csbA-PP7, in the same cells.  Scale bars: 50 µm left and 20 µm 

right. 
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Fig. 3.  Coupling between jump transcription and signalling dynamics 

A) Overview image of the Dictyostelium early developmental niche.   Undifferentiated, 

feeding cells are on the left, becoming progressively more differentiated to the right 
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entering a multicellular aggregate on the far right. Scale bar 100 µm. B) Imaging 

transcription dynamics of the jump gene, carA, in the niche.  Horizontal axis reflects the axis 

of differentiation in A.  The vertical axis is imaging time.  Transcription spot intensity over 

time is shown, with activity level related by the colour scale bar.  Transcription is sporadic in 

the less differentiated cells, becoming frequent and oscillatory as differentiation proceeds.  

Transcription spot intensities were averaged into 10 pixel bins (10 x 0.35µm). C) Same data 

as B, showing cAMP signalling using the Flamindo2 biosensor, which dims in fluorescence 

upon binding cAMP.  Data show oscillations in differentiating cells.  Cells merge into an 

aggregate towards the end of the time series. D) Increased transcription activity during 

differentiation.  Plots summarise data in B, and also shows the distribution of cells in the 

population.  Changing transcription and cell distributions over time are shown as different 

colour shades (see colour scale).  The grey line corresponds to the minimum in cell density, 

where the population splits during the transition to multicellularity. E) Transitions in 

transcription and signalling dynamics across the niche.  Left panel shows distinct carA 

transcription dynamics comparing zones left and right of the grey line in D.  Right panel 

shows the distinction between oscillatory and non-oscillatory cAMP dynamics either side of 

the grey line.  F) Positional coupling between transcription and signalling dynamics.  Left- 

white spots are inflections of the curves of transcriptional intensity values at each imaging 

time point.  The white line is a regression line summarising the distribution of points.  Right- 

black dots show inflection points for cAMP signalling, with the black line the regression line 

and white line the same as in the left panel.  Inflection values were calculated at timepoints 

of cAMP wave maxima. Diff(Flamindo2) represents the difference in intensity between one 

time point and the subsequent one. G)  Temporal coupling between transcription and 

signalling oscillations.  Peaks in cAMP signalling (vertical lines) occur 4-5 minutes prior to 

peaks in carA transcription.  
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Fig. 4. Functional coupling of cAMP signalling and jump gene expression 

A) Loss of carA transcription in cells lacking a functional adenlyl cyclase A (ACA) gene.  Left 

panel shows the rapid increase in carA transcription in wild-type cells (expanded view of Fig. 

2B).  Central panel shows loss of carA induction in acaA- cells.  Right panel shows absence of 

cAMP oscillations in acaA- cells.  Typical experiments shown. 3 wild-type, 3 acaA- biological 

repeats carried out. B) Optogenetic rescue of jump gene expression:  acaA- carA-PP7 cells 

mixed with acaA- cells expressing optogenetic adenylyl cyclase, bPAC.  Cells were pulsed 

with blue light at 6 minute intervals to mimic normal cAMP signalling.  Strong induction of 

transcription was observed in pulsed cells (bottom) compared to non-pulsed cells (top).  

Scale bar 10 µm. C) carA shows context and time-dependent responses to exogenous 

induction of cAMP using bPAC.  Heatmap shows carA induction in the cell population after 

30 minutes of pulsing, but not close to the undifferentiated zone.  Transcription spot 

intensities were averaged into 100 pixel bins (100 x 0.35µm). Typical experiment is shown 

from 3 repeats (2 biological). 
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Fig. 5. Alternative coupling strategies between jump signalling and transcription. 

A) Imaging transcription dynamics of the jump gene, cafA.  Horizontal axis reflects the axis 

of differentiation.  Vertical axis shows imaging time.  Transcription is sporadic in the less 

differentiated cells, becoming frequent and oscillatory during differentiation.  B) Same cell 

field as A, showing cAMP signalling dynamics.  Cells merge into an aggregate during the 

movie. C) Non-overlapping boundaries of transcription and signalling.  Left- white spots 
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represent inflections of the curves of transcriptional intensity values at each imaging time 

point.  The white line is a regression line summarising the distribution of points.  Right- black 

dots show inflection points for cAMP, black line is the regression for these points.  White 

line the same as in left panel.  D)  Temporal coupling between transcription and signalling.  

Peaks in cAMP signalling slightly precede peaks in cafA transcription. E) Loss of cafA 

transcription in cells lacking a functional adenlyl cyclase A (ACA) gene.  Typical experiments 

are shown in A and E from 7 wild-type and 4 acaA- (biological repeats).  F) Left panel: 

optogenetic activation of cAMP with a 6 minute pulse interval does not rescue cafA gene 

expression.  acaA- cafA-PP7 cells mixed with acaA- cells expressing optogenetic adenylyl 

cyclase, bPAC.  Cells were pulsed with blue light at 6 minute intervals to mimic normal cAMP 

signalling around aggregation onset.  Unlike for carA, induction of transcription was not 

observed in pulsed cells.  Typical experiment is shown from 9 repeats (5 biological).  Right 

panel: Induction of cafA transcription by optogenetic cAMP pulses with a 10 minute interval.  

Strong induction was observed in 3/8 replicates.  Transcription spot intensities were 

averaged into 100 pixel bins (100 x 0.35µm). 
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Fig. 6. Aggregation combines cells with widely different developmental times 

A) Cell deposition by the advancing feeding front.  Stills from a time-lapse movie show cells 

clear the bacterial lawn at a constant rate from right to left.  Behind the cleared lawn cells 

are left behind, which aggregate into mounds (arrowhead) at discrete steps.  Scale bar 0.5 

mm. B) Quantification of the movie in A showing feeding front progression (black line) and 

individual mound formation events in the recently starved zone.  For clarity, the data are 

extracted from the bottom half of each panel in the movie.  Different mounds shown as 

different colours. C) Time between mound formation from 150 pixel sections (0.63 mm) of 

the feeding front.  Data shown as a box plot, showing the median (line), interquartile range 

(IQR; box), minimum and maximum values excluding outliers (whiskers).  Outliers defined as 

1.5 x the IQR above or below the whiskers.   D) Schematic showing scenarios caused by 

discrete budding events.  Cells are continuously shed from the feeding front.  Each line 

represents an example cell that leaves the feeding front from this continuously shed 

population.  The purple cell leaves the front and forms a mound with the blue cell.  The 

green cell buds shortly after the blue cell but waits a long period to enter a mound with the 

yellow cell. 
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Supplementary Materials and Methods 

Single cell transcriptomics 
For single cell RNAseq of a continuous developmental transition, we took a scrape of a 
feeding front of NC4 cells, from inside the bacterial zone through to the mound stage of 
development.  Cells were immediately inoculated into ice-cold KK2 buffer (20mM KPO4, pH 
6.0), and disaggregated by gentle pipetting.  To remove the bacteria, cells were centrifuged 
at 720g for 2 minutes, then resuspended in ice-cold KK2.  Single cell transcriptomes were 
derived using a Chromium Single Cell A Chip platform (PN-1000009), with sequencing 
carried out using a NextSeq500 Mid-output 150-cycle kit. The protocols were as described 
previously (Nichols et al., 2020), with one modification, 12 and 13 cycles were used for 
sample index PCR of the replicates, rather than 11 and 12. 

Alignment, barcode counting, UMI counting, and filtering was performed by Cell 
Ranger v3.1.0 using default parameters.  For the two biological replicates, totals of 2925 and 
2404 single cell libraries passed the filter, with a median of around 15000 and 13000 
transcripts per cell (unique molecular counts: UMIs), and 2200 and 2300 genes per cell, for 
replicate one and two, respectively. All data analysis, unless otherwise stated, was 
performed in R. We excluded outliers with extremely high total UMI counts (1.5 
interquartile ranges above the third quartile), cells with less than 3000 total UMI counts, 
and cells with less than 800 mapped genes. A total of 2671 and 2072 cells, from replicate 
one and two, respectively, were used for further analysis.  Sequencing data are available at 
GEO: GSE220242 

Molecular counts of cells were normalised using size factors calculated with ‘scran’ 
package (Lun et al., 2016). Dimensionality reduction was performed using genes with mean 
normalised UMI counts above 0.01 (9698 genes). Reducing the dimensionality of 
transcriptome data to two dimensions used principal component analysis (PCA) first, then 
elastic embedding on the first 11 principal components (selected based on their variance 
contribution), as described in (Chen et al., 2019). Elastic embedding was performed in 
MATLAB. For clarity, cells with higher expression are plotted on top of cells with lower 
expression. The set of aggregation-specific genes is the same as in (Nichols et al., 2020). The 
genes being up-regulated during the mound stage (“post aggregation”) and cell-cycle genes 
are as in (Antolovic et al., 2019). For all gene sets, we used an additional selection of genes 
having more than 10 captured transcripts in at least one cell in our dataset, except for cell-
cycle genes having more than 1 transcript in at least one cell. The 3D cell density landscape 
was calculated with the use of ‘ks’ package in R, using the Hpi (bandwidth estimator) and 
kde functions. 2D cell density landscapes were plotted with the ‘ggplot2’ package, with the 
bandwidth set to 1. The cell-cell correlation matrix and two-way hierarchical clustering were 
carried in MATLAB, using the clustergram function. 

To test the effects of loss of the adenylyl cyclase required for chemotaxis and 
aggregation (ACA) on the jump, we first identified the sets of genes being repressed at the 
jump (pre-jump), transiently expressed at the jump (jump), and upregulated after the jump 
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(post-jump). We established criteria that generated consistent scRNAseq profiles for each 
category.  The cells were divided into pre-jump, jump and post-jump based on the 
hierarchical clustering of the cell-cell correlation matrix (Fig. S4A). Jump class genes were 
defined as having fold change (FC) > 3 from before and after the jump, having the mean 
expression >1 normalised UMIs in the jump region and <4 before. Pre-jump genes were 
defined as being downregulated twofold in the jump region and tenfold after the jump 
(compared to the pre-jump region), with mean expression >10 normalised UMIs before and 
< 3 normalised UMIs after the jump. Post-jump genes were defined as having FC > 10 from 
before the jump and FC > 0.1 from the jump region, with mean expression < 5 UMIs before 
and >5 UMIs after the jump. For comparing the behaviour of these sets of genes in 
populations with or without ACA, we used the population RNAseq data from (Katoh-
Kurasawa et al., 2021). For acaA- expression values, we used the mean value of both 
replicates from this published dataset. For wild-type expression values we used mean value 
of replicates named r5, r6 and r7 (from the published data).  We chose these replicates as 
they were sequenced on Illumina HiSEq 2500, the same as their ACA mutants.  The genes 
we have considered here are those, in wild-type cells, that show the same temporal 
behaviour in our data (the wild isolate NC4 cells cultured on bacteria) and the earlier study 
(the lab strain Ax4, cultured in axenic media).  A minor fraction of genes in each class (pre-
jump 7/61, jump 8/30, post-jump 1/83) did not overlap between the datasets.  
 
Imaging protocols 
Cells were harvested from adherent cultures in HL5 medium (Formedium), centrifuged at 
720 g for 2 minutes and resuspended in 5 mL KK2. Cells were recentrifuged and 
resuspended at 1x107 cells/mL in KK2. Transcriptional reporter and signalling reporter cells 
lines were mixed at a 1:2 ratio, and spotted onto an agar plate with diluted SM (1 SM : 19 
H2O) freshly spread with Klebsiella. Agar plates were incubated upright in a humid chamber 
for 3 days when agar pads were excised and inverted onto a 35mm imaging dish (µ-Dish, 
Ibidi, 81156). Cells were imaged on an inverted spinning disk confocal microscope (3i) using 
a 63x oil immersion lens, with a Prime 95B CMOS camera (Photometrics).  14 to 16 z slices 
were acquired with a 0.4 µm step size, with 2x2 binning.  3D stacks were captured every 45 
or 60 seconds at multiple xy positions across the cell population.  9 fields of view were 
stitched together, using Slidebook (3i), to generate a montage of the entire heterogeneous 
early developmental niche.  GFP and mCherry were excited with a 488 nm and 561 nm 
lasers, respectively, with laser powers optimised for best resolution alongside maintained 
cell health. Laser power, gain and exposure time were kept consistent between wildtype 
and acaA- cells of the same transcription reporter. Wildtype cells were imaged for 4 hours 
to capture the full range of cAMP signalling dynamics.  The acaA- cells, which lack excitable 
cAMP signalling were imaged for 1.5 hours.  For bPAC activation, transcriptional reporter 
cells were mixed with bPAC expressing cells at a 1:2 ratio.  Activation used a 3D stack with a 
488 nm laser every 6 or 10 minutes to generate periodic cAMP pulsing.  This approach had 
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the dual function of light activating bPAC and collecting transcription spot data.  12-15 fields 
of view were captured to sample the extended starvation zone of the acaA- cells. 
 
Spot tracking and image analysis 
Spot detection was carried out as described (Corrigan et al., 2016) with the modifications 
that a threshold was imposed to distinguish between spots representing sites of 
transcription and background.  Thresholds were established iteratively by inspection, then 
the same threshold was used for wild-type and acaA- experiments with that transcriptional 
reporter.  Thresholds were applied to the background intensity of the nucleus, discarding 
very bright and very dim cells, which show non-linear scaling between live transcription site 
data and smFISH-based intensity measurements. Other modifications to the code from 
(Corrigan et al., 2016) were exchanging a “for” loop for a “parfor” for parallel computing 
and changing a parameter (“firad”) to cater for the different microscope used in the current 
study. To plot transcription dynamics in the colony through time and show the broadest 
dynamic range of the data, values above 3 inter-quartile ranges from the upper quartile 
were set to the highest colour.  Pixels with no detected spots are set to black.   To compare 
wild-type and acaA- cells, plots for wild-type and acaA- data were set to the same colour 
scale.  To identify cAMP waves, we masked signal from the transcriptional reporter cells, 
which are more variable in their background intensity than the Flamindo2 cells.  The 
intensity of the remaining cell-containing pixels (representing primarily the Flamindo2 
signal) were averaged at each timepoint.    
 
Analysis of spatial signalling and transcription data 
To measure jump gene expression, we analysed data from the population before the clear 
physical separation of the population into starving and streaming cells.   The time of 
population separation was specified manually.  Plots showing time series of nuclei counts 
and spot intensity were produced by plotting nuclear regression fits and spot intensity 
regression fits for each timepoint.    To explore the relationship between cell position, cAMP 
signalling and jump gene transcription, images were divided into left and right regions, 
corresponding to recently starved cells and more starved cells. Using R, a local polynomial 
regression fit (loess function) was applied to nuclei counts across the x-dimension for each 
timepoint with a span of 0.75. All further local polynomial regression fits (ie. for Flamindo2, 
spot intensity) were carried out in the same way.  The x positions of the minimum of the fit 
were identified for each timepoint. The range of values of the identified minima positions 
was used to define the least occupied area, i.e. the approximate location of cell population 
separation. The region spanning from the edge of the field occupied with bacteria to the 
edge of the least occupied area was defined as ‘left’ and the region spanning from the other 
edge of the least occupied area to the far right of the captured field as ‘right’. Mean values 
of transcription spot intensity and Flamindo2 signal were compared across the left and right 
regions of the image at each timepoint.   
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Inflections in the transcription spot intensity fit for each timepoint were used to 
characterise the location of cells where gene expression is strongly induced. To capture the 
dynamic location of the inflection over time, the x coordinate of the inflection was taken, 
and a local polynomial regression curve fitted linking inflection x coordinates through time, 
excluding outliers >1.5 interquartile ranges beyond the upper and lower quartiles. 

Difference images of Flamindo2 were produced by taking the difference in intensity 
between one timepoint and the subsequent one, referred to as diff(Flamindo2). As the 
lowest intensity of Flamindo2 corresponds to the highest intracellular cAMP concentration, 
the timepoints where cAMP waves pass through the population were found by identifying 
local minima of mean diff(Flamindo2) in the right-hand region of the image at each 
timepoint. To find the border of cAMP relay, a local polynomial regression fit was applied to 
diff(Flamindo2) in x, and inflections in the fit were found for timepoints previously identified 
as having a cAMP wave. To capture the location of the cAMP signal relay border in time, the 
x coordinate of the inflection was taken, and a local polynomial regression curve fitted, 
linking inflection x coordinates through time excluding outliers >1.5 interquartile ranges 
beyond the upper and lower quartiles. 

To investigate the time delays between signalling and transcription, transcription 
spot intensity mean and Flamindo2 mean signal in the right region of the image were 
further processed. Using R, both signals initially were locally smoothed using Savitzky–Golay 
filtering, with a filter length of 3 and a filter order of 1. We then corrected for the changing 
background over time, by Savitzky–Golay filtering with a filter length of 15 and a filter order 
of 1.  The background was then subtracted from the locally smoothed signal. Flamindo2 
signal is inversely related to [cAMP], so to convert Flamindo2 signal into cAMP signal 
Flamindo2 intensity was inverted. To find the time difference between cAMP and gene 
transcription dynamics, cross correlation analysis was completed on the smoothed, 
background corrected signals.  Cross correlation was completed over a period of +/- 10 
minutes to find realistic signal relay times without artefacts from noisy signal.   
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Fig. S1. Developmental progression in the physiological niche. 
A and B) Cross referencing the 2D scRNAseq cell map to previously published population 
RNAseq data: genes identified as markers of major morphological changes in (Katoh-
Kurasawa et al., 2021). In A, the genes changing during the transition from single cells to cell 
streams (down-regulated: 140 genes, up-regulated: 91). In B, the genes changing during the 

loose to tight mound transition (down-regulated: 4, up-regulated: 83).  C) Distribution of 
cell-cycle genes expression on the 2D map (160 genes). For optimal visual contrast, the 
maximal colour value here is set at mean expression > 0.2. Plots are also shown for M-phase 
and S-phase genes.  The latter shown more diffuse enrichment. D) Two-way hierarchical 
clustering of 1112 cells from the post-jump region (selected as the cells belonging to the 
right main branch in Fig.S4A). Colour shows z-score values.  Genes were selected as having 
mean normalized expression over 0.01 and being correlated with at least ten other genes 
with Pearson’s |r| > 0.5. Gene clusters expressing spore and stalk markers are indicated at 
the top of the map. Six main clusters of cells are marked with coloured boxes left of the 
heatmap. These six clusters are overlaid on the adjacent 2D transcriptome plot. The clusters 
are streams/loose mounds, bottleneck, intermediate, spore and two stalk populations. E) 
PCA plots labelled with the different stage gene sets used in Figure 1B, showing that the PC1 
axis records developmental time.  Colours in the far right panel correspond to relative cell 
density.  F) Two-way hierarchical clustering of cells described with 957 genes (colour shows 
z-score values). Genes were selected as in D.  Four main clusters of cells are marked with 
coloured boxes left of the heatmap. These four clusters identified are overlaid on the 2D 
transcriptome plot. The main clusters are feeding cells (1624), starving cells (1840), 
streams/loose aggregate (737) and tight aggregate (396). 66% of the identified genes are 
repressed before the jump. 
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Fig. S2. Coupling between jump transcription and signalling dynamics This figure shows a 
repeat experiment of Figure 3.  A) Imaging transcription dynamics of the jump gene, carA.  
Horizontal axis reflects the axis of differentiation.  Imaging time is represented on the 
vertical axis.  Transcription activity (detected using PP7-PCP) over time is shown, with 
activity level related by the colour scale on the right.  Transcription is initially rare and 
sporadic, becoming frequent and oscillatory as differentiation proceeds.  B) Same data as in 
A, showing cAMP signalling dynamics using the Flamindo2 biosensor, which dims in 
fluorescence when intracellular [cAMP] increases.  Data show oscillations in differentiating 
cells.  Cells merge into an aggregate during the movie. C) Increased transcription activity 
during differentiation.  Plots summarises data in B, and also shows the distribution of cells in 
the population.  Changing transcription and cell distributions over time are shown as 
different colour shades (see colour scale).  The grey line corresponds to the minimum in cell 
density, which corresponds to where the population splits during the transition to 
multicellularity. D) Transitions in transcription and signalling dynamics.  Left panel shows the 
differences in carA transcription dynamics between the areas left and right of the grey line 
in D.  Right panel shows the differences between oscillatory and non-oscillatory cAMP 
dynamics either side of the grey line in D.  E) Positional coupling between transcription and 
signalling dynamics.  Left- white spots represent inflections of the curves of transcriptional 
intensity values at each imaging time point.  The white line is a regression line summarising 
the distribution of points.  Right- black dots show inflection points for cAMP signalling, 
where the signal intensity changes at the left extremity of the waves. Black 

line is the regression summarising these points.  White line the same as in left panel. 
Inflection values were calculated at timepoints corresponding to cAMP wave maxima. F)F)
Temporal coupling between transcription and signalling oscillations.  Peaks in cAMP 
signalling (vertical lines) 4-5 minutes prior to peaks in carA transcription.  
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Fig. S3. Alternative coupling strategies between jump signalling and transcription.  
This figure shows a repeat experiment relating to Figure 5. 
A) Imaging transcription dynamics of the jump gene, cafA.  Horizontal axis reflects the axis
of differentiation.  Imaging time is represented on the vertical axis.  Transcription activity 
measured using the PP7-PCP system.  Transcription is initially rare and sporadic, becoming 
frequent and oscillatory as differentiation proceeds.  B) Same data as in A, showing cAMP 
signalling dynamics using Flamindo2.  Cells merge into an aggregate during the movie. C) 
Increased transcription activity during differentiation.  Plots summarises data in A, and 
shows the distribution of cells in the population.  Changing transcription and cell 
distributions over time are shown as different colour shades (see colour scale).  The grey 
line corresponds to the minimum in cell density, which corresponds to where the 
population splits during the transition to multicellularity. D) Transitions in transcription and 
signalling dynamics.  Left panel shows the distinction in cafA transcription dynamics 
between the areas left and right of the grey line in C.  Right panel shows the distinction 
between oscillatory and non-oscillatory cAMP dynamics either side of the grey line in C.  E) 
Boundaries of transcription and signalling dynamics.  Left- white spots represent inflections 
of the curves of transcriptional intensity values at each imaging time point.  The white line is 
a regression line summarising the distribution of points.  Right- black dots show inflection 
points for cAMP, where the signal intensity changes at the left extremity of the waves.  
Black line is the regression summarising these points.  White line the same as in left panel. 
Inflection values were calculated at timepoints corresponding to cAMP wave maxima. F)  
Temporal coupling between transcription and signalling oscillations.  Peaks in cAMP 
signalling slightly precede peaks in cafA transcriptional activity.  
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Fig. S4.  Changes in jump gene expression caused by loss of cAMP. 
A) Cell-cell correlation matrix of the continuous developmental scRNAseq (the same plot as
Fig. 1G, but including the hierarchical tree).  We identified three main clusters, with the one 
in the centre corresponding to the jump.  To find jump genes, we expanded this region by 
taking the most-right subcluster of the left cluster and the most-left subcluster of the right 
cluster (black box).  The modified clusters (before, during and after the jump) marked as 
(pink, black and blue) are shown in the right panel on the 2D transcriptome plot. We used 
this division to identify genes downregulated before the jump (B), enriched in the jump 
region (C) or upregulated after the jump (D). B – D show transcript dynamics of genes 
identified as pre-, during and post-jump, in wild-type cells (black line) and acaA- cells (red 
dashed line), which lack the aggregation stage cAMP synthesis enzyme. Transcript data from 
(Katoh-Kurasawa et al., 2021). The proportion of the genes showing each specific behaviour 
are shown. Also shown are typical examples of scRNAseq expression plots for each class. B) 
i) Most transcripts normally downregulated at the jump retain expression in acaA- mutants
(85%). ii) A minor proportion of jump repressed transcripts are unperturbed. C) i) 73% of 
jump-specific transcripts retain a peak in expression in acaA- mutants, although induction is 
reduced, ii) 27% of jump specific genes are not induced in acaA- cells. D) Almost all (99%) 
genes induced after the jump are not induced in acaA- mutants. 

Table S1. The table lists three classes of genes which change their expression around the 
jump: repressed at the jump (pre-jump genes), induced spanning the jump 
(“jump” genes) and induced after the jump (post-jump).  These gene sets form the basis of 
the analysis in Supplementary Figure 4. 

Available for download at
https://journals.biologists.com/dev/article-lookup/doi/10.1242/dev.201946#supplementary-data
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Movie 1. Imaging jump transcription over the length scale of the developmental niche. The 
time series progressively zooms out, showing transcriptional events in single cells, then 
zooming out to show the position and movement of individual cells in the context of the 
early developmental niche.  The cells are a mixture of cafA transcriptional reporter cells and 
cells expressing the cAMP reporter, Flamindo2.  The contrast has been optimised in this 
case to make the transcriptional reporter cells clearly visible.  In the first frame, the arrow 
points to a cell with a bright nuclear spot corresponding to nascent cafA RNA, at the site of 
transcription.  As the movie zooms out, the full niche becomes apparent, with the 
undifferentiated cells to the left and the differentiating cells further to the right, with the 
onset of cell aggregation (streaming) visible.  The playback is at 7 frames per second, with 
each frame captured every 1 minute.  When fully zoomed out, the field of view is 1.68mm 
along the long axis. 
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Movie 2.  Imaging cAMP signalling dynamics in the developmental niche.  This move shows 
similar data to Movie 1, with the contrast optimised to show the dimmer Flamindo2 
expressing cells.  The undifferentiated, feeding cells are on the left, with the cell aggregation 
beginning on the right.  Towards the right, the population shows synchronous oscillations in 
Flamindo2 intensity, corresponding to cAMP oscillations (Flamindo2 signal is inversely 
related to intracellular cAMP level).  The playback is at 15 frames per second, with each 
frame captured every 45 seconds.  The field of view is 1.68mm along the long axis. 
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