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Abstract: Recent earthquake events have highlighted the effectiveness of financial ‘soft’ policies 

(e.g., earthquake insurance) in transferring seismic risk away from those directly impacted and 

complementing ‘hard’ disaster risk mitigation measures, such as seismic retrofitting. However, the 

benefits of existing financial soft policies are often not guaranteed. Among other factors, this may 

be attributed to their low penetration rate (e.g., in the case of earthquake insurance) and the fact 

that they typically neglect the explicit needs of low-income populations. We facilitate a way to 

address such shortcomings by proposing a framework for designing and assessing bespoke, 

people-centred, household-level, compulsory financial soft policies related to earthquake risk 

(including conventional earthquake insurance, income-based tax relief schemes, or a combination 

of these) across urban areas. The proposed framework leverages the Tomorrow's Cities Decision 

Support Environment, which aims to promote pro-poor risk-sensitive urban planning through 

strong local engagement. The framework specifically enables decision makers to design and 

assess the pro-poorness of mandatory financial soft policies, using financial impact metrics that 

discriminate earthquake-disaster losses on the basis of income. We showcase the framework 

using “Tomorrowville”, a hypothetical city that reflects a global-south urban setting in terms of its 

socioeconomic and physical aspects.  

Introduction  
Earthquakes can cause substantial direct economic impacts due to physical damage and 

downtime. Financial (‘soft’) seismic risk mitigation measures (e.g., disaster relief funds) protect 

the assets of individuals or entities from earthquakes by providing monetary compensation for 

damages incurred (Franco, 2014). These measures can complement ‘hard’ seismic risk mitigation 

measures such as seismic retrofitting (Gentile et al., 2021).  

Earthquake insurance is a well-known soft measure for seismic risk mitigation. A typical residential 

earthquake insurance policy provides homeowners with coverage for damages to properties 

caused by an earthquake event. The insurance premium, i.e., the price paid by the insured to the 

insurer, can consist of (1) a flat rate for everyone; or (2) a risk-based rate determined on building 

structural type, building location, building replacement cost, etc (Goda et al., 2014). Residential 

earthquake insurance policies are widely available (e.g., in California, New Zealand, and Turkey). 

However, penetration rates (i.e., percentages of assets with insurance coverage) vary greatly. 

Moreover, these policies do not explicitly address the needs of low-income households, who have 

been historically disproportionately impacted by natural-hazard-driven disasters (due to their 

inability to pay for emergency supplies, post-disaster repairs, etc.; Winsemius et al., 2018). Other 

financial disaster-relief tools, e.g., post-disaster cash transfers, do not sufficiently recognise the 

amplified needs of low-income people either. For example, after the 2015 Nepal earthquake 

(𝑀7.8), an equal amount of financial assistance was provided by the Government of Nepal to 

homeowners regardless of income level, leaving many low-income households struggling to 

afford reconstruction costs (Rawal et al., 2021).   
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This study facilitates an approach to addressing the aforementioned shortcomings of conventional 

earthquake-risk-related financial soft policies, using the Tomorrow's Cities Decision Support 

Environment (TCDSE) (Cremen et al., 2023). The TCDSE supports decision making in a 

collaborative environment, in which various decision makers, local communities, and experts are 

involved from the outset in risk-based, pro-poor urban planning (Galasso et al., 2021). We  

  
leverage the TCDSE to develop a framework for designing and assessing bespoke compulsory 

financial soft policies related to residential properties, with a strong focus on the extent to which 

these policies are pro-poor. The compulsory financial soft policies considered in this study 

encompass, for instance, components of conventional earthquake insurance and income-based 

tax relief schemes. We demonstrate the proposed framework using a hypothetical city 

“Tomorrowville”.  

Proposed framework  
The proposed framework, as shown in Figure 1, has four calculation modules within the 

Computational Model: (1) Seismic Hazard Modelling; (2) Physical Infrastructure Impact; (3) Social 

Impact; and (4) Computed Impact Metrics. The decision makers first design candidate policies 

(within the Policy Bundles module), which are applied to a specific time-dependent urban plan (in 

the Urban Planning module), to produce an overall Visioning Scenario. A pre-determined 

household-level financial impact metric ( 𝐼ℎℎ ) is quantified to assess the loss-mitigation 

effectiveness of the candidate policies, considering the residential exposure within the conditional 

urban plan, the time-dependent seismic hazard calculations produced in the Seismic Hazard 

Modelling module, and physical and social vulnerability information respectively stored in the 

Physical Infrastructure Impact and Social Impact modules. 𝐼ℎℎ is then translated into a Poverty 

Bias Indicator ( 𝑃𝐵𝐼 ), which measures the extent to which low-income households are 

disproportionately burdened with earthquake-induced financial losses. Each iteration of the 

framework evaluates the impacts associated with one Visioning Scenario. Through multiple 

iterations of the framework, decision makers can identify the optimal pro-poor policy bundle (and 

the overall Visioning Scenario), which corresponds to the lowest 𝑃𝐵𝐼. The proposed framework 

captures the uncertainties in the calculations involved in modules (1) to (4) using Monte Carlo 

sampling, which is similar to the approach adopted in Cremen et al. (2022).  

Urban planning  

The Urban Planning module encompasses a conditional urban plan detailing land uses, the 

building portfolio, and underlying household and individual information for a specific temporal 

instant. If decision makers aim to design and assess policies for immediate implementation, the 

input to the Urban Planning module would be the current layout of the urban context of interest. 

If the goal is to design policies for the future, considering urban expansion and changes in land 

use, the required input for the Urban Planning module would be a proposed or projected urban 

plan. The information on land use, buildings, households, and socioeconomic and demographic 

information are spatially related within a geographic information system (GIS) database.  

Policy bundles  

The Policy Bundles module encapsulates one or more compulsory financial soft policies designed 

to transfer earthquake-related financial risk. These policies could include, for instance, 

components of conventional earthquake insurance, an income-based tax relief scheme, or a 

combination of those. They may also alter the financial burden on households across different 

social (e.g., income) groups.   

Seismic hazard modelling  

The Seismic Hazard Modelling module estimates relevant earthquake-event features (e.g., 

source/rupture features) and resulting earthquake-induced ground-motion intensity measures 

(IM) at the locations of considered residential buildings. The outputs of this module are 

groundmotion fields for multiple intensity measures, e.g., peak ground acceleration (PGA), 

spectral accelerations at different structural periods (SA), peak ground velocity (PGV), and peak 

ground displacement (PGD), which are computed in a probabilistic sense. These fields can be 

simulated using a ground-motion model (GMM), e.g., Campbell and Bozorgnia (2014). Spatial 

correlation and cross-IM correlation models (e.g., Markhvida et al., 2018) can also be used to 

produce more accurate fields. Seismic hazard can be modelled using a single-scenario or 

probabilistic approach (considering uncertainties in the rupture features and occurrence times).  
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The latter method is more suitable for decision making in the insurance sector (Cremen et al., 

2022) and therefore the context of the proposed framework, and is adopted herein.  

Physical infrastructure impact  

The Physical Infrastructure Impact module uses the outputs of the Seismic Hazard Modelling 

module to calculate earthquake-induced physical damages to residential buildings and the 

associated asset losses (i.e., repair costs).  Given the simulated ground-motion fields, this module 

utilises fragility relationships to sample the damage state (𝐷𝑆) of each residential building. It then 

uses damage-to-loss ratios or consequence models to compute the asset loss as a percentage 

of building replacement cost. Alternatively, vulnerability relationships can be used to directly 

estimate the loss ratio caused by a certain level of simulated ground-motion intensity. By repeating 

the loss estimation for all ground-motion simulations, annual exceedance loss curves and 

expected annual losses (e.g., 𝐸𝐴𝐿𝑏𝑙𝑑,𝑏, building-level expected annual losses for the 𝑏th residential 

building) can be obtained.  

 

Figure 1. The proposed framework to design and assess pro-poor financial soft policies.  

Social impact  

The Social Impact module uses outputs from the Physical Infrastructure Impact module to 

compute household-level earthquake financial impacts (e.g., 𝐸𝐴𝐿ℎℎ,𝑖, household-level expected 

annual losses for the 𝑖th household), also accounting for pertinent social characteristics. More 

specifically, this module distinguishes household-level financial burdens on the basis of relevant 

socioeconomic information (i.e., income), and can further disaggregate these impacts across 

other social groupings, e.g., age and gender of household head, if necessary. The calculations in 

this module can be affected by the financial soft policies imposed in the Policy Bundles module.  

Computed impact metrics  

The Computed Impact Metrics module uses outputs from the Computational Model to quantify the 

impacts for a Visioning Scenario through the lens of a pre-determined household-level financial 

impact metric. The Computed Impact Metrics module calculates this impact metric for each 

household and then translates it into a single-valued Poverty Bias Indicator (𝑃𝐵𝐼), which 

measures the extent to which low-income households are disproportionately burdened in terms 

of the financial impact of interest. The 𝑃𝐵𝐼 was originally introduced as the Poverty Exposure Bias 
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Indicator in Winsemius et al. (2018), and modified by Cremen et al. (2022). For a given 

householdlevel financial impact metric, the 𝑃𝐵𝐼 adopted in this framework is expressed as follows:  

  𝐸  

 𝑃𝐵𝐼 =  − 1  (1)  

𝐸  

where 𝐸(𝐼𝑙𝑜𝑤) is the mean value of the household-level financial impact metric across all 

lowincome households and 𝐸(𝐼𝑝𝑜𝑟𝑡) is its mean value across all households. A negative value of 

𝑃𝐵𝐼 indicates that the financial soft policies contained in the Policy Bundles module are pro-poor, 

i.e., the financial losses that result from their implementation do not disproportionately affect 

lowincome households. The lower the negative-valued 𝑃𝐵𝐼 is, the more pro-poor the associated 

financial soft policies (and overall Visioning Scenario).  The framework primarily aims to facilitate 

the selection of the Visioning Scenario with the lowest 𝑃𝐵𝐼, but can also be leveraged to compare 

the extent to which one Visioning Scenario is more pro-poor than another.  

Case-study descriptions  
We use the 2 km × 3 km hypothetical city “Tomorrowville” (see Mentese et al., 2023, for details) 

as our virtual testbed to demonstrate the proposed framework. Tomorrowville imitates a 

globalsouth urban setting in terms of its socioeconomic and physical characteristics. In this case 

study, we design and assess eight compulsory financial soft policies related to Tomorrowville 

residential buildings (and their households) using the proposed framework. The candidate 

financial soft policies involve conventional earthquake insurance strategies and income-based 

financial relief tax schemes. We focus on the current urban layout of Tomorrowville (known as 

“TV0”) and account for seismicity related to three nearby hypothetical strike-slip faults.   

Urban planning  

TV0 (shown in Figure 1) includes Tomorrowville's current land use plan, a building portfolio 

(containing information such as building location, structural type, code level, number of storeys, 

building area, and the households associated with each residential building), and underlying 

household/individual databases (containing socioeconomic and demographic data of each person 

in each household, such as income group, gender, and age). TV0 contains 3,423 residential 

buildings and 7,809 households. Households within the same polygon belong to the same income 

group. Residential polygons are categorised into low-, middle-, and high-income categories. 

There are 4,236, 1,705, and 1,868 low-, middle-, and high-income households, respectively.  

See Table 1 in Want et al. (2023) for an exhaustive list of building typologies in Tomorrowville. 

Low-code “brick and mud walls” buildings (typology No.2) dominate Tomorrowville's current 

residential building portfolio; over 64% of low-income households live in buildings of this typology. 

On the other hand, 48% of high-income households live in high-code “Masonry-infilled reinforced 

concrete frame” buildings (typologies No.7 and 10) - two of the most expensive and strongest 

building types. In this case study, we assume that repair costs of multi-family residential buildings 

are equally attributed to all households that live within them. The average replacement costs for 

low-, middle-, and high-income households are €5,348, €8,511, and €11,902, respectively.   

Policy bundles  

Eight financial soft policies are designed in this demonstration. We assume that Tomorrowville 

households are owner occupied, such that a household's financial seismic losses (and any 

household-specific required monetary input for a related financial soft policy) are shouldered by 

its residents. The proposed policies include some adapted involvement of the main parameters 

in an earthquake insurance contract, i.e., premium, deductible, limit, and coinsurance factor. 

Deductible (, the amount of money that the insured party need to pay towards an insurance claim), 

limit (𝐶, the highest amount of a claim covered by an insurance contract), and coinsurance factor 

(𝛾, the percentage of losses paid by the insurer after the insured party pays the deductible) 

constitute a typical payout function (Goda et al., 2014) that determines the insurance payout (𝐼𝑃), 

as follows:  

   𝐿  𝑑  

 𝐼𝑃    𝐷  𝐶  (2)  

 𝛾   𝐿  𝐶  



SECED 2023 Conference  WANG et al.  

5  

where 𝐿 refers to the total assessed seismic loss, i.e., ground-up loss, of a building. A payout 

function translates the household's expected annual loss (𝐸𝐴𝐿ℎℎ,𝑖) into the household's expected 

annual financially protected loss (𝐸𝐴𝐼𝐿ℎℎ,𝑖 ) and the household's expected annual financially 

unprotected loss (𝐸𝐴𝑈𝐿ℎℎ,𝑖), which is analogous to expected annual insured loss and expected 

annual uninsured loss, respectively, in a traditional earthquake insurance scheme. 𝐸𝐴𝐼𝐿ℎℎ,𝑖 is 

calculated by integrating the annual exceedance financially protected loss curve for the 

associated building and dividing by the number of households occupying it. The summation of 

𝐸𝐴𝐼𝐿ℎℎ,𝑖 across all households is the expected annual financially protected loss of the residential 

building portfolio (𝐸𝐴𝐼𝐿𝑝𝑜𝑟𝑡). Multiplying 𝐸𝐴𝐼𝐿𝑝𝑜𝑟𝑡 by a premium loading factor 𝛼 gives the portfolio 

premium (𝑃𝑝𝑜𝑟𝑡), i.e., the total premium that needs to be collected across all financially protected 

households. For this case study, we adopt a premium loading factor of 1.25, in line with Gentile 

et al. (2021). Each financial soft policy consists of a payout function and a premium redistribution 

scheme (as shown in Table 1).  

  

  

Figure 2. Residential buildings in Tomorrowville (TV0)  

Policy  Payout 

function  

PRS  

1  1  1  

2  1  2  

3  1  3  

4  1  4  

5  2  1  

6  2  2  

7  2  3  

8  2  4  

Table 1. Eight financial soft policies considered for this case study.  
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In this case study, we examine two representative payout functions. Payout function No.1 is 

uniform across all income groups; a 𝐷 of €1,000 and a 𝐶 of €40,000 are imposed on each 

household, regardless of its income. The 𝐶 of €40,000 fully covers the total replacement cost of 

over 98% of residential buildings occupied by low-income households. Payout function No.2 

adopts different 𝐷′𝑠 for different income groups. 𝐷 is €6,400, €4,800, and €1,600 for high-income, 

middle-income, and low-income, respectively, which roughly correspond to 5 to 20% of the 

average total replacement cost of residential buildings in TV0. We adopt a coinsurance factor (𝛾) 

of 1.0 for both payout functions.  

The premium redistribution scheme (PRS) is used to compute the premium for each household 

as some proportion of 𝑃𝑝𝑜𝑟𝑡 . PRS allows the policymaker to flexibly determine the premiums 

payable by different households, thereby creating opportunities to reduce the financial burden 

placed on low-income households. The premium for each household is imposed in the form of a 

mandatory tax.  

Table 2 summarises the four PRSs considered in this case study. PRS No.1 imposes a flat-rated 

premium on each household, which reflects earthquake insurance approaches in New Zealand 

(Middleton, 2001). PRS No.2 distributes premiums based on 𝐸𝐴𝐼𝐿ℎℎ,𝑖 values, which broadly 

reflects the earthquake insurance programs of Turkey and California (Goda et al., 2014). PRSs 

No.3 and 4 transfer 80% of the expected annual financially protected loss of the low-income group 

within the entire portfolio (𝐸𝐴𝐼𝐿𝑙 ) to middle- and high-income groups, thereby mitigating the 

financial burden on the low-income. PRS No.3 then specifies that the total premiums imposed on 

each income group are distributed to each associated household in proportion to 𝐸𝐴𝐼𝐿ℎℎ,𝑖 values, 

while PRS No.4 imposes flat-rated premiums on each household within a given income group.  

  

PRS  Total premiums  

(middle- and high-income)  

Total premiums (low-

income)  

Household-by-household 

distribution within each 

income group  

1  𝛼 ⋅ (𝐸𝐴𝐼𝐿𝑙 + 𝐸𝐴𝐼𝐿𝑚  

𝑁𝑚 + 𝑁ℎ 

+𝐸𝐴𝐼𝐿ℎ) ⋅   

𝑁ℎℎ 

𝛼 ⋅ (𝐸𝐴𝐼𝐿𝑙 + 𝐸𝐴𝐼𝐿𝑚  

𝑁𝑙 

+𝐸𝐴𝐼𝐿ℎ) ⋅   

𝑁ℎℎ 

flat-rated  

2  𝛼 ⋅ (𝐸𝐴𝐼𝐿𝑚 + 𝐸𝐴𝐼𝐿ℎ)  𝛼 ⋅ 𝐸𝐴𝐼𝐿𝑙  proportional to 𝐸𝐴𝐼𝐿ℎℎ,𝑖   

3  𝛼 ⋅ (𝐸𝐴𝐼𝐿𝑚 + 𝐸𝐴𝐼𝐿ℎ  

+0.8 ∙ 𝐸𝐴𝐼𝐿𝑙)  

𝛼 ⋅ 0.2 ⋅ 𝐸𝐴𝐼𝐿𝑙  proportional to 𝐸𝐴𝐼𝐿ℎℎ,𝑖  

4  𝛼 ⋅ (𝐸𝐴𝐼𝐿𝑚 + 𝐸𝐴𝐼𝐿ℎ  

+0.8 ∙ 𝐸𝐴𝐼𝐿𝑙)  

𝛼 ⋅ 0.2 ⋅ 𝐸𝐴𝐼𝐿𝑙  flat-rated  

Table 2. Premium redistribution schemes (PRSs) considered in this study. 𝐸𝐴𝐼𝐿𝑙, 𝐸𝐴𝐼𝐿𝑚, and 

𝐸𝐴𝐼𝐿ℎ are the total expected annual financially protected loss of the low-, middle-, and 

highincome households, respectively, whereas 𝐸𝐴𝐼𝐿ℎℎ,𝑖 refers to the expected annual financially  

protected loss of the 𝑖th household (𝑖 = 1, 2, ..., 𝑁ℎℎ, where 𝑁ℎℎ is total number of households).  

𝑁𝑙, 𝑁𝑚, and 𝑁ℎ are the number of low-, middle-, and high-income households respectively. 𝛼 

refers to the premium loading factor (=1.25 for this study).  

Seismic hazard modelling  

We account for three hypothetical vertical strike-slip faults in the proximity of Tomorrowville (see 

Figure 2 in Wang et al., 2023, for details). We assume all faults can generate non-characteristic 

and characteristic events. We assume that the moment magnitude (𝑀) of non-characteristic 

events follows the Gutenberg-Richter magnitude frequency distribution (Gutenberg and Richter, 

1944) and their occurrence follows a Poisson distribution. We assume a slope of occurrence 𝑏 = 
1, and a minimum and maximum magnitude for non-characteristic events of 4.0 and 6.5, 

respectively. We assume the magnitude of characteristic events follows a truncated normal 

distribution for 6.5 < 𝑀 < 7.5 , with mean 7.0 and standard deviation 0.25 and that their occurrence 

follows a Weibull distribution. The mean and standard deviation of the inter-arrival time of 

characteristic events are 200 and 50 years, respectively. We use Monte Carlo sampling to 

simulate 10,000 one-year earthquake catalogues, considering the time since the last 

characteristic event is 50 years.  

We simulate spatial cross-correlated ground-motion fields across Tomorrowville, using the GMM 

in Campbell and Bozorgnia (2014) and the spatial and cross-IM correlation model in Markhvida et 

al. (2018). We use Monte Carlo sampling to simulate 100 sets of ground-motion fields for each 
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event, on a 200 m × 200 m grid shown in Figure 2. We use the ground-motion intensity values 

simulated at each grid point as a proxy for these values at nearby building sites.  

Physical infrastructure impact  

See Table 5 in Wang et al. (2023) for the fragility functions associated with each building typology 

in Tomorrowville, which are used in conjunction with a set of deterministic damage-to-loss ratios 

for each 𝐷𝑆: 0.07 for 𝐷𝑆 = 1, 0.15 for 𝐷𝑆 = 2, 0.50 for 𝐷𝑆 = 3, and 1.00 for 𝐷𝑆 = 4 (Cosenza et 

al., 2018). In this case study, the outputs of this module include the annual exceedance loss curve, 

𝐸𝐴𝐿𝑏𝑙𝑑,𝑏, and the expected annual portfolio loss (𝐸𝐴𝐿𝑝𝑜𝑟𝑡; i.e., the summation of 𝐸𝐴𝐿𝑏𝑙𝑑,𝑏).  

Social impact  

The module calculates 𝐸𝐴𝐿ℎℎ,𝑖 using 𝐸𝐴𝐿𝑏𝑙𝑑,𝑏 and associated household information of each 

building. It uses the payout and premium redistribution functions to calculate 𝐸𝐴𝐼𝐿ℎℎ,𝑖, the total 

expected annual financially protected loss of low-, middle-, and high-income households (𝐸𝐴𝐼𝐿𝑙, 
𝐸𝐴𝐼𝐿𝑚 , 𝐸𝐴𝐼𝐿ℎ , respectively), 𝐸𝐴𝐼𝐿𝑝𝑜𝑟𝑡 , 𝐸𝐴𝑈𝐿ℎℎ,𝑖 , the expected annual financially unprotected 

portfolio loss (𝐸𝐴𝑈𝐿𝑝𝑜𝑟𝑡), the premium payable by each household (𝑃ℎℎ,𝑖), and𝑃𝑝𝑜𝑟𝑡.  

Computed impact metrics  

We propose a novel household-level financial impact metric, herein referred to as “unprotected 

loss ratio” (𝐼ℎℎ,𝑖), to quantify the financial impact of the candidate soft policies on each household. 

𝐼ℎℎ,𝑖 can be mathematically formulated as follows:  

  𝐸𝐴𝑈𝐿ℎℎ,𝑖 + 𝑃ℎℎ,𝑖 

 𝐼ℎℎ,𝑖 =   (3)  

𝑅𝑃𝐶ℎℎ,𝑖 

where 𝑅𝑃𝐶ℎℎ,𝑖 refers to the total replacement cost attributed to each household. The higher 𝐼ℎℎ,𝑖 is, 

the heavier the earthquake-related financial burden on the household is. We then aggregate  

𝐼ℎℎ,𝑖 to compute 𝐸(𝐼𝑙𝑜𝑤) and 𝐸(𝐼𝑝𝑜𝑟𝑡), for input to the 𝑃𝐵𝐼 calculation expressed in Eq. (1).  

Results  
Figure 3 displays the mean portfolio annual exceedance loss curves associated with payout 

functions No.1 (left panel) and No.2 (right panel). Payout function No.1 results in greater 

financially protected losses than payout function No.2. The mean premiums payable by 

households of each income group are shown for each policy in Table 3. Policies No.1 to 4 that 

adopt payout function No.1 result in higher premiums, because of its larger 𝐸𝐴𝐼𝐿𝑝𝑜𝑟𝑡 value 

compared to payout function No.1. Because payout function No.2 specifies lower deductibles for 

middle- and low-income households and buildings occupied by these people are in general less 

seismic-resistant compared to those occupied by the high-income, the average 𝐸𝐴𝐼𝐿ℎℎ,𝑖 is higher 

for low- and middle-income people than for high-income people. Policies No.3, 4, 7, and 8 that 

employ PRSs No.3 or No.4 burden low-income households with significantly lower premiums 

compared to the other policies.  

Figure 4 shows the mean, median, and 25th to 75th percentile range of 𝐼ℎℎ,𝑖 , computed for 

households in each income group under each policy. Also shown are 𝑃𝐵𝐼 values for each policy. 

Policies No.3 and No.7 lead to the lowest value of 𝐸(𝐼ℎℎ,𝑖). Soft policies No.1, 2, 5, and 6, which 

are not explicitly designed to be pro-poor, yield the highest values of 𝐼ℎℎ,𝑖 for low-income 

households as expected (see Figure 4). The positive values of 𝑃𝐵𝐼 obtained for these policies 

further indicate that they result in a disproportional financial burden on low-income households. 

Policies No.3, 4, 7, and 8, which are all explicitly designed to lower financial burdens on 

lowincome households, result in a negative (i.e., pro-poor) value of 𝑃𝐵𝐼 as expected.  
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Figure 3. Mean ground-up, financially protected and unprotected portfolio annual exceedance 

loss curves.  

 
  

Figure 4. 𝐼ℎℎ,𝑖 calculated for each candidate financial soft policy. Corresponding 𝑃𝐵𝐼 values are 

also shown.  

Policy  Lowincome  Middleincome  Highincome  PBI  

1  144  144  144  0.343  

2  145  140  147  0.284  

3  29  273  288  -0.339  

4  29  281  281  -0.280  

5  101  101  101  0.263  

6  122  84  69  0.304  

7  24  210  172  -0.229  

8  24  191  191  -0.163  

Table 3. Mean premiums (in EUR) paid by households per income group and the computed 

Poverty Bias Indicator (𝑃𝐵𝐼) for each financial soft policy.  

Conclusion  
We leverage the Tomorrow's Cities Decision Support Environment (Cremen et al., 2023) to 

propose a framework for designing and quantitatively assessing compulsory, seismic-risk-related 

people-centred, household-level financial soft policies for earthquake-prone urban areas. This 

framework explicitly focuses on addressing the disproportionate earthquake-related financial 

burdens often imposed on low-income people, using novel impact metrics that distinguish losses 

on the basis of pertinent socioeconomic information. We demonstrate the proposed framework 
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through designing and assessing a number of different compulsory financial soft policies for the 

hypothetical city of Tomorrowville (Mentese et al., 2023). This demonstration showcases the 

framework's capacity to identify financial soft policies that are pro-poor in terms of the 

earthquakerelated impacts experienced as a result of their application. Stakeholders such as 

urban planning authorities, community representatives, and researchers can use the framework 

for informed decision making on the design of pro-poor financial soft policies for implementation 

in current (and future) earthquake-prone urban communities.  
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