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Should an incumbent for-profit retailer deter a “socially responsible” store from entering the market? As

a differentiation strategy to avoid direct price competition with well-established retailers, some socially

responsible stores (or brands) enter the market with a “pre-commitment” to donate a certain proportion of

their (A) profits or (B) revenues to charities. Because these charitable donations generate a “warm glow”

effect for consumers, these socially responsible stores can use pre-committed donations to gain market access,

pressuring the incumbent retailer to lower its price to deter their entry.

In this paper, we present a game-theoretic model in which a socially responsible retailer enters the market

to compete with an incumbent for-profit retailer and heterogeneous consumers. We determine and com-

pare the incumbent retailer’s deterrence strategies (i.e., deter or tolerate) across different types of socially

responsible stores. Our equilibrium analysis generates the following insights. First, the incumbent retailer’s

deterrence strategy depends on its cost advantage over the socially responsible store, and this deterrence

strategy hinges upon the socially responsible store’s entry cost, pre-commitment level, and its warm-glow

effect. Second, even if the incumbent retailer can profitably deter the socially responsible retailer’s entry, the

incumbent retailer can actually be better off by tolerating instead of deterring its entrance when the socially

responsible store’s entry cost is low and when the incumbent store’s cost advantage is not significant. Third,

relatively speaking, a type (B) store that donates a portion of its revenue is more vulnerable than a type

(A) store that donates a portion of its profit unless a type (B) store can generate a much higher warm-glow

effect. Thus, if the warm-glow effects generated by the two stores are the same, then it is more likely for the

incumbent retailer to deter the type (B) store’s entry. We extend our analysis numerically to examine the

case when the pre-committed proportion is endogenously determined by the socially responsible stores, and

obtain similar structural results.
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1 Introduction

New generations are more socially conscious: 73% of Americans consider companies’ social causes

when making purchasing decisions (Mintel 2018). Because social causes generate the “warm-glow”

effect for socially conscious consumers, a socially responsible store (hereafter, social retailer) can

use “pre-committed” charitable donations (besides lower selling prices to gain market access) to

create a new threat for the incumbent for-profit retailer (hereafter, for-profit retailer).

Social retailers can pre-commit to donating a certain proportion of their (A) profits or (B)

revenues to charities (see Chen 2021 for a list of 35 such retailers).1 Two examples of type (A)

social retailers are Toms and Ivory Ella.2 Toms donates 1/3 of its profits for grassroots good,

including cash grants and partnerships with community organizations, to drive sustainable change,

whereas Ivory Ella donates 10% of its profits towards saving elephants. Two examples of type (B)

social retailers are Cotopaxi and Judy.3 Cotopaxi donates 1% of its yearly revenue to nonprofits

making sustainable changes in poverty alleviation, while Judy donates 1% of its annual revenue

to the Los Angeles Fire Department Foundation, which provides essential equipment and train-

ing to supplement city resources. These charitable donations generate the “warm-glow” effect for

consumers who shop at social retailers (cf. Andreoni 1990 and Harbaugh 1998).

While consumers welcome social retailers to enter the market and thrive, this movement can

also trigger incumbent for-profit retailers to proactively reduce their prices to “deter” the entry of

social retailers. Therefore, our intent is to examine and compare the incumbent store’s deterrence

strategies between type (A) and type (B) stores. We choose to compare these two types of socially

responsible stores by design because they are commonly seen. More importantly, because of their

similarity (i.e., donation based on profit versus revenue), their warm-glow effects are analytically

comparable so that we can compare the deterrence strategies of the incumbent store across different

types by focusing on one variation.4 In particular, we aim to answer the following research questions:

1 There are other types of stores that create social values but are beyond the scope of our study. First, there are
other retailers that make charitable donations “without pre-commitments,” but we do not classify them as “socially
responsible” retailers in our context. This is because, without pre-commitments, a consumer cannot take a firm’s
“future potential charitable donations” into consideration when she makes purchasing decisions. Second, there are for-
profit neighborhood stores that create access to fresh produce as well as non-profit cooperative stores that support the
local economy. However, consumers would react to these stores differently than those with pre-committed charitable
donations. We shall discuss this issue in §8.
2 Founded in 2006, Toms.com is a for-profit company that designs and sells shoes, eyewear, coffee, apparel, and
handbags. Founded in 2015, ivoryella.com is an online for-profit retailer that sells clothing and accessories.

3 Founded in 2014, Cotopaxi is a Utah-based B-corp that sells outdoor gear and apparel with a social-focused mission
of eradicating extreme poverty. Founded in 2020, Judy.co sells emergency preparedness kits.

4 If we were to compare very different types of socially responsible stores (e.g., type (A) store donates its profit and
type (B) resells used products), then the warm-glow effects will be very different. The warm-glow effect of type (A)
is generated from the charitable donations; however, the warm-glow effect of type (B) is not well understood because
it is motivated by environmental sustainability and social responsibility. Consequently, the comparison will involve
different factors and modeling parameters (such as cost), which is beyond the scope of this paper.
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1. What is the entry and pricing strategy of a social retailer in the presence of an incumbent for-

profit retailer?

2. Should the incumbent retailer deter or tolerate the entry of the social retailer?

3. How does the incumbent retailer’s deterrence strategy differ between different types of social

retailers?

In this paper, we present a two-stage Stackelberg model of a social retailer who enters a market

to compete with an incumbent for-profit retailer. The social retailer incurs an entry cost and

pre-commits to donating a certain proportion of its profit (if type (A)) or revenue (if type (B)).

Consumers in the market are heterogeneous in their utility from shopping at both retailers and

they obtain a warm-glow effect from shopping at the social retailer.

To answer our first research question, we first analyze the strategic interactions among utility-

maximizing consumers, a profit-maximizing retailer, and a type (A) social retailer. We find that a

type (A) social retailer’s optimal price depends on the incumbent retailer’s price; and its profit and

its entry condition depend on its cost of entry. Next, regarding our second research question, we

discover that the deterrence strategy employed by the incumbent retailer depends on its unit-cost

advantage over the social retailer, as well as the social retailer’s entry cost. Interestingly, even if

the incumbent retailer can profitably deter the social retailer’s entry, the incumbent retailer can be

better off by tolerating this entry unless it has a substantial competitive advantage over the social

retailer (due to the incumbent’s significantly lower unit cost or the social retailer’s high entry cost).

We also examine the entry of a type (B) social retailer. We find that the aforementioned results

associated with our first and second research questions remain valid in the case of a type (B) store.

Additionally, we derive additional insights concerning a social retailer of type (B). Specifically, the

donation proportion plays a more important role in the pricing decisions of a type (B) retailer.

Specifically, to cover the donations, a type (B) social retailer needs to charge a higher price and

obtain a smaller market share. Due to this challenge, ceteris paribus, a type (B) social retailer’s

entry poses a smaller threat to the incumbent retailer. For this reason, one may expect that the

incumbent retailer is more tolerant towards a type (B) social retailer. Interestingly, we find an

opposite result: the incumbent store is actually more likely to deter the entry of a type (B) social

retailer that commits to donating a certain proportion of its revenue.

Regarding the third question, we analytically demonstrate that even if the two stores generate

the same level of warm-glow effect, the incumbent store R may adopt different deterrence strategies

against them. Specifically, we find that the incumbent is more aggressive in deterring a type (B)

store (that donates a proportion of its revenue) than a type (A) store (that donates a proportion of

its profit), unless a type (B) store can generate a significantly higher warm-glow effect. Our results
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are informative for policymakers and entrepreneurs aiming to establish social retailers as they show

how an incumbent retailer reacts to entry threats made by different types of social retailers.

By extending our analysis to the case when the pre-committed proportion is “endogenously

determined” by each type of social retailer. Through our extensive numerical analysis, we find the

same structural results continue to hold: even when both social retailers set the pre-committed

proportion optimally, the incumbent store is more likely to tolerate the entrance of a type (A)

store than a type (B) store. Also, we examine how the social store’s entry cost and the incumbent

store’s cost advantage affect the optimal proportion, and the corresponding equilibrium outcomes

(such as the social store’s selling price, and the profit of the social store and the incumbent store).

We find that these quantities behave in an intuitive manner in most instances. However, one may

conjecture that a type (B) store, which donates a portion of its revenue, would always donate

more than a type (A) store that donates a portion of its profit. Interestingly, this conjecture is not

necessarily true: we find that it is also possible for a type (A) store to donate a larger amount than

a type (B) store when the proportion is “endogenously determined”.

This paper is organized as follows. We review the relevant literature in §2. After we define our

model preliminaries in §3, we analyze the potential entry of a type (A) store and its impact in §4.

We analyze the implications of the potential entry of a type (B) store in §5. We then compare the

two types of stores in §6. In §7, we expand the analysis by considering endogenously determined

donating proportion to show the robustness of our structural results. Finally, we conclude in §8.

2 Literature Review

Our study is related to studies on market entry, mixed oligopoly, and socially responsible retailers.

The market-entry literature establishes the notion of an incumbent’s decision to lower its price

below the profit-maximizing price to “deter” the entry of a for-profit competitor. This literature

mainly focuses on how a for-profit firm can deter the entry of a for-profit competitor of the same

type, and suggests deterrence tools such as pricing (Bain 1949), strategic commitment (Spence

1977, 1979), long-term contracts (Aghion and Bolton 1987), cost signaling (Srinivasan 1991), bundle

pricing (Nalebuff 2004), or discount contracts (Ide et al. 2016). Overall, these papers focus on

the deterrence tools or the market structure rather than focusing on the entrant characteristics.

(We refer the reader to Hall (2008) for a review of the market entry literature.) More recently,

Gao et al. (2017) examine the entry of copycats and show that the incumbent firm can deter

the copycat from entering by selling a higher quality product. There are also some papers in the

supply chain competition literature (e.g., Corbett and Karmarkar 2001, Korpeoglu et al. 2020)

that analyze the market entry and competition of identical for-profit firms. Our work contributes

to the market-entry literature on several fronts. First, unlike the literature that studies the entry
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of for-profit retailers, we examine the entry of a social retailer that pre-commits to donating a

certain proportion of its profit (type A) or revenue (type B). This social commitment adds a new

dimension to price competition because it also creates the warm-glow effect for the social retailer’s

customers. Our work also compares the entry of the two types of social retailers.

Our work is also related to mixed oligopoly in which firms compete with different objectives

(De Fraja and Delbono 1990). (We refer the reader to Zhou et al. 2023 for a review of the recent

literature). Our model differs from the literature on several fronts. First, our work considers the

market entry of a social retailer that maximizes its profit but subject to donating a certain pro-

portion of its profit or revenue. Indeed, a major contribution of our paper is to compare the entry

of these two types of social retailers. Second, we consider the warm-glow effect that consumers

receive from shopping at the social retailer.

Our work also contributes to the literature on socially responsible retailers.5 There is a body of

work that recognizes the “warm glow” that consumers receive from shopping at socially responsible

retailers (e.g., Strahilevitz 1999, Bloom et al. 2006). Some more recent papers study the impact

of this warm glow on operational decisions. Arya and Mittendorf (2015) investigate the impact of

a government subsidy in an environment with one supplier and one socially responsible retailer

that commits to donating a certain number of goods. Gao (2020) studies the pricing decisions of

a firm that commits to donating a proportion of its revenue to charity without considering any

competition. Our work contributes to this literature by incorporating the warm-glow effect in a

new context so that we can explore the entry strategy of a socially responsible retailer and the

deterrence strategy of an incumbent retailer.

3 Model Preliminaries

We consider a Stackelberg competition model that involves an incumbent for-profit retailer (store

R) and an entrant social retailer (store S). For a consumer who shops at the incumbent store R,

we assume that the consumer utility satisfies:

Ur = v− pr, (1)

where v∼U [0,1] captures the heterogenous consumer valuation for a certain product, and pr(< 1)

is the selling price set by store R.

For store R and store S, let cr and cs be their unit costs; respectively. (Throughout this paper,

subscripts r and s are used to denote stores R and S, respectively.) Because store R has sourced

5 The literature on socially responsible enterprises is quite broad. We refer the reader to Lee and Tang (2018) for a
discussion. There is also literature on producer cooperatives (e.g., An et al. 2015, Ayvaz-Cavdaroğlu et al. 2020) and
consumer cooperatives (e.g., Sexton and Sexton 1987). As cooperatives significantly differ from social retailers (e.g.,
are owned by members, have different objectives, charge membership fees), they are beyond the scope of this paper.
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from its suppliers with a proven sales record over an extended period of time, we assume that store

R has a “cost advantage” over store S so that the parameter α≡ cr/cs < 1.6 Due to store S’s cost

disadvantage (as cs > cr), store S (the new entrant) has to differentiate itself from the incumbent

by creating the warm-glow effect so that consumers can obtain a higher valuation when shopping

at store S. To create the warm-glow effect, we focus on the case when store S is committed to

differentiate itself from store R by donating a proportion γ ∈ (0,1) of its profit to charities as a type

(A) store, or by donating a proportion γ ∈ (0,1) of its revenue to charities as a type (B) store.7

Here, γ corresponds to a “generic” donating proportion of profit/revenue for a type (A)/(B) store.

To obtain tractable analytical results, we first treat γ ∈ (0,1) as an exogenously given parameter

in our base model. In doing so, we establish structural results that serve as “benchmarks” for

further examination. For instance, different types of store S would commit to donating different

proportions (i.e., γA ̸= γB) especially when γj, j =A,B, is determined endogenously by each type

j store. This observation motivates us to consider γ as an endogenous decision for each type of

store S in §7. Specifically, in §7, we conduct a comprehensive numerical study for the case when γ

is endogenously determined, and we find that our structural (benchmark) results of the base model

continue to hold.

For any exogenously given γ > 0 in our base model, we assume that the consumer utility for

shopping at store S takes the following form:

U j
s = βj(γ) · v− ps, j ∈ {A, B}, (2)

where ps is the price set by store S. Here, the “warm-glow effect” is captured by a function βj(γ)≥ 1,

where βj(γ) is an increasing function of γ. For example, the warm glow effect can take a linear

form (i.e., βj(γ) = (1+ bj ·γ) with bj > 0 so that consumers have a higher valuation when shopping

at a type (A)/(B) store S). Hence, by donating a proportion γ ∈ (0,1) of its profit or revenue to

charities, store S can leverage its higher consumer valuation βj(γ) · v≡ (1+ bj ·γ)v > v to compete

against store R despite of its cost disadvantage α≡ cr/cs < 1.

If one considers (2) in isolation, then store S can be interpreted as the store that offers a vertically

differentiated product that is better than store R. Therefore, our market entry game is similar to

those examined in the literature (e.g., Hall (2008)). However, if one considers (2) in conjunction

with store S’s profit function, then a fundamental difference emerges. In a traditional market entry

game, one store makes a “separate” investment to develop a vertically differentiated product (e.g.,

6 The same approach can be used to examine the case when α≥ 1.

7 If store S does not differentiate itself from store R by setting γ = 0, then store S cannot generate the warm-glow
effect. In this case, store R can easily deter store S from entering the market by setting pr = cs > cr due to cost
advantage. To rule out this trite case, we shall focus our analysis for the case when γ > 0.
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invest in quality for a higher quality product). However, in our context, store S’s investment is

the proportion γ that is “embedded” in the profit (for type (A)) or in the revenue (for type (B))

to create the differentiation through the warm-glow effect βj(γ). Consequently, the analysis and

store R’s deterrence strategy is different from the traditional market entry game considered in the

literature (e.g., Gao et al. 2017, Corbett and Karmarkar 2001, Korpeoglu et al. 2020).

Certainly, the exact function form of the warm-glow effect βj(γ) would depend on the type of

charity and the consumer segment that store S will be focusing on. For example, a store S may be

owned by a female who pre-commits to donate a proportion of its profit (or revenue) to the National

Breast Cancer Foundation by selling a product targeting female consumers. As a generic model,

we do not model a specific charity and a specific consumer segment in our analytical analysis;

instead, we consider an implicit function form βj(γ) in the base model of exogenously given γ so

that our model can be applied to different charities. Later on in §7, we capture this issue succinctly

by considering a general function form βj(γ) = 1+ bj · γt, where the parameters bj, t > 0; and we

conduct a comprehensive numerical study by varying the parameters bj and t.

3.1 A Sequential Market Entry Game: Should Store R deter or tolerate Store S’s entry?

The dynamic decisions to be made by the incumbent store R and the new entrant store S can be

modeled as a 2-period sequential game as depicted in Figure 1. In period 1, store S has not yet

Store R
Store R chooses to charge a 
retail price 𝑝! < 𝜏 to deter the 
entry of  store S so that the 
maximum profit of store S is 
below 0.

Deter Store S

Π!" = max
#!$%!

Π!
s.t. Π" 𝑝" 𝑝! < 0

Π!& = max
#!$%!

Π!
s.t. Π" 𝑝" 𝑝! ≥ 0

Tolerate Store S
Store R chooses to charge a 
retail price 𝑝! ≥ 𝜏 to tolerate 
the entry of  store S so that the 
maximum profit of store S is 
nonnegative.

Store S

Store S enters the market.

max
'"$%"

Π(

Quantities demanded from store R and S are realized.

Quantities demanded from store R are realized. 

Time

Store S will not 
enter the market.

Period 1

Period 2

Figure 1 A market-entry game between the incumbent store R and a “generic” store S (of type (A) or (B)).

entered and incumbent store R can choose its price pr to either deter or tolerate store S’s entry (the

blue box in Figure 1). To deter, store R can set pr below a threshold τ (to be determined) so that

store S cannot afford to enter. Consequently, store R operates as a monopoly with the set price
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pr in period 2 and the game ends. If store R chooses to tolerate by setting pr above the threshold

τ , then store S can afford to enter in period 2 by incurring an entry cost k. (This entry cost k

can represent the present value of loan repayments store S has to make using its future earnings

to cover its initial investment.) Upon entry, store S observes pr and competes with store R in a

duopoly in period 2 by choosing its own price ps that takes its unit cost cs into consideration (the

green box in Figure 1).8

3.2 Backward Induction Steps for Determining Equilibrium Strategies

We now describe how we solve the sequential game that involves the potential entry of a generic

store S (of type j, j =A,B) via backward induction. We shall use this approach to examine the

potential entry of a type (A) and a type (B) store S in §4 and §5, respectively. In preparation, let

us first describe consumer demand. Then, we formulate store S’s problem in period 2 (the green

box in Figure 1) and then store R’s problem in period 1 (the blue box in Figure 1).

3.2.1 Consumer Demand

Each retailer’s consumer demand depends on store R’s deterrence strategy. First, if store R chooses

to deter any type of store S’s entry by setting pr < τ , it operates as a monopoly so that only

consumers with utility Ur = v− pr ≥ 0 will buy the product from store R. It follows from (1), the

consumer demand qr for store R is:

qr = 1− pr. (3)

Next, if store R sets its price pr ≥ τ in period 1 to tolerate a type j =A,B store S’s entry and

store S sets its price pjs in period 2, then a consumer will purchase from store R only when Ur ≥ 0

and Ur ≥ U j
s ; or purchase from store S only when U j

s ≥ 0 and U j
s ≥ Ur. By considering Ur and U j

s

given in (1) and (2), the consumer demand qjr for store R and qjs for a type j store S satisfy:

qjr =


0 if ps ≤ βj(γ) · pr
ps−pr

βj(γ)−1
− pr if βj(γ) · pr < ps <βj(γ)− 1+ pr

1− pr if ps ≥ βj(γ)− 1+ pr

, (4)

qjs =


1− ps

βj(γ)
if ps ≤ βj(γ) · pr

1− ps−pr
βj(γ)−1

if βj(γ) · pr < ps <βj(γ)− 1+ pr

0 if ps ≥ βj(γ)− 1+ pr.

. (5)

Because store S’s warm-glow effect βj(γ) depends on γ, qjr and qjs also depend on γ through βj(γ).

8 Throughout this paper, we adopt two standard assumptions in the market-entry literature reviewed in §2. First,
store R’s retail price pr is irreversible in the sense that store R does not change pr after store S’s entry. Spence (1977)
articulates that irreversibility is a way for a firm to commit itself to issue a credible threat to potential entry. This
is also consistent with the notion of price stickiness (e.g. Chen et al. 2017). Second, store S’s cost parameters cs and
k are known by the incumbent store R. This may be a reasonable assumption given that the incumbent retailer has
been in business for a while and can roughly gauge costs of a newcomer.
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3.2.2 Store S’s Problem in Period 2

Using the consumer demand functions as stated above, we now formulate store S’s problem in

period 2 (the green box in Figure 1) in §3.2.2, followed by Store R’s problem in period 1 (the blue

box in Figure 1) in §3.2.3. To begin, if store R deters store S’s entry, then store S’s problem is

moot. Hence, store S’s problem is only relevant when store R sets pr ≥ τ in period 1 to tolerate

store S’s entry. In period 2, store S can set its best response price ps to compete with store R

in a duopoly upon observing pr set by store R in period 1. By considering its unit cost cs (≤ β

to eliminate trivial cases where store S can never make profit) and the entry cost k, store S can

determine its best-response price ps that maximizes its net profit. For any given pr, store S can

use the consumer demand qs given by (5) to formulate its problem as follows.

First, for a type (A) store S who commits to donating a proportion γ of its profit, its problem

in period 2 is to set its price pAs (pr) as a best response by solving:

ΠA
s (pr) = max

ps≥cs
Πs = (1− γ) · [(ps − cs) · qAs − k],

s.t. qAs =


1− ps

βA(γ)
if ps ≤ βA(γ) · pr

1− ps−pr
βA(γ)−1

if βA(γ) · pr < ps <βA(γ)− 1+ pr

0 if ps ≥ βA(γ)− 1+ pr

, (6)

where qAs is given in (5). Hence, a type (A) store S will enter the market if and only if ΠA
s (pr)≥ 0.

Similarly, for a type (B) store S who commits to donating a proportion γ of its revenue to

charities, its problem in period 2 is to choose its price pBs (pr) as a best response by solving:

ΠB
s (pr) = max

ps≥cs
Πs = (1− γ) · ps · qBs − (cs · qBs + k) = (1− γ) ·

[(
ps −

cs
1− γ

)
· qBs − k

1− γ

]
,

s.t. qBs =


1− ps

βB(γ)
if ps ≤ βB(γ) · pr

1− ps−pr
βB(γ)−1

if βB(γ) · pr < ps <βB(γ)− 1+ pr

0 if ps ≥ βB(γ)− 1+ pr

. (7)

Hence, a type (B) store S will enter the market if and only if ΠB
s (pr)≥ 0. From (7), we note that

store S needs to charge ps ≥ cs
1−γ

to ensure a positive gross margin and ps <βB(γ)− 1+pr to ensure

a positive demand. By noting that pr ≤ 1, we shall assume cs < (1−γ)βB(γ) to rule out the trivial

cases in which store S can never afford to enter the market.

By considering consumer utility given in (2) along with store S’s profit functions given in (6) and

(7), it becomes clear that store S sacrifices a proportion γ of its profit (or revenue) in exchange for

the warm-glow effect as captured in (2). Also, because the proportion γ generates the warm-glow

effect βj(γ), it creates a different dynamics than those traditional market entry games considered

in the literature as explained earlier. It is likely that different types of store S would commit to

donating different proportions (i.e., γA ̸= γB) as illustrated in the examples of §1, especially when

these proportions are determined endogenously as examined in §7.
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3.2.3 Store R’s Problem in Period 1

In period 1, store R can anticipate a type j store S’s best-response entry decision and price pjs(pr)

(i.e., the optimal solution to problem (6) for j = A and problem (7) for j = B). Then, we can

formulate store R’s “deterrence strategy” problem (highlighted in blue box of Figure 1) according

to store R’s decision to deter or tolerate a type j store S’s entry.

If store R chooses to deter a type j store S’s entry by choosing pr to ensure Πj
s (p

j
s(pr))< 0, then

store R can operate as a monopoly. Hence, by considering store R’s monopoly demand qr given in

(3), store R can determine its optimal price pd,jr by solving:

Πd,j
r = sup

pr≥cr

Πr = (pr − cr) · (1− pr),

s.t. Πj
s

(
pjs(pr)

)
< 0. (8)

Similarly, if store R tolerates store S’s entry by choosing pr to ensure Πj
s (p

j
s(pr)) ≥ 0, then by

considering store R’s demand qjr given in (4), store R determines its optimal price pt,jr by solving:

Πt,j
r = max

pr≥cr
Πr = (pr − cr) · qjr,

s.t. Πj
s

(
pjs(pr)

)
≥ 0,

qjr =


0 if pjs(pr)≤ βj(γ) · pr
p
j
s(pr)−pr
βj(γ)−1

− pr if βj(γ) · pr < pjs(pr)<βj(γ)− 1+ pr

1− pr if pjs(pr)≥ βj(γ)− 1+ pr.

(9)

Here, superscripts d and t denote store R’s deterrence and tolerance strategies, respectively. Observe

from (8), (9) that store R’s problems depend on the store type j and its warm-glow effect βj(γ).

3.2.4 Store R’s Deterrence Strategy

By solving store R’s problems (8) and (9), we can determine store R’s deterrence strategy against

a type j store S as follows. First, by comparing store R’s optimal profit Πd,j
r when deterring store S

as given in (8) and Πt,j
r when tolerating store S as given in (9), it is optimal for store R to deter the

entry of a type j store S if Πd,j
r >Πt,j

r , and tolerate a type j store S’s entry; otherwise. Meanwhile,

store R chooses its equilibrium price pjr that maximizes its profit (i.e., Πj
r = max{Πd,j

r ,Πt,j
r }).

Second, we characterize a type j store S’s equilibrium entry and pricing decisions in period 2.

Specifically, if store R chooses to tolerate a type j store S’s entry, we can retrieve a type j store

S’s corresponding equilibrium price pjs(p
j
r) through substitution (otherwise, store S cannot enter).

In this section, we have described the process by which we solve the market-entry game between

store R and a generic type of store S as depicted in Figure 1. We now proceed to delve into our

analysis for each type of store S as follows. In §4, we analyze the case of a type (A) store S. Then,

in §5, we analyze the case of a type (B) store S, followed by a comparison of our results associated

with these two types of store S in §6.
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4 Market Entry Game between a Type (A) Store S and an Incumbent Store R

We now analyze the market entry game between an incumbent store R and a potential entry of

a type (A) store S. To do so, we solve a type (A) store S’s problem (6) in period 2 for any given

store R’s price pr in §4.1. Then, in §4.2, we solve store R’s problems in period 1 as described in

§3.2.3, followed by store R’s deterrence strategy as explained in §3.2.4.

4.1 Type (A) Store S’s Best-Response Pricing Strategy in Period 2

For any store R’s retail price pr (set in period 1), a type (A) store S solves problem (6) in period

2 as described in §3.2.2 by determining the optimal solution pAs that represents the best-response

price for a type (A) store S. From (6), we can rewrite the effective maximum profit ΠA
s (pr) =

(1− γ) · (Π̃A
s (pr)− k), where Π̃A

s (pr)≡ (pAs − cs) · qAs represents the maximum gross profit of store S

without considering the donation proportion γ or the entry cost k. By solving (6), we get:

Lemma 1. Given any store R’s price pr, a type (A) store S’s maximum gross profit Π̃A
s (pr) satisfies:

Π̃A
s (pr) =


0 pr ≤ cs +1−βA(γ)
(βA(γ)−1+pr−cs)

2

4(βA(γ)−1)
pr ∈ (cs +1−βA(γ), βA(γ)−1+cs

2βA(γ)−1
)

[βA(γ) · pr − cs] (1− pr) pr ∈ [β
A(γ)−1+cs
2βA(γ)−1

, βA(γ)+cs
2βA(γ)

]
[βA(γ)−cs]

2

4βA(γ)
pr >

βA(γ)+cs
2βA(γ)

,

. (10)

and Π̃A
s (pr) is non-decreasing in pr.

𝑝!

"Π"#(𝑝!)

𝑐! + 1 − 𝛽"(𝛾) 𝛽"(𝛾) − 1 + 𝑐!
2𝛽"(𝛾) − 1

𝛽"(𝛾) + 𝑐!
2𝛽"(𝛾)

𝐾#" =
𝛽" 𝛾 − 𝑐! #(𝛽"(𝛾) − 1)

2𝛽"(𝛾) − 1 #

𝐾$" =
𝛽"(𝛾) − 𝑐! #

4𝛽"(𝛾)

① ② ③ ④

(a) Store S’s gross profit Π̃A
s (pr).

𝑝!

𝑐"

1

𝛽#(𝛾)𝛽#(𝛾) − 1

1
2

Store S has no market share.
𝑞"# = 0

①

②

③

④

𝑝"# =
𝛽#(𝛾) + 𝑐"

2 < 𝛽#(𝛾) ⋅ 𝑝!

𝑝"#
= 𝛽

# (𝛾)
⋅ 𝑝!

𝑝 "#
=
𝛽
# (𝛾

) −
1 +

𝑝 !
+ 𝑐

"

2

> 𝛽
# (𝛾

) ⋅
𝑝 !

𝑝! = 𝑐" + 1 − 𝛽#(𝛾)

𝑝! =
𝛽#(𝛾) + 𝑐$
2𝛽#(𝛾)

𝑝! =
𝛽#(𝛾) − 1 + 𝑐$
2𝛽#(𝛾) − 1

𝛽#(𝛾) − 1
2𝛽#(𝛾) − 1

(b) Store S’s best-response price pAs .

Figure 2 Type (A) store S’s best-response pricing strategy.

Figure 2(a) illustrates store S’s maximum gross profit Π̃A
s (pr) for those 4 cases stated in (10).

Because store S’s entry condition is Π̃A
s (pr) ≥ k (so that store S’s net profit ΠA

s (pr) = (1 − γ) ·
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[Π̃A
s (pr)− k]≥ 0) and because Π̃A

s (pr) is non-decreasing in store R’s price pr, this entry condition

holds only when store R sets its price pr sufficiently high. This explicit entry condition for store S

will be used in §4.2 for determining store R’s deterrence strategy along with those thresholds KA
1

and KA
2 as explained later.

Next, observe from Lemma 1 that store S’s entry condition is violated if store R sets its price

pr sufficiently low so that pr ≤ cs + 1− βA(γ). By ruling out this trivial case, we can determine

the best response price pAs that depends on store R’s price pr, the warm-glow effect βA(γ) along

with the proportion γ as stated in the following proposition. Also, we can use the optimal price pAs

associated with the remaining 3 cases to retrieve the corresponding optimal quantity qAs and the

optimal profit ΠA
s (pr) from (6) as follows.

Proposition 1. Suppose store R sets its price at pr so that pr > cs+1−βA(γ) and store S’s entry

condition holds (i.e., k ≤ Π̃A
s (pr), where Π̃A

s (pr) is given in Lemma 1). Then a type (A) store S’s

best-response price pAs , consumer demand qAs , and retained profit ΠA
s = (1− γ) · (Π̃A

s − k) satisfy:

(i) If pr ∈ (cs+1−βA(γ), βA(γ)−1+cs
2βA(γ)−1

), then the best-response pAs = βA(γ)−1+pr+cs
2

>βA(γ) ·pr, so the

corresponding qAs = βA(γ)−1+pr−cs
2(βA(γ)−1)

and ΠA
s = (1− γ) ·

[
(βA(γ)−1+pr−cs)

2

4(βA(γ)−1)
− k

]
.

(ii) If pr ∈ [β
A(γ)−1+cs
2βA(γ)−1

, βA(γ)+cs
2βA(γ)

], then the best-response pAs = βA(γ) · pr, so the corresponding qAs =

1− pr and ΠA
s = (1− γ) · [(βA(γ) · pr − cs)(1− pr)− k].

(iii) If pr >
βA(γ)+cs
2βA(γ)

, then the best-response pAs = βA(γ)+cs
2

< βA(γ) · pr, so the corresponding qAs =

βA(γ)−cs
2βA(γ)

, and ΠA
s = (1− γ) ·

[
(βA(γ)−cs)

2

4βA(γ)
− k

]
.

By substituting the best-response price pAs (pr) in Proposition 1 into (4), we can retrieve the

corresponding consumer demand for store R. As noted before, When pr ≤ cs +1− βA(γ), store S

cannot afford to enter the market so that store S’s demand qAs = 0 and store R’s demand qAr = 1−pr

(as a monopoly), which is decreasing in pr. Hence, as before, it suffices to focus on the remaining

3 cases in the following corollary that deals with the comparative statics of the subgame that has

pr > cs +1−βA(γ).

Corollary 1. When pr > cs + 1− βA(γ) and k ≤ Π̃A
s (pr), the demand for each store upon the

entry of store S depends on pr as follows.

(i)When pr ∈ (cs +1−βA(γ), βA(γ)−1+cs
2βA(γ)−1

), store R’s demand qAr = βA(γ)−1+cs−(2βA(γ)−1)pr
2(βA(γ)−1)

, which is

increasing in cs and decreasing in pr. Also, the corresponding store S’s demand qAs as given in

(i) of Proposition 1 is increasing in pr and decreasing in cs.

(ii)When pr ≥ βA(γ)−1+cs
2βA(γ)−1

, store R’s demand qAr = 0 and store S’s demand qAs as given in (ii) and

(iii) of Proposition 1 is non-increasing in pr and cs.
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We now interpret Proposition 1 and Corollary 1 via Figure 2(b). Recall that store S’s entry condition

is violated when pr ≤ cs+1−βA(γ) (Figure 2(b) zone (1)), it suffices to characterize store S’s best

response price pAs in Figure 2(b) for the remaining 3 cases as stated in Proposition 1. First, when

pr is moderate (i.e., pr ∈ (cs + 1− βA(γ), βA(γ)−1+cs
2βA(γ)−1

)), Proposition 1(i) suggests that store S will

charge pAs = βA(γ)−1+pr+cs
2

. As such, store S and R can co-exist in the market (see Figure 2(b) zone

(2)), and the corresponding consumer demand qAs for store S is increasing in pr and decreasing in

cs, while the consumer demand qAr for store R is increasing in cs and decreasing in pr.

Next, when store R’s retail price pr is high (i.e., pr ≥ βA(γ)−1+cs
2βA(γ)−1

), compared with pr, store S can

afford to charge a competitive price pAs that is no larger than βA(γ) ·pr. Then as shown in Corollary

1(ii), upon store S’s entry, store R’s market share will be squeezed out. Specifically, Proposition

1(ii) implies that when pr is high but still lower than βA(γ)+cs
2βA(γ)

(i.e., pr ∈ [β
A(γ)−1+cs
2βA(γ)−1

, βA(γ)+cs
2βA(γ)

]) , it

is optimal for store S to charge pAs = βA(γ) ·pr, which is increasing in pr and independent of cs (see

Figure 2(b) zone (3)). As such, the corresponding consumer demand qAs is decreasing in pr and

independent of cs. Proposition 1(iii) suggests that if pr is very high (i.e., pr >
βA(γ)+cs
2βA(γ)

), it is optimal

for store S to charge pAs = βA(γ)+cs
2

< βA(γ) · pr, which is independent of pr and is increasing in cs

(see Figure 2(b) zone (4)). As a result, the corresponding consumer demand qAs is independent of

pr and is decreasing in cs.

4.2 Store R’s Equilibrium Deterrence Strategy in Period 1

Observe that, for any given price pr, store R can anticipate store S’s best response price pAs (pr)

stated in Proposition 1 and its corresponding gross profit Π̃A
s (pr) stated in Lemma 1. Hence, store

R can use these quantities to decide whether to: (i) deter a type A store S’s entry by solving

problem (8) and earn Πd,A
r , or (ii) tolerate store S’s entry by solving problem (9) and earn Πt,A

r .

Then by comparing Πd,A
r against Πt,A

r , store R can determine its equilibrium price and deterrence

strategy in period 1 as explained in §3.2.4.

4.2.1 Store R’s Deterrence Price Threshold τA

To begin, recall from Lemma 1 that, for any given store R’s price pr, store S’s gross profit Π̃A
s (pr)

given in (10) (Figure 2(a)) is increasing in pr. Then, note that store S’s entry condition is: Π̃A
s (pr)≥

k (so that store S’s net profit ΠA
s (pr) = (1− γ) · [Π̃A

s (pr)− k]≥ 0). These two observations imply

that there exists a threshold τA that solves Π̃A
s (τ

A) = k in the following lemma so that store S’s

entry condition holds (i.e., Π̃A
s (pr)≥ k ) if and only if pr ≥ τA ( the blue box in Figure 1). Before

we present the expression for τA, let us define two terms for ease of exposition. Let:

KA
1 ≡ Π̃A

s

(
βA(γ)+ cs
2βA(γ)

)
=

(βA(γ)− cs)
2

4βA(γ)
, KA

2 ≡ Π̃A
s (

βA(γ)− 1+ cs
2βA(γ)− 1

) =
(βA(γ)− cs)

2(βA(γ)− 1)

(2βA(γ)− 1)2
,

(11)

where KA
1 ≥KA

2 as depicted in Figure 2(a).
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Lemma 2. In period 1, store R can deter store S’s entry by setting pr < τA or tolerate store S’s

entry by setting pr ≥ τA, where:

τA =


√
4k(βA(γ)− 1)+ cs +1−βA(γ) k≤KA

2

cs+βA(γ)−
√

(βA(γ)−cs)2−4kβA(γ)

2βA(γ)
k ∈ (KA

2 ,K
A
1 ]

∞ k >KA
1

. (12)

Lemma 2 implies that store S’s entry condition Π̃A
s (pr) ≥ k (or equivalently, ΠA

s (pr) ≥ 0) is

equivalent to the condition pr ≥ τA. Hence, if store R aims to deter, it can afford to do so when its

unit cost cr < τA. Hence, store R’s problem (8) can be simplified as:

Πd,A
r = sup

pr∈[cr,τA)

(pr − cr) · (1− pr). (13)

On the other hand, if store R aims to tolerate store S’s entry, it sets a price pr ≥ τA (with τA >

cs + 1− βA(γ) as observed from Lemma 2). In this case, by using the consumer demand qAr for

store R as stated Corollary 1, store R’s problem (9) can be simplified as:

Πt,A
r = max

pr≥max{cr,τA}
(pr − cr) · qAr ,

s.t. qAr =

{
0 if pr ≥ βA(γ)−1+cs

2βA(γ)−1

βA(γ)−1+cs−(2βA(γ)−1)pr
2(βA(γ)−1)

if pr ∈ (cs +1−βA(γ), βA(γ)−1+cs
2βA(γ)−1

)
. (14)

By solving problems (13) and (14), we can identify Store R’s deterrence strategy: deter store

S’s entry by setting a price pr below τA if Πd,A
r >Πt,A

r , and tolerate it; otherwise. Hence, we can

determine store R’s equilibrium deterrence strategy and its equilibrium retail price pAr that yields:

ΠA
r (p

A
r ) = max

pr≥cr
{Πd,A

r , Πt,A
r } (15)

4.2.2 Store R’s Deterrence Strategy: Cost Advantage α

We now determine store R’s deterrence strategy by solving problem (15) that hinges upon store S’s

entry cost k and store R’s cost advantage α≡ cr/cs < 1. (As explained in §3, store R has a higher

cost advantage when α is smaller.) In preparation, we define ΘA
1 (k) and ΘA

2 (k) as two thresholds

for the cost advantage α so that:9

ΘA
1 (k) =


cs+βA(γ)−

√
(βA(γ)−cs)

2−4k·βA(γ)

2βA(γ)·cs
k ∈ (KA

2 ,K
A
1 ]

cs(4βA(γ)−3)+(βA(γ)−1)·

1−4βA(γ)+8
√

k(βA(γ)−1)+4

√√√√√k

 βA(γ)−cs√
k(βA(γ)−1)

−2




cs(2βA(γ)−1)
k≤KA

2

,

(16)

9 It is easy to verify that when k ∈ (KA
2 ,KA

1 ], ΘA
1 (k) = ΘA

2 (k), which are increasing in k. However, when k ≤KA
2 ,

ΘA
1 (k) is increasing in k, while ΘA

2 (k) is independent of k.
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ΘA
2 (k) =


cs+βA(γ)−

√
(βA(γ)−cs)

2−4kβA(γ)

2βA(γ)·cs
k ∈ (KA

2 ,K
A
1 ]

βA(γ)−1+cs

(2βA(γ)−1)·cs
k≤KA

2

. (17)

Proposition 2. When facing a type (A) store S’s potential entry, store R’s deterrence strategy

can be described as follows:

1. High entry cost: k >KA
1 . Suppose store S’s entry cost k >KA

1 . Then store S cannot afford to

enter the market and store R can operate as a monopoly.

2. Medium entry cost: k ∈ (KA
2 ,K

A
1 ]. Suppose store S’s entry cost k ∈ (KA

2 ,K
A
1 ]. Then:

(a) if store R’s cost advantage is high (as α <ΘA
1 (k) = ΘA

2 (k)), then store R should deter store

S’s entry.10

(b) if store R’s cost advantage is low (as α ≥ ΘA
2 (k) = ΘA

1 (k)), then store R cannot deter the

inevitable entry of store S.11

3. Low entry cost: k ∈ (0,KA
2 ]. Suppose store S’s entry cost k ∈ (0,KA

2 ]. Then:

(a) if store R’s cost advantage is high (as α<ΘA
1 (k)), then store R should deter store S’s entry.12

(b) if store R’s cost advantage is medium (as α∈ [ΘA
1 (k),Θ

A
2 (k))), then it is optimal for store R

to tolerate store S’s entry.13

(c) if store R’s cost advantage is low (as α ≥ ΘA
2 (k)), then store R cannot deter the inevitable

entry of store S.14

To interpret Proposition 2, we map out store R’s equilibrium deterrence strategy as stated in

Proposition 2 based on store S’s entry cost k and store R’s cost advantage factor α in Figure 3.

First, when store S’s entry cost is high: k >KA
1 , statement 1 of Proposition 2 is depicted in zone

(E) in Figure 3, highlighting the market condition is untenable for store S to enter.

Second, when store S’s entry cost is medium: k ∈ (KA
2 ,K

A
1 ], store S’s potential entry is plausible.

As such, store R’s deterrence strategy hinges upon its cost advantage over store S via α. Specifically,

10 Specifically, (i) when α ∈
[ cs−

√
(cs−βA(γ))2−4kβA(γ)

βA(γ)·cs
,ΘA

1 (k)
)
, store R’s equilibrium deterrence price pAr = τA − ϵ=

cs+βA(γ)−
√
(cs−βA(γ))2−4kβA(γ)

2βA(γ)
− ϵ , where ϵ → 0+; (ii) when α <

cs−
√
(βA(γ)−cs)

2−4k·βA(γ)

βA(γ)·cs
, store R’s equilibrium

deterrence price pAr = p0r =
1+cr

2
. Furthermore, store R’s demand qAr = 1− pAr .

11 upon store S’s entry, qAr = 0 so that store R earns nothing.

12 Specifically, (i) when α ∈
[ 2cs+1−2βA(γ)+4

√
k·(βA(γ)−1)

cs
,ΘA

1 (k)
)
, store R’s equilibrium deterrence price pAr = τA −

ϵ =
√

4k · (βA(γ)− 1) + cs + 1− βA(γ)− ϵ, where ϵ→ 0+; (ii) when α <
2cs+1−2βA(γ)+4

√
k(βA(γ)−1)

cs
, then store R’s

equilibrium deterrence price pAr = p0r =
1+cr

2
. Furthermore, store R’s demand qAr = 1− pAr .

13 Here, store R should set the equilibrium tolerating price pAr =
βA(γ)−1+cs+(2βA(γ)−1)·cr

2(2βA(γ)−1)
. In this case, store R’s

demand qAr = βA(γ)−1+cs+cr−2βA(γ)·cr
4(βA(γ)−1)

.

14 After store S enters, qAr = 0 and store R earns nothing.
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Figure 3 Store R’s deterrence strategy in terms of store S’s entry cost k and store R’s cost advantage α.

when store R’s cost advantage over store S is sufficiently high (as α<ΘA
1 (k)), store R can afford

to deter store S’s entry as stated in statement 2 (a) of Proposition 2 and depicted in zones (C)

and (D) within the range k ∈ (KA
2 ,K

A
1 ]. However, when store R’s cost advantage over store S is

low (as α≥ΘA
1 (k)), store R cannot afford to deter store S’s entry as depicted in zone (A) within

the range k ∈ (KA
2 ,K

A
1 ].

Third, when store S’s entry cost is low: k ≤ KA
2 , store S’s potential entry is now imminent.

Specifically, the zones (C), (D), and (A) within the range k ∈ (0,KA
2 ] as depicted in Figure 3 are

based on statements 3(a) and 3(c), and they can be interpreted in the same manner as above.

Interestingly, there is a new zone (B) corresponding to Statement 3(b) that deserves our attention.

Specifically, when store S’s entry cost is low, store R should tolerate store S’s entry when its cost

advantage is medium, even if it can profitably deter store S’s entry. Faced with the threat from

store S, the incumbent store R faces a trade-off between the loss of profit due to charging a lower

deterrence price or the loss of profit due to losing some of its market share to store S. In zone (B),

the incumbent store R can be “better off” by tolerating store S’s entry and sharing the market

with it, rather than lowering the price to a very low level to deter store S’s entry.

By substituting the equilibrium price pAr given by Proposition 2 for different regions of (k,α)

into Proposition 1 and Corollary 1, we can derive store S’s equilibrium price pAs , equilibrium profit

Π̃A
s , and demand qAs (and store R’s demand qAr ). Because our focus is on the deterrence strategy,

we shall omit these tedious expressions under different conditions.

In summary, our analytical results formalize our understanding regarding how a type (A) store

S’s entry cost k and store R’s cost advantage α affect store R’s deterrence strategy as stated in

Proposition 2 and Figure 3. How would these results change if the potential entrant is a type (B)

store S who donates a proportion of its revenue (instead of profit) to charity? We shall examine

this question next.
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5 Market Entry Game between a Type (B) Store S and an Incumbent Store R

We now use the same approach as before to examine the market entry game between store R and a

type (B) store S who donates a proportion γ of its revenue (instead of profit), creating the warm-

glow effect βB(γ). Recognizing this difference, we characterize a type (B) store S’s best-response

pricing strategy in §5.1, followed by store R’s deterrence strategy in §5.2.

5.1 Type (B) Store S’s Best-Response Pricing Strategy in Period 2

Given store R’s retail price pr, a type (B) store S determines its best-response price pBs (pr) by solving

(7). Before we present pBs (pr) as stated in Proposition 3, let us first rewrite the effective maximum

profit given in (7) as: ΠB
s (pr) = (1− γ)pBs q

B
s − csq

B
s − k= Π̃B

s − k, where Π̃B
s ≡ ((1− γ)pBs − cs) · qBs

represents the maximum gross profit without considering the entry cost k. Hence, a type (B) store

S can enter the market if and only if Π̃B
s ≥ k (or equivalently, ΠB

s (pr)≥ 0). By solving (7), we get:

Lemma 3. Given any store R’s price pr, a type (B) store S’s gross profit Π̃B
s (pr) satisfies:

Π̃B
s (pr) =



0 pr ≤ cs
1−γ

+1−βB(γ)

[(1−γ)(βB(γ)−1+pr)−cs]
2

4(βB(γ)−1)(1−γ)
pr ∈

(
cs

1−γ
+1−βB(γ), cs

(1−γ)·(2βB(γ)−1)
+ βB(γ)−1

2βB(γ)−1

)
[(1− γ) ·βB(γ) · pr − cs] (1− pr) pr ∈

[
cs

(1−γ)·(2βB(γ)−1)
+ βB(γ)−1

2βB(γ)−1
, cs
2βB(γ)(1−γ)

+ 1
2

]
[βB(γ)·(1−γ)−cs]

2

4βB(γ)·(1−γ)
pr >

cs
2βB(γ)(1−γ)

+ 1
2

.

(18)

Also, Π̃B
s (pr) is non-decreasing in pr.

We illustrate the gross profit Π̃B
s (pr) in Figure 4(a) that resembles Figure 2(a) in §4.1, and it has

the same interpretation. Also, observe from Lemma 3 that store S’s entry condition is violated if

store R set pr sufficiently low so that pr ≤ cs
1−γ

+1−βB(γ). By ruling out this trivial case, we get:

Proposition 3. Suppose store R sets its price at pr that satisfies pr >
cs

1−γ
+1− βB(γ) and store

S’s entry condition k ≤ Π̃B
s (pr) holds, where Π̃B

s (pr) is given in Lemma 3. Then a type (B) store

S’s best-response price pBs , consumer demand qBs , and its retained profit ΠB
s = Π̃B

s − k satisfy:

(i) If pr ∈ ( cs
1−γ

+ 1 − βB(γ), cs
(1−γ)·(2βB(γ)−1)

+ βB(γ)−1

2βB(γ)−1
), then the best-response pBs = 1

2
(βB(γ) −

1 + pr +
cs

1−γ
) > βB(γ) · pr, so the corresponding qBs = βB(γ)−1+pr

2(βB(γ)−1)
− cs

2(1−γ)·(βB(γ)−1)
and ΠB

s =

[(1−γ)(βB(γ)−1+pr)−cs]
2

4(βB(γ)−1)(1−γ)
− k.

(ii) If pr ∈
[

cs
(1−γ)(2βB(γ)−1)

+ βB(γ)−1

2βB(γ)−1
, cs
2βB(γ)·(1−γ)

+ 1
2

]
, then the best-response pBs = βB(γ) · pr, so

the corresponding qBs = 1− pr and ΠB
s = [(1− γ) ·βB(γ) · pr − cs] · (1− pr)− k.

(iii) If pr >
cs

2βB(γ)·(1−γ)
+ 1

2
, then the best-response pBs = βB(γ)

2
+ cs

2(1−γ)
< βB(γ) · pr, so the corre-

sponding qBs = 1
2
− cs

2βB(γ)·(1−γ)
, and ΠB

s =
[βB(γ)(1−γ)−cs]

2

4βB(γ)·(1−γ)
− k.
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(b) Type (B) Store S’s best-response price pBs .

Figure 4 Type (B) store S’s best-response pricing strategy.

Observe that Lemma 3 and Proposition 3 illustrated in Figure 4 resemble Lemma 1 and Propo-

sition 1 depicted in Figure 2. Next, by substituting pBs (pr) stated in Proposition 3 into (3) and (4),

we can derive the consumer demand for store R upon the entry of a type (B) store S as follows.

Corollary 2. When pr >
cs

1−γ
+1− βB(γ) and k ≤ Π̃B

s (pr), the demand for each store upon the

entry of a type(B) store S depends on pr as follows.

(i)When pr ∈
(

cs
1−γ

+1−βB(γ), cs
(1−γ)(2βB(γ)−1)

+ βB(γ)−1

2βB(γ)−1

)
, store R’s demand qBr =

βB(γ)−1−(2βB(γ)−1)·pr
2(βB(γ)−1)

+ cs
2(1−γ)·(βB(γ)−1)

, which is increasing in cs and decreasing in pr. Also,

the corresponding store S’s demand qBs as given in (i) of Proposition 3 is increasing in pr and

decreasing in cs.

(ii)When pr ≥ cs
(1−γ)·(2βB(γ)−1)

+ βB(γ)−1

2βB(γ)−1
, store R’s demand qBr = 0 and store S’s demand qBs as

given in (ii) and (iii) of Proposition 3 is non-increasing in pr and cs.

5.2 Store R’s Equilibrium Deterrence Strategy in Period 1

By anticipating store (B)’s best response as stated in Proposition 3, we now characterize store R’s

deterrence strategy (by using the same approach as stated in §4.2).

5.2.1 Store R’s Deterrence Price Threshold τB

To begin, we characterize the deterrence threshold for pr (denoted as τB) in Lemma 4 so that store

R can deter a type (B) store S’s entry by choosing a retail price pr < τB or tolerate its entry by

setting pr ≥ τB. Analogous to thresholds KA
1 and KA

2 as defined in §4.2, let:

KB
1 = Π̃B

s

(
cs

2βB(γ)(1− γ)
+

1

2

)
=

[βB(γ) · (1− γ)− cs]
2

4βB(γ) · (1− γ)
,

Electronic copy available at: https://ssrn.com/abstract=4285272



Author: POM Template
00(0), pp. 000–000, © 0000 POMS 19

KB
2 = Π̃B

s

(
cs

(1− γ) (2βB(γ)− 1)
+

βB(γ)− 1

2βB(γ)− 1

)
=

[βB(γ) · (1− γ)− cs]
2 · (βB(γ)− 1)

(2βB(γ)− 1)
2 · (1− γ)

, (19)

where KB
1 ≥KB

2 . Observe from Proposition 3 and Figure 4(a) that a type (B) store S can never

enter the market when its entry cost k >KB
1 regardless of the value of pr (i.e., τB =∞). Hence, it

suffices to focus on the case when k≤KB
1 by focusing on the deterrence threshold τB as follows.

Lemma 4. Store R can either deter a type (B) store’s entry by setting pr < τB, or tolerate its entry

by setting pr ≥ τB, where:

τB =


√

4k(βB(γ)−1)·(1−γ)+cs

1−γ
+1−βB(γ) k≤KB

2

cs+βB(γ)·(1−γ)−
√
[βB(γ)·(1−γ)−cs]

2−4kβB(γ)·(1−γ)

2βB(γ)·(1−γ)
k ∈ (KB

2 ,K
B
1 ]

∞ k >KB
1

. (20)

Applying Lemma 4 in the same way as in §4.2.1, we can examine type (B) store S’s entry condition

(i.e., Π̃B
s (pr)≥ k) from store R’s perspective; i.e., pr ≥ τB. Hence, we can simplify store R’s problem

(8) under deterrence that is analogous to (13) and obtain store R’s corresponding profit Πd,B
r . We

can also simplify store R’s problem (9) under tolerance that is analogous to (14) and obtain store

R’s corresponding profit Πt,B
r . To avoid repetition, we omit the details.

5.2.2 Store R’s Deterrence Strategy: Cost Advantage α

Once we determine store R’s profit Πd,B
r (or Πt,B

r ) when it chooses to deter (or tolerate) store

S’s entry, we can determine store R’s deterrence strategy by comparing these two quantities as

explained in §3.2.4. Before we characterize store R’s equilibrium deterrence strategy in Proposition

4, let us recall from §4.2 that store R’s deterrence strategy is based on its cost competitiveness

measured by α (because cr = α · cs) and store S’s entry cost k. Analogous to the thresholds ΘA
1 (k)

and ΘA
2 (k) as defined in §4.2, we define two thresholds for store R’s cost advantage α= cr/cs. Let:

ΘB
1 (k) =


cs+βB(γ)(1−γ)−

√
[βB(γ)·(1−γ)−cs]

2−4kβB(γ)·(1−γ)

2βB(γ)·(1−γ)cs
k ∈ (KB

2 ,KB
1 ]

cs(4βB(γ)−3)+(βB(γ)−1)·

1−γ−4βB(γ)·(1−γ)+8
√

k(βB(γ)−1)·(1−γ)+4

√√√√k(1−γ)

(
βB(γ)·(1−γ)−cs√
k(βB(γ)−1)(1−γ)

−2

)
cs(2βB(γ)−1)(1−γ)

k≤KB
2

,

(21)

ΘB
2 (k) =


cs+βB(γ)(1−γ)−

√
[βB(γ)·(1−γ)−cs]

2−4kβB(γ)·(1−γ)

2βB(γ)·(1−γ)cs
k ∈ (KB

2 ,KB
1 ]

βB(γ)−1

(2βB(γ)−1)·cs
+ 1

(2βB(γ)−1)(1−γ)
k≤KB

2

. (22)

Proposition 4. When facing the potential entry of a type (B) store S, store R’s deterrence strategy

can be described as follows:
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1. High entry cost: k >KB
1 . Suppose a type (B) store S’s entry cost k >KB

1 . Then store S cannot

afford to enter the market and store R can operate as a monopoly.

2. Medium entry cost: k ∈ (KB
2 ,K

B
1 ]. Suppose a type (B) store S’s entry cost k ∈ (KB

2 ,K
B
1 ].

Then:

(a) if store R’s cost advantage is high (as α<ΘB
1 (k) =ΘB

2 (k)), then store R should deter store

S’s entry.15

(b) if store R’s cost advantage is low (as α ≥ ΘB
2 (k) = ΘB

1 (k)), then store R cannot deter the

inevitable entry of store S.16

3. Low entry cost: k ∈ (0,KB
2 ]. Suppose store S’s entry cost k ∈ (0,KB

2 ]. Then:

(a) if store R’s cost advantage is high (as α<ΘB
1 (k)), then store R should deter store S’s entry.17

(b) if store R’s cost advantage is medium (as α ∈ [ΘB
1 (k),Θ

B
2 (k))), then it is optimal for store

R to tolerate store S’s entry.18

(c) if store R’s cost advantage is low (as α≥ΘB
2 (k)), then store R cannot deter the inevitable

entry of store S.19

Proposition 4 shows that the deterrence strategy for store R against a type (B) store S’s entry

possesses the same structure as that against a type (A) store S (see Proposition 2 and Figure 3).

As such, it can be interpreted in the same manner as in §4.2.2. We omit the details.

6 Store R’s Deterrence Strategies Across Different Types of Store S

While store R’s deterrence strategies against both types of store S follow the same structure as

presented in Proposition 2 (for type (A)) and Proposition 4 (for type (B)), store R may be more

willing to tolerate or deter the entry of one type than the other types. This is because, as shown

in Propositions 2 and 4, store R’s deterrence strategy depends on those thresholds Kj
1 and Kj

2 for

15 Specifically, (i) When α ∈ [
cs−

√
[βB(γ)·(1−γ)−cs]2−4k·βB(γ)·(1−γ)

βB(γ)·(1−γ)cs
,ΘB

1 (k)), store R’s equilibrium deterrence

price pBr = τB − ϵ =
cs+βB(γ)·(1−γ)−

√
[βB(γ)(1−γ)−cs]2−4k·βB(γ)·(1−γ)

2βB(γ)·(1−γ)
− ϵ, where ϵ → 0+; (ii) when α <

cs−
√

[βB(γ)·(1−γ)−cs]2−4k·βB(γ)·(1−γ)

βB(γ)·(1−γ)cs
, store R’s equilibrium deterrence price pBr = p0r =

1+cr
2

. Furthermore, store R’s

demand qBr = 1− pBr .

16 Upon store S’s entry, qBr = 0 so that store R earns nothing.

17 Specifically, (i) when α ∈ [
2[cs+

√
4k(βB(γ)−1)·(1−γ)]−(2βB(γ)−1)·(1−γ)

cs(1−γ)
,ΘB

1 (k)), store R’s equilibrium deter-

rence price pBr = τB − ϵ =

√
4k(βB(γ)−1)(1−γ)+cs

1−γ
+ 1 − βB(γ) − ϵ, where ϵ → 0+; (ii) when α <

2[cs+
√

4k(βB(γ)−1)·(1−γ)]−(2βB(γ)−1)·(1−γ)

cs(1−γ)
, store R’s equilibrium deterrence price pBr = p0r =

1+cr
2

. Furthermore, store

R’s demand qBr = 1− pBr .

18 In this case, store R should set the equilibrium tolerating price pBr = 1
2
·
[
cr +

(βB(γ)−1)(1−γ)+cs

(2βB(γ)−1)·(1−γ)

]
so that store R’s

corresponding demand qBr =
cs+(βB(γ)−1+cr−2βB(γ)·cr)(1−γ)

4(βB(γ)−1)·(1−γ)
.

19 After store S enters, qBr = 0 and store R earns nothing.
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type j store S entry cost given in (11) and (19), and those thresholds Θj
1(k) and Θj

2(k) for store

R’s cost advantage α given in (16), (17), (21), and (22). Also, observe from (16), (17), (21), and

(22) that these thresholds depend on those type-specific pre-committed donating proportions γA

and γB along with those warm-glow effects βA(γA) and βB(γB).

These observations motivate us to compare store R’s deterrence strategies when facing two

different types of store S’s entry for the case when both types of stores generate the same level of

warm-glow effect βA(γA) = βB(γB) even though the proportions γA ̸= γB. Before we conduct the

comparison analytically, we first use Figure 5 to numerically illustrate store R’s optimal deterrence

strategies against two types of store S by setting cs = 0.8, γA = 0.1, and γB = 0.05. While γA >γB

in this example, we consider a linear warm-glow effect. Specifically, we set βA(γA) = 1+ bA · γA =

1+5 · γA = 1.5 and βB(γB) = 1+ bB · γB = 1+10 · γB = 1.5 so that βA(γA) = βB(γB).
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Figure 5 Store R’s equilibrium deterrence strategy against both types of store S. (Setting: cs = 0.8, γA = 0.1,

γB = 0.05, βA(γA) = 1+5 · γA = 1.5, and βB(γB) = 1+10 · γB = 1.5.)

First, let us examine the entry conditions for both types of store S through Kj
1 and Kj

2 ; i.e., the

thresholds with respect to the entry cost k of a type j store, j =A,B. Observe from Figures 5(a)

and (b) that, because KB
1 <KA

1 , the (blue) area k >KB
1 is larger than the (blue) area k >KA

1 so

that a type (B) store will find it more difficult to enter the market relative to a type (A) store. More

formally, when the entry cost k ∈ [KB
1 ,K

A
1 ) for both types of store S, a type (B) store S cannot

afford to enter the market (because k >KB
1 as stated in statement 1 of Proposition 4) even though

a type (A) store S may be able to do so (because k <KA
1 as stated in Proposition 2). Hence, from

store S’s vantage point of entry cost k, a type (B) store S is less affordable to enter the market

than a type (A) store S.

Second, let us examine the thresholds Θj
2(k) in relation to store R’s cost advantage α= cr/cs < 1.

As shown in Figure 5(a) and (b), ΘB
2 (k)>ΘA

2 (k), which implies that the (pink) area α >ΘA
2 (k)

is larger than the (pink) area α > ΘB
2 (k). To be more precise, when store R’s cost advantage
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α ∈ (ΘA
2 (k),Θ

B
2 (k)] for both types of store S, store R cannot deter the type (A) store S’s entry

(because α≥ΘA
2 (k) as stated in statements 2(b) and 3(c) of Proposition 2); however, store R can

deter the type (B) store S’s entry (because α<ΘB
2 (k) as stated in statements 2(a), 3(a) and 3(b)

of Proposition 4). Hence, from store R’s vantage point of its cost advantage α, it is relatively easier

for store R to deter a type (B) store than a type (A) store.

Third, observe from Figure 5(a) and (b) that KB
2 <KA

2 and ΘA
1 (k)<ΘB

1 (k). Thus, when k <

KB
2 <KA

2 , α ∈ (ΘA
1 (k),Θ

A
2 (k)] and α <ΘB

1 (k), store R would deter a type (B) store, but tolerate

the entry of a type (A) store. In Figure 5, it can be observed that the (blue) area (in which store R

will deter and/or store S cannot enter) is larger for a type (B) store than that of a type (A) store,

whereas the (yellow and pink) area (in which store S can enter) is larger for a type (A) store S than

that of a type (B) store S. This implies that store R tends to take a more aggressive deterrence

strategy against the entry of a type (B) store S than a type (A) store S.

To conclude, the numerical example shown in Figure 5 suggests that the incumbent store R is

more aggressive in deterring a type (B) than a type (A) store S, and it is relatively easier for a type

(A) store S to enter the market. However, is this result always true? Due to the complexity of the

expressions for the thresholds mentioned earlier, it becomes analytically intractable to analyze a

general case where the proportion γj is endogenously determined by each type of store S. Therefore,

in order to establish a hypothesis, we focus on analytically examining a benchmark case where both

stores generate an identical warm-glow effect (i.e., βA(γA) = βB(γB)) in §6 (also note that the pre-

committed donating proportions of two types of store S can be different, i.e., γA ̸= γB). We shall

numerically examine this hypothesis by considering the case where γj is endogenously determined

by each type j of store S in §7 so that the donation proportion along with the warm-glow effect

generated by store S will become type-specific; i.e., γA ̸= γB and βA(γA) ̸= βB(γB).

6.1 Best-Response Pricing Strategies for Type (A) and Type (B) Store S

First, by comparing the results given in Propositions 1 and 3 together with Corollaries 1 and 2, we

obtain Corollary 3 that compares entry conditions, best-response pricing strategies, and consumer

demand for type (A) and type (B) store S.

Corollary 3. Suppose both types of store S generate the same level of warm-glow effect (i.e.,

βA(γA) = βB(γB)). Then, given store R’s price pr, the entry conditions and best-response prices

for both types of store S, and the corresponding consumer demand satisfy:

(a)Best-response pricing strategy comparison. A type (B) store S would charge a higher

price than a type (A) S store upon entering the market; i.e., pBs ≥ pAs .

(b)Entry condition comparison. The entry condition for a type (A) store (i.e., Π̃A
s ≥ k) is less

stringent than that of type (B) because Π̃A
s ≥ Π̃B

s .
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(c)Consumer demand comparison. The consumer demand for a type (A) store is higher than

that of a type (B) store; i.e., qAs ≥ qBs . Accordingly, the consumer demand for store R is lower

upon a type (A) store S’s entry than a type (B) store S’s entry; i.e., qAr ≤ qBr .

To motivate Corollary 3, let us consider a general case where the warm-glow effect βj(γj) is store

“type-specific” with j =A,B. Suppose the donating proportion is the same so that γA = γB = γ.

Then a type (B) store may generate a higher warm-glow effect than a type (A) store (i.e., βB(γ)>

βA(γ)). This is because consumers have a stronger understanding of the direct relationship between

their purchases and a type (B) store’s donation that is based on a proportion of its revenue.20

In this context, the warm-glow effect for a type (B) store would be higher. Consequently, a type

(B) store can afford to set a lower proportion that has γB < γA in order to create the same level

of warm-glow effect βA(γA) = βB(γB). The numerical study illustrated in Figure 5 provides an

example of the case where 0.05 = γB <γA = 0.1 and βB(γA) = βB(γB) = 1.5.

Corollary 3 examines the case when both types of store S generate the same level of warm-

glow effect βA(γA) = βB(γB) (even though a type (B) store may donate a lower proportion, i.e.,

γB < γA). First, Corollary 3(a) implies that the best response price set by a type (B) store S is

higher than a type (A) store S, given that both types of store S generate the same level of warm-

glow effect. In particular, this holds true even if a type (B) store S may contribute a much smaller

proportion γB compared to γA from a type (A) store S. This is because a type (B) store donates

its revenue (not profit as for a type (A) store). Consequently, a type (B) store S has to charge a

higher price than a type (A) store S in order to cover its cost. Second, statement (b) states that it

is easier for a type (A) store S to enter the market than a type (B) store S for the same entry cost k

because the gross profit Π̃A
s ≥ Π̃B

s . Finally, Corollary 3(c) implies that, from store R’s perspective,

a type (A) store S poses a higher threat than a type (B) store S because the former can siphon off

more demand from store R after entering the market than the latter. This is because a type (A)

store S can afford to charge a lower price than a type (B) store S as shown in statement (a).

6.2 Store R’s Deterrence Strategies Against a Type (A) and Type (B) Store S

In view of the differences in terms of entry conditions, best response price, and consumer demand

across two types of stores as stated in Corollary 3, we now compare store R’s deterrence strategies

across different types of store S in two ways. First, recall from Lemma 2 (Lemma 4) that store R

can deter a type (A) (type (B)) store S by setting a price pr < τA (pr < τB). As such, by directly

comparing τA and τB, we can derive the relative difficulty of deterring different types of store S.

20 On the contrary, consumers cannot fully understand how their purchases are related to a type (A) store’s donation
that is based on a proportion of its profit, which involves other cost factors that consumers have no control or visibility.
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Second, because α= cr/cs < 1 captures store R’s cost advantage over store S and k captures store

S’s entry barrier, we can compare the store R’s deterrence strategies across different types of store

S by comparing the corresponding thresholds for α and k as presented in Propositions 2 and 4.

The following corollary compares store R’s deterrence strategy across different types of store S.

Corollary 4. Suppose both types of store S generate the same level of warm-glow effect (i.e.,

βA(γA) = βB(γB)). Then store R’s deterrence strategies across different types of store S satisfy:

(a)The price deterrence thresholds. The price deterrence thresholds for store R’s retail price

against two types of store S satisfy τA < τB.

(b)The cost deterrence thresholds. Store R’s deterrence strategies as stated in Propositions 2

and 4 hinge on whether k lies within a certain region and whether α is above or below certain

thresholds: Kj
i and Θj

i (k), i∈ {1,2} and j ∈ {A,B}. Specifically, these thresholds satisfy: KA
1 >

KB
1 , K

A
2 >KB

2 , Θ
A
1 (k)<ΘB

1 (k), and ΘA
2 (k)<ΘB

2 (k).

Corollary 4 implies that, given that both types of store S generate the same level of warm-glow

effect (i.e., βA(γA) = βB(γB)), store R is more likely to deter a type (B) store S than a type (A)

store S, even though a type (B) store S may donate a lower proportion γB than γA. Specifically,

Corollary 4(a) indicates that, because τA < τB, the condition for store R to deter a type (A) store S

(i.e., pr < τA) is more “stringent” than that of type (B) (i.e., pr < τB). Hence, relatively speaking,

it is more affordable for store R to deter a type (B) store S without setting a much lower price pr.

Next, Corollary 4(b) demonstrates the same results as depicted in Figure 5.

To summarize, the analysis of the benchmark case, where two types of store S generates the

same level of warm-glow effect (i.e., βA(γA) = βB(γB)), indicates that the incumbent store R is

more likely to deter a type (B) store S than a type (A) store S. The question remains whether this

hypothesis holds true when γ is determined endogenously by each type of store S. We will address

this through numerical examination in §7.

7 Endogenously Determined Donating Proportion γj for store type j =A,B

We now expand our analysis to the case when the donating proportion is “endogenously deter-

mined” by a type (A) (or (B)) store S. We consider a similar decision sequence described in §3.1.

In period 1, store R chooses its price pr to either deter or tolerate store S’s entry; and if store

R chooses to tolerate store S’s entry, then in period 2 a type j store S determines its donating

proportion γj along with its price pjs to compete with store R, where j =A,B. Since the market

entry game is not analytically solvable when γj is endogenously determined, we numerically search

for the optimal γj in the range of (0,1) that maximizes the profit of a type j store S. To capture

the warm-glow effect βj(γj) ≥ 1 is an increasing function of γj (a decision variable for a type j

store S), we shall assume:
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βj(γj) = 1+ bj · (γj)t, j ∈ {A,B}, (23)

where the parameters t > 0 21 and bj > 0. In this section, we focus on the scenario where t= 1 so

that the warm-glow effect function given in (23) takes on a linear form. In the Online Appendix B,

we present our results for the case when t ̸= 1 so that βj(γj) is a non-linear function of γj. Overall,

we find similar structural results as presented earlier in §4, §5, and §6.

7.1 Store R’s Deterrence Strategies Against Both Types Store S.

Because the key focus of the paper is to analyze store R’s deterrence strategies in response to store

S’s entry, we begin by presenting our numerical results related to store R’s optimal deterrence

strategy for the case when γ is endogenously determined by each type of store S. Figure 6 and 7

depict store R’s optimal deterrence strategies against a type (A) and a type (B) store S, respectively.

First, recall from Proposition 2 and 4 that the optimal deterrence strategy of store R against

store S depends on both store S’s entry cost k and store R’s cost advantage α. Observe that Figures

6 and 7 resemble Figure 3, indicating that the optimal deterrence strategies of store R against store

S for the case when the donating proportion γ is endogenously determined by store S, possess a

similar structure as stated in Proposition 2 and 4 for the base model when γ is exogenously given.
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(b) Store R’s deterrence strategy against a type (A)

store S with βA(γA) = 1+8 · γA

Figure 6 Store R’s equilibrium deterrence strategy against a type (A) store S. Setting: cs = 0.7.

Next, observe from Figure 6 that, as the warm-glow factor for a type (A) store S, denoted as bA,

increases from 3 (Figure 6(a)) to 8 (Figure 6(b)), consumers can derive more utility by shopping

at a type (A) store S, making it difficult for store R to deter. For this reason, store R is more

21 If t= 1, then the warm-glow effect βj(γj) increases linearly in the donating proportion γj ; if 0< t < 1, then the
warm-glow effect is an increasing-concave function of γj ; and if t > 1, then the warm-glow effect is an increasing-convex
function of γj .
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Figure 7 Store R’s equilibrium deterrence strategy against a type (B) store S. Setting: cs = 0.7.

likely to tolerate its entry. This is evident as the yellow “tolerance” region becomes larger in Figure

6(b). This line of logic continues to hold for a type (B) store S. Specifically, when the warm-glow

factor for a type (B) store S, denoted as bB, increases from 3 (Figure 7(a)) to 8 (Figure 7(b)), it

becomes easier for a type (B) store S to enter the market. This can be seen from the larger yellow

“tolerance” region in Figure 7(b) compared to Figure 7(a).

Finally, observe from Figure 6(a) and Figure 7(b) that, when the warm-glow factor 8 = bB >

bA = 3 (so that a type (B) store S can generate a stronger warm-glow effect), it can be seen that

the sizes of both the yellow and the pink regions (i.e., regions within which a store S can enter) are

larger in Figure 6(a) than in Figure 7(b). However, the size of the “deterrence” region, along with

the region where store S can never enter the market (colored in blue), is smaller in Figure 6(a).

It reveals that it is more likely for a type (A) store S to enter the market than a type (B) store S

even when a type (B) store may generate a stronger warm-glow effect.

Remark 1. In the case when the donating proportion is endogenously determined by each type of

store S, the incumbent store R’s optimal deterrence strategy against store S yields the same struc-

tural results as when the donation proportion is exogenously given. Moreover, as the warm-glow

factor increases, the incumbent store R becomes less aggressive in deterring store S. Additionally,

the incumbent store R is generally more likely to deter a type (B) store S (that donates revenue)

rather than a type (A) store S (that donates profit) unless a type (B) store S can generate a

significantly stronger warm-glow effect than a type (A) store S.

7.2 Equilibrium Results Analysis.

Next, we shall numerically analyze how the parameters would affect the optimal γj, j ∈ {A,B} set

by two types of store S along with other corresponding equilibrium outcomes.
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7.2.1 Impact of store S’s entry cost k on the equilibrium results

First, we examine the impact of store S’s entry cost k by setting cs = 0.7, α= 0.5 and bA = bB = 3.

Observe from Figure 8(a) that a type (A) store S can enter the market more easily (when k < 0.591)

than a type (B) store S (who can only enter when k < 0.026). Also, observe from Figure 8(a) and

(b) that, when store S can enter the market, as the entry cost k increases, a type (A) store S will

increase its optimal donating proportion γA to boost consumer utility and increase its price pAs to

offset the higher entry cost k. Interestingly, this behavior is not present for a type (B) store S.

Specifically, the optimal γB and pBs set by a type (B) store S remain unchanged regardless of k.

This is because a type (A) store S deducts its entry cost k from its profit before donating, whereas

a type (B) store S donates a portion of its revenue, which is independent of k.
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Figure 8 Equilibrium results when k varies. Setting: cs = 0.7, α= 0.5, βj(γj) = 1+3 · γj with j ∈ {A,B}.

Figure 8(c) and (d) depict the corresponding profits of store S and store R, respectively. It is

intuitive that both types of store S’s optimal profit will decrease when its entry cost k increases.

However, the impact of k on the incumbent store R’s profit is more nuanced. First, let us examine

store R’s profit in the face of the entry threat from a type (A) store S. Interestingly, when k < 0.591

so that store R chooses to tolerate the entry of a type (A) store S, store R’s profit (in red) decreases
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slightly in k. This is because as k increases, a type (A) store S also increases its donating proportion

γA, thus by tolerating its entry, store R needs to lower its price further to recapture market share,

thereby squeezing its profit. However, when 0.591 < k < KA
1 = 0.681 so that store R chooses to

deter a type (A) store’s entry, which will boost store R’s profit as k increases. This is because a

higher entry cost makes it easier for store R to deter store S. Finally, when k >KA
1 = 0.681 so that

store S can never enter the market, store R’s profit remains unaffected by k. Next, in the face of

the potential entry of a type (B) store S, when store R chooses to tolerate its entry when k < 0.026,

store R’s optimal profit will not be affected by the entry cost k. This is because a type (B) store

S’s optimal γB and pBs both remain unchanged when k as shown in Figure 8(a) and (b). Also,

similarly to a type (A) store S, when 0.026< k <KB
1 = 0.066 so that store R chooses to deter the

entry of a type (B) store S, store R’s profit increases with the entry cost k. When k >KB
1 = 0.066

so that store S can never enter the market, store R’s profit will remain unchanged.

Figure 8 also indicates that when bA = bB, upon entry, a type (A) store S set a higher donating

proportion γA along with a higher price pAs compared to a type (B) store S (as shown in Figures

8(a) and (b)). Additionally, upon entry, a type(A) store S attains a higher profit ΠA
s (Figure 8(c)),

resulting in a more significant squeeze on store R’s profit (Figure 8(d)).

7.2.2 Impact of store R’s cost advantage α on the equilibrium results

Next, we numerically examine the impact of store R’s cost advantage α≡ cr
cs
< 1 on the equilibrium

results for the case when γ is endogenously determined by store S. We set cs = 0.7, k = 0.03 and

bA = bB = 3. Recall that α ≡ cr
cs

so that as α increases, store R’s cost advantage over store S is

lower. Observe from Figure 6(a) and 7(a) that when k= 0.03, a type (A) store S can always enter

the market, while whether a type (B) store S can enter or not depends on α. Observe from Figure

9(a) that, when α> 0.572, a type (B) store S can enter the market. Moreover, Figure 6(a) and 7(a)

also show that when α is very large so that store R’s cost advantage is low, not only can store S

enter the market, but it can also drive store R out of the market. This is also supported by Figure

9(d) that when α > 0.780, store R’s profit becomes 0 upon a type (A) store S’s entry; and when

α> 0.977, store R will be squeezed out upon a type (B) store S’s entry.

Observe from Figure 9(a) that, upon entry, both types of store S will reduce their donating

proportion γj as α increases. This is due to the fact that store S can enter the market even with

a lower warm-glow effect when store R’s cost advantage is sufficiently low (i.e., when α is high).

Therefore, as α increases, both types of store S can afford to lower its optimal donating proportion

in order to maximize its profit. Additionally, when store R’s cost advantage decreases (i.e., α

increases), a type (A) store S can also afford to charge a higher price, whereas a type (B) store S

will lower its price upon entry. Hence, the change in store S’s optimal price pjs with respect to α
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Figure 9 Equilibrium results when α varies. Setting: cs = 0.7, k= 0.03, βj(γj) = 1+3 · γj with j ∈ {A,B}.

(whether increasing or decreasing) is type-specific. Finally, we observe from Figure 9(c) that the

optimal profits of both types of store S increase with α. Consequently, store R’s profit decreases

as α increases due to lower cost advantage (Figure 9(d)).

7.2.3 Impact of relative warm-glow factor bB

bA
on the equilibrium results

We now examine the case where the warm-glow factors bA and bB are store “type-specific”. As

before, we set cs = 0.7, k = 0.03, α= 0.5, and fix bA = 3 so that βA(γA) = 1+ 3 · γA. In this case,

store R chooses to tolerate a type (A) store S’s entry, which can be observed from Figure 6(a).

Here, we vary bB so that the corresponding ratio bB

bA
can vary between 1 to 4. In doing so, we can

examine the impact of the warm-glow factor ratio bB

bA
on the equilibrium results. Observe from

Figure 10 that, only when bB

bA
> 1.035 can a type (B) store S enter the market.

From Figure 10(a), observe that the optimal γB set by a type (B) store S increases with the

warm-glow factor bB (i.e., as bB

bA
= bB

3
increases). Interestingly, even when the ratio bB

bA
becomes

very high so that bB is much higher than bA = 3, the optimal γB remains lower than the optimal

γA. This finding suggests that, as the warm-glow factor bB increases, although a type (B) store

S will increase its donation proportion, it still cannot afford to set γB as large as γA because the
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Figure 10 Equilibrium results when bB ( b
B

bA
) varies. Setting: cs = 0.7, k= 0.03, α= 0.5, bA = 3 so that

βA(γ) = 1+3 · γ.

donation is based on revenue and its profitability needs to be ensured. This observation is consistent

with practical implications. However, upon examining the absolute donation amount, Figure 10(b)

suggests that either a type (A) or a type (B) store S would donate a greater amount. Next, it can

be observed from Figure 10(c) that the optimal pBs also increases with the warm-glow factor bB.

Furthermore, as bB increases, a type (B) store S would charge a higher pBs compared to pAs in order

to ensure profitability. Figure 10(d) shows that when the warm-glow factor bB increases, a type

(B) store can also earn a higher profit, which can be even higher than a type (A) store’s profit.

Nevertheless, it is worth noting that, even when bB > bA, a type (B) store S may still get a lower

profit than a type (A) store S unless it can generate a much stronger warm-glow effect than a type

(A) store S. Figure 10(e) presents the profit of the incumbent store R, which decreases with bB.

8 Conclusion

In recent years, there is a strong shift in consumer preferences towards social responsibility, and

this shift creates a suitable environment for new socially responsible retailers to enter the market.

This observation motivated us to study entry conditions of a commonly observed class of socially

responsible retailers that pre-commit to donating a certain proportion of their profits (type (A))
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or revenues (type (B)). Our equilibrium analysis revealed that the incumbent retailer’s deterrence

strategy depends on its cost advantage (captured by α) and the social retailer’s entry cost (captured

by k). An interesting finding is that even when the incumbent retailer has the power to deter

the entry of the social retailer, it may still choose to tolerate its entry. We also compare the two

types of social retailers. We find that a type (A) social retailer poses a higher entry threat for

the incumbent than type (B) social retailer, yet interestingly, the incumbent is more aggressive to

deter the entry of type (B) social retailer. Thus, it is easier for a type (A) social retailer to enter

the market unless a type (B) social retailer can generate a sufficiently higher warm-glow effect

than a type (A) store. This managerial insight may guide entrepreneurs who aim to establish social

retailers to pre-commit to donating a certain proportion of their profits rather than revenues.

Our paper is the first attempt to understand the market dynamics between an incumbent for-

profit retailer and a common class of socially responsible retailers. There are several avenues for

further research. For instance, we have examined a common class of social retailers, but it is of

interest to compare very different classes of social retailers (e.g., one type donates one unit to

charity when a consumer buys one unit, and the other type donates the revenue to charity). Also,

there are other classes of social retailers such as food cooperatives. Studying the entry of such

cooperatives would be an interesting research avenue to pursue.
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Online Appendix

Online Appendix A: Proofs

Proof of Lemma 1 and Proposition 1. We first analyze the best-response pricing strategy ps

for any given pr in the event that store S can enter the market. Based on the consumer demand

for store S as given by (5), store S can either set (1) ps ≤ βA(γ) · pr or (2) ps >βA(γ) · pr.
Case 1: ps ≤ βA(γ) ·pr. In this case, after store S enters the market, store S’s demand qs = 1− ps

βA(γ)
.

As such, store S’s problem given by (6) can be written as:

max
cs≤ps≤βA(γ)·pr

(1− γ) · [(ps − cs) · (1−
ps

βA(γ)
)− k]. (EC.1)

When pr <
cs

βA(γ)
, (EC.1) is infeasible and it is impossible for store S to set ps ≤ βA(γ) · pr. When

pr ≥ cs
βA(γ)

, according to Store S’s first-order condition, we can obtain the extreme point p∗s =
βA(γ)+cs

2
. By considering the boundary cases, we obtain: (1) when pr ∈ [ cs

βA(γ)
, βA(γ)+cs

2βA(γ)
), the optimal

solution to (EC.1) is pAs1 = βA(γ) · pr; however, (2) when pr ≥ βA(γ)+cs
2βA(γ)

, the optimal solution to

(EC.1) is pAs1 =
βA(γ)+cs

2
.

Case 2: ps ∈ [βA(γ) · pr, βA(γ)− 1+ pr). In this case, after store S enters the market, the demand

for store S qs = 1− ps−pr
βA(γ)−1

. As such, store S’s problem given by (6) can be written as:

max
ps≥max{βA(γ)·pr, cs}

(1− γ) · [(ps − cs) · (1−
ps − pr

βA(γ)− 1
)− k]. (EC.2)

By checking the first-order condition, we obtain the extreme point p∗s =
βA(γ)−1+pr+cs

2
. By consider-

ing the boundary cases, we obtain: (1) when pr ≤ cs +1−βA(γ), (EC.2) is infeasible because ps ≥
cs ≥ pr +βA(γ)− 1; (2) when pr ∈ (cs−βA(γ)+1, βA(γ)−1+cs

2βA(γ)−1
), then the optimal solution to (EC.2)

is pAs2 =
βA(γ)−1+pr+cs

2
; (3) when pr ≥ βA(γ)−1+cs

2βA(γ)−1
, the optimal solution to (EC.2) is pAs2 = βA(γ) · pr.

Case 3: ps ≥ βA(γ)− 1+ pr. In this case, as qs = 0, store S’s profit ΠA
s =−(1− γ)k≤ 0.

We obtain store S’s best-response pricing strategy pAs as stated in Proposition 1 based on the

optimal solution of ps under case 1 and 2 and by comparing the optimal profit of store S by either

setting ps ≤ βA(γ) ·pr or ps ≥ βA(γ) ·pr. As such, we can also obtain store S’s corresponding demand

qAs and profit ΠA
s via substitution. Next, by considering ΠA

s ≥ 0, we can obtain the entry condition

as stated in Proposition 1.

Proof of Corollary 1. By substituting the best-response price pAs as given in Proposition 1

into the consumer demand for store R and store S as given by (4) and (5), we can obtain the

corresponding qAr and qAs together with the comparative statistics as given in Corollary 1.

Proof of Lemma 2. Recall from Proposition 1 that store S’s entry condition is k ≤ Π̃A
s (pr),

where Π̃A
s is as given by (10) and is increasing in pr. As such, by solving k= Π̃A

s (pr), we can obtain

the solution pr = τA, where τA as given by (12).
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Proof of Proposition 2. From Proposition 1, we know that Π̃A
s ≤ [βA(γ)−cs]

2

4βA(γ)
=KA

1 so that when

k >KA
1 , store S can never enter the market, which is as stated in first statement of Proposition 2.

As such, we focus on the deterrence strategy of store R for the case when k≤KA
1 so that store S can

have a chance to enter the market. In particular, we will consider the case when (1) k ∈ (KA
2 ,K

A
1 ]

and (2) k≤KA
2 .

Case 1: k ∈ (KA
2 ,K

A
1 ]. According to Lemma 2, we can obtain τA =

cs+βA(γ)−
√

[βA(γ)−cs]2−4kβA(γ)

2βA(γ)
>

βA(γ)−1+cs
2βA(γ)−1

so that store R can deter store S’s entry by setting pr < τA, while tolerate store

S’s entry by setting pr ≥ τA. First, as store R needs to charge pr ≥ cr, then if τA =
cs+βA(γ)−

√
(βA(γ)−cs)2−4k·βA(γ)

2βA(γ)
≤ cr, store R cannot deter the entry of store S. If cr > τA, then store R

can either choose to deter or tolerate store S’s entry. Recall from corollary 1 that if pr ≥ βA(γ)−1+cs
2βA(γ)−1

,

then after store S enters, the consumer demand for store R in equilibrium qAr = 0. Hence, if store

R chooses to tolerate store S’s entry by setting pr ≥ τA > βA(γ)−1+cs
2βA(γ)−1

, store R’s profit will be zero.

Hence, it is optimal for store R to deter store S’s entry when cr < τA =
cs+βA(γ)−

√
(βA(γ)−cs)2−4kβA(γ)

2βA(γ)
.

Hence, store R’s deterrence problem given by (13) can be rewritten as Πd,A
r =maxpr∈[cr,τA) Πr =

(pr − cr)(1− pr). By considering the first-order condition together with the boundary cases, we

obtain that store R’s equilibrium deterrence strategy together with the equilibrium price as given

by the second statement of Proposition 2.

Case 2: k ∈ (0,KA
2 ]. Based on Lemma 2, τA =

√
4k · (βA(γ)− 1) + cs + 1− βA(γ) when k ≤KA

2 .

To analyze store R’s optimal price pd,Ar when it chooses to deter store S’s entry, we rewrite (13) as:

Πd,A
r = sup

cr≤pr<τA
Πr = (pr − cr) · (1− pr). (EC.3)

By considering the first-order condition together with the boundary cases, we obtain store R’s

optimal price pd,Ar that deters store S’s entry as follows:

• If cr < 2cs +1− 2βA(γ)+ 4
√

k · (βA(γ)− 1), then it is optimal for store R to set pdr =
1+cr
2

;

• If cr ∈ [2cs +1− 2βA(γ) + 4
√

k · (βA(γ)− 1), τA), then it is optimal for store R to set pd,Ar =

τA − ϵ, where ϵ→ 0;

• If cr ≥ τA, then (EC.3) is infeasible and store R cannot deter store S’s entry.

Next, to analyze store R’s optimal price ptr when it chooses to tolerate store S’s entry, we rewrite

(14) as:

Πt,A
r = max

pr≥max{cr,τA}
(pr − cr) · qAr , (EC.4)

where qAr is as given in (14). By considering the first-order condition together with the boundary

cases, we obtain store R’s optimal price pt,Ar that tolerates store S’s entry as follows:

• if cr ≥ βA(γ)−1+cs
2βA(γ)−1

, then pt,Ar = cr and according to Corollary 1, after store S enters, the consumer

demand for store R qAr = 0;
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• if cr ∈ ( 1
2
[3 + 4cs + 8

√
k · (βA(γ)− 1)− 4βA(γ) + 1−2cs

2βA(γ)−1
], βA(γ)−1+cs

2βA(γ)−1
), then it is optimal for

store R to set pt,Ar = βA(γ)−1+cs+(2βA(γ)−1)cr
2(2βA(γ)−1)

;

• if cr ≤ 1
2
[3+ 4cs +8

√
k · (βA(γ)− 1)− 4βA(γ)+ 1−2cs

2βA(γ)−1
], then it is optimal for store R to set

pt,Ar = τA.

Hence, we can obtain the corresponding Πd,A
r and Πt,A

r via substitution. By comparing Πd,A
r and

Πt,A
r , we can solve (15) as follows. First, if cr ≥ τA (and τA < βA(γ)−1+cs

2βA(γ)−1
), store R cannot deter

store S’s entry, so pAr = pt,Ar . Second, if cr ≤ 1
2
[3 + 4cs + 8

√
k · (βA(γ)− 1) − 4βA(γ) + 1−2cs

2βA(γ)−1
]

(and 1
2
[3 + 4cs + 8

√
k · (βA(γ)− 1) − 4βA(γ) + 1−2cs

2βA(γ)−1
> 2cs + 1 − 2βA(γ) + 4

√
k · (βA(γ)− 1)),

store R has to set pt,Ar = τA to tolerate store S’s entry; however, by setting a slightly lower

price τA − ϵ, store R can deter store S and get a higher consumer demand. Hence, in this

case pAr = pd,Ar . Finally, when cr ∈ ( 1
2
[3 + 4cs + 8

√
k · (βA(γ)− 1) − 4βA(γ) + 1−2cs

2βA(γ)−1
], τA), we

compare store R’s two strategies: tolerating store S by setting pt,Ar = βA(γ)−1+cs+(2βA(γ)−1)cr
2(2βA(γ)−1)

or deterring store S by setting pd,Ar = τA − ϵ, and we obtain the threshold for cr as θA ≡
cs(4β

A(γ)−3)+(βA(γ)−1)

1−4βA(γ)+8
√

k·(βA(γ)−1)+4

√
k(

βA(γ)−cs√
k·(βA(γ)−1)

−2)


2βA(γ)−1

. As such, in this case when cr ≥

θA, Πt,A
r ≥ Πd,A

r so that it is optimal for store R to tolerate store S’s entry by setting pt,Ar =
βA(γ)−1+cs+(2βA(γ)−1)cr

2(2βA(γ)−1)
, while when cr < θA, Πt,A

r < Πd,A
r so that it is optimal for store R to deter

store S’s entry by setting pd,Ar = τA−ϵ. By also considering cr = αcs and rearranging the results, we

obtain store R’s equilibrium deterrence strategy when k ∈ (0,KA
2 ] as given in the third statement

of Proposition 2.

Proof of Lemma 3 and Proposition 3. Recall from (6) and (7) that the objective function of

a type (B) store S resembles that of a type (A) store S by replacing cs with cs
1−γ

and replacing k

with k
1−γ

. As such, by using the same approach as we used to prove Lemma 1 and Proposition 1,

we can prove that the best-response pricing strategy of a type (B) store S together with its entry

condition is as given by Lemma 3 and Proposition 3. Also, by checking the first order derivative

of pBs with respect to γ, it is easy to verify that pBs is increasing in γ.

Proof of Corollary 2. By substituting the best-response price pBs as given in Proposition 3

into the consumer demand for store R and store S as given by (4) and (5), we can obtain the

corresponding qBr and qBs together with the comparative statistics as given in Corollary 2.

Proof of Lemma 4. Recall from Proposition 3 that the entry condition for store S is k≤ Π̃B
s (pr),

where Π̃B
s is as given by (18) and is increasing in pr. As such, by solving k= Π̃B

s (pr), we can obtain

the solution pr = τB, where τB is as given by (20).

Proof of Proposition 4. Armed with store S’s entry condition and best-response pricing strategy

as given by Proposition 3 and by using the same approach as shown in the proof of Proposition 2,
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we can derive store R’s equilibrium deterrence strategy against a type (B) store S together with

its equilibrium price pr as given by Proposition 4.

Proof of Corollary 3. We now consider the case when the warm-glow effect βA(γA) = βB(γB).

By denoting β ≡ βA(γA) = βB(γB), we can re-write pAs and pBs as:

pAs =


β−1+pr+cs

2
pr ∈ (cs +1−β, β−1+cs

2β−1
)

β · pr pr ∈ [β−1+cs
2β−1

, β+cs
2β

]
β+cs

2
pr >

β+cs
2β

, pBs =


β−1+pr+

cs
1−γB

2
pr ∈ ( cs

1−γB +1−β,
β−1+ cs

1−γB

2β−1
)

β · pr pr ∈ [
β−1+ cs

1−γB

2β−1
,
β+ cs

1−γB

2β
]

β+ cs
1−γB

2
pr >

β+ cs
1−γB

2β

As pBs is increasing in γB, we can verify that pBs ≥ pAs (and pBs → pAs when γB → 0). By rewriting Π̃A
s

and Π̃B
s , together with the consumer demand qAs , q

A
r , q

B
s , q

B
r in a same manner as showed above,

we can also easily verify that Π̃A
s ≥ Π̃B

s , q
A
s ≥ qBs and qAr ≤ qBr (and Π̃B

s → Π̃A
s , q

B
s → qAs , q

B
r → qAr

when γB → 0).

Proof of Corollary 4. By denoting β ≡ βA(γA) = βB(γB), we can rewrite KA
1 and KB

1 given in

(11) and (19) as follows:

KA
1 =

(β− cs)
2

4β
, KB

1 =
[β(1− γB)− cs]

2

4β(1− γB)
= (1− γB) ·

[β− cs
1−γB ]

2

4β
.

As β > cs
1−γB , K

B
1 showed above is decreasing in γB. Therefore, it is easy to verify that KB

1 <KA
1

(and KB
1 → KA

1 when γB → 0). By using the same approach, we can also show that τB > τA,

ΘB
i >ΘA

i (i∈ {1,2}), and KB
2 <KA

2 (and τB → τA, ΘB
i →ΘA

i , K
B
2 →KA

2 when γB → 0).

Online Appendix B. Endogenous γj: Non-Linear Warm-Glow Function Form

Like §7, we consider the proportion γj is endogenously determined by each type of store S. However,

unlike §7, we examine the case when the warm-glow effect function βj(γj) with j ∈ {A,B} is non-

linear as stated in (23). While we consider the case when t= 1 in §7, we now consider the case when

t ̸= 1 to examine the robustness of our results. Specifically, we consider two settings: (1) t= 0.5 so

that βj(γj) = 1+ bj ·
√
γj; and (2) t= 2 so that βj(γj) = 1+ bj · (γj)2.

Setting (1): Increasing-concave warm-glow effect function: βj(γj) = 1+ bj ·
√
γj

By setting t= 0.5, the warm-glow effect function βj(γj) = 1 + bj ·
√
γj is increasing and concave.

In our numerical analysis, we set cs = 0.7 and bA = bB = 3. Figure EC.1 illustrates store R’s

optimal deterrence strategies against both types of store S. It can be observed that Figure EC.1

exhibits the same characteristics as shown in Figures 3 and 5 for the base model with exogenously

pre-committed γj and Figures 6 and 7 for the case with endogenously determined γj and linear

warm-glow effect function. Therefore, we can conclude that store R’s optimal deterrence strategy

against store S always possesses a similar structure as given in Propositions 2 and 4.
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Figure EC.1 Store R’s equilibrium deterrence strategy against both types of store S when the warm-glow effect

function takes an increasing-concave form.. Setting: cs = 0.7.
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Figure EC.2 Equilibrium results when k varies. Setting: cs = 0.7, α= 0.5, βj(γj) = 1+3 ·
√

γj , j ∈ {A,B}.

Next, we conduct our numerical analysis by setting α= 0.5. Figure EC.2 illustrates the impact

of store S’s entry cost k on the optimal γj (Figure EC.2(a)) and pjs (Figure EC.2(b)) set by both

types of store S, as well as the profits of store S (Figure EC.2(c)) and store R (Figure EC.2(d)). It

is worth noting that Figure EC.2 resembles Figure 8, suggesting that the impact of store S’s entry
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cost k is similar when the warm-glow effect function is concave compared to when it is linear: (1)

Upon entry, both γA and pAs set by a type (A) store S increase with k, while γB and pBs of a type

(B) store S are independent of k. (2) The profits of both types of store S decrease with k upon

entry. (3) By choosing to tolerate store S’s entry, store R’s profit decreases with k when tolerating

the entry of a type (A) store S, while it remains independent of k when tolerating a type (B) store

S’s entry. However, by choosing to deter store S’s entry, store R’s profit increases with k regardless

of the type of store S. (4) In the case when bA = bB, a type (B) store S is more vulnerable than

a type (A) store S. This can be observed from Figure EC.2, which shows that a type (B) store S

can enter the market only when k < 0.114, while a type (A) store S can enter the market as long

as k < 0.591.
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Figure EC.3 Equilibrium results when α varies. Setting: cs = 0.7, k= 0.1, βj(γj) = 1+3 ·
√

γj , j ∈ {A,B}.

Figure EC.3 depicts the impact of store R’s cost advantage α≡ cr
cs
. We set cs = 0.7, k= 0.1 and

bA = bB = 3, and t= 0.5. Notably, Figure EC.3 resembles Figure 9 presented in §7.2.2, indicating

that the effect of α on the equilibrium results remains consistent regardless of whether the warm-

glow effect function is increasing-linear or increasing-concave. From Figure EC.3, we observe that
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when βj(γj) = 1+3 ·
√
γj and k= 0.1, a type (A) store S can always enter the market, while a type

B store S can only enter when α> 0.380. Moreover, store R’s profit will be squeezed out by a type

(A) store S when α > 0.860 and by a type (B) store S when α > 0.773. Similar to the case of a

linear warm-glow function, as α increases, indicating a decrease in store R’s cost advantage, both

types of store S will reduce the donating proportion γj upon entry when the warm-glow function

takes an increasing-concave form. Next, it can be observed from EC.3(b) that pAs set by a type

(A) store S always increases with α, which is consistent with the linear case shown in Figure 9(b).

However, when α ∈ (0.380,0.773) so that store R chooses to tolerate the entry of a type (B) store

S, pBs increases with α, which is different from the linear case as shown in Figure 9(b). This is

because when the warm-glow function takes on an concave form, similar to a type (A) store S, a

type (B) store S can also afford to increase its price and get a higher profit margin when competing

with store R. Finally, Figure EC.3(c) and (d) show that both types of store S will experience an

increase in profits with α, while store R’s profit will decrease with α.

Figures EC.1, EC.2, and EC.3 depict a scenario where both types of store S share the same

warm-glow factor (i.e., bA = bB = 3). Similar to the linear warm-glow effect scenario, it remains

relatively easier for a type (A) store S to enter the market compared to a type (B) store S with the

same warm-glow factor, even when the warm-glow effect function takes on an increasing-concave

form. However, it is worth noting that with the same warm-glow factor bB = 3, the yellow tolerance

region becomes larger in Figure EC.1(b) compared to Figure 7(a), indicating that, relative to the

linear case, a type (B) store S is less susceptible in the concave case. On the other hand, it is

observed that with the same warm-glow factor bA = 3, Figures 6(a) and EC.1(a) are quite similar,

suggesting that store R tends to employ a similar deterrence strategy against a type (A) store S

regardless of the form of the warm-glow function.

Next, let’s examine the scenario where the warm-glow factors bA and bB are store-specific. As

before, we set cs = 0.7, k = 0.1, α= 0.5, and fix bA = 3 so that βA(γA) = 1+ 3 ·
√
γA. In this case,

based on Figure EC.1(a), store R will tolerate the entry of a type (A) store S. By varying bB from

1.5 to 13.5, which results in the ratio bB

bA
ranging from 0.5 to 4.5, we can examine the impact of

the warm-glow factor ratio bB

bA
on the equilibrium outcomes. From Figure EC.4, we can observe

that when bB

bA
> 0.945 (i.e., bB = 2.835), a type (B) store S can also enter the market. Recall from

Figure 10 that given the warm-glow effect function takes a linear form, only when bB

bA
> 1.570 can

a type (B) store S enter the market. Therefore, it further supports the notion that a type (B)

store S becomes less vulnerable when the warm-glow function takes an increasing-concave form.

In addition to the aforementioned finding, Figure EC.4 exhibits a similar pattern to Figure 10:

(1) upon entry, the optimal donating proportion γB and price pBs , along with the corresponding

store S’s profit ΠB
s , increase with the warm-glow factor bB (or the ratio bB

bA
); (2) the optimal γB
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Figure EC.4 Equilibrium results when bB ( b
B

bA
) varies. Setting: cs = 0.7, k= 0.1, α= 0.5, bA = 3 so that

βA(γA) = 1+3 ·
√

γA.

remains lower than γA even when a type (B) store S has a much higher warm-glow factor than

a type (A) store S; (3) a type (B) store S can generate a higher profit than a type (A) store S

when it can generate a much stronger warm-glow effect; (4) store R’s profit ΠB
r decreases with the

warm-glow factor bB, and notably, ΠB
r decrease sharply when 0.643< bB

bA
< 0.945 as store R chooses

to significantly lower its price to deter a type (B) store S.

Setting (2): Increasing-convex warm-glow effect function: βj(γj) = 1+ bj · (γj)2

In the second scenario, we examine an increasing-convex warm-glow function by setting t = 2,

resulting in the warm-glow function becoming βj(γj) = 1+ bj · (γj)2. By setting cs = 0.7 and bA =

bB = 8, we utilize Figure EC.5 to illustrate store R’s optimal deterrence strategies against both

types of store S. Once again, Figure EC.5 resembles Figures 3 and 5 for the case with exogenously

given γj, and Figures 6 and 7 for the case with endogenously determined γj and linear warm-glow

effect function. Therefore, we demonstrate the robustness of our structural results for the incumbent

store R’s optimal deterrence strategy. We summarize our findings in the following remark:
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Remark EC.1. When facing the potential entry of a social store (i.e., store S), regardless of

whether it donates a proportion of its profit (or revenue) and whether the donating proportion is

pre-committed (or endogenously determined), and regardless of the function form of the warm-glow

effect, the incumbent store R’s optimal deterrence strategy always possesses the following structure

(Figures 3, 6, 7, EC.1, EC.5):

1. High entry cost: if store S’s entry cost k is relatively high, then store S cannot afford to enter

the market, and store R can operate as a monopoly.

2. Medium entry cost: if store S’s entry cost k is medium, then store R may either deter store S’s

entry or cannot deter the inevitable entry of store S, depending on store R’s cost advantage α.

3. Low entry cost: if store S’s entry cost k is relatively low, then store R should: (1) deter store

S’s entry when its cost advantage is high (i.e., when α is low); (2) tolerate store S’s entry when

its cost advantage is medium; or (3) cannot deter the inevitable entry of store S when its cost

advantage is low.
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(b) βB(γB) = 1+8 · (γB)2

Figure EC.5 Store R’s equilibrium deterrence strategy against both types of store S when the warm-glow effect

function takes an increasing-convex form. Setting: cs = 0.7.

We then examine the impact of parameters k, α and bB

bA
on the equilibrium outcomes when the

warm-glow effect exhibits an increasing-convex shape. As before, by setting α= 0.5 and bA = bB = 8,

we utilize Figure EC.6 to show how store S’s entry cost k affects the equilibrium results. In this

numerical case, a type (B) store S can only enter the market when k < 0.072, while a type (A)

store S can enter as long as k < 1.788. Once again, Figure EC.6 exhibits the same characteristics

as Figures 8 and EC.2, indicating that the impact of the entry cost k on the equilibrium results

always possesses similar characteristics regardless of the warm-glow function form. To formalize

this observation, we present the following remark:
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Remark EC.2. When store S endogenously determines its donating proportion γj along with the

price pjs, j ∈ {A,B}, the impact of its entry cost k possesses the following characteristics regardless

of the function form of the warm-glow effect (Figures 8, EC.2, EC.6):

1. Upon entry, a type (A) store S will increase both of the donating proportion γA and its price

pAs when its entry cost k increases. However, a type (B) store S’s donating proportion γB and

price pBs are independent of its entry cost k.

2. Upon entry, both types of store S’s profits Πj
s will decrease with the entry cost k.

3. By tolerating the entry of store S, store R’s profit ΠA
r will decrease with k when tolerating a

type (A) store S’s entry; however, ΠB
r remains independent of k when tolerating a type (B) store

S’s entry. On the other hand, by deterring the entry of store S., store R’s profit Πj
r will increase

with k regardless of the store type.
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Figure EC.6 Equilibrium results when k varies. Setting: cs = 0.7, α= 0.5, βj(γj) = 1+8 · (γj)2, j ∈ {A,B}.

By setting k= 0.1 and bA = bB = 8, we illustrate the impact of store R’s cost advantage α≡ cr
cs

on

the equilibrium results using Figure EC.7. Generally speaking, Figure EC.7 also resembles Figures

9 and EC.3, indicating similar insights associated with the impact of α. Observing from Figure
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EC.7 that a type (A) store S can always enter the market in this numerical scenario, while a type

(B) store S can only enter the market when α> 0.788. Additionally, store R will be squeezed out

by a type (A) store S when α> 0.746 and by a type (B) store S when α> 0.974, as shown in Figure

EC.7(d). Interestingly, it is worth noting from Figure EC.7(b) that when the warm-glow function

takes on an increasing-convex form, as α increases, both types of store S will lower its price pjs

when co-existing with store R. This is because in the convex case, as α increases, even though both

types of store S can afford to lower γj, but they also have to lower the price in order to compete

with store R.
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Figure EC.7 Equilibrium results when α varies. Setting: cs = 0.7, k= 0.1, βj(γj) = 1+8 · (γj)2, j ∈ {A,B}.

To summarize the impact of store R’s cost advantage α, we include the following remark:

Remark EC.3. When store S endogenously determines its donating proportion γj along with

the price pjs, j ∈ {A,B}, as store R’s cost advantage becomes lower (i.e., α ≡ cr
cs

increases), the

equilibrium results exhibit the following changes (Figures 9, EC.3, EC.7):

1. Upon entry, both types of store S will lower the donating proportion γj. Consequently, the profits

of both types of store S Πj
s will increase, and store R’s profit Πj

r will decrease.
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2. Whether the optimal price pjs set by store S is increasing (or decreasing) with α depends on

both the function form of the warm-glow effect and the store type. In general, as the power

parameter t in (23) increases (i.e., the warm-glow function form switches from increasing-concave

to increasing-convex), store S’s corresponding optimal price pjs tends to switch from increasing

with α to decreasing with α when co-existing with store R.

As before, Figures EC.5, EC.6 and EC.7 illustrate a scenario in which both types of store S

have the same warm-glow factor (i.e., bA = bB = 8 so that βj(γj) = 1 + 8 · (γj)2)). Similar to the

linear and increasing-concave cases, we observe that in the convex warm-flow function scenario, it

is also easier for a type (A) store S to enter the market than a type (B) store S when they have

identical warm-glow factors. Next, when we compare Figure EC.5(b) with Figure 7(b) where the

warm-glow factor bB is set as 8, we observe that the yellow tolerance region becomes smaller in

Figure EC.5(b), indicating that relative to the linear case, a type (B) store S is more vulnerable in

the convex case. However, with the same bA = 8, Figures 6(b) and EC.5(a) are quite similar, which

suggests that store R will adopt a similar deterrence strategy against a type (A) store S regardless

of the warm-glow function form. The aforementioned findings can be summarized as follows:

Remark EC.4. When facing the potential entry of two types of store S with the same warm-glow

factor (i.e., bA = bB), store R’s optimal deterrence strategy exhibits the following characteristics

(Figures 6, 7, EC.1, EC.5):

1. Store R tends to adopt a more aggressive strategy against a type (B) store S than a type (A)

store S, regardless of the function form of the warm-glow effect.

2. Store R’s deterrence strategy against a type (B) store S is more sensitive to the function form

of the warm-glow effect compared to a type (A) store S. Specifically, store R tends to adopt a

more aggressive deterrence strategy against a type (B) store S when the power parameter t in

(23) increases (i.e., the warm-glow function form switches from increasing-concave to increasing-

convex), while adopting a similar deterrence strategy against a type (A) store S regardless of

the function form of the warm-glow effect.

Finally, we examine the scenario where the warm-glow factors bA and bB are store-specific. We

set cs = 0.7, k= 0.1, α= 0.5, bA = 8 so that a type (A) store S can enter the market and compete

with store R. We vary bB from 4 to 36, resulting in the ratio bB

bA
ranging from 0.5 to 4.5. From

Figure EC.8, we observe that only when bB

bA
> 1.077 (so that bB = 8.616) can a type (B) store S enter

the market. Figure EC.8 resembles Figures 10 and EC.4, which also supports our previous findings

associated with the impact of bB

bA
on the equilibrium outcomes. Formally, we add the following

remark:
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Remark EC.5. Suppose store S endogenously determines its donating proportion γj along with

the price pjs, j ∈ {A,B}. When the warm-glow factor bj is store-specific, and a type (A) store S with

a certain fixed bA can enter the market to compete with store R, then the equilibrium outcomes

associated with a type (B) store S exhibit the following characteristics (Figures 10, EC.4, EC.8):

1. Upon entry, a type (B) store S will increase its donating proportion γB along with the price pBs

as the warm-glow factor bB increases. However, a type (B) store S tends to set a lower donating

proportion than a type (A) store S even when it has a higher warm-glow factor bB.

2. Upon entry, a type (B) store S’s profit ΠB
s will increase with the warm-glow factor bB. However,

a type (B) store S can only generate a higher profit than a type (A) store S when it can generate

a much stronger warm-glow effect than a type (A) store S.

3. To deter a type (B) store S’s entry, store R’s profit ΠB
r decreases sharply with the warm-glow

factor bB. By tolerating a type (B) store S’s entry, ΠB
r decreases further as bB increases.
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Figure EC.8 Equilibrium results when bB ( b
B

bA
) varies. Setting: cs = 0.7, k= 0.1, α= 0.5, bA = 8 so that

βA(γA) = 1+8 · (γA)2.
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