
The Signature-Wasserstein GAN for
Time Series Generation and Beyond

Baoren Xiao

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Mathematics

University College London

October 29, 2023

2

I, Baoren Xiao, confirm that work presented in this thesis is my own. Where

the information has been derived from the other sources, I confirm that this has been

indicated in this work.

Acknowledgements

I would like to express my deepest gratitude and appreciation to many individuals

who have supported and guided me through my doctoral journey.

First, of foremost, I am sincerely grateful to my supervisor, Prof. Hao Ni, for

her unwavering support, invaluable guidance, and continuous encouragement. Her

expertise, insightful feedback, and dedication have been instrumental in shaping the

direction of my research and pushing me to achieve my best. Without her, my PhD

and this thesis would not be possible.

I am also grateful to all my academic collaborators and colleagues for their

invaluable support and collaboration throughout my research journey; in particular,

Shujian Liao, Hang Lou, Jiajie Tao, Magnus Wiese, Marc Sabate-Vidales, Lukasz

Szpruch. Their insightful discussions, constructive feedback, and willingness to

share their expertise have greatly enriched my work and contributed to its overall

quality.

Last but not least, I owe my thanks to my family members for their financial

and emotional support. I will be forever grateful for your infinite help throughout

my life.

To everyone who has played a part, big or small, in shaping my academic

and personal growth, I am sincerely grateful. Thank you for being a part of this

incredible journey.

Abstract

Time series is a vital source of information in many prominent domains such as fi-

nance, medicine, and geophysics. However, the acquisition of those time-series data

is difficult due to high collection costs and privacy constraints. In recent years, gen-

erative models have been at the heart of a viable solution to this problem. Generative

adversarial networks (GANs) that are originally designed for image generation have

also shown remarkable success in generating realistic-looking time series. How-

ever, most GANs suffer from unstable training processes and high computational

costs due to the min-max problem in their framework. To overcome this problem,

we propose conditional Signature-based Wasserstein GAN (SigCWGAN), a novel

framework that incorporates signature methods into GANs. The signature method

provides an efficient and mathematically principled approach to extracting features

from time-series data. SigCWGAN uses the conditional Sig-W1 metric as the loss

function, which turns computationally challenging GAN min-max problems into

supervised learning, and hence saves computational time. We validate our pro-

posed model on both synthetic data generated by popular quantitative risk models

and empirical financial data. Our results demonstrate that SigCWGAN outperforms

state-of-the-art benchmarks in terms of measures of similarity and predictive ability.

Furthermore, we introduce MCGAN, a more general framework that enhances

generator performance. MCGAN incorporates mean squared error (MSE) and the

Monte-Carlo method into the generative loss function, providing strong supervision

for the generator. As shown in this thesis, MCGAN considerably improves the

training stability while retaining the optimality of the original GAN. Numerical

experiments on synthetic and empirical datasets showcase the superior performance

Abstract 5

and better training stability of MCGAN compared to the original GAN.

Keywords: Rough Path Theory, Generative Adversarial Networks, Time-

series Generation, Monte Carlo Method.

Impact Statement

The main motivation of this thesis lies in the increased interest in the financial

time-series generation in the financial industry. The work presented in this the-

sis addresses the challenging problem of generating realistic time-series data based

on historical information. By proposing novel frameworks, namely SigCWGAN

and MCGAN, this work advances the field of generative modeling by overcoming

key limitations in the training process and generation performance of conventional

GANs.

The adoption of the signature method in SigCWGAN enables efficient and

principled feature extraction from time-series data. Additionally, the proposed Sig-

W1 metric provides an efficient technique to measure the discrepancy between two

time-series distributions. The use of the conditional Sig-W1 metric as the loss func-

tion in SigCWGAN transforms the GAN’s min-max problem into supervised learn-

ing, resulting in improved computational efficiency and faster convergence. Em-

pirical evaluations on synthetic and real-world financial datasets demonstrate that

SigCWGAN outperforms state-of-the-art benchmarks in terms of similarity mea-

sures and predictive capabilities.

Additionally, the proposed MCGAN framework introduces the integration of

mean squared error (MSE) and the Monte Carlo method into the generative loss

function. This enhancement significantly improves the training stability of the gen-

erator while preserving the optimality of the original GAN. Numerical experiments

validate the superior performance and enhanced training stability of MCGAN over

the conventional GAN. MCGAN is a more general framework and can be also used

in other types of conditional generation tasks like conditional image generation.

Impact Statement 7

These two models provide practical implications for various industries by pro-

viding reliable and efficient methods for generating realistic time-series data. These

advancements have the potential to facilitate better risk modeling, decision-making

processes, and scenario analysis in the fields of finance, medicine, and geophysics.

Moreover, the proposed frameworks contribute to the broader field of generative

modeling, paving the way for further development in the generation of complex and

high-fidelity time-series data.

In general, this research increases the potential of generative modeling tech-

niques and significantly advances both academia and industry. The proposed frame-

works offer improved efficiency, stability, and performance, thus opening new av-

enues for applications in diverse fields and fostering advancements in the under-

standing and utilization of time-series data.

Contents

1 Introduction 19

1.1 Main contributions . 21

1.2 Outline . 22

2 Preliminary 24

2.1 Rough path theory . 24

2.1.1 Path with finite p-variation 24

2.1.2 Tensor algebra space . 27

2.1.3 Signature of a path . 29

2.1.4 Important properties of signature 30

2.1.5 Expected signature of stochastic processes 34

2.1.6 Path augmentation . 35

2.2 Generative adversarial network (GAN) 38

2.2.1 Classical generative adversarial network 38

2.2.2 Wasserstein generative adversarial network (WGAN) 41

2.2.3 Conditional generative adversarial network 43

2.2.4 Problem of GAN training 44

3 Signature-based W1 metric 46

3.1 Sig-W1 metric . 46

3.2 Conditional Sig-W1 metric . 53

4 Signature-based conditional WGAN 55

4.1 Conditional AR-FNN generator 56

Contents 9

4.2 Signature-based loss function . 58

4.2.1 Learning the conditional expected signature under true

measure . 59

4.3 Algorithm . 61

4.4 Numerical results . 62

4.4.1 Vector autoregressive model 66

4.4.2 ARCH model . 68

4.4.3 S&P 500 and DJI market data 69

4.5 Conclusions . 73

5 Monte-Carlo GAN 74

5.1 Motivation . 74

5.2 Discriminability . 77

5.3 Monte Carlo GAN . 83

5.3.1 Relation to f -divergence 87

5.3.2 Improved stability . 89

5.3.3 A toy example: Dirac-GAN 92

5.4 Related work . 93

5.4.1 Relation to feature matching 94

5.5 MCGAN for conditional time-series generation 95

5.5.1 Algorithm . 97

5.6 Numerical experiments . 97

5.6.1 Vector autoregressive model 99

5.6.2 ARCH model . 100

5.6.3 Stock dataset . 103

5.7 Conclusions . 107

6 Conclusion and future direction 109

6.1 Conclusion . 109

6.2 Discussion and future direction . 110

6.2.1 About SigCWGAN . 110

Contents 10

6.2.2 About MCGAN . 111

Appendices 113

A Rough Paths 113

A.1 p-rough paths . 113

A.2 Expected signature of stochastic processes 115

B Basics of neural networks 116

B.1 AR-FNN architecture . 118

C Supplementary numerical results 121

C.1 Implementation and hyper-parameters 121

C.1.1 Truncation level of signature in SigCWGAN 121

C.2 VAR(1) dataset . 122

C.3 ARCH(k) . 129

C.4 SPX and DJI dataset . 134

Bibliography 141

List of Figures

2.1 A simple representation of a generative adversarial network (GAN)

architecture . 39

3.1 The top row displays blue and red samples from two distributions

µ and ν respectively for fixed θ1, and different values of θ2. 52

4.1 Illustration of AR-FNN generator. 56

4.2 The illustration of the flowchart of SigCWGAN. 62

4.3 (Left) The distributional metric (abs metrics) comparison; (Right)

the R2 (TSTR) comparison. VAR(1) data is generated for φ = 0.8

and σ = 0.8. 66

4.4 Evolution of three test metrics: abs metric, ACF metric, and cross-

correlation metric. Each color represents the metric of one di-

mension. The results are for the 3-dimensional VAR(1) model for

φ = 0.8 and σ = 0.8. 67

4.5 Comparison of the marginal distributions of one long sampled path

(80,000 steps) with the real distribution using VAR(1) model for

φ = 0.8,σ = 0.8. 68

4.6 Comparison of all models’ performance in fitting the conditional

distribution of future time series given one past path sample. The

real and generated paths are plotted in red and blue respectively with

the shaded area as the 95% confidence interval. The real samples

are synthesized from VAR(1) model for d = 3, φ = 0.8 and σ = 0.8. 68

List of Figures 12

4.7 (Left) The distributional metric (ac f score) comparison; (Right)

the R2 error (TSTR) comparison using ARCH(k) data for k = 2,3,4. 70

4.8 ACF/PACF plot of squared residuals for ARCH(2) model. Here x-

axis represents the lag value (with a maximum lag equal to 10)

and the y-axis represent the corresponding auto- correlation/partial

auto-correlation. The length of the real/generated time series used

to compute the ACF is 1000. The number in the bracket under each

model is the sum of the absolute difference between the correlation

coefficients computed from real (dashed line) and generated (solid

line) samples. 70

4.9 Comparison of the marginal distributions of the generated SigCW-

GAN paths and the SPX and DJI data. 71

4.10 ACF/PACF plot of absolute and squared returns for SPX (green

line) and DJI (orange line). Here x-axis represents the lag value

(with a maximum lag equal to 10) and the y-axis represents the

corresponding auto-correlation/partial auto-correlation. The length

of the real/generated time series used to compute the ACF is 1000.

The number in the bracket under each model is the sum of the abso-

lute difference between the correlation coefficients computed from

real (dashed line) and synthetic (solid line) samples. 72

5.1 One illustration on the discriminability of the discriminator. In this

example, µ ∼N(−2,1),νθ ∼N(2,1). The optimal discriminator is

given by Dφ∗(x) = pµ (x)
pµ (x)+pνθ

(x) , and the weaker version of discrim-

inator D̂φ∗ is defined in (5.18). 84

5.2 Convergence behavior of the Dirac-GAN. The starting point of iter-

ation is marked in red. The total number of iterations is 2000. 93

5.3 Flowchart of generator training phase in MCGAN algorithm. 99

5.4 Comparison of the performance across all parameter sets (d,φ ,σ)

and benchmarks. 101

List of Figures 13

5.5 Comparison of training dynamics of MCGAN (blue) and RCGAN

(orange). All four dynamics: (1) l2 norm of generator gradient; (2)

abs metric;(3) ACF metric;(4) cross-correlation metric is computed

via the moving average (solid line) and standard deviation (shaded

area) using window size 50. The training dataset is synthesized

from VAR(1) model for d = 3, φ = 0.2 and σ = 0.8. 102

5.6 Comparison of all models’ performance in fitting the conditional

distribution of future time series given one past path sample. The

real and generated paths are plotted in red and blue respectively

with the shaded area as the 95% confidence interval. The training

dataset is synthesized from VAR(1) model for d = 3, φ = 0.8 and

σ = 0.8. 102

5.7 (Left) The distributional metric (abs metric) comparison; (Right)

the R2 error (TSTR) comparison using ARCH(k) data for k = 2,3,4. 103

5.8 ACF/PACF plot of squared residuals for ARCH(2) model. Here

x-axis represents the lag value (with a maximum lag equal to 10)

and the y-axis represents the corresponding auto- correlation/partial

auto-correlation. The length of the real/generated time series used

to compute the ACF is 1000. The number in the bracket under each

model is the sum of the absolute difference between the correlation

coefficients computed from real (dashed line) and generated (solid

line) samples. 104

5.9 Comparison of R2 relative error (%) with different lags. All models

are trained on SPX and DJI data. 105

List of Figures 14

5.10 ACF/PACF plot of absolute and squared returns for SPX (green

line) and DJI (orange line). Here x-axis represents the lag value

(with a maximum lag equal to 10) and the y-axis represents the

corresponding auto-correlation/partial auto-correlation. The length

of the real/generated time series used to compute the ACF is 1000.

The number in the bracket under each model is the sum of the abso-

lute difference between the correlation coefficients computed from

real (dashed line) and synthetic (solid line) samples. 106

5.11 Comparison of the marginal distributions of the generated MCGAN

paths and the SPX and DJI data. 106

B.1 Architecture of residual layer. 119

D.1 Example development of the considered distances and score func-

tions during training for the 1-dimensional VAR(1) model with au-

tocorrelation coefficient φ = 0.8 and co-variance parameter σ =

0.8. The colors blue and orange indicate the relevant distance/score

for each dimension. 125

D.2 Example development of the considered distances and score func-

tions during training for the 2-dimensional VAR(1) model with au-

tocorrelation coefficient φ = 0.8 and co-variance parameter σ =

0.8. The colors blue and orange indicate the relevant distance/score

for each dimension. 126

D.3 Example development of the considered distances and score func-

tions during training for the 3-dimensional VAR(1) model with au-

tocorrelation coefficient φ = 0.8 and co-variance parameter σ =

0.8. The colors blue and orange indicate the relevant distance/score

for each dimension. 127

List of Figures 15

D.4 ACF plot for each channel on the 3-dimensional VAR(1) dataset

with autocorrelation coefficient φ = 0.8 and co-variance parameter

σ = 0.8. Here x-axis represents the lag value (with a maximum

lag equal to 100) and the y-axis represents the corresponding auto-

correlation. The length of the real/generated time series used to

compute the ACF is 1000. The number in the bracket under each

model is the sum of the absolute difference between the correlation

coefficients computed from real (dashed line) and generated (solid

line) samples. 128

D.5 The plot displays a comparison of the marginal distribution on the

linear- and log-scale, as well as the fit of the auto-correlation for

ARCH(3) data. Histograms and the auto-correlation of the data are

indicated in blue and the fits from the generator are colored in orange.132

D.6 ACF plot for each channel on the ARCH(2) dataset. Here x-axis

represents the lag value (with a maximum lag equal to 100) and the

y-axis represents the corresponding auto-correlation. The length of

the real/generated time series used to compute the ACF is 1000. The

number in the bracket under each model is the sum of the absolute

difference between the correlation coefficients computed from real

(dashed line) and generated (solid line) samples. 133

D.7 Example development of the considered distances and score func-

tions during training for SPX data. 136

D.8 Example development of the considered distances and score func-

tions during training for SPX and DJI data. 137

List of Figures 16

D.9 Comparison of real and synthetic cross-correlation matrices for

SPX/ SPX and DJI data. On the far left the real cross-correlation

matrix from SPX/ SPX and DJI log-return and log-volatility data is

shown. x/y-axis represents the feature dimension while the color of

the (i, j)th block represents the correlation of X (i)
t and X (j)

t . Observe

that the historical correlation between log returns and log volatility

is negative, indicating the presence of leverage effects, i.e. when

log returns are negative, log volatility is high. 138

D.10 ACF plot for each channel on the SPX/DJI dataset. Here x-axis

represents the lag value (with a maximum lag equal to 100) and

y-axis represents the corresponding auto-correlation. The length of

the real/generated time series used to compute the ACF is 1000. The

number in the bracket under each model is the sum of the absolute

difference between the correlation coefficients computed from real

(dashed line) and generated (solid line) samples. 139

D.11 Example paths of SPX log returns generated by each model. Since

the path of DJI log returns is similar to that of SPX, there is no need

to make another plot for DJI. 140

List of Tables

4.1 Numerical results of the stock datasets. In each cell, the left/right

numbers are the results for the SPX data/ the SPX and DJI data

respectively. We use the relative error of TSTR R2 against TRTR

R2 as the R2 metric. 72

4.2 Results of coverage ratio test applied to SPX and DJI stock returns.

In each cell, the left/right numbers are the results for the SPX/ DJI

data respectively. A ratio that is closer to 5% indicates a more accu-

rate 95% VaR estimate. The VaR estimate of each model for each

observation is obtained using 5000 generated samples. 73

5.1 List of common discriminative loss functions that satisfy strict dis-

criminability . 84

5.2 Numerical results of the stock datasets. In each cell, the left/right

numbers are the results for the SPX data/ the SPX and DJI data

respectively. We use the relative error of TSTR R2 against TRTR

R2 as the R2 metric. 104

5.3 Results of coverage ratio test applied to SPX and DJI stock returns.

In each cell, the left/right numbers are the results for the SPX/ DJI

data respectively. A ratio that is closer to 5% indicates a more accu-

rate 95% VaR estimate. The VaR estimate of each model for each

observation is obtained using 5000 generated samples. 107

D.1 Monte Carlo sample size used in SigCWGAN and MCGAN for

each example. 121

List of Tables 18

D.2 Truncation level of signature used in SigCWGAN for each example. 121

D.3 Numerical results of VAR(1) for d = 1 122

D.4 Numerical results of VAR(1) for d = 2 123

D.5 Numerical results of VAR(1) for d = 3 124

D.6 Numerical results of the ARCH(k) datasets. 130

D.7 Relative R2 error (%) of the ARCH(3) model for different lag values. 131

D.8 Numerical results of the stocks datasets. 135

D.9 Relative R2 error (%) of the SPX data for different lag values. 138

D.10 Relative R2 error (%) of the SPX and DJI data for different lag values.138

D.11 Autocorrelation metric for the stock datasets for different lag val-

ues. In each cell, the left/right numbers are the result for the SPX

data/ the SPX and DJI data respectively. 139

Chapter 1

Introduction

Financial services generate a huge amount of data that is complex and varied. These

datasets contain some highly sensitive and personally identifiable attributes of cus-

tomers, imposing significant restrictions on their utilization or dissemination for

research purposes. It is therefore imperative to investigate the generation of syn-

thetic data for numerous applications in the finance industry. Assefa et al. [1]

highlighted the growing need for effective synthetic data generation in the financial

domain, which focuses on three main areas for the academic community: 1) Gen-

erating realistic synthetic datasets; 2) Measuring the similarities between real and

generated datasets; 3) Ensuring the generative process to satisfy any privacy con-

straints. Bellovin et al. [2] also pointed out that synthetic data can serve as a valid

and privacy-conscious alternative to raw data.

In particular, synthetic time series can facilitate the training and validation of

data-driven risk models and enable data sharing while upholding privacy require-

ments. Generative adversarial networks (GANs) [3], initially designed for synthetic

image generation, have been growing popular in time-series generation since its

birth. Many quantitative researchers have investigated the usage of GAN in quanti-

tative risk management. Buehler et al. [4] constructed realistic equity option market

simulators based on GANs and demonstrated that GANs can be applied for multi-

variate financial time-series generation. Inspired by the recent success of generative

adversarial networks, Magnus et al. [5] proposed Quant GAN, whose generator

is explicitly constructed such that the stochastic process induced by the generator

20

allows a transition to its risk-neutral distribution, facilitating pricing tasks. We re-

fer the readers to [6, 7, 8, 9] for generative modeling perspective of some classical

problems in quantitative risk management.

While generative modeling has been highly successful in generating samples

from seemingly high-dimensional probability measures, off-the-shelf techniques,

such as generative adversarial networks (GANs) [3], struggle to capture the tempo-

ral dependence of joint probability distributions induced by time-series data. Fur-

thermore, the min-max objective function of classical GANs makes them notori-

ously difficult to tune [10, 11, 12]. Many techniques have been developed to sta-

bilize the GAN training [13, 14, 15]. However, those techniques either introduce

considerable computational costs or heavily rely on hyperparameter tuning. Hence

training instability and unsatisfactory performance remains a problem.

To address these challenges and improve the performance of GANs, we pro-

pose the signature-based method as a mathematically principled feature extraction

machinery that emerged from the theory of rough paths. Rough path theory, de-

veloped in the mid-90s by Terry Lyons [16], is a generalization of the notion of a

smooth path allowing to construct a robust solution to controlled differential equa-

tions driven by irregular signals. The signature of a path, as the core of rough path

theory, is defined as the collection of iterated integrals of the path and is consid-

ered as an efficient feature extraction. The signature method has drawn the atten-

tion of quantitative researchers in the financial industry. Buehler et al. [7] showed

how the signature of a path can be combined with a variational autoencoder frame-

work, which provides a powerful way for encoding and evaluating financial time

series and outperforms returns-based data generation by reducing the overfitting

when available training data is scare. In other areas, like landmark-based human

action recognition, Yang et al. [17] considered the evolving landmark data as a

high-dimensional path and applied signature transform for both spatial structure

and temporal dynamics to generate discriminative features, which achieve compa-

rable state-of-the-art performance to the advanced deep networks. Liao et al. [18]

enhanced the RNN model by incorporating log signature into the model and lifting

1.1. Main contributions 21

the discrete-time model into a continuous-time one. We aim to combine the sig-

nature method and generative models to enhance the performance of WGAN for

conditional time-series generation

1.1 Main contributions

Part of the work, the SigCWGAN model, presented in this thesis is a joint work

published in [19] and [20]. My contribution mainly focuses on two parts: (1) the

numerical implementation of the proposed conditional SigWGAN algorithm and

its applications on financial datasets; (2) the design of the MCGAN algorithm, its

theoretical guarantee, and all the numerical experiments. The major contribution of

our work lies in three aspects:

Firstly, we propose a novel metric, Sig-W1 metric, which is inspired by the

W1 metric and used to measure the difference between the two measures. Thanks

to the universality of signature, we are able to derive the analytic formula for Sig-

W1 metric and hence reduce the min-max formulation of GAN into a supervised

learning problem. We also propose the conditional Sig-W1 metric which takes the

past path as additional information and is constructed as the difference between the

conditional expected signatures under two different measures.

Secondly, for the conditional time-series generation task, we propose

Signature-based Conditional Wasserstein GAN (SigCWGAN) based on the con-

ditional Sig-W1 metric. It is efficient for data streams sampled at high frequency

and significantly reduces the computational cost as no min-max problem is in-

volved. We also design the AR-FNN network as a conditional generator that maps

the past path and noise vectors into the future path and capture the auto-regressive

nature of time series.

Thirdly, we introduce a general framework called Monte-Carlo GAN (MC-

GAN) that enhances the conditional generation performance from the perspective of

the generator. MCGAN incorporates mean square error (MSE) and the Monte-Carlo

method into the generative loss function, which measures the distance between the

expected discriminative scores of real and generated samples, providing stronger

1.2. Outline 22

supervision for the generator. Benefiting from the strong supervision, this novel

generative loss function shows improved training stability meanwhile retaining the

optimality of the original GANs where fake measure coincides with real measure.

This MCGAN framework is not limited to time-series generation; it offers broader

applicability to other conditional generation tasks, including image generation.

1.2 Outline

The outline of this thesis is as follows:

In Chapter 2, we first overview the key elements of rough path theory. In

particular, we introduce the definition of the signature and its important properties.

Then we introduce the conventional GAN framework and W1 metric. We explain

the motivation for improving the conventional GAN algorithm.

In Chapter 3, we start from the W1 metric on the signature space and propose

a novel metric called Sig-W1 metric, which can be used to quantify the distance

between two measures induced by time series. Then we derive its analytic form

from the universality of signature. For a conditional generative model, we also

introduce the conditional Sig-W1 metric that takes the past path as a conditional

variable.

In Chapter 4, we proposed the SigCWGAN model. It employs conditional

Sig-W1 metric as the loss function. To compute this metric, we apply the OLS

regression to estimate the real conditional expected signature. Then the conditional

generator, whose architecture is specified as an AR-FNN network, is trained to

minimize the estimated conditional Sig-W1 metric. The numerical experiments on

both synthetic and empirical datasets show that our SigCWGAN model achieves

significantly better performance in capturing the conditional distribution and has

much more stable training dynamics than other baselines.

In Chapter 5, we introduce the Monte Carlo GAN (MCGAN) to improve the

GAN performance from the perspective of the generator. The MCGAN incorporates

MSE and the Monte-Carlo method into the generative loss function, which provides

strong supervision for generator training. We proved that this strong supervision al-

1.2. Outline 23

lows the generator to learn the target measure with a relatively weak condition im-

posed on the (non-optimal) discriminator. Additionally, we showed that MCGAN

has better training stability than the original GAN given a noisy discriminator. To

demonstrate the effectiveness of MCGAN, we also conducted numerical experi-

ments on both synthetic and empirical datasets, highlighting the improved stability

and superior performance achieved by MCGAN.

In Chapter 6, we make a conclusion of our work and discuss some limitations

of SigCWGAN and MCGAN, based on which we propose avenues for potential

future research to address these concerns.

Chapter 2

Preliminary

In this chapter, we start with an introduction to the basics of rough path theory and

then summarize the framework of generative adversarial neural networks (GANs)

for synthetic data generation. The key object of rough path theory, called the sig-

nature of a path, provides a mathematically principled and universal feature of time

series (paths). Both rough path theory and GANs serve as an important foundation

for the proposed SigWGAN algorithm.

2.1 Rough path theory
The core of rough path theory is called the signature of a path [16] that is defined as

a collection of iterated integrals of the path and is considered as an efficient feature

extraction of time series. Before we go through the details of the signature, we first

introduce the p-variation that measures the roughness of a path and the space where

the signature lives. We follow all the notations from [16].

2.1.1 Path with finite p-variation

Let E be a Banach space endowed with a norm denoted by | · | and J := [s, t] be a

compact time interval. Let X : J → E denote a E-valued continuous path and the

finite time partition on J is defined as: D := (t0, t1, t2, . . . , tr) ∈ J, where s = t0 ≤
t1 ≤ . . . ≤ tr = t. We first introduce the p-variation as a measure of the roughness

of a path.

Definition 2.1.1 (p-variation). Let p ≥ 1 be a real number. Let X : J → E be a

2.1. Rough path theory 25

continuous path. The p-variation of X on the interval J is defined by

∥X∥p,J =

[
sup
D∈J

r−1

∑
j=0
|Xt j+1−Xt j |p

] 1
p

,

where the supremum is taken over any finite time partition D of J.

Remark 2.1.1. We emphasize here that the supremum is taken over all subdivisions

of J, not a limit as the mesh of the subdivision tends to zero.

The p-variation ∥X∥p,J is equal to zero if and only if X is a constant path.

Below are some examples of paths with finite p-variation.

Example 2.1.1. Any continuously differentiable path X : J → E has finite 1-

variation.

Example 2.1.2. For example, a Brownian motion has finite p-variation for p > 2

a.s., but it has infinite p-variation for p ∈ [1,2].

For each p ≥ 1, let Vp(J,E) denote the subset of C0(J,E), the space of E-

valued continuous path on time interval J, consisting of those paths which have

finite p-variation. For each X ∈ Vp(J,E), we define the p-variation norm as:

∥X∥Vp(J,E) = ∥X∥p,J + sup
t∈J
∥Xt∥.

Then (Vp(J,E),∥ · ∥Vp(J,E)) is a linear subspace of C0(J,E) endowed with p-

variation topology. And it holds that, for 1≤ p≤ q,

V1(J,E)⊂ Vp(J,E)⊂ Vq(J,E)⊂C0(J,E)

To avoid any ambiguity, we call ∥X∥p,J the p-variation of X on J and

∥X∥Vp(J,E) the p-variation norm of X on J. Let E and W be two Banach spaces

and J a compact time interval. Suppose X ∈ V1(J,E) and Y ∈ V1(J,W) satisfy the

following linear rough differential equation,

dYt = BYtdXt , Y0 ∈W, (2.1)

2.1. Rough path theory 26

where B : E → L(W) is a linear map from E to L(W) (the set of linear map from

W to itself). The existence and uniqueness of the solution to the linear rough differ-

ential equation (2.1) can be found in [16]. Now our question is: what information

about the path {Xt}t>0 should we know in order to approximate the solution Y with

a given precision?

To answer this question, let us apply the Picard iteration to solve this lin-

ear rough differential equation(2.1), which will result in a sequence of functions

(Y n
·)n≥0. For all t ∈ [0,T], we set Y 0

t = I,

Y 1
t = Y0 +

∫ t

0
BY 0

u dXu = Y0 +
∫ t

0
B(dXu).

Let us do this again and set B⊗k(x1⊗·· ·⊗ xk) = B(xk) · · ·B(x1), we get

Y 2
t = Y0 +B

∫ t

0
dXu +B⊗2

∫
0<u1<u2<t

dXu1⊗dXu2.

Keep iterating this process, we can get a sequence {Y n}n∈N, where

Y n
t = Y0 +

n

∑
k=1

B⊗k
∫

0<u1<···<uk<t
dXu1⊗·· ·⊗dXuk .

The fact (as described in Lemma 2.1.3) that

∥∥∥∥∫0<u1<···<uk<T
dXu1⊗·· ·⊗dXuk

∥∥∥∥≤ ∥X∥k
1,[0,T]

k!
,

ensures the convergence of the iterative procedure above. We hence have a rapidly

convergent expansion of the solution Y to (2.1):

Yt = Y0 +
∞

∑
k=1

B⊗k
∫

0<u1<···<uk<t
dXu1⊗·· ·⊗dXuk ,

for all t ∈ [0,T].

This helps us to answer the original question that in order to estimate the so-

lution Y , the information we need on X is the collection of its iterated integrals

2.1. Rough path theory 27

denoted as (X0
0,T ,X

1
0,T ,X

2
0,T , · · · ,Xk

0,T , · · ·), where

Xk
0,T =

∫
0<u1<···<uk<T

dXu1⊗·· ·⊗dXuk ∈ E⊗k.

Remark 2.1.2. Regarding the definition of the iterated integral for a path with finite

p-variation, these iterated integrals can be defined as Young’s integral [21] when

p < 2. Young’s integral is simply a limit of Riemann sums as for the Riemann-

Stiletjes integral. In the case of p > 2, we can define the iterated integrals of a

path with finite p-variation as a limit of iterated integrals of a path with bounded

variation in p-variation topology. We refer those interested readers to [16].

2.1.2 Tensor algebra space

As a successive tensor series, the collection of iterated integrals of a path X can

be identified with the space of homogeneous non-commuting polynomials. In this

subsection, we introduce the space of power series called tensor space and use the

convention E⊗0 = R.

Definition 2.1.2 (Tensor algebra space). The extended tensor algebra or formal se-

ries of tensors over E, denoted by T ((E)), is defined to be the space of the following

sequence,

T ((E)) = {(a0,a1, ...,an, ...)|an ∈ E⊗n}.

It is equipped with two operations, an addition + and a product ⊗, defined as

follows. Let a = (ai)
∞
i=0,b = (bi)

∞
i=0 ∈ T ((E)), then

a+b = (ai +bi)
∞
i=0

a⊗b = (
i

∑
k=0

ai⊗bi−k)
∞
i=0

The space T((E)) endowed with the two operations and the natural action of R by

λa = (λai)
∞
i=0 is a real non-commutative unital algebra, with unit 1 = (1,0,0, ...).

The element a is invertible if and only if a0 ̸= 0, whose inverse is given by

2.1. Rough path theory 28

a−1 =
1
a0

∑
n≥0

(1− a
a0

)⊗n

It is often important to look only at finitely many terms of an element of T (E),

we define the truncated tensor space T (n)(E) of order n as the quotient algebra of

T (E) as follows.

Definition 2.1.3. Let n ≥ 1 be an integer. The truncated tensor algebra of order n

of E is defined as the quotient algebra

T (n)(E) = T ((E))/Bn,

where Bn = {a = (a0,a1, . . .)|a0 = . . . = an = 0}. The canonical homomorphism

T ((E))→ T (n)(E) is denoted by πn.

The homomorphism πn consists simply in forgetting the terms of degree

greater than n.

For our analysis to work, we further introduce the admissible norm of tensor

powers defined as follows.

Definition 2.1.4. We say that the tensor powers of E are endowed with an admissi-

ble norm |.|, if the following conditions hold:

1. For each n≥ 1, the symmetric group Sn acts by isometry on E⊗n, i.e.

|σv|= |v| ∀v ∈ E⊗n, ∀σ ∈ Sn;

2. The tensor product has norm 1, i.e. ∀n,m≥ 1,

|v⊗w| ≤ |v||w| ∀v ∈ E⊗n, ∀w ∈ E⊗m.

We then introduce the lp norm of T ((E)) for some p ≥ 1. Let (ei)
d
i=1 be a

canonical basis of E = Rd . Then we have a canonical basis of T ((E)) by (eI :=

2.1. Rough path theory 29

ei1⊗·· ·ein)n∈R. Therefore any element a in T ((E)) can be written as

a = ∑
n∈N

∑
I=(i1,··· ,in)∈{1,··· ,d}n

aIeI. (2.2)

The lp norm of a ∈ T ((E)) is denoted by ||a||p and defined as

||a||p =
(

∑
n∈N

∑
I=(i1,··· ,in)∈{1,··· ,d}n

|aI|p
)1/p

. (2.3)

Similarly, we define the lp norm of the algebraic dual space T ((E))∗. Define

the canonical basis of the dual space T ((E))∗, i.e.

(e∗I)I=(i1,··· ,in)∈{1,··· ,d}n, n∈N

by ⟨e∗I1
,eI2⟩ = 1I1=I2 . Then the lq norm of L ∈ T ((E))∗ is denoted by ||L||q and

defined as

||L||q =
(

∑
n∈N

∑
I=(i1,··· ,in)∈{1,··· ,d}n

|LI|q
)1/q

. (2.4)

2.1.3 Signature of a path

After introducing the tensor algebra space, we can notice that the collection of iter-

ated integral of path X on the time interval J: (X0
J ,X

1
J ,X

2
J , . . . ,X

k
J , . . .) takes its value

in T ((E)). We name the collection of the iterated integral as the signature of path

X .

Definition 2.1.5 (The signature of a path). Let X : J → E be a continuous path

of finite p-variation such that the following integration makes sense. The signa-

ture of X denoted by S(X)J is defined as an infinite series of Xk
J , i.e. S(X)J =

(1,X1
J , . . . ,X

k
J , . . .), where

Xk
J =

∫
· · ·
∫

u1<···<uk;u1,...,uk∈J

dXu1⊗·· ·⊗dXuk , ∀k ≥ 1.

Let Sk(X)J := πk(S(X)J) denote the truncated signature of X of degree k, i.e.

2.1. Rough path theory 30

Sk(X)J = (1,X1
J , . . . ,X

k
J).

Remark 2.1.3. [16] The signature of a path is defined as an element of a group,

which is a subset of T ((E)), defined as

T̃ ((E)) = {a ∈ T ((E))|a0 = 1}.

Remark 2.1.4. The lower levels of signature have their geometric interpretation.

For instance, the first level signature X1
J is simply the increment of the path X , i.e.

Xt −Xs, while the second level signature represents the signed area, also named as

Lévy area, enclosed by the curve X and the cord connecting the ending and starting

point of the path X .

The concept of a rough path is a generalization of the signature of a path and

it is defined in a way to capture the analytic and algebraic properties of the signa-

ture of the path. A p-rough path is a multiplicative functional of degree ⌊p⌋ with

finite p-variation [16]. A geometric p-rough path is a p-rough path that can be rep-

resented as the limit of 1-rough path in p-variation distance, which we denote as

GΩp(E). The definition of p-rough path and geometric p-rough path can be found

in Appendix A.1. In this thesis, we only focus on those paths in V1(J,E) so that

their signature is well defined.

2.1.4 Important properties of signature

In this subsection, we summarize the main properties of signatures, which are im-

portant for statistical inference. The first property, named multiplicative property,

asserts that the signature is a homomorphism. First, we define the concatenation of

two paths.

Definition 2.1.6. Let X : [0,s]→ E and Y : [s, t]→ E be two continuous paths. Their

concatenation is the path X ∗Y defined by

(X ∗Y)u =

Xu, u ∈ [0,s];

Xs +Yu−Ys, u ∈ [s, t],

2.1. Rough path theory 31

where 0≤ s≤ t.

For the concatenation of two paths, we have the following multiplicative prop-

erty for their signature.

Theorem 2.1.1 (Chen’s identity). Fix p ∈ [1,2) and 0≤ s≤ t. Let X ∈ Vp([0,s],E)

and Y ∈ Vp([s, t],E), then it holds that

S(X ∗Y) = S(X)⊗S(Y)

Remark 2.1.5. Chen’s identity claims that the signature of the concatenation of two

paths is just the tensor product of their signature, which makes the signature a group

homomorphism.

The second property of the signature is the shuffle product property. Suppose

(e1, · · · ,ed) is a basis for the finite dimensional space E, and (e∗1, · · · ,e∗d) is a basis

for the dual space E∗. Then, the elements (eI = ei1 ⊗ ·· · ⊗ ein)I=(i1,··· ,in)∈{1,··· ,d}n

form a basis of E⊗n, and the elements (e∗I = e∗i1⊗·· ·⊗e∗i1)I=(i1,··· ,in)∈{1,··· ,d}n can be

identified with the dual basis of E⊗n, then we may form a real number as

φI(X) = e∗I (S(X)) =
∫
· · ·
∫

0<u1<···<un<T
e∗i1(dXu1) · · ·e∗in(dXun).

Definition 2.1.7. We define the set Sm,n of (m,n) shuffles to be the subset of per-

mutations in the symmetric group Sm+n defined by

Sm,n = {σ ∈ Sm+n : σ(1)< · · ·< σ(m),σ(m+1)< · · ·< σ(m+n)}.

The shuffle product property states that the point-wise product of two linear

forms e∗I and e∗J is again a linear form which we denote as e∗I � e∗J .

Theorem 2.1.2 (Shuffle product property). Let I = (i1, . . . , im) and J = (j1, . . . , jn)

be two arbitrary indices. For every path X ∈ Vp(J,E), it holds that

φI(X)φJ(X) = (φI�φJ)(X) = ∑
σ∈Sm,n

e∗k
σ−1(1)

· · ·e∗k
σ−1(m+n)

(S(X)).

2.1. Rough path theory 32

The third property of the signature is invariance under time reparameterization

(Lemma 1.6, [16]), which means reparameterizing a path inside the time interval

does not change its signature.

Lemma 2.1.1 (Invariance under time reparameterization). Let X ∈ Vp([0,T],E)

and λ : [0,T]→ [T1,T2] be a non-decreasing surjection and define Xλ
t := Xλt for the

reparamterization of X under λ . Then for every s, t ∈ [0,T],

S(X)λs,λt = S(Xλ)s,t .

The invariance under time reparameterization indicates that the signature fea-

ture can reduce dimension massively by removing the redundancy caused by the

speed of traversing the path. It is very useful for applications where the output is

invariant w.r.t. the speed of an input path, e.g. online handwritten character recog-

nition and video classification.

Another important property of the signature is uniqueness. It was first proved

for any continuous path of finite 1- variation [22], which has been extended to the

case of a geometric p-rough path for some p≥ 1 [23]. For simplicity, we only state

the results for V1(J,E).

Theorem 2.1.3. Let X ∈ V1(J,E). Then S(X) determines X up to the tree-like

equivalence.

A tree-like path can be regarded as a null path that can be canceled by itself,

and we say path X and Y are tree-like equivalent if the concatenation of X and
←−
Y

(the inverse path of Y) is a tree-like path. One can prove that S(X ∗←−Y)= 1 if X and Y

are tree-like equivalent. The precise definition of tree-like equivalence can be found

in [16]. The following lemma provides a sufficient condition for the uniqueness of

the signature.

Lemma 2.1.2. Let X ∈ V1(J,E) with a fixed starting point and at least one coordi-

nate of X is a monotone function. Then S(X) determines X uniquely.

For a general class of multi-dimensional stochastic processes like Brownian

2.1. Rough path theory 33

motion, we refer the readers to [24] and [25] for a sufficient condition of the unique-

ness of the signature. The uniqueness of the signature is important, as it ensures

itself to be a discriminative feature set of unparameterized streamed data.

Let S(Vp(J,E)) denote the range of signature of all path in Vp(J,E). Note that

the signature map, defined on V1(J,E), is continuous with respect to the 1-variation

topology. Given a function f on the signature space, one naturally might wonder

how to approximate f (a) for a ∈ S(Vp(J,E)). The signature of X provides insight

into this problem. It is proved in [26] that any continuous function f on the compact

subset of S(Vp(J,E)) can be approximated arbitrarily well by a linear functional.

Theorem 2.1.4 (Universality theorem). Suppose f : S1→ R is a continuous func-

tion where S1 is a compact subset of S(Vp(J,E)). Then for every ε > 0, there exists

a linear functional L ∈ T ((E))∗ such that for every a ∈ S1,

| f (a)−L(a)| ≤ ε.

Proof. Let L(S1) denote a family of all linear functions in T ((E))∗ restricted to S1.

By the shuffle product property of signatures (Theorem 2.1.2), L(S1) is an alge-

bra. Since the 0th term of the signature is always 1, this algebra contains constant

functions. Moreover, it separates the points. (Details can be found in the proof of

Corollary 2.16 in [16].) By Stone-Weierstrass theorem, L(S1) is dense in the space

of continuous functions on S1.

Theorem 2.1.4 applies to any subspace topology on S(Vp(J,E)), which is in-

herited from the Hausdorff topology on T ((E)), that is finer than the weak topology.

The universality of signature is important as it provides a way to estimate any con-

tinuous function on the path by using linear regression on the signature feature set.

Lastly, we state the decay rate of the signature for the path of finite 1-variation.

However, there is also a similar statement of the factorial decay for the case of paths

of finite p-variation [16].

Lemma 2.1.3 (Factorial decay of the signature [16]). Let X ∈ V1(J,E). Then for

2.1. Rough path theory 34

all m≥ 0, it holds that

|πm(S(X))| ≤
∥X∥m

p,J

m!
.

2.1.5 Expected signature of stochastic processes

In this subsection, we introduce the expected signature. Given a filtered probabil-

ity space (Ω,F,(Ft)t∈[0,T],P), where (Ft)t∈[0,T] is a filtration, let X be a E-valued

stochastic process, naturally one will be interested in the expectation of the signa-

ture of path X(ω) for ω ∈Ω, which we denote as E(S(X(ω))).

Definition 2.1.8. Given a filtered probability space (Ω,F,(Ft)t∈[0,T],P), X is a E-

valued stochastic process. Suppose that for every ω ∈ Ω, the signature of X(ω)

denoted by S(X(ω)) (or X(ω)) is well defined and under the probability measure P,

its expectation denoted by E[S(X(ω))] is finite. We call E[S(X(ω))] the expected

signature of X .

As the signature of a path can be thought of as non-commutative monomials on

the path space, the expected signature of a random path plays a similar role as that

the moment-generating function of a random variable does. The following theorem

gives a sufficient condition that the expected signature determines the law on the

signatures. Here GΩp(E) is the geometric p-rough path. The detailed definition of

p-geometric rough path can be found in Appendix A.1.

Theorem 2.1.5 (Proposition 6.1, [27]). Let X and X̂ be two random variables taking

values in GΩp(E) for some p ≥ 1 such that E[X] = E[X̂] and E[X] has an infinite

convergence radius. Then X D
= X̂.

Let Ω0(J,E) denote the space of continuous d dimensional paths of finite vari-

ation starting from the origin, whose 0th coordinate being time dimension. We

endow Ω0(J,E) with the 1-variation metric. When restricting the path space to

Ω0(J,E), the signature S is a bijective and continuous map, the measure µ on the

path space induces the measure on the signature space µ̃ by the push-forward of µ ,

i.e., µ̃(B) = (S#µ)(B) = µ(S−1(B)) for B is the σ -algebra of S(Ω0(J,E)).

2.1. Rough path theory 35

Lemma 2.1.4. Let µ,ν be two measures defined on the path space Ω0(J,E). The

corresponding induced measures of the signature are denoted by µ̃ and ν̃ respec-

tively.

µ̃ = ν̃ ⇐⇒ µ = ν .

Proof. This is an immediate result of the bijective property of the signature map

S : Ω0(J,E)→ S(Ω0(J,E)).

Combined with the uniqueness of the signature, the Theorem 2.1.5 claims that

the expected signature E(S(X(ω))) can characterize the law of a stochastic process

X , which makes the expected signature a very efficient feature set for time-series.

2.1.6 Path augmentation

In practice, the signature method is usually combined with path augmentations [28].

Different path augmentations can encode extra information into the signature of the

augmented path which makes the signature a useful candidate for the feature set of

a path. There are three main uses of path augmentation: (1) to remove the signature

invariance to translation and/or reparameterization; (2) to reduce the dimension of

the paths so that higher orders of the signature are reachable; (3) to extract useful

information from the sequence.

In our work, we use the following augmentation methods:

• Time augmentation [26]: Let x = (x1,x2, . . . ,xn) ∈ Rd×n be an observed

sequence, time jointed transformation is defined as:

Φ(x) =
(
(t1,x1),(t2,x2), ...,(tn,xn)

)
∈ Rd×n,

where t1 < t2 < .. . < tn are increasing time index. It is obvious from the

definition that it includes timestamps as an additional coordinate. The extra

timestamp can bring us two key properties: (1) it ensures the uniqueness of

the signature, as shown in [22]; (2) it provides information about the param-

eterization of the time series and hence removes the invariance to reparame-

terization.

2.1. Rough path theory 36

• Cumulative sum augmentation [29] : This augmentation is defined to map

the observed sequence x into its cumulative sum:

Φ(x) =
(
S0,S1,S2, ...,Sn

)
∈ Rd×(n+1),

where St := ∑
t
i=1 xi,∀t ∈ {1, · · · ,n} and S0 = 0 ∈ Rd . Notice that we added

0 as the base point of St , which can introduce the sensitivity of the signature

to the translation of the sequence.

• Lead-lag augmentation [29, 30, 31]: Lead-lag augmentation can be em-

ployed to capture the quadratic variation by transforming the sequence to

Φ(x) =
(
(x1,x1),(x2,x1),(x2,x2),(x3,x2),(x3,x3), ...,(xn,xn)

)
∈ Rd×2×n.

It is easy to verify that the Lévy area of the augmented path Φ(x) is the

quadratic variation of the path, i.e.

ALead-lag =
1
2

n−1

∑
i=1

(xi+1− xi)
2,

This information is encoded in the truncated signature of the augmented path

at level 2 as the second term of the log-signature of the augmented path is

simply the Lévy area and the signature and log-signature have one-to-one

correspondence.

Combining cumulative sum and Lead-lag augmentation, the truncated signa-

ture of the augmented path at level 2, will give us information on the mean

and variance of the sequence. To be specific, a bit of algebra can bring us:

Ê(X) =
1
n

S(1),

Ê(X2) =
1
n

S(1,2)− 1
n

S(2,1).

Similarly, it is straightforward to demonstrate that higher-order statistical mo-

ments can be encoded into higher-order truncated signatures of the embedded

2.1. Rough path theory 37

path.

• Lag-added augmentation: The m-lag added transformation of sequence x is

defined as follows:

Φ(x) = (y1,y2, . . . ,yn−m) ∈ Rd×(m+1)×(n−m),

where yt = (xt , · · · ,xt+m), ∀t ∈ {1, . . . ,n−m}. Similarly, by combining lag-

added augmentation with cumulative sum and lead-lag augmentation, the sig-

nature of the augmented path can obtain information on the temporal depen-

dency of the sequence.

We refer readers to [28, 29, 32] for a more precise definition of the above path

augmentations. To use the signature of a path as the feature set to differentiate two

measures on the path space, the only requirement for the way of embedding a dis-

crete time series to a continuous path is that this embedding needs to ensure the

bijection between the time series and its signature. For example, both time aug-

mentation and lead-lag transformation can ensure the one-to-one correspondence

between the time series and the signature. In numerical experiments, we choose

the above augmentations such that the signature of the augmented path has unique-

ness and universality, and it encodes useful information like statistical moments

and temporal dependency. In our analysis in the following chapters, we only use

the time-augmented path to embed the discrete time series X to a continuous path

for ease of discussion. Also, we denote the space of augmented paths of finite

p-variation by Ω
p
0(J,E) for ease of notation.

2.2. Generative adversarial network (GAN) 38

2.2 Generative adversarial network (GAN)

Generative adversarial network (GAN), designed by Ian Goodfellow et al. [3] in

2014, is a deep-learning-based generative model that learns the distribution of the

target random variable. GAN is originally applied to generate high-quality images,

but has been widely used for time-series data generation these years, eg. stock data

[5][33] and medical data [34]. A brief introduction to the basics of neural networks

can be found in Appendix B.

2.2.1 Classical generative adversarial network

In this subsection, we will introduce the classical generative adversarial network

(GAN).

Let (Ω,F,P) be a probability space, in the context of GAN, Z denotes the

latent space, and Z ∈ Z denotes latent noise with the known distribution µZ ∈ P(Z).
X denotes the target space and µ ∈ P(X) denotes a target distribution of observed

data. The goal of GAN is to learn the target distribution µ .

To achieve this, GAN plays a min-max game between two networks: Genera-

tor and Discriminator. Generator Gθ : Z→ X is a parameterized map transporting

the latent distribution µZ to the model distribution defined as the push-forward mea-

sure νθ := Gθ
µZ(X) = µZ((Gθ)

−1
(X)) induced by Gθ . Here θ ∈Θ is the parame-

ter set of the generator; Discriminator Dφ : X→ R is usually a parameterized map

from the target space to the real space. As designed to discriminate between real

data and synthetic data, Dφ (X) can be used to approximate the probability that X

comes from the target distribution µ rather than model distribution νθ , and we refer

the output of discriminator Dφ (X) as the discriminator score of X . Both generator

and discriminator can be constructed by the neural networks like FNN or RNN in-

troduced in Appendix B. Additionally, we assume the generator to be differentiable

with respect to θ and the discriminator to be differentiable with respect to φ and x.

Both generator and discriminator are optimized to solve the following min-max

2.2. Generative adversarial network (GAN) 39

z xfake

Gθ(z)

Generator

µZ(z)

Latent noise

xreal

µ(x)

x Real/Fake
Dϕ(x)

Discriminator

Figure 2.1: A simple representation of a generative adversarial network (GAN) architecture

game as in the original GAN algorithm [35]:

min
θ

max
φ

V (Gθ ,Dφ) = Eµ

[
log(Dφ (X))

]
+Eνθ

[
log(1−Dφ (X))

]
, (2.5)

where Dφ : X→ (0,1).

In this min-max game, the discriminator is trained to maximize the binary

cross-entropy (BCE) loss that measures the distance between the real measure µ

and fake measure νθ , and the generator is trained to minimize the BCE such that

the generated samples can fool out the discriminator. If we assume both µ and νθ

are continuous with densities pµ and pνθ
, then by solving the maximization problem

for φ , we can actually derive the optimal discriminator as

Dφ∗(x) =
pµ(x)

pµ(x)+ pνθ
(x)

. (2.6)

for x ∈ X. Given this optimal discriminator, the training objective (2.5) can be

interpreted as minimizing Jensen-Shannon divergence between µ and νθ , shifted

by a constant term log(4):

V (Gθ ,Dφ∗) = JSD(µ∥νθ)− log(4) = KL(µ∥ν̄)+KL(νθ∥ν̄)− log(4), (2.7)

where ν̄ = µ+ν

2 and KL(·|·) denotes the Kullback-Leibler divergence. Both JS and

KL divergence are methods of measuring the similarity between two probability

distributions. They are non-negative and equal to 0 if and only if two distributions

coincide.

Nevertheless, it is also well-known that GAN objective (2.5) suffers from the

2.2. Generative adversarial network (GAN) 40

saturating (or gradient vanishing) problem, meaning when the discriminator is suf-

ficiently accurate, it can cause the gradient of the generator to vanish (close to 0),

which makes the updates to the generator consistently worse. This saturation prob-

lem can be solved via a new objective function for the generator. Notice that the

second term in (2.5) is independent of µ , and minimizing the second term in (2.5)

is the same as maximizing the logits of the generated sample, hence an equivalent

objective can be derived as

max
φ

Eµ

[
log(Dφ (X))

]
+Eνθ

[
log(1−Dφ (X))

]
,

min
θ

Eνθ

[
− log(Dφ (X))

]
.

(2.8)

This new objective function is proven in [36] to overcome the saturation problem,

and hence named as Non-saturating loss.

For the convenience of discussion, we follow the notation in [37] to rewrite

the GAN objective (2.8) in a more generic form. The training objective involves

optimizing discriminative loss LD and generative loss LG can be rewritten as:

max
φ

LD(φ ;θ) = Eµ

[
f1(Dφ (X))

]
+Eνθ

[
f2(Dφ (X))

]
,

min
θ

LG(θ ;φ) = Eνθ

[
h(Dφ (X))

]
,

(2.9)

where f1, f2, and h are real-valued functions that can be chosen depending on the

adversarial loss (or metric) we use. To retrieve the objective in (2.8), we can set

f1(x) =−h(x) = log(x) and f2(x) = log(1− x).

Remark 2.2.1. In practical implementation, instead of training both discriminator

and generator at the same time, we alternatively train discriminator and generator

by computing their gradients and updating their respective parameters. To get a

close approximation of the optimal discriminator, it is common to compute the dis-

criminator’s gradient multiple times and ascent the parameter φ . This training rule

applies to most of GAN variants and those presented in our paper.

Due to the instability and unsatisfactory performance of (2.5), numerous stud-

2.2. Generative adversarial network (GAN) 41

ies have been conducted to explore different approaches to quantify the divergence

or distance between µ and νθ , which has been a source of improved loss func-

tions that stabilize the training and make high-fidelity fake samples [38, 39, 40, 41].

For example, A widely used adversarial loss is called hinge loss [42], where

f1(w) = f2(−w) = −max(0,1−w), and h(w) = −w. It has a geometric inter-

pretation that generator parameters update along the normal vector direction of the

separating hyperplane learned by the discriminator. A recent study has shown that

combined with spectral normalization of weights in discriminator [14], hinge loss

greatly improves generation performance and has become a mainstay in recent state-

of-the-art GANs like SN-GAN and BigGAN [43]. Apart from that, WGAN [44] is

also an innovative improvement to traditional GANs which we will introduce in

detail in the following subsection.

2.2.2 Wasserstein generative adversarial network (WGAN)

The discontinuity of the Jensen-Shannon divergence is usually regarded as the

source of instability in GAN training. To tackle this problem and inspired by

the Wasserstein-1 (Earth-Mover) distance, Martin Arjovsky et al. [44] designed

Wasserstein Generative Adversarial Network (WGAN) to improve the stability of

GAN. WGAN provides a loss function named Wasserstein-1 (W1) metric which

measures the distance between the target distribution µ and model distribution νθ .

To define the W1 metric, we first introduce the Lipschitz norm of a functional

f : Ω→ R, where Ω is a generic metric space. The Lipschitz norm of f denoted by

|| f ||Lip,Ω is defined as

|| f ||Lip,Ω := sup
x ̸=y,x,y∈Ω

| f (x)− f (y)|
d(x,y)

, (2.10)

where d(·, ·) is a metric defined on Ω.

The Kantorovich-Rubinstein dual representation of W1 metric defines a dis-

tance between two measures µ and ν , denoted by W1(µ,ν) as follows:

W1(µ,ν) = sup
∥ f∥Lip≤1

(
Eµ [f (X)]−Eν [f (X)]

)
, (2.11)

2.2. Generative adversarial network (GAN) 42

where the supremum is taken over all the 1-Lipschitz functions f : Ω→ R with its

Lipschitz norm smaller than 1.

WGAN aims to train a model that induces distribution νθ such that W1(µ,νθ)

is small enough. Similar to GAN, the WGAN is also composed of two neural net-

works. The first one is generator Gθ : Z→X, a parameterized map transporting the

latent distribution µZ to the model distribution νθ where θ ∈ Θ is a parameter set.

The second one is the test function f in the definition of W1 metric (2.11) replaced

by a neural network Dφ with the parameter set φ ∈Φ. Training the generator entails

solving the min-max problem. Indeed, to find optimal (θ ⋆,φ⋆) one needs to solve

min
θ

max
|Dφ |Lip≤1

(
Eµ [Dφ (X)]−Eνθ

[Dφ (X)]
)
. (2.12)

To enforce the Lipschitz constraint on function Dφ , Arjovsky et al. [44] propose to

clip the weights of Dφ to lie within a compact space [−1,1]. The set of functions

satisfying this constraint is a subset of the 1-Lipschitz functions which depends on

the architecture of Dφ . However, as pointed out in [45], weight clipping in WGAN

might give rise to optimization difficulties. Furthermore, even if optimization suc-

ceeds, the critic obtained can have a pathological value surface. Gulrajani et al.

[45] also proved that optimal test function Dφ has unit gradient norm everywhere

under µ and νθ , and therefore propose an alternative to penalize the gradient norm

of the test function with respect to the input. This algorithm is often referred to

as WGAN-GP due to the existence of the gradient penalty term, and its training

objective can be given as:

max
φ

LD(φ ;θ) = Eµ [Dφ (X)]−Eνθ
[Dφ (X)]−λEµ̂ [(∥∇xDφ (X)∥2−1)2],

min
θ

LG(θ ;φ) = Eνθ
[−Dφ (X)].

(2.13)

Here the measure µ̂ is defined as sampling along straight lines between pairs of

points sampled from µ and ν . WGAN-GP is empirically shown to outperform

WGAN and enable stable training of a wide range of neural network architectures.

2.2. Generative adversarial network (GAN) 43

2.2.3 Conditional generative adversarial network

Although the GAN model is capable of generating realistic samples, it has no con-

trol over the type of samples generated. Conditional Generative Adversarial Net-

work [46] is a conditional version of the generative adversarial network which has

recently become one of the most popular models in generative model research. Con-

ditional GAN is of so much interest as it allows us to condition both the discrimina-

tor and generator with additional information like class labels and past paths such

that we have better control of the generated samples. The goal of conditional GAN

is to learn the conditional distribution of the target variable X ∈ X given any condi-

tioning variable Y ∈ Y. To this goal, both discriminator and generator can be natu-

rally extended to incorporate the conditional information Y , i.e. D : Φ×X×Y→R.

and G : Θ×Z×Y→ X respectively, and both are trained to optimize the following

objective function:

max
φ

LD(φ ;θ) := Eµ

[
f1(Dφ (X ,Y))

]
+Eνθ

[
f2(Dφ (X ,Y))

]
,

min
θ

LG(θ ;φ) := Eνθ

[
h(Dφ (X ,Y))

]
,

where f1, f2 and h are real-valued functions corresponding to different adversarial

losses.

In recent conditional image generation research, cGAN can be roughly di-

vided into two groups depending on the way it incorporates the class infor-

mation: Classification-based and Projection-based cGAN. Classification-based

cGAN [47, 48] facilitate an auxiliary classifier to feed in the class information.

Apart from the original min-max objective, both the discriminator and generator

are also trained to maximize the log-likelihood of the correct class. Although

classification-based cGAN has shown satisfactory results, it suffers an early mode

collapse problem and the training can become very unstable as the number of

classes in the dataset increases. In this circumstance, Miyato et al. [49] proposed

Projection-based cGAN that incorporates the class information by projecting the

class label into the feature set. It is based on the observation that the optimal solu-

2.2. Generative adversarial network (GAN) 44

tion for the adversarial loss in the original GAN can be rewritten as the sum of two

log-likelihood ratios. These two log-likelihood ratios are then modeled as two para-

metric functions, one of which is fed class information using an embedding matrix.

For more information on conditional image generation task, we refer the interested

readers to [47, 49, 46, 50, 43, 48].

In the field of conditional time-series generation research, most of the work

feeds the conditional information into the discriminator by simply concatenating

the conditional information along with the target variable. Hyland et al. [34] pro-

pose RCGAN that makes use of RNN to produce realistic medical time series. In

RCGAN, the conditional information, class label in this case, is fed into RNN by

concatenation at each time step. Lu et al. [51] use a gated recurrent unit (GRU) in

the generator with a smooth conditional matrix to generate high-quality EHR data

and uncommon disease. Ramponi et al. [52] propose TCGAN where both generator

and discriminator are conditioned on the sampling timestamps of time series, which

can be used as a data augmentation method for time series with irregular sampling.

Despite these advancements, little work has ever been done to condition the

model on past time series and generate realistic future time series. This is our main

focus that we will investigate in the subsequent chapters and serves as part of the

innovation of this thesis.

2.2.4 Problem of GAN training

In practice, the min-max problem is solved by iterating gradient descent-ascent al-

gorithms and its convergence can be studied using tools from game theory [11, 53].

Nonetheless, a considerable gap exists between theoretical results and actual per-

formance for the training of GAN. It is well known that first-order methods that are

typically used in practice to solve the min-max problem might not converge, even

if the convex-concave case [54, 55, 56], which usually results in mode collapse, un-

damped oscillations in training dynamics. Consequently, the adversarial training is

notoriously difficult to tune [10, 11], and generalization error is very sensitive to the

choice of discriminator and hyper-parameters as it was demonstrated in large scale

study in [12].

2.2. Generative adversarial network (GAN) 45

To combat this instability, much effort has been put into developing regular-

ization methods: [57, 13] suggest penalizing the gradient norm of the discriminator

so that the sensitivity of the discriminator to input is close to 0 as it should be at the

Nash equilibrium; Miyao et al. [14] propose spectral normalization that constrains

the spectral norm of each layer in the discriminator network to control its Lips-

chitz constant; Mescheder et al. [13] also suggest that adding Gaussian instance

noise [58] to the input can make the training process converge and improve the sta-

bility; Zhou et al. [50] shows that weight decay [59] that penalizes the norm of

weights of a neural network can improve the generalization of neural networks and

hence prevent overfitting problems. However, weight decay can also deteriorate the

model performance to some extent. And those regularization methods like gradient

penalty are also hard to tune and meanwhile increase computational cost. The main

purpose of this thesis is to stabilize the GAN training and improve the generation

performance.

Chapter 3

Signature-based W1 metric

As commented in Section 2.2.4, the min-max objective function of generative ad-

versarial networks makes them notoriously difficult to tune. Furthermore, long time

series hugely increase the dimension of target space, which makes GAN more dif-

ficult to train and struggle to capture the temporal dependence of joint probability

distributions induced by time-series data. To overcome these challenges, we de-

velop a signature-based W1 metric that originates from the signature to characterize

the measure induced by time series and allows turning computationally challeng-

ing GAN min-max problem into supervised learning while generating high-fidelity

samples.

3.1 Sig-W1 metric
As introduced in Section 2.1.3, the uniqueness and universality of the (expected)

signature make it an efficient feature set to characterize the law of stochastic pro-

cess. In this section, we combine the signature feature with the W1 metric and

propose a new Signature-based Wasserstein-1 (Sig-W1) metric on the measures on

the path space X= Ω1
0([0,T],Rd) to achieve better computation efficiency.

Let µ and ν be two compactly supported measures on the path space Ω0(J,E)

endowed with 1-variation topology such that the corresponding induced mea-

sures on the signature space µ̃ and ν̃ respectively have a compact support K ⊂
S(Ω0(J,E)) ⊂ T ((E)). Naturally one may consider applying the W1 metric on the

signature space to define a distance between the induced measures µ̃ and ν̃ , which

3.1. Sig-W1 metric 47

we denote by W Sig
1 (µ,ν) and define as

W Sig
1 (µ,ν) := W1(µ̃, ν̃) = sup

|| f ||Lip,K≤1
ES∼µ̃ [f (S)]−ES∼ν̃ [f (S)] (3.1)

= sup
|| f ||Lip,K≤1

EX∼µ [f (S(X))]−EX∼ν [f (S(X))]. (3.2)

The W1 metric on the signature features space denoted by W Sig
1 has the advantage

over W1 metric on the path space that it significantly reduces the time dimension of

the problem, especially for high-frequency data. However, the practical challenges

of solving the min-max problem remain.

The universality of the signature Theorem 2.1.4 provides us with a way to

reduce the min-max problem into analytic form. The supremum in (3.2) implies

that there exists a sequence of fn : K→ R with bounded Lipschitz norm to attain

the supremum W Sig
1 (µ,ν), i.e., ∀ε > 0, there exist a sequence of function { fn}∞

n=1

and a integer N such that when n > N,

|
∫
K

fn(S)µ(dS)− fn(S)ν(dS)−W Sig
1 (µ,ν)| ≤ ε.

For each fn, the universality of the signature implies that ∀ε > 0, there also

exists a linear functional Ln : K→ R to approximate fn uniformly, i.e.

|
∫
K

fn(S)µ(dS)− fn(S)ν(dS)−
(∫

K
Ln(S)µ(dS)−Ln(S)ν(dS))

)
| ≤ 2ε.

As Ln : K→ R is linear, there is a natural extension of Ln mapping from T ((E)) to

R. This implies that the supremum over the linear functional with Lipschitz norm

less than one is a good approximation to W Sig
1 .

Motivated by the above observation, we can restrict the admissible set of f in

(3.2) to be linear functionals L : K→ R to approximate W Sig
1 . Hence we propose

the Sig-W1 metric as below.

Definition 3.1.1 (Sig-W1 metric). For two measures µ,ν on the path space

Ω0(J,Rd) such that their induced measures µ̃ and ν̃ respectively has a compact

3.1. Sig-W1 metric 48

support K⊂ S(Ω0(J,Rd)), the Sig-W1 metric between µ and ν is defined as

Sig-W1(µ,ν) = sup
||L||Lip≤1,L is a linear functional

(
ES∼µ̃ [L(S)]−ES∼ν̃ [L(S)]

)
.

Remark 3.1.1. Despite the motivation of Sig-W1 from the approximation of W Sig
1 ,

it is hard to establish the theoretical results on the link between these two metrics.

The main difficulty comes from that the uniform approximation of the continuous

function f by a linear map L on K does not guarantee the closeness of their Lips-

chitz norms. We conjecture that in general W Sig
1 (µ,ν) is not equal to Sig-W1(µ,ν).

However, it would be interesting but technically challenging to find out the suffi-

cient conditions such that these two metrics coincide.

Dealing with the Lipschitz norm is usually intractable. However, thanks to the

linear functional L, we can simplify the Lipschitz norm of L as follows:

||L||Lip := sup
x ̸=y,x,y∈T ((E))

|L(x− y)|
D(x,y)

= sup
x ̸=y,x,y∈T ((E))

|L(x− y)|
||x− y||p

= sup
||a||p=1

|La|,

where we specify D(·, ·) as the lp distance, i.e. D(x,y) = ||x− y||p for p ≥ 1. In

order to eliminate the supremum and derive the analytic formula for the Sig-W1

metric, we introduce the following lemma.

Lemma 3.1.1. For any p,q > 1 such that 1
p +

1
q = 1, and any linear functional

L ∈ T ((E))∗, it holds that

sup
||a||p=1

|La|= ||L||q, (3.3)

Similarly, for any a ∈ T ((E)), it holds that

sup
||L||q≤1

|La|= sup
||L||q=1

|La|= ||a||p. (3.4)

The lp norm of T ((E)) and lq norm of T ((E))∗ are defined in the usual sense,

which can found in Section 2.1.2.

3.1. Sig-W1 metric 49

Proof. Let (eI = ei1⊗·· ·ein)I be the canonical basis of T ((E)). For any a∈ T ((E)),

we write a = (aI), i.e. a = ∑I aIeI . Then
(

e∗I = e∗i1⊗·· ·e
∗
in

)
I=(i1,··· ,in)

is the basis of

T ((E))∗ and we can write L = ∑I lIe∗I .

To prove Eq. (3.3), we apply the Lagrange multiplier method to solve the con-

straint optimization of maximizing La with the constraint ||a||p = 1. More specifi-

cally, we solve the following unconstrained optimization

sup
a,λ

L(a,λ) := sup
a,λ
|La|+λ

(
∑
I
|aI|p−1

)
,

where L ̸= 0.By the first order condition, the optimal (a∗,λ ∗) satisfy the below

equations:

∂L

∂aI
= (sign(aIlI)lI +(λ (p|aI|p−1sign(aI)))) = 0,∀I

∂L

∂λ
= ∑

I
|aI|p = 1.

Then we obtain that a∗=(a∗I)I with a∗I = sign(lI)
|lI |

1
p−1

(∑I |lI |p/(p−1))1/p = sign(lI)
|lI |

1
p−1

(∑I |lI |q)1/p .

Then it follows that

lIa∗I = |lI| ·
|lI|

1
p−1

(∑I |lI|q)1/p
=

|lI|q
(∑I |lI|q)1/p

≥ 0;

Hence,

|La∗|= La∗ = ∑
I

lIa∗I =
∑I |lI|q

(∑I |lI|q)1/p
= (∑

I
|lI|q)1−1/p = (∑

I
|lI|q)1/q = ||L||q.

By Hôlder’s inequality,

sup
||a||p=1

La≤ sup
||a||p=1

||a||p||L||q = ||L||q,

and the supremum ||L||q is obtained when a = a∗. We complete the proof of Eq.

(3.3).

3.1. Sig-W1 metric 50

The proof of Eq. (3.4) is similar to the above. We only need to show the

supremum taken over ||L||= 1 is the same as that ||L|| ≤ 1. Similarly to the above,

when L∗ := (l∗I) with

l∗I = sign(aI)
|al|

1
p−1

(∑I |aI|q)1/p
, (3.5)

L∗(a) attains the supremum sup||L||q=1 L(a) = ||a||p and ||L∗||q = 1. By Hôlder’s

inequality,

sup
||L||q≤1

La≤ sup
||L||q≤1

||a||p||L||q ≤ ||a||p. (3.6)

As sup||L||q≤1 La can not exceed ||a||p and L∗(a) = ||a||p, it follows

sup
||L||q≤1

L(a) = ||a||p.

By exploiting the linearity of the functional L : T ((E))→ R, we can compute

the Lipschitz norm of L analytically for D is the lp norm of T ((E)) without the need

of numerical optimization. By Lemma 3.1.1, the Lipschitz norm of L is lp norm of

L that can be given as

||L||Lip := sup
x ̸=y,x,y∈T ((E))

|L(x− y)|
||x− y||p

= sup
||a||p=1

|La|= ||L||q,

where 1
p +

1
q = 1 and D(x,y) = ||x− y||p with some p≥ 1.

The simplification of the Lipschitz norm enables us to derive an analytic for-

mula for the corresponding Sig-W1 metric. Remember that the Lipschitz norm of

L in the Sig-W1 metric is restricted to be less than one. By the simplification of

the Lipschitz norm mentioned above, it is equivalent to restricting ∥L∥q to be less

than one. Combining this observation with Lemma 3.1.1, we are able to derive an

analytic formula for the Sig-W1 metric.

3.1. Sig-W1 metric 51

Lemma 3.1.2. For two measures µ,ν on the path space Ω0(J,Rd)) such that their

induced measures µ̃ and ν̃ respectively has a compact support K ⊂ S(Ω0(J,Rd)).

Then it holds that

Sig-W1(µ,ν) = ∥ES∼µ̃ [S]−ES∼ν̃ [S]∥p = ∥EX∼µ [S(X)]−EX∼ν [S(X)]∥p. (3.7)

Proof. Let a linear functional L : K→ R endowed with the Lipschitz norm when

D(x,y) = ||x− y||p, which is the same as Lq norm. Let a := (ES∼µ̃(S)−ES∼ν̃(X))

and a = (aI)I . Then by Lemma 3.1.1, one derive the analytic formula of Sig-W1

metric as follows:

Sig-W1(µ,ν) = sup
||L||q≤1

L(ES∼µ̃(S))−L(ES∼ν̃(S)) = sup
||L||q≤1

L(a) = ||a||p,

where L = ∑I lIe∗I .

By Lemma 3.1.2, we obtain the analytic formula for the Sig-W1 metric. This

Sig-W1 metric is a generalization of the one proposed in [19] by considering the

general lp metric of the signature space.

In practice, one needs to truncate the infinite-dimensional signature to a finite

degree for numerical computation of Sig-W1(µ,ν). The factorial decay of the sig-

nature enables us to approximate the signature in (3.7) by its truncated signature up

to degree M for a sufficiently large M. Therefore we propose to define the truncated

Sig-W1(µ,ν) metric up to a degree M as follows:

Sig-W(M)
1 (µ,ν) := ∥EX∼µ [SM(X)]−EX∼ν [SM(X)]∥p. (3.8)

The following toy example illustrates the relationship between the Sig-W1 dis-

tance and the W1 distance between two path distributions.

Example 3.1.1. Let X = (Xt)t∈[0,T], X̂ = (X̂t)t∈[0,T] be two 1-dimensional GBMs

3.1. Sig-W1 metric 52

given by,

dXt =θ1Xtdt +σXtdWt , X0 = 1;

dX̂t =θ2X̂tdt +σ X̂tdŴt , X̂0 = 1,

with the same volatility but with possibly different drifts θ1,θ2. Let µ,ν be the

laws of X , X̂ . We fix σ = 0.1,θ1 = 0.02, and for θ2 = 0.02+ 0.025 j, j = 0, . . . ,4.

When θ2 is increasing, the discrepancy between X and X̂ is increasing. We calculate

three distances, i.e. W path space
1 , W Sig space

1 and Sig-W1 to quantify the distance be-

tween X and X̂ for different θ2, which all increase when enlarging θ2 as expected.

Since Sig-W (M)
1 (µ,ν) admits an analytic solution, it is cheaper to calculate than

W path space
1 (µ,ν) and W Sig space

1 (µ,ν), where one needs to parameterize f by a neu-

ral network and optimize its weights. We observe in Figure 3.1 how these three

values increase with a similar rate as θ2 increases.

0 5 10 15
0.6

0.8

1.0

1.2

1.4

1.6

1.8
1=0.02; 2=0.020

0 5 10 15

1=0.02; 2=0.045

0 5 10 15

1=0.02; 2=0.070

0 5 10 15

1=0.02; 2=0.095

0 5 10 15

1=0.02; 2=0.120

0.02 0.04 0.06 0.08 0.10 0.12
2

10 4

10 3

10 2

10 1

Distance between gbm processes with 1 = 0.02 fixed

w1-dist path space
w1-dist sig space
sigw1-dist

Figure 3.1: The top row displays blue and red samples from two distributions µ and ν

respectively for fixed θ1, and different values of θ2.

3.2. Conditional Sig-W1 metric 53

3.2 Conditional Sig-W1 metric

In reality, one might be interested in predicting the future given the past informa-

tion, for instance, given current (or past) stock price, investors may want to predict

the stock price in the future. In the last section, we propose the Sig-W1 metric to

measure the distance between two measures µ and ν on the path space. However,

the Sig-W1 metric does not rely on any past path information. In this section, we

generalize the Sig-W1 metric to the conditional setting where we condition explicitly

on the past information based on the Sig-W1 metric.

Let J1,J2 be compact and disjoint time intervals such that J = J1 ∪ J2, and

t1 < t2, ∀t1 ∈ J1, ∀t2 ∈ J2. Throughout this section we assume that X is a Ω1
0(J;Rd)-

valued random variable and denote by XJi the stochastic process constrained to the

interval Ji, for i = 1,2.

Given a past path y ∈ Ω1
0(J1;Rd), we would like to generalize (3.7) to quan-

tify a distance of the conditional measures µ(x) = µ(XJ2 | XJ1 = y) and ν(x) =

ν(XJ2 | XJ1 = y). This can be done by changing the expectations in (3.7) to con-

ditional expectations where the condition is the conditioning path x ∈ Ω1
0(J1;Rd).

We define the conditional Sig-W1 metric as the the Sig-W1 metric between two con-

ditonal measures µ(y) and ν(y), i.e.

cSig-W1(µ,ν ,y) := Sig-W1(µ(y),ν(y)) = ∥Eµ(y)[S(XJ2)]−Eν(y)[S(X̂J2)]∥p

(3.9)

Similar to the unconditional case, the cSig-W1 metric has the advantage of ap-

proximating conditional W1 metric on the signature space effectively without any

optimization and it preserves the discriminative ability to distinguish different con-

ditional distributions.

Theorem 3.2.1 (Characteristic property of cSig-W1 metric). Suppose µ(y) and ν(y)

be two conditional measures, under which the expected signature of Xfuture given

3.2. Conditional Sig-W1 metric 54

Xpast = y has infinite radius of convergence respectively for some y ∈ Rd×p. Then

cSig-W1(µ,ν ,y) = 0⇐⇒ µ(y) d
= ν(y)

Proof. This is a direct consequence of the characteristic property of the expected

signature [27] for the conditional law case.

The definition of infinite radius of convergence of expected signature can be

found in Definition A.2.1. However, it is challenging to establish a general condi-

tion to guarantee the infinite radius of convergence (ROC). In fact, the study of the

expected signature of stochastic processes is an active area of research. For exam-

ple, the expected signature of fractional Brownian motion for the Hurst parameter

H ≥ 1/2 is shown to have the infinite ROC [60, 61], whereas the ROC of the ex-

pected signature of stopped Brownian motion up to the first exit domain is finite

[62]. Theorem 6.3 in [27] provides a sufficient condition for the infinite ROC of the

expected signature, potentially offering an alternative way to show the infinite ROC

without directly examining the decay rate of the expected signature.

In practice, it is usually intractable to compute the cSig-W1 metric between real

measure µ(y) and fake measure ν(y). That is due to the fact that most of the time

series we can get access to in reality consist of one long trajectory, such as historical

stock price. In this case, each past path is associated with one single future path, and

it is hence impossible to compute the conditional expected signature by averaging

the signature of future paths given one past path. This limitation is also one of

the most challenging problems in the conditional time-series generation area. In

the following chapter, we address this challenge by proposing a novel conditional

time-series generation framework that is able to estimate the conditional expected

signature in an efficient way.

Chapter 4

Signature-based conditional WGAN

In Chapter 3, we propose the cSig-W1 metric that can measure the distance between

two conditional measures µ(y) and ν(y), and no optimization is involved. Now

we are ready to present our signature-based conditional WGAN (SigCWGAN) that

can learn the target conditional distribution induced by the time series and generate

high-fidelity samples based on past information. More importantly, by utilizing the

analytic form of the Sig-W1 metric, it reduces the min-max problem of the conven-

tional GAN framework into supervised learning tasks.

Let (Ω,F,(Ft)t≥0,P) be a filtered probability space, and {Xt}t∈N a station-

ary stochastic process that takes value in Rd . We assume that the conditional

distribution of Xt+1 given the filtration Ft , only depends on the p-lagged values

of Xt which we denote by Xpast,t := (Xt−p+1, · · · ,Xt) ∈ Rd×p := Y. We are inter-

ested in generating samples from the distribution of Xfuture,t := (Xt+1, · · · ,Xt+q) ∈
Rd×q := X for any given q, conditioned on p-lagged value Xpast,t which we denote

by µp,q(y) := Law(Xfuture,t |Xpast,t = y). Here that the conditional measure µp,q(y) is

time-homogeneous is a direct consequence of the stationarity of X .

Suppose that we have access to a long realization (x1, . . . ,xT) ∈ Rd×T of X ,

then we are able to get N number of past / future paths samples pairs (Xpast,Xfuture)

in rolling window fashion, i.e.

(x(i)past,x
(i)
future) = (xi:i+p−1,xi+p:i+p+q−1),

4.1. Conditional AR-FNN generator 56

Figure 4.1: Illustration of AR-FNN generator.

where i ∈ {1, . . . ,N} and N = T − q− p+ 1. The stationarity of X implies that

for every i ∈ {1, . . . ,N}, past / future sample pairs (x(i)past,x
(i)
future) is identically dis-

tributed, i.e. (
x(i)past,x

(i)
future

)
d∼
(
Xpast,Xfuture

)
.

And x(i)future is a sample drawn from the conditional distribution µp,q(x
(i)
past). The goal

of our conditional generative model is to learn the conditional measure µp,q(Xpast)

induced by the past/future sample pairs (x(i)past,x
(i)
future)

N
i=1.

4.1 Conditional AR-FNN generator
We start by specifying the generator. Motivated by the auto-regressive type models

in time series literature, we assume that the Rd-valued stochastic process {Xt}T
t=1

satisfies

Xt+1 = g(Xpast,t ,εt+1)

where (εt)t are i.i.d. random variables and E [εt+1|Ft] = 0 and g : Y×Z→ Rd is

a continuous but unknown function. Time series of such kind include the autore-

gressive model (AR) and the Autoregressive conditional heteroskedasticity (ARCH)

model. The objective of SigCWGAN is to generate the joint distribution of the fu-

ture time series Xfuture,t given the past time series Xpast,t .

The proposed conditional generator is designed to capture the autoregressive

structure of the target time series by using the past path Xpast,t as additional input for

4.1. Conditional AR-FNN generator 57

the generator. It is defined as a parameterized map Gθ : Y×Zq→ X with Θ being

a parameter space that takes the latent noise Z := (Zt+1, . . . ,Zt+q) ∈ Zq and the

past path Xpast,t ∈ Y to predict q-step future path X̂future,t ∈ X so that the conditional

distribution of X̂future,t is as close as possible to µ(Xfuture,t |Xpast,t = y).

We first consider a step-1 conditional generator Gθ
1 (·, ·) : Y×Z→ Rd , which

takes the past path x and the noise vector Zt+1 to generate a random variable to

mimic the conditional distribution of step-1 forecast µ(Xt+1|Xpast,t = y). Here the

noise vector Zt+1 has the standard normal distribution in Z = RdZ , where dZ is the

dimension of the latent noise.

One can generate the future time series of arbitrary length q ≥ 1 given xpast

by applying Gθ
1 (·, ·) in a rolling window fashion with i.i.d. noise vector (Zt)t as

follows. Given xpast = (x1, · · · ,xp) ∈ Rd×p, we define time series (x̂t)t inductively:

we first initialize the first p term x̂ as xpast, and then for t > p, use Gθ
1 (·, ·) with

the p-lagged value of x̂t conditioning variable and the noise Zt to generate x̂t+1, in

formula,

x̂t =


xt , if t ≤ p;

Gθ
1 (x̂t−p, · · · , x̂t−1︸ ︷︷ ︸

p lagged values of x̂t

,Zt), if t > p,
(4.1)

where the function G1 : Θ×Y×Z→ Rd is represented by a feed-forward neural

network with residual connections and parametric ReLUs as activation functions.

The detailed description of residual connection and ReLU activation function can

be found in Appendix B.1

Therefore, we obtain the step-q conditional generator, denoted by Gθ
q (·, ·) :

Y×Zq→Rd×q and defined by xpast 7→
(
x̂p+1, · · · , x̂p+q

)
, where

(
x̂p+1, · · · , x̂p+q

)
is

defined in (4.1). We omit q in Gθ
q for simplicity. See Algorithm 1 for the pseudo-

code of generating the next q-step forecast using Gθ . Hence we name the generator

Gθ as a conditional AR-FNN generator due to its auto-regressive nature and the

conditional law induced by µz ∈P(Z) is defined as νθ
p,q(y) = Law(X̂future|Xpast = y).

4.2. Signature-based loss function 58

Given a collection of past / future sample pairs (x(i)past,x
(i)
future)

N
i=1 that induces the

conditional measure µp,q(y), the our aim is to find the optimal parameter θ such

that νθ
p,q(y) is as close as possible to the real measure µp,q(y) with respect to a

proper metric. For simplicity, we just denote νθ (y) and µ(y) respectively for the

rest of this thesis. We also provide a detailed description of the AR-FNN network

in Appendix B.1.

Algorithm 1 Pseudocode of Generating the next q-step forecast using Gθ

Input: xt−p+1:t ,Gθ
1

Output: x̂t+1:t+q

1: x̂future← a matrix of zeros of dimension d×q.
2: x̂←the concatenation of xt−p+1:t and x̂future.
3: for i = 1 : q do
4: We sample Zi from the iid standard normal distribution.
5: x̂t+i = Gθ

1 (x̂t+i−p:t+i−1,Zi).
6: end for
7: return x̂t+1:t+q

4.2 Signature-based loss function

To train the conditional generator Gθ , we need a proper loss function. Our proposed

SigCWGAN incorporates conditional Sig-W1 metric (3.9) as the loss function that

is able to measure the distance between two conditional distribution µ(y) and ν(y)

and hence quantify the goodness of the conditional generator Gθ . More importantly,

computing the conditional Sig-W1 metric doesn’t involve any optimization, which

hence makes the algorithm more efficient. Based on the conditional Sig-W1 metric

the loss function is defined as follows:

L(θ |(x(i)past,x
(i)
future)

N
i=1) = EXpast∼µ

[
cSig-W1(µ(Xpast),νθ (Xpast))

]
= EXpast∼µ

∥∥∥Eµ(Xpast)[S(Xfuture)]−Eνθ (Xpast)[S(Xfuture)]
∥∥∥

2
(4.2)

4.2. Signature-based loss function 59

4.2.1 Learning the conditional expected signature under true

measure

Notice that, in order to compute the signature-based loss (4.2), we need to estimate

the conditional expected signature under the true measure from data. This can be

done via Monte Carlo simulation if, for every single past path, we have a larger

number of corresponding future path samples. However, it is infeasible in practice.

For empirical datasets like stock price data, we only have access to the time series

of a long history where one past path corresponds to one single future path.

As a result, we need to estimate the conditional expected signature under the

true measure from data. This estimation problem can be viewed as a linear regres-

sion task, where the regressor and response variable are the signature of the past

path and future path respectively [26].

Hence we propose the linear models on the truncated signature to learn the con-

ditional expected signature under the empirical true measure. We apply an ordinary

least squares regression (OLS) to regress signatures of future paths on signatures of

past paths.

More specifically, given a long realization of x := (x1, · · · ,xT) ∈ Rd×T and

fixed window size of the past and future path p,q > 0, we construct the samples

of past / future path pairs (Xpast,Xfuture) in a rolling window fashion, where the ith

sample is given by

(
x(i)past,x

(i)
future

)
= (xi:i+p−1,xi+p:i+p+q−1).

Assuming stationarity and memorylessness property of the time series, we en-

sure that the path outside the window has no impact on the conditional distribution,

and past/future sample pairs (x(i)past,x
(i)
future)

N
i=1 are identically distributed, and we are

also able to compute the samples pairs of the signature of the past / future path that

is identically distributed,

(
SL1(x

(i)
past),SL2(x

(i)
future)

)
d∼ (SL1(Xpast),SL2(Xfuture)).

4.2. Signature-based loss function 60

Here, L1 and L2 are the truncated degree of the signature of the past path and future

path respectively, which can be chosen by cross-validation in terms of fitting result.

One may refer to [63] for further discussion on the choice of the degree of the

signature truncation.

In principle, linear regression methods on the signature space could be applied

to solve this problem using the data constructed above. If we assume that

SL2(X
(i)
future) = L(SL1(X

(i)
past))+ εi, (4.3)

where the noise εi
iid∼ ε and E[εi|X (i)

past] = 0, then an ordinary least squares regression

(OLS) can be applied by using the above samples pairs of the signature of the past

/ future path.

Remark 4.2.1. In general, the assumption we made above might not be satisfied,

in which case the OLS could be potentially replaced by other sophisticated regres-

sion models. This simple linear regression model on the signature space achieves

satisfactory results on the numerical examples of this thesis.

The design matrix of the OLS regression is hence constructed as

X =
(

SL1(x
(1)
past), . . . ,SL1(x

(N)
past)

)T
∈ RN×F(d,L1).

where F(d,L) = ∑
L
k=0(d + 1)k denotes the number of signature terms that are

computed when truncating at order L and considering an d-dimensional path in

Ω1
0(J,Rd). Furthermore, the response matrix is defined as

Y =
(

SL2(x
(1)
future), . . . ,SL2(x

(N)
future)

)
∈ RN×F(d,L2),

where L2 is the truncated degree of the signature of the future path. Setting up the

OLS regression problem we define the OLS regressor as

L̂µ := argmin
L∈L(T (L1)(Rd+1),T (L2)(Rd+1))

∥LX−Y∥2.

4.3. Algorithm 61

Then the conditional expected signature under the true measure Eµ(Xpast)[SL2(Xfuture)]

can be approximated by L̂µ(SL1(Xpast)). We emphasize that the estimation of

Eµ(Xpast)[SL2(Xfuture)] is one-off and can be done prior to the generative learning.

It is in striking contrast to the conditional WGAN learning, which requires learning

Eµ(Xpast)[D
φ (Xfuture,Xpast)] every time the discriminator Dφ is updated, and hence

saves significant computational cost.

On the other hand, given the conditional generator Gθ , the fake conditional

expected signature Eνθ (Xpast)[SL2(X̂future)] can be estimated by Monte Carlo method.

Hence the empirical loss function can be given as follows:

L
(

θ |
(

x(i)past,x
(i)
future

)N

i=1

)
=

1
N

N

∑
i=1
||L̂µ(SL1(x

(i)
past)))−Eν̂i[SL2(Xfuture)]||2 (4.4)

where ν̂i is the approximation to the fake conditional measure νθ (x
(i)
past), which is

computed via Monte Carlo method.

Remark 4.2.2. All the discrete time series involved should be embedded into path

space via linear interpolation and time augmentation so that we are able to compute

their signature and ensure its uniqueness (by Lemma 2.1.2).

Given the empirical loss function (4.4), the parameter θ of the conditional

generator Gθ is updated via stochastic gradient decent algorithm until the loss con-

verges or the training reaches the maximal number of iterations.

4.3 Algorithm
Based on the proposed SigCGWAN, we present its algorithm as follows:

First, as described in Section 4.2.1, we construct samples of past/future pairs

in a rolling window fashion with fixed window size of p+ q and obtain the OLS

estimator L̂µ using the whole training set to estimate conditional expected signature

under true measure Eµ [SM(Xfuture)|Xpast = y]. Second, in each training epoch, we

randomly sample a mini-batch of past/future sample pair (x(i)past,x
(i)
future)

B
i=1, where B

is the batch size. The generator Gθ takes the p-lagged value x(i)past and latent noise z

to predict q-step future paths, i.e. x̂(i)future = Gθ (x(i)past,z). Then we apply Monte Carlo

4.4. Numerical results 62

method to estimate the conditional expected discriminator score under fake measure

for every past sample {x(i)past}N
i=1, i.e. Eν̂i[SL2(Xfuture)]≈ E

νθ (x(i)past)
[SL2(Xfuture)].

Given the estimator L̂µ and ν̂i, we are able to compute the loss given in (4.4)

and update the model parameters of the generator Gθ using an optimizer until it

converges or the maximum number of training epochs is reached. The pseudo-

code of SigCWGAN is listed in in Algorithm 2, and we present the flowchart of

SigCWGAN algorithm in Figure 4.2.

Figure 4.2: The illustration of the flowchart of SigCWGAN.

4.4 Numerical results
To benchmark with SigCWGAN, we choose three representative generative models

for the time-series generation, i.e. (1) TimeGAN, (2) RCGAN - a conditional GAN,

and (3) GMMN - an unconditional MMD with a Gaussian kernel. Furthermore,

for the stock dataset, we compare the proposed SigCWGAN with the Generalized

autoregressive conditional heteroskedasticity model (GARCH), which is a popular

econometric time series model.

To assess the goodness of the fitting of a generative model, we consider three

main criteria (a) the marginal distribution of time series; (b) the temporal and feature

dependence; (c) the usefulness - synthetic data should be as useful as the real data

when used for the same predictive purposes (i.e. train-on-synthetic, test-on-real).

The test metrics are defined below.

In the following, we describe the calculation of the test metrics precisely. Let

(Xt)
T
t=1 denote a d-dimensional time series sampled from the real target distribu-

tion. We first extract the past/future pairs (Xt−p+1:t ,Xt+1:t+q)t∈T, where T is the

set of time indexes. Given the generator Gθ , for each input sample (Xt−p+1:t), we

4.4. Numerical results 63

Algorithm 2 Algorithm for training SigCWGAN
Input:
{xi ∈Ω1

0(J;Rd) : i ∈ {1, . . .N}}: input time series,
L1,L2 ∈ N: order of truncated signature of the past/future path,
J1,J2: time interval of past/future path,
αθ ∈ R>0: learning rate,
N: the number of epochs,
B ∈ N,B≤ N: batch size,
NMC: the number of Monte Carlo samples.

Output:
θ : approximation of the optimal parameters of the generator G

1: Compute truncated signature of the past and future paths:
(SL1(x

(i)
J1
),SL2(x

(i)
J2
))N

i=0.
2: Compute linear regression coefficient L̂ using the truncated signature

(SL1(x
(i)
J1
),SL2(x

(i)
J2
))N

i=0.
3: Initialize the model parameter θ of the generator G.
4: for i = 1 : N do
5: Sample set J of B random indices without repetition from {1, . . . ,N}.
6: Initialize the loss function Γ(θ)← 0
7: for j = 1 : J do
8: Simulate NMC samples of the simulated future path {x̂(n)J2

}NMC
n=1 by the

generator Gθ given the past path x(j)
J1

.
9: Compute

Ê
X∼νθ (x

(j)
J1

)
[SL2(X)]← 1

NMC

NMC

∑
n=1

SL2(x̂
(n)
J2

).

10: update the loss function

Γ(θ)← 1
|I|∑j∈J

∥L̂µ(SL1(x
(j)
J1
))− Ê

X∼νθ (x
(j)
J1

)
[SL2(X)]∥2

11: end for
12: Compute gradient and update generator parameters via (stochastic) gradient

descent
θ ← θ −αθ ∇θ Γ(θ)

13: end for
14: return θ

generate one sample of the q-step forecast X̂ (t)
t+1,t+q (if Gθ is not conditional gen-

erator, we generate a sample of q-step forecast X̂ (t)
t+1,t+q without any conditioning

variable.). The synthetic data generated by Gθ is given by {X̂ (t)
t+1,t+q}t , which we

4.4. Numerical results 64

use to compute the test metrics.

• Metric on marginal distribution: The empirical density function (epdf) of

real data and synthetic data are computed based on their histograms. When

talking about epdf, we mean each bin’s raw count divided by the total number

of counts and the bin width. For each feature dimension i ∈ {1, · · · ,d}, we

denote the epdfs of real data and synthetic data as d̂ f
i
r and d̂ f

i
G respectively.

Here the epdfs of synthetic date d̂ f
i
G is computed on the bins derived from

the histogram of real data. The metric on marginal distribution, named as abs

metric, is defined as the absolute difference of those two epdfs averaged over

feature dimension, i.e.

1
d

d

∑
i=1
|d̂ f

i
r− d̂ f

i
G|1,

where |d̂ f
i
r− d̂ f

i
G|1 is computed as the l1 distance between the epdfs of real

and synthetic data on each bin. Notice that although abs metric cannot give

a fully point-separating metric on the space of measure, it can still provide a

general description of the similarity between two set of data given a reason-

able number of bins. Considering the computational cost, we set number of

bins to 50 in our implementation.

• Temporal dependency: We use the absolute error of the auto-correlation

estimator by real data and synthetic data as the metric to assess the tempo-

ral dependency and name it as ACF metric. For each feature dimension

i ∈ {1, . . . ,d}, we compute the auto-covariance of the ith coordinate of time

series data X with lag value k under real measure and synthetic measure resp,

denoted by ρ i
r(k) and ρ i

G(k). Here Then the estimator of the lag-1 auto-

correlation of the real/synthetic data is given by ρ i
r(1)

ρ i
r(0)

/ ρ i
G(1)

ρ i
G(0)

. The ACF metric

is defined to be the absolute difference of lag-1 auto-correlation given as fol-

4.4. Numerical results 65

lows:

1
d

d

∑
i=1

∣∣∣∣ρ i
r(1)

ρ i
r(0)
− ρ i

G(1)
ρ i

G(0)

∣∣∣∣ .
In addition, we present the ACF plot, which illustrates the autocorrelation of

each coordinate of the time series with different lag values. The synthetic

data’s quality is evaluated by how closely its ACF plot resembles that of the

real data, as it indicates the synthetic data’s ability to capture long-term tem-

poral dependencies.

• Feature dependency: For d > 1, we assess the feature dependency by using

the l1 norm of the difference between cross-correlation matrices and name it

as correlation metric. Let τ
i, j
r and τ

i, j
G denote the correlation of the ith and

jth feature of time series under real measure and synthetic measure resp. The

correlation metric between the real data and synthetic data is given by l1 norm

of the difference between two correlation matrices, i.e.

d

∑
i=1

d

∑
j=1
|τ i, j

r − τ
i, j
G |.

• Predictive score: In order to be useful, the synthetic data should inherit

the predictive characteristics of the original, meaning that the synthetic data

should be just as useful as the real data when used for the same predictive

purpose (i.e. train-on-synthetic, test-on-real). To measure the usefulness of

the synthetic data, we follow [34] and [33] and consider the problem of pre-

dicting next-step temporal vectors using the lagged values of time series using

the real data and synthetic data. First, we train a supervised learning model

on real data to predict next-step values and evaluate it in terms of R2(TRTR).

Then we train the same supervised learning model on synthetic data and eval-

uate it on the real data in terms of R2 (TSTR). The closer two R2 are, the

better the generative model is. The predictive score is then defined as the

R2 relative error. This test metric is reasonable because it demonstrates the

4.4. Numerical results 66

ability of the synthetic data to be used for real applications.

4.4.1 Vector autoregressive model

To demonstrate the model’s ability to generate realistic multi-dimensional time se-

ries in a controlled environment, we consider synthetic data generated by the Vector

Autoregressive (VAR) model, in the d-dimensional VAR(1) model, time series are

defined recursively for t ∈ {1, ...,T −1} through the following equation:

Xt+1 = φXt + εt+1,

where (εt)
T
t=1 are i.i.d. Gaussian-distributed random variables with co-variance ma-

trix σ1+(1−σ)I; I is a d× d identity matrix. Here, the coefficient φ ∈ [−1,1]

controls the auto-correlation of the time series and σ ∈ [0,1] the correlation of the

d features.

In our benchmark, we investigate the dimensions d = 1,2,3 and various (σ ,φ).

Across all dimensions, we observe that the SigCWGAN has a comparable perfor-

mance or outperforms the baseline models in terms of the metrics defined above.

Furthermore, we find that as the dimension increases the performance of SigCW-

GANs exceeds baselines. We illustrate this finding in Figure 4.3 (Right) which

shows the relative error of TSTR R2 when varying the dimensionality of VAR(1).

Observe that the SigCWGAN remains a very low relative error, but the performance

of the other models deteriorates significantly, especially the GMMN.

dim=1 dim=2 dim=3
d

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

ab
s_

m
et

ric

Comparison of the abs_metric across different dim

SigCWGAN
TimeGAN
RCGAN
GMMN

dim=1 dim=2 dim=3
d

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

R
2_

q=
1

Comparison of the R2 relative error across different dim

SigCWGAN
TimeGAN
RCGAN
GMMN

Figure 4.3: (Left) The distributional metric (abs metrics) comparison; (Right) the R2

(TSTR) comparison. VAR(1) data is generated for φ = 0.8 and σ = 0.8.

Figure 4.4 shows the development of the abs metric, ACF metric, and cross-

correlation metric through the course of training for the 3-dimensional VAR(1)

4.4. Numerical results 67

0 200 400 600 800 1000
of training step

0.00

0.02

0.04

0.06

0.08 Abs metric
Dim 1
Dim 2
Dim 3

0 200 400 600 800 1000
of training step

0.0
0.1
0.2
0.3
0.4
0.5 ACF metric

Dim 1
Dim 2
Dim 3

0 200 400 600 800 1000
of training step

0.0

0.5

1.0

1.5

2.0 Cross-correlation metric

(a) SigCWGAN

0 200 400 600 800 1000
of training step

0.00

0.02

0.04

0.06

0.08 Abs metric
Dim 1
Dim 2
Dim 3

0 200 400 600 800 1000
of training step

0.0
0.1
0.2
0.3
0.4
0.5 ACF metric

Dim 1
Dim 2
Dim 3

0 200 400 600 800 1000
of training step

0.0

0.5

1.0

1.5

2.0 Cross-correlation metric

(b) TimeGAN

0 200 400 600 800 1000
of training step

0.00

0.02

0.04

0.06

0.08 Abs metric
Dim 1
Dim 2
Dim 3

0 200 400 600 800 1000
of training step

0.0
0.1
0.2
0.3
0.4
0.5 ACF metric

Dim 1
Dim 2
Dim 3

0 200 400 600 800 1000
of training step

0.0

0.5

1.0

1.5

2.0 Cross-correlation metric

(c) RCGAN

0 200 400 600 800 1000
of training step

0.00

0.02

0.04

0.06

0.08 Abs metric
Dim 1
Dim 2
Dim 3

0 200 400 600 800 1000
of training step

0.0
0.1
0.2
0.3
0.4
0.5 ACF metric

Dim 1
Dim 2
Dim 3

0 200 400 600 800 1000
of training step

0.0

0.5

1.0

1.5

2.0 Cross-correlation metric

(d) GMMN

Figure 4.4: Evolution of three test metrics: abs metric, ACF metric, and cross-correlation
metric. Each color represents the metric of one dimension. The results are for
the 3-dimensional VAR(1) model for φ = 0.8 and σ = 0.8.

model. While the ACF metrics of the baseline models oscillate heavily, the SigCW-

GAN ACF metric and cross-correlation metric converge nicely toward zero. Also,

the GMMN abs metric converges nicely to a certain level. However, in contrast, its

ACF metric does not converge. This highlights the stability and usefulness of the

Sig-W1 distance as a loss function. Furthermore, the SigCWGAN has the advantage

of generating a realistic long-time series over the other models, which is reflected

by the marginal density function of a synthetic sampled path of 80,000 steps are

much closer to that of real data than baselines in Figure 4.5.

To better show our model’s capability in capturing the conditional law, we

4.4. Numerical results 68

include Figure 4.6 which compares the real and synthetic distribution of future time

series given one past path sample. The shaded area represents the 95% confidence

interval. We can see that compared with other models, SigCWGAN has a better

fitting of the expected values (as represented by the central line within the shaded

area) and confidence interval, which emphasizes the model’s superior performance

in capturing conditional laws.

To emphasize the strengths of SigCWGAN in capturing the long-term temporal

dependency, we also present the long-term ACF plot of synthetic data in Figure D.4.

We can observe that SigCWGAN demonstrates the best fitting of long-term ACF.

More details of the numerical results can be found in Appendix C.2.

4 2 0 2 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

pd
f

SigCWGAN
Historical
Generated

4 2 0 2 4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

pd
f

TimeGAN
Historical
Generated

4 2 0 2 4
0.0

0.2

0.4

0.6

0.8

pd
f

RCGAN
Historical
Generated

4 2 0 2 4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

pd
f

GMMN
Historical
Generated

Figure 4.5: Comparison of the marginal distributions of one long sampled path (80,000
steps) with the real distribution using VAR(1) model for φ = 0.8,σ = 0.8.

t-2 t-1 t t+1 t+2 t+3
1.0

0.5

0.0

0.5

1.0
SigCWGAN

t-2 t-1 t t+1 t+2 t+3
1.0

0.5

0.0

0.5

1.0
RCGAN

t-2 t-1 t t+1 t+2 t+3
1.0

0.5

0.0

0.5

1.0
TimeGAN

fake real

t-2 t-1 t t+1 t+2 t+3
1.0

0.5

0.0

0.5

1.0

GMMN

Figure 4.6: Comparison of all models’ performance in fitting the conditional distribution of
future time series given one past path sample. The real and generated paths are
plotted in red and blue respectively with the shaded area as the 95% confidence
interval. The real samples are synthesized from VAR(1) model for d = 3, φ =
0.8 and σ = 0.8.

4.4.2 ARCH model

To assess the non-linear temporal dependency, we also choose synthetic data gener-

ated by Autoregressive Conditional Heteroskedasticity (ARCH) model [64]. In the

ARCH(k) model, time series are defined recursively for t ∈ {1, ...,T − 1} through

4.4. Numerical results 69

the following equation:

σ
2
t = α0 +

k

∑
i=1

αiX2
t−i,

Xt = σtεt ,

(4.5)

where {εt}T
t=1 are iid Gaussian-distributed random variables, and αi > 0, i =

0,1, . . . ,k are coefficients that measure the extent to which the past values affect

current volatility.

We implement extensive experiments on ARCH(k) with different k−lag values,

i.e. k ∈ {2,3,4}, and choose αi = 0.2 for i = 1, . . . ,k. We choose the optimal degree

of signature 3. The comparison of the ACF metric is plotted in Figure 4.7. We can

see that for all different k values, SigCGWAN significantly outperforms other base-

lines, highlighting its strength in capturing non-linear temporal dependency. Also,

the predictive score comparison in Figure 4.7 indicates that SigCWGAN achieves

an extremely low and stable predictive score among all k values, showcasing the

stronger predictive power of SigCWGAN. The complete numerical results are sum-

marized in Table D.6. The best results among all the models are highlighted in

bold.

For ARCH model, it is more interesting to investigate the ACF/PACF of the

squared residuals. The ACF/PACF analysis of squared residuals is a key aspect of

assessing the performance of generative model trained on ARCH data. In Figure

4.8, we show the ACF/PACF plot of the squared residuals generated by each model.

Notably, in the PACF plot of ARCH(2) models, We can observe two significant

values at lag 1 and 2. Our results demonstrate that the SigCWGAN outperforms

other models by better capturing the temporal dependency in the squared residuals.

4.4.3 S&P 500 and DJI market data

To assess the performance of our method on the empirical data, we again choose the

dataset of the S&P 500 index (SPX) and Dow Jones index (DJI) and their realized

volatility, which is retrieved from the Oxford-Man Institute’s “realized library” 1.

We aim to generate a time series of both the log return of the close prices and the

1https://oxford-man.ox.ac.uk

https://oxford-man.ox.ac.uk

4.4. Numerical results 70

K=2 K=3 K=4
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

ac
f_

id
_l

ag
=1

Comparison of the abs metric across different lags
SigCWGAN
TimeGAN
RCGAN
GMMN

K=2 K=3 K=4
0

10

20

30

40

50

60

70

80

R
2_

q=
1

Comparison of the predictive score across different lags
SigCWGAN
TimeGAN
RCGAN
GMMN

Figure 4.7: (Left) The distributional metric (ac f score) comparison; (Right) the R2 error
(TSTR) comparison using ARCH(k) data for k = 2,3,4.

0 5 10
0.0

0.5

1.0

Real
 (0.0)

0 5 10
0.0

0.5

1.0

SigCWGAN
 (0.530)

0 5 10
0.0

0.5

1.0

GMMN
 (0.678)

0 5 10
0.0

0.5

1.0

RCGAN
 (0.675)

0 5 10
0.0

0.5

1.0

TimeGAN
 (0.544)

(a) ACF of squared residuals.

0 5 10
0.0

0.5

1.0

Real
 (0.0)

0 5 10
0.0

0.5

1.0

SigCWGAN
 (0.379)

0 5 10
0.0

0.5

1.0

GMMN
 (0.647)

0 5 10
0.0

0.5

1.0

RCGAN
 (0.549)

0 5 10
0.0

0.5

1.0

TimeGAN
 (0.502)

(b) PACF of squared residuals.

Figure 4.8: ACF/PACF plot of squared residuals for ARCH(2) model. Here x-axis repre-
sents the lag value (with a maximum lag equal to 10) and the y-axis represent
the corresponding auto- correlation/partial auto-correlation. The length of the
real/generated time series used to compute the ACF is 1000. The number in
the bracket under each model is the sum of the absolute difference between the
correlation coefficients computed from real (dashed line) and generated (solid
line) samples.

log of median realized volatility of (a) the SPX only; (b) the SPX and DJI. Table

4.1 shows that SigCWGAN achieves superior or comparable performance to the

other baselines. The SigCWGAN generates the realistic synthetic data of the SPX

and DJI data shown by the marginal distribution comparison with that of real data

in Figure 4.9. For the SPX-only data, GMMN performs better than our model in

terms of the fitting of marginal distribution, but it suffers from poor auto-correlation

and feature correlation. It is worth noting that our SigCWGAN model outperforms

GARCH, the classical and widely used time series model in econometrics, on both

the SPX and SPX/DJI data, as shown in Table Table 4.1. The poor performance

4.4. Numerical results 71

of the GARCH model could be attributed to its parametric nature and the potential

issues of model misspecification when applied to empirical data.

It will be also interesting to investigate the ACF/PACF of synthetic absolute

and squared returns, which provide insights into the volatility clustering property

of stock returns. We can see from Figure 4.10 that GMMN failed to capture the

temporal dependency of absolute and squared returns. In contrast, SigCWGAN

demonstrates decent performance in fitting the ACF/PACF of absolute and squared

returns. Hence, our results demonstrate that SigCWGAN does better in capturing

the temporal dependency in (both absolute and squared) stock returns. This fact can

also be observed from Figure D.11 where the synthetic log return path generated by

SigCWGAN clearly shows the volatility clustering phenomenon. The ACF plot of

synthetic returns can also be found in Figure D.10.

We also include in this section the coverage ratio test of SPX/DJI returns. The

coverage ratio test is a statistical test used to assess the accuracy and reliability of

the estimated Value at Risk (VaR) value. To perform the test, we initially compute

the 95% VaR for both 1 and 5-day ahead returns. We then compute the ratio of the

number of exceedances to the total number of observations. If the 95% VaR estimate

is correct, the ratio should be close to 5%. We summarize the results of the coverage

ratio test in Table 4.2. We can observe that RCGAN has the closest ratio for 1-day

ahead return of SPX (4.96%) and DJX (4.42%) to the target of 5%, indicating a

more accurate VaR estimate for 1-day ahead returns. In contrast, SigCWGAN,

while achieving the best ratio of 5-day ahead return of DJI (4.02%), tends to have

an over-optimistic VaR estimate for 1-day ahead returns, resulting in ratios of 1-day

ahead returns of SPX (8.04%) and DJI (9.11%) that are far from 5%.

4 2 0 2 4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

pd
f

SPX log-return
Historical
Generated

2 0 2 4
0.0

0.1

0.2

0.3

0.4

0.5

pd
f

SPX log-vol
Historical
Generated

6 4 2 0 2 4 6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

pd
f

DJI log-return
Historical
Generated

2 0 2 4
0.0

0.1

0.2

0.3

0.4

pd
f

DJI log-vol
Historical
Generated

Figure 4.9: Comparison of the marginal distributions of the generated SigCWGAN paths
and the SPX and DJI data.

4.4. Numerical results 72

0 10 20
0.0

0.5

1.0
GARCH
 (1.535)

0 10 20
0.0

0.5

1.0
SigCWGAN

 (1.664)

0 10 20
0.0

0.5

1.0
GMMN
 (5.472)

0 10 20
0.0

0.5

1.0
RCGAN
 (3.314)

0 10 20
0.0

0.5

1.0
TimeGAN
 (3.828)

(a) ACF of squared returns.

0 10 20
0.0

0.5

1.0
GARCH
 (1.411)

0 10 20
0.0

0.5

1.0
SigCWGAN

 (1.524)

0 10 20
0.0

0.5

1.0
GMMN
 (2.176)

0 10 20
0.0

0.5

1.0
RCGAN
 (1.672)

0 10 20
0.0

0.5

1.0
TimeGAN
 (1.779)

(b) PACF of squared returns.

0 10 20
0.0

0.5

1.0
GARCH
 (2.274)

0 10 20
0.0

0.5

1.0
SigCWGAN

 (1.668)

0 10 20
0.0

0.5

1.0
GMMN
 (6.167)

0 10 20
0.0

0.5

1.0
RCGAN
 (3.358)

0 10 20
0.0

0.5

1.0
TimeGAN
 (4.156)

(c) ACF of absolute returns.

0 10 20
0.0

0.5

1.0
GARCH
 (0.815)

0 10 20
0.0

0.5

1.0
SigCWGAN

 (1.281)

0 10 20
0.0

0.5

1.0
GMMN
 (1.875)

0 10 20
0.0

0.5

1.0
RCGAN
 (1.219)

0 10 20
0.0

0.5

1.0
TimeGAN
 (1.161)

(d) PACF of absolute returns.

Figure 4.10: ACF/PACF plot of absolute and squared returns for SPX (green line) and DJI
(orange line). Here x-axis represents the lag value (with a maximum lag equal
to 10) and the y-axis represents the corresponding auto-correlation/partial
auto-correlation. The length of the real/generated time series used to com-
pute the ACF is 1000. The number in the bracket under each model is the sum
of the absolute difference between the correlation coefficients computed from
real (dashed line) and synthetic (solid line) samples.

Metrics abs metric ACF score correlation R2(%) Sig-W1

SigCWGAN 0.01468,0.00879 0.02693,0.03988 0.00638,0.10354 5.56765,5.28866 4.74507,5.18462

TimeGAN 0.01064,0.01136 0.0341,0.03147 0.0101,0.11342 8.5833,7.13335 4.75276,5.22316

RCGAN 0.01134,0.00933 0.04192,0.03367 0.0926,0.13699 3.74567,5.75112 4.74862,5.20083

GMMN 0.00986,0.01438 0.05483,0.06668 0.07498,0.28339 11.37772 ,13.7324 4.75251,5.19631

GARCH 0.01583,0.01670 0.05392, 0.05337 0.15791, 0.7290 12.1253, 12.5686 4.75825, 5.25344

Table 4.1: Numerical results of the stock datasets. In each cell, the left/right numbers are
the results for the SPX data/ the SPX and DJI data respectively. We use the
relative error of TSTR R2 against TRTR R2 as the R2 metric.

4.5. Conclusions 73

Models Ratio of 1-day ahead returns Ratio of 5-day ahead returns

SigCWGAN 8.04%,9.11% 3.62%,4.02%

TimeGAN 6.70%,8.31% 5.63%,6.70%

RCGAN 4.95%,4.42% 3.62%,3.88%

GMMN 6.70%,6.70% 6.43%,6.30%

GARCH 9.70%,8.75% 7.63%,6.70%

Table 4.2: Results of coverage ratio test applied to SPX and DJI stock returns. In each
cell, the left/right numbers are the results for the SPX/ DJI data respectively. A
ratio that is closer to 5% indicates a more accurate 95% VaR estimate. The VaR
estimate of each model for each observation is obtained using 5000 generated
samples.

4.5 Conclusions
In this chapter, we developed the signature-based conditional Wasserstein GAN

for time series generation. SigCWGAN utilizes a signature-based loss function,

namely Sig-W1 metric, which is an explicit approximation of W1 metric using the

signature features space. It eliminates the problem of having to approximate a costly

discriminator/critic and, as a consequence, dramatically turns the min-max game

into supervised learning. The generator in SigCWGAN is specified as an AR-FNN

generator that is designed to capture the autoregressive structure of the target time

series. We validate the advantages of SigCWGAN on both synthetic and empirical

datasets.

As demonstrated in Section 4.4, SigCWGAN achieves state-of-the-art results

on both synthetic and empirical datasets. On synthetic datasets such as VAR and

ARCH datasets. SigCWGAN shows dominantly better performance in terms of

distributional metric (abs metric) and predictive score (R2 relative error). Addition-

ally, SigCWGAN dramatically improves the training stability and has much faster

convergence. On S&P 500 and DJI dataset, SigCWGAN achieves either the best

or comparable performance in terms of all test metrics compared to other baselines

and is effective in generating high-fidelity stock data.

Chapter 5

Monte-Carlo GAN

The SigCWGAN algorithm, proposed in Chapter 4, enhances generative perfor-

mance by using signature features in the discriminative loss function and reduc-

ing the min-max problem into supervised learning. In this chapter, we introduce a

novel algorithm called Monte-Carlo GAN (MCGAN) that improves generation per-

formance from the perspective of the generator. MCGAN utilizes the mean squared

error (MSE) as the generative loss function to measure the distance between real and

fake discriminator scores. The strong supervision provided in the MSE allows the

generator to learn the target measure µ with a relatively weaker condition imposed

on the (non-optimal) discriminator. Additionally, it is shown in Theorem 5.3.2 that

the innovative generative loss function in MCGAN improves training stability com-

pared to the original GAN. We also employ a toy example called Dirac-GAN to

better illustrate the advantages of MCGAN. Numerical experiments conducted on

both synthetic and empirical datasets further demonstrate the effectiveness and im-

proved stability of MCGAN.

5.1 Motivation
In this section, we explain the motivation of the MCGAN model and the intuition

behind MSE.

Bottleneck of SigCWGAN: Despite the superior performance of SigCWGAN

shown in Section 4.4, it still has some potential problems. As proposed in Sec-

tion 4.2.1, a regression module is employed to estimate the conditionally expected

5.1. Motivation 75

signature. Nevertheless, one potential bottleneck of this approach is that utilizing

function approximation on the signature feature may lead to unsatisfactory perfor-

mance of estimating the conditionally expected signature under the true measure,

and hence the poor estimator of the conditional Sig-W1 metric. Moreover, although

the linear models on the signature space have universality, they might be not al-

ways effective. Similar to polynomial regression, such models might be unstable

and result in overfitting problems in the case of a very high degree of the truncated

signature.

Challenges in continuous setting: The same problem happens to most GAN

variants in conditional time-series generation tasks. GAN variants such as

WGAN usually require estimation of the conditionally expected discriminator

score under real measures. Take WGAN as an example, ones needs to estimate

Eµ(xpast)[D
φ (Xfuture,Xpast)] in order to compute the following conditional W1 dis-

tance:

W1(µ,νθ) := max
|Dφ |Lip≤1

Eµ(Xpast)[D
φ (Xfuture,Xpast)]−Eνθ (Xpast)[D

φ (Xfuture,Xpast)].

In the continuous setting studied in this thesis, one past path corresponds to only one

future path, which makes the one-sample estimator unreliable. It usually demands

employing additional function approximation to the conditional expectation, which

will introduce additional bias and make the overall algorithm much harder to tune.

To tackle these challenges, we are interested in developing a new algorithm to

avoid the direct estimation for the conditional expectation under true measure while

achieving superior performance in conditional time series generation tasks.

In the following, let us explain the general framework of learning the condi-

tional distribution induced by time series without explicitly estimating the condi-

tionally expected signature under the true measure. Let X be the target space, Y

the conditioning space, and Z the latent space. The conditional generative model

we are interested in is to use the generator Gθ : Z×Y→ X to learn the conditional

distribution of future paths Xfuture ∈ X given past paths Xpast ∈ Y. Let us consider

5.1. Motivation 76

the following mean-square optimization problem:

min
ξ

Eµ [|Dφ (Xfuture,Xpast)−ξ (Xpast)|2], (5.1)

where ξ is a measurable function and Dφ : X×Y→ R is a discriminator param-

eterized by φ . From the Doob-Dynkin Lemma, we know that this conditional ex-

pectation is a measurable function of Xpast and the minimum of (5.1) is obtained

by ξ ∗(Xpast) = Eµ(Xpast)[D
φ (Xfuture,Xpast)], where µ(Xpast) denotes the conditional

measure of the future path given the past path Xpast. This fact inspires us to use

the MC estimator of Eνθ (Xpast)[D
φ (Xfuture,Xpast)] in place of ξ (Xpast) in (5.1) and use

the mean square error (MSE) to train the generator. Thus the novel generative loss

function can be defined as:

LG(θ ;φ) = Eµ [|Dφ (Xfuture,Xpast)−Eνθ (Xpast)[D
φ (Xfuture,Xpast)]|2]. (5.2)

This innovative loss function reframes the conventional generator training into a

mean-square optimization problem by computing the MSE between real and fake

discriminator scores. It requires no additional least square regression to estimate the

real conditional expectation and can avoid the estimation bias. In the ideal scenario,

the optimal generator to (5.2) given Dφ will result in the equality:

Eµ(Xpast)[D
φ (Xfuture,Xpast)] = Eνθ (Xpast)[D

φ (Xfuture,Xpast)]. (5.3)

In practice, the conditional expectation of discriminator score under fake measure

can be estimated with the Monte Carlo method. Let us consider the input-output

pair {(x(i)future,x
(i)
past)}N

i=1 that are sampled from the same joint distribution P(X,Y),

the loss function can thus be approximated via:

LG(θ ;φ)≈ 1
N

N

∑
i=1
|Dφ (x(i)future,x

(i)
past)−

1
NMC

NMC

∑
j=1

Dφ (Gθ (x(i)past,z
(j)
t),x(i)past)︸ ︷︷ ︸

≈E
νθ (x(i)past)

[Dφ (Xfuture,x
(i)
past)]

|2, (5.4)

5.2. Discriminability 77

where NMC is the sample size used for Monte-Carlo estimation. We name this

model the conditional Monte Carlo (MCGAN) due to the usage of the Monte Carlo

estimator of conditionally expected discriminator score under the fake measure.

Notice that (5.3) would not necessarily lead to νθ = µ . It requires a certain

property of the discriminator to ensure the match of νθ and µ . This property

plays an important role in the generator training using (5.2), and it should reflect

the discriminative power of the discriminator to distinguish between two different

measures. Discriminators with weak discriminative power, let us say a constant

function, usually drag down the training of the generator due to the incorrect or

useless information provided. A candidate discriminator should possess the ability

to differentiate between the real distribution and fake distribution in a certain sense,

ensuring that the minimized MSE in (5.1) is meaningful. However, how to define

this property, how to obtain this property, and whether this loss function can guar-

antee the optimality of νθ = µ remain questions. We will answer these questions in

the following sections.

5.2 Discriminability
To better illustrate the advantage of our model and also for clarity of notation, we

set aside the conditioning variable for now. Considering the fact that all arguments

around the mean-square optimization problem (5.1) also hold in the unconditional

case, we use the unconditional generation task instead to focus on the property of

the discriminator and showcase the benefits of MSE.

Recall that in the unconditional generation task, our goal is to use the generator

Gθ : Z→ X to learn the distribution of target variable X ∈ X such that νθ induced

by Gθ can approximate the real conditional measure µ . Throughout this chapter,

we assume that both µ and νθ are absolutely continuous with densities pµ and pνθ
,

respectively. The generative loss function using MSE can be defined as

LG(θ ;φ) = Eµ [|Dφ (X)−Eνθ
[Dφ (X)]|2], (5.5)

where Dφ : X→ R is the discriminator.

5.2. Discriminability 78

The discriminator is trained by maximizing the discriminative loss function.

The discriminative loss function is usually defined as the objective function of cer-

tain divergences such as JS divergence in GAN [35], and computing such divergence

involves finding the optimal discriminator that maximizes the objective function.

See [65] for a comprehensive description of the discriminative loss function. The

discriminative loss functions are usually formulated as:

LD(φ ; µ,νθ) := Eµ

[
f1(Dφ (X))

]
+Eνθ

[
f2(Dφ (X))

]
,

where f1 and f2 are real-valued functions on R. Here we include µ,νθ in the no-

tation of LD to emphasize its dependence on these two measures. In GAN training,

the optimal discriminator is the one that minimizes the discriminative loss function

and is further used in the generative loss function to train the generator.

It is important to notice that the optimal discriminator also depends on µ and

νθ as well, and minimizing the discriminative loss involves finding the optimal

parameter φ∗µ,νθ
specific to µ and νθ . To clarify this point, we give the following

definition.

Definition 5.2.1 (Optimal discriminator). Let LD : Φ×P(X)×P(X)→R denote a

discriminative loss function. A discriminator

P(X)×P(X)×X→ R

(µ,ν ,x) 7→ Dφ∗µ,ν (x),
(5.6)

where φ∗·,· : P(X)×P(X)→ Φ, is said the optimal discriminator of LD if for any

two measures µ,ν ∈ P(X), it satisfies that

LD(φ
∗
µ,ν ; µ,ν) = max

φ
LD(φ ; µ,ν).

The parameter φ∗µ,ν represents the specific parameterization of the optimal

discriminator for the given measures µ and ν . It can be regarded as a map

φ∗·,· : P(X)×P(X) → Φ that maps a pair of probability measures into a certain

5.2. Discriminability 79

parameterization. By this definition, we emphasize the dependence of the optimal

discriminator on the measures µ and ν .

Although an optimal discriminator would have perfect discrimination perfor-

mance, it may not always be achievable in practice. However, in the case of using

MSE as the generative loss function, there is no need for an optimal discriminator

as the MSE already provides more information via comparing the difference be-

tween the expected discriminator score under real and fake measures. Nevertheless,

we still expect the discriminator, to some extent, to shed light on the discrepancy

between two different measures, and we name this property as discriminability.

Definition 5.2.2 (Discriminability). A discriminator

P(X)×P(X)×X→ R

(µ,ν ,x) 7→ Dφµ,ν (x),
(5.7)

where φ·,· : P(X)×P(X)→Φ, is said to have discriminability if for any two differ-

ent continuous measures µ,ν ∈ P(X), it satisfies that

∫
Aµ,ν

Dφµ,ν (x)(pµ(x)− pν(x))dx ̸= 0 (5.8)

where pµ and pν are the densities of µ and ν respectively, and Aµ,ν := {x ∈ X :

pµ(x) ̸= pν(x)}. We denote the set of discriminators with discriminability as DDis.

The discriminability can be interpreted as the discriminator’s ability to detect

the discrepancy between µ and ν over the set Aµ,ν where µ differs from ν . How-

ever, the integration in (5.8) makes it hard to verify. To better understand the dis-

criminability, we introduce strict discriminability that is more intuitive and straight-

forward to verify.

Definition 5.2.3 (Strict Discriminability). A discriminator

P(X)×P(X)×X→ R

(µ,ν ,x) 7→ Dφµ,ν (x),
(5.9)

5.2. Discriminability 80

where φ·,· : P(X)×P(X)→ Φ, is said to have strict discriminability if there exist

two constants a ∈ {−1,1} and c ∈ R such that for any two different continuous

measures µ,ν ∈ P(X), it satisfies that

a(Dφµ,ν (x)− c)(pµ(x)− pν(x))> 0, (5.10)

for all x ∈ Aµ,ν := {x ∈ X : pµ(x) ̸= pν(x)}. We denote the set of discriminators

with strict discriminability as DDis∗.

The strict discriminability of discriminator can be interpreted as the ability

to distinguish between ν and µ point-wisely over Aµ,ν by telling the sign (or the

opposite sign) of pµ(x)− pν(x). In (5.10), if a = 1, the constant c can be regarded

as a criterion in the sense that Dφµ,ν (x)−c is positive only when pµ(x)> pν(x) and

vice versa. Compared with discriminability, this strict one is more straightforward

to verify, and it holds that DDis∗ ⊂DDis.

This (strict) discriminability covers a variety of optimal discriminators in GAN

variants. We present some examples by specifying the value of c for each optimal

discriminator.

• GAN [35]: GAN employs BCE as the discriminative loss function defined as

LD(φ ; µ,νθ) = Eµ

[
log(Dφ (X))

]
+Eνθ

[
log(1−Dφ (X))

]
. (5.11)

As proven in [35], the optimal discriminator given binary cross-entropy loss

can be derived as:

Dφ∗µ,νθ (x) =
pµ(x)

pµ(x)+ pνθ
(x)

. (5.12)

Let us consider function f (l) = 1
1+l for l > 0. Notice that f (l) > 1/2 when

l < 1 and vice versa. Also notice that Dφ∗µ,νθ (x) = f (
pνθ

(x)
pµ (x)

), it is easy to verify

that (Dφ∗µ,νθ (x)−1/2)(pµ(x)− pνθ
(x))> 0 when pµ(x) ̸= pνθ

(x).

• Least Square GAN [38]: LSGAN employs least square loss function defined

5.2. Discriminability 81

as follows:

LD(φ ; µ,νθ) =−Eµ

[
(Dφ (X)−α)2

]
−Eνθ

[
(Dφ (X)−β)2

]
,

where α,β ∈ R, and α ̸= β . The optimal discriminator is given as

Dφ∗µ,νθ (x) =
α pµ(x)+β pνθ

(x)
pµ(x)+ pνθ

(x)
, (5.13)

Similarly, by the fact that Dφ∗(x) = f (
pνθ

(x)
pµ (x)

), where f (l) = α+β l
1+l , we can

verify that this discriminator also has (strict) discriminability in the sense that

sign(α−β)(Dφ∗µ,νθ (x)− α+β

2)(pµ(x)− pνθ
(x))> 0 when pµ(x) ̸= pνθ

(x).

• Geometric GAN [42]: Hinge loss function is defined as

LD(φ ; µ,νθ) =−Eµ

[
max(0,1−Dφ (X))

]
−Eνθ

[
max(0,1+Dφ (X))

]
.

By Lemma B.1 in [42], it is straightforward to show that the optimal discrim-

inator can be derived as:

Dφ∗µ,νθ (x) = 21{pµ (x)≥pνθ
(x)}−1. (5.14)

It is clear that Dφ∗(x) = f (pµ (x)
pνθ

(x)), where f (l) = 21{l≥1} − 1, and

Dφ∗(x)(pµ(x)− pνθ
(x))> 0 when pµ(x) ̸= pνθ

(x).

• Energy-based GAN [66]: Energy-based loss function is defined as

LD(φ ; µ,νθ) =−Eµ

[
Dφ (X)

]
−Eνθ

[
max(0,m−Dφ (X))

]
.

where m > 0. By Lemma 1 in [66], the optimal discriminator given energy-

based loss function can be derived as:

Dφ∗µ,νθ (x) = m1{pµ (x)<pνθ
(x)}. (5.15)

5.2. Discriminability 82

It is straight forward to verify that −m(Dφ∗µ,νθ (x)− m
2)(pµ(x)− pνθ

(x)) > 0

when pµ(x) ̸= pνθ
(x).

• f -GAN [67]: In f -GAN, variational lower bound (VLB) on the f -divergence

Div f (µ||νθ) is used in the generative-adversarial approach to mimic the target

distribution νθ . Let f : R+→R be a convex, lower-semicontinuous function.

In f -GAN, the discriminative loss is defined as the variational lower bound

on certain f -divergence:

LD(φ ; µ,νθ) = Eµ

[
Dφ (X)

]
−Eνθ

[
f ∗(Dφ (X))

]
, (5.16)

where f ∗ is the convex conjugate function of f . Under mild conditions on the

function f [68], the maximum of (5.16) is achieved when

Dφ∗µ,νθ (x) = f ′
(

pµ(x)
pνθ

(x)

)
, (5.17)

where f ′ is the first order derivative of f and increasing due to the convexity of

f . Consequently, we can choose c = f ′(1) such that (Dφ∗µ,νθ (x)− c)(pµ(x)−
pνθ

(x)) > 0 when pµ(x) ̸= pνθ
(x). A more detailed list of f -divergence can

be found in [67].

In Table 5.1, we also provide a list summarizing those optimal discriminators of

discriminative loss functions in some commonly used GAN variants along with the

values of a and c.

Although the (strict) discriminability can be obtained by training the discrimi-

nator via certain discriminative loss functions, it is worth emphasizing that the dis-

criminator does not necessarily need to reach its optimum to obtain discriminability.

In the case of BCE in (5.11), we can easily find a non-optimal discriminator with

discriminability as follows:

D̂φ∗µ,νθ (x) = Dφ∗µ,νθ (x)− 1
5

(
Dφ∗µ,νθ (x)− 1

2

)
1{pµ (x)>pνθ

(x)}

=
pµ(x)

pµ(x)+ pνθ
(x)
− 1

5

(
pµ(x)

pµ(x)+ pνθ
(x)
− 1

2

)
1{pµ (x)>pνθ

(x)}.
(5.18)

5.3. Monte Carlo GAN 83

It is also straightforward to verify that (D̂φ∗µ,νθ (x)−1/2)(pµ(x)− pνθ
(x))> 0, and

D̂φ∗µ,νθ (x) ∈ (0,1) for all x ∈ X as permitted by the feasible set. Hence it has (strict)

discriminability although it is not optimal.

To better illustrate this point, we also present the following 1-D example.

Example 5.2.1. Suppose both µ and νθ are 1-D Gaussian measures with different

means, i.e. µ ∼ N(−2,1),νθ ∼ N(2,1). The optimal discriminator Dφ∗ that max-

imizes binary cross-entropy loss (BCE) in (5.11) is given by Dφ∗(x) = pµ (x)
pµ (x)+pνθ

(x)

as shown in Figure 5.1. In this case, it has (strict) discriminability in the sense that

(Dφ∗(x)− 1
2)
(

pµ(x)−νθ (x)
)
> 0 when pµ(x) ̸= νθ (x). This indicates that the dis-

criminator Dφ∗(x) shifted by 1
2 is capable of telling the sign of pµ(x)−νθ (x). How-

ever, a non-optimal discriminator can also have discriminability. The D̂φ∗ defined

as (5.18) is such an example shown in Figure 5.1. We can verify that D̂φ∗ will not

achieve the minimum of BCE in (5.11) and hence is not optimal, but it still satisfies

that (D̂φ∗(x)− 1
2)
(

pµ(x)−νθ (x)
)
> 0 when pµ(x) ̸= νθ (x). In other words, there

is no need for discriminators to achieve their optimum to have discriminability.

The discriminability can be regarded as a weaker condition imposed on the

discriminator than optimality. While an optimal discriminator would perfectly clas-

sify all real and generated samples, it may not always be achievable or necessary

in practice. By imposing discriminability as a weaker condition on the discrimi-

nator, the focus is on training a discriminator that is competent enough to provide

meaningful feedback on the discrepancy between µ and νθ . Thanks to the super-

vised learning nature of MSE, it can utilize this feedback from the discriminator

and provide strong supervision to the generator to learn the target distribution. .

5.3 Monte Carlo GAN
Now that we have defined discriminability, the desired property of the discriminator,

we are ready to present our model formally.

Recall that the target measure is µ ∈P(X), and the goal is to train the generator

Gθ : Z→ X such that the induced fake measure νθ ∈ P(X) is sufficiently close to

µ . To reach this goal, we propose Monte-Carlo GAN (MCGAN) via the following

5.3. Monte Carlo GAN 84

Name Discriminative loss D∗(x) a c

GAN Binary cross-entropy pµ (x)
pµ (x)+pνθ

(x) 1 1/2

LSGAN Least square loss
α pµ (x)+β pνθ

(x)
pµ (x)+pνθ

(x) sign(α−β) α+β

2

Geometric GAN Hinge loss 21{pµ (x)≥pνθ
(x)}−1 1 0

Energy-based GAN Energy-based loss m1{pµ (x)<pνθ
(x)} sign(−m) m

2

f -GAN VLB on f -divergence f ′
(

pµ (x)
pνθ

(x)

)
1 f ′(1)

Table 5.1: List of common discriminative loss functions that satisfy strict discriminability

4 2 0 2 4
x

0.0

0.2

0.4

0.6

0.8

1.0

D *

D *

y = 0.5

Figure 5.1: One illustration on the discriminability of the discriminator. In this example,
µ ∼ N(−2,1),νθ ∼ N(2,1). The optimal discriminator is given by Dφ∗(x) =

pµ (x)
pµ (x)+pνθ

(x) , and the weaker version of discriminator D̂φ∗ is defined in (5.18).

training objective:

max
φ∈Φ

LD(φ ; µ,νθ) = max
φ∈Φ

Eµ

[
f1(Dφ (X))

]
+Eνθ

[
f2(Dφ (X))

]
,

min
θ∈Θ

LG(θ ;φ ,µ) = min
θ∈Θ

Eµ [|Dφ (X)−Eνθ
[Dφ (X)]|2],

(5.19)

where functions f1 and f2 depend on the choice of the discriminative loss func-

tion, and the discriminator is trained to maximize the discriminative loss function

LD(φ ; µ,νθ) to obtain the discriminability.

5.3. Monte Carlo GAN 85

MCGAN benefits from the strong supervision lying in MSE, which provides

more control over the gradient behavior during the training. In conventional GAN

objective (2.9), the generator parameter θ is updated using the following scheme:

θn+1 =θn−λEz∼µz

[
h′(Gθn(z))∇θ Gθ (z)T |θ=θn ·∇xDφ (Gθn(z))

]
, (5.20)

where λ is the learning rate, and h is a continuous function depending on the cho-

sen discriminative loss. This updating scheme only allows the generator to update

as much as its parametric family and update step permits. The generator parameter

θ will only stop updating when the generator and the discriminator both reach the

equilibrium point (θ ∗,φ∗) where ∇xDφ (x) = 0,∀x ∈ supp µ [13]. However, reach-

ing this equilibrium point (θ ∗,φ∗) is challenging in practice. Instead, the sensitivity

∇xDφ tends to fluctuate throughout the training process and increase in its norm as

the discriminator overfits. As a result, the generator struggles to reach the optimal

parameter θ ∗ and gets stuck with undamped oscillations due to its reliance on the

sensitivity ∇xDφ .

In the case of MCGAN, the updating scheme of generator parameter θ can be

derived as:

θn+1 =θn−λ
∂LG

∂θ
|θ=θn

=θn−2λ

(
Eµ [Dφ (X)]−Eνθn

[Dφ (X)]
)

H(θn,φ),

(5.21)

where

H(θ ,φ) = Ez∼p(z)[∇θ Gθ (z)T ·∇xDφ (Gθ (z))].

Here the gradient contains information about not only ∇xDφ (x) but also the dis-

crepancy between the expected discriminator scores under two measures µ and νθ .

In this case, even if (θ ,φ) fails to reach the equilibrium point where ∇xDφ (x) =

0,∀x ∈ supp µ , it is possible for the generator to reach its optimum by aligning

the expected discriminator scores under µ and νθ . The discriminability defined in

Definition 5.2.2 can guarantee that optimizing the MSE given a discriminator of

discriminability can lead to µ = νθ .

5.3. Monte Carlo GAN 86

Now we claim the optimality of µ = νθ in the following theorem.

Theorem 5.3.1. Let φ ′·,· : P(X)×P(X)→ Φ be a parameterization map such that

Dφ ′·,· : P(X)×P(X)×X→R has discriminability, i.e. Dφ ′·,· ∈DDis. If θ ∗ is a global

minimizer of LG(θ ;φ ′µ,νθ
,µ) defined in (5.19), then νθ∗ = µ .

Proof. Given φ ∈Φ, consider the following function

f (ξ ;φ) = Eµ [(Dφ (X)−ξ)2].

It is easy to verify that its global minimizer satisfies that

argmin
ξ

f (ξ ;φ) = Eµ [Dφ (X)],

and it is unique due to strict convexity. If θ ∗ is a global minimizer of LG(θ ;φ ,µ),

we must have

Eνθ∗ [D
φ (X)] = Eµ [Dφ (X)]. (5.22)

Given a parameterization map φ ′·,· : P(X)×P(X)→ Φ and Dφ ′·,· ∈DDis, if θ ∗

is a global minimizer of LG(θ ;φ ′µ,νθ
,µ) , it should also satisfy that

Eνθ∗ [D
φ ′µ,ν

θ∗ (X)] = Eµ [D
φ ′µ,ν

θ∗ (X)]. (5.23)

Since Dφ ′·,· ∈DDis,

Eνθ
[Dφ ′µ,νθ (X)]−Eµ [D

φ ′µ,ν
θ∗ (X)]

=
∫
Aµ,νθ

Dφ ′µ,νθ (x)(pµ(x)− pνθ
(x))dx

̸=0,

(5.24)

for every different µ and νθ . Hence equality (5.23) holds if and only if νθ∗ = µ,

which completes the proof.

Theorem 5.3.1 claims that to learn the data distribution µ , we do not restrict

the discriminator to reach its optimum; the discriminability is sufficient. This again

5.3. Monte Carlo GAN 87

benefits from the strong supervision provided by MSE.

In this scenario, the gradient of θ incorporates additional information beyond

the discriminator’s sensitivity with respect to the input. It also captures the dis-

crepancy between the expected discriminator scores under µ and νθ . Thanks to

the discriminability, this discrepancy provides useful feedback on the difference be-

tween νθ and µ . Even if the discriminator is not optimal or (θ ,φ) is not at the

equilibrium point, the generator can still learn the target distribution by minimizing

this discrepancy.

5.3.1 Relation to f -divergence

As mentioned before, minimizing the MSE results in matching the expected dis-

criminator scores under real and fake measures as in (5.23). We claimed in The-

orem 5.3.1 that given a discriminator of discriminability, matching the expected

discriminator scores yields the match of µ and νθ . However, it is not clear what this

discrepancy between expected real and fake discriminator scores actually means in

the context of GAN training. In this section, we explore its relation to f -divergence

by specifying the discriminator.

As mentioned in Section 2.2.1, the optimal discriminator for BCE loss is given

by:

Dφ∗(x) =
pµ(x)

pµ(x)+ pνθ
(x)

. (5.25)

Here we omit µ and νθ in the notation of Dφ∗ for conciseness. Given this optimal

discriminator, the objective function in (2.5) can be interpreted as Jensen-Shannon

divergence between µ and νθ , subtracting a constant term log(4) as shown in (2.7).

The generator is therefore trained to minimize the Jensen-Shannon divergence. Sim-

ilarly, Mao et al. [38] showed that optimizing LSGANs yields minimizing the Pear-

son χ2 divergence between real and fake measures.

Given (5.25), we are also able to explore the connection between MCGAN and

f -divergence. As proven in Lemma 5.3.1, when considering the optimal discrimi-

nator (5.25), the difference between real and fake expected discriminator output in

(5.21) can be interpreted as an f -divergence between µ and ν̄ , where ν̄ := (µ+ν)
2

5.3. Monte Carlo GAN 88

represents the averaged measure with density pν̄(x) :=
pµ (x)+pνθ

(x)
2 .

Lemma 5.3.1. Given the optimal discriminator in (5.25), optimizing the MCGAN

objective (5.19) is equivalent to minimizing the square of f -divergence:

∇θ LG(θ ;φ
∗) = ∇θ [Div f (µ|ν̄)]2, (5.26)

where f (x) = x(x−1).

Proof. Given the optimal discriminator in (5.25), we have

Eµ [Dφ∗(X)]−Eνθ
[Dφ∗(X)] =

∫
supp µ∪suppνθ

pµ(x)
pµ(x)+ pνθ

(x)
(pµ(x)− pνθ

(x))dx.

Let ν̄ := µ+νθ

2 be the averaged measure defined on supp µ ∪ suppνθ , then we have

Eµ [Dφ∗(X)]−Eνθ
[Dφ∗(X)] =

∫
supp µ∪suppνθ

pµ(x)
2pν̄(x)

(pµ(x)− pνθ
(x))

pν̄(x)
pν̄(x)dx

=
∫

supp µ∪suppνθ

pµ(x)
pν̄(x)

(
pµ(x)
pν̄(x)

−1
)

pν̄(x)dx

=
∫

supp µ∪suppνθ

f
(

pµ(x)
pν̄(x)

)
pν̄(x)dx

= Div f (µ∥ν̄),

where f (x) := x(x− 1) is a convex function and f (1) = 0. Therefore, Div f (µ∥ν̄)
is a well-defined f -divergence. Furthermore, we can observe that the gradient of

the generator objective function LG(θ ;φ∗) equals the gradient of the squared error

between the expected discriminator scores under real and fake measures:

∇θ LG(θ ;φ
∗) = ∇θEµ

∣∣∣Dφ∗(X)−Eνθ
[Dφ∗(X)]

∣∣∣2
= ∇θ

∣∣∣Eµ [Dφ∗(X)]−Eνθ
[Dφ∗(X)]

∣∣∣2
= ∇θ [Div f (µ|ν̄)]2,

which completes the proof.

5.3. Monte Carlo GAN 89

Lemma 5.3.1 establishes a connection between MCGAN and f -divergence,

illustrating that matching the expected scores is equivalent to minimizing the f -

divergence between real and fake measures.

5.3.2 Improved stability

Incorporating MSE into the generative loss function has more advantages than just

optimality.

Stability is a well-known issue in GAN training, and it arises due to several

factors. The non-saturating loss was first proposed in [35] to address the gradient

vanishing problem where the generator struggles to learn when the discriminator

becomes highly accurate. While the non-saturating loss allows the generator to re-

ceive a non-zero gradient when the discriminator is accurate, it still suffers from

severe instability issue that has been widely experienced in practice. Arjovsky et

al. [36] provides insights into this instability issue. The instability is analyzed by

modeling the inaccurate discriminator as an optimal discriminator perturbed by a

centered Gaussian process. Given this noisy version of the optimal discriminator,

it can be shown that the gradient of non-saturating loss follows a centered Cauchy

distribution with infinite mean and variance, which leads to massive and unpre-

dictable updates of the generator parameter. Hence it can be regarded as the source

of training instability.

By following the same idea, we can prove that the proposed generative loss

function in MCGAN can overcome the instability issue. However, we would not

restrict the random noise of the discriminator to be Gaussian, which is a rather

strong assumption.

Theorem 5.3.2. Let Dφ∗ be the optimal discriminator for the given discriminative

loss LD. Furthermore, let us consider the noisy version of the optimal discriminator

Dφε (x) defined as follows:

Dφε (x) = Dφ∗(x)+ ε1(x)

5.3. Monte Carlo GAN 90

and

∇xDφε (x) = ∇xDφ∗(x)+ ε2(x),

∀x ∈X, where ε1(x) and ε2(x) are two uncorrelated and centered random noise that

are indexed by x and independent for every x.1 Now, given LG(θ ;φ) defined in

(5.19), the following holds:

(a) E[∇θ LG(θ ;φε)] = ∇θ LG(θ ;φ∗);

(b) The variance of ∇θ LG(θ ;φε) depends on the difference between µ and νθ .

Specifically, when νθ∗ = µ , we have ∇θ LG(θ
∗;φε) = 0 almost surely.

Proof. Since Dφε (x) = Dφ∗(x)+ ε1(x) and ∇xDφε (x) = ∇xDφ∗(x)+ ε2(x), we have

∇θ LG(θ ;φε) =
(
Eνθ

[Dφε (X)]−Eµ [Dφε (X)]
)

H(θ ,φε)

=
(
Eνθ

[Dφ∗(X)]−Eµ [Dφ∗(X)]+Eνθ
[ε1(X)]−Eµ [ε1(X)]

)
H(θ ,φε)

=(∆(θ ,φ∗)+ ε̄1(θ))H(θ ,φε),

where

∆(θ ,φ) = Eνθ
[Dφ (X)]−Eµ [Dφ (X)]

and

ε̄1(θ) = Eνθ
[ε1(X)]−Eµ [ε1(X)].

Because
H(θ ,φε) =Ez∼µz[(∇θ Gθ (z))T ·∇xDφε (Gθ (z))]

=H(θ ,φ∗)+Ez∼µz[(∇θ Gθ (z))T · ε2(x̂)]

=H(θ ,φ∗)+ ε̄2(θ),

where x̂ = Gθ (z) and

ε̄2(θ) = Ez∼µz[(∇θ Gθ (z))T · ε2(x̂)].

1This assumption of centered random noise is made due to the fact that as the approximation gets
better, this error looks more and more like centered random noise due to the finite precision [36].

5.3. Monte Carlo GAN 91

Hence we have

∇θ LG(θ ;φε) =∆(θ ,φ∗)H(θ ,φ∗)+ ε̄1(θ)H(θ ,φ∗)+∆(θ ,φ∗)ε̄2(θ)+ ε̄1(θ)ε̄2(θ)

=∇θ LG(θ ;φ
∗)+ ε̄1(θ)H(θ ,φ∗)+∆(θ ,φ∗)ε̄2(θ)+ ε̄1(θ)ε̄2(θ).

Since ε̄1(θ) are linear combinations of centered random noises, it is also a centered

noise. Similarly, ε̄2(θ) has zero mean as ε2(x) are independent for all x. Moreover,

the expectation of ε̄1(θ)ε̄2(θ) is also zero since ε1(x) and ε2(x) are uncorrelated for

all x. Hence the mean of ∇θ LG(θ ;φε) equals to ∇θ LG(θ ;φ∗). By the definition of

∆(θ ,φ) and ε̄1(θ), its variance also depends on the difference between µ and νθ ,

which completes the proof.

Theorem 5.3.2 implies that given the noisy discriminator Dφε , the expected

value of the gradient of LG(θ ;φε) in (5.19) is the accurate gradient given by the op-

timal discriminator. More importantly, its variance is determined by the discrepancy

between µ and νθ : as νθ approaches µ , the variance of ε̄1(θ) and ∆(θ ,φ∗)ε̄2(θ)

tend to 0, indicating better training stability compared with non-saturating loss.

In summary, the MCGAN algorithm offers the following two key advantages

in terms of generator training:

• Relaxed Requirement for Optimal Discriminator: The MCGAN can re-

lax the requirement for the optimal discriminator. Instead, it focuses on the

discriminability of the discriminator described in Definition 5.2.2. This re-

laxation allows the generator to successfully learn the real data distribution

without relying on the discriminator being optimal.

• Improved Stability of Gradient: MCGAN introduces an innovative genera-

tive loss function that provides more reliable supervision for generator train-

ing. It improves the training stability by controlling the variance of the gen-

erator gradient that is directly related to the difference between the real and

fake measures.

Overall, the relaxation of the optimal discriminator requirement and the im-

proved training stability through the generative loss function make MCGAN a pow-

5.3. Monte Carlo GAN 92

erful and effective framework for training generators in GANs. By leveraging dis-

criminability and providing reliable supervision, MCGAN enables the generator to

learn the desired data distribution more efficiently and achieve better performance.

5.3.3 A toy example: Dirac-GAN

To better demonstrate the advantages of MCGAN, we take Dirac-GAN [13] as an

example.

Dirac-GAN was a simple yet representative counterexample employed to il-

lustrate the instability of unregularized GAN training [13, 69]. In Dirac GAN, the

fake measure induced by the generator is defined as pνθ
(x) = δ (x−θ) where δ (·)

is the Dirac delta function, and the discriminator is defined as Dφ (x) = φx. Here, θ

and φ are the parameters of the generator and discriminator respectively. The target

distribution is given by Dirac distribution where pµ(x) = δ (x−c) with c= 0. In this

case, the unique equilibrium point of the training objective is given by φ = θ = 0.

For unregularized GAN training, the updating scheme of training objective

(2.9) can be derived as:

φn+1 = φn +λ f ′2(φnθn)θn,

θn+1 = θn−λh′(φnθn)φn.
(5.27)

For MCGAN, the updating scheme of the training objective (5.19) is given by:

φn+1 = φn +λ f ′2(φnθn)θn,

θn+1 = θn−2λ (φnθn−φnc)φn.
(5.28)

In the unregularized GAN training, Figure 5.2 demonstrates that (a) GAN, (b)

NSGAN, and (c) Geometric GAN, which utilize binary cross-entropy loss, non-

saturating loss and hinge loss respectively, all fail to converge to the equilibrium

point (0,0). This failure can be attributed to the dependence on the value of φ in

the updating scheme. When φ fails to converge to zero, θ keeps updating even if

it has already reached zero. In turn, the non-zero θ further encourages φ to update

away from 0, resulting in an endless loop and the failure of both the generator and

discriminator.

5.4. Related work 93

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(a) GAN

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(b) NSGAN

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(c) Geometric GAN

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(d) MCGAN

Figure 5.2: Convergence behavior of the Dirac-GAN. The starting point of iteration is
marked in red. The total number of iterations is 2000.

However, (d) MCGAN is able to address this issue by leveraging stronger su-

pervision. Despite the failure of the discriminator, the generator parameter θ still

successfully converged to the optimal value 0 as the difference term φnθn−φnc in

(5.28) provides additional information to the generator, allowing it to justify how far

the fake sample currently is from the real sample as perceived by the discriminator

and adjust its parameter accordingly.

5.4 Related work
It is not the first time that the generative loss function has attracted researchers’

attention. As already explored in the original GAN paper [35], the generative loss

function in the original min-max objective (2.5) suffers from the saturating issue

where optimal discriminator can cause zero gradients of generator almost every-

where. Non-saturating loss is therefore proposed to address this issue, and this

alternative generative loss function has been shown to have better performance and

convergence than the original proposal [70, 36]. However, the non-saturating loss

still suffers from training instability and mode-dropping problems as it assigns an

extremely low cost on mode-dropping [36]. Additionally, one main cause of the fail-

ure of convergence to Nash equilibrium is the lack of communication between the

generator and discriminator. Both networks have to communicate with each other

to enhance individual performance until reaching the equilibrium [71]. Therefore,

Metz et al. [72] propose to model the dynamic of the discriminator parameter as

a function of the generator parameter and design a new generator objective with

respect to an k-step unrolled optimization of the discriminator. This allows the gen-

5.4. Related work 94

erator to capture the reaction of the discriminator toward a change in the generator,

which hence reduces the tendency of the generator to engage in mode collapse.

However, this method requires additional steps of forward and backward propaga-

tion, resulting in considerably increased computational costs. Different from those

approaches mentioned above, our proposed MCGAN enhances the interaction be-

tween the discriminator and generator by incorporating MSE into the generative

loss function, which is more straightforward to implement and has better training

stability.

Interestingly, the concept of matching the expected discriminator scores was

previously explored in [65]. It is shown that under certain conditions, those distribu-

tions that minimize the adversarial divergence to target distribution are exactly those

that are indistinguishable from target distribution by all discriminator networks. In

other words, minimizing those adversarial divergences in these GAN variants is

equivalent to matching the expected discriminator scores under all discriminator

networks, which is referred to as generalized moment matching. Our work explains

in detail what kinds of benefits it can bring to GAN training by matching the ex-

pected discriminator scores. Specifically, we show that in order to learn the target

distribution, it is unnecessary to match the expected discriminator scores under all

discriminator networks or the optimal one, those with discriminability can already

provide sufficient information to guide the generator training as shown in Theorem

5.3.1.

5.4.1 Relation to feature matching

In order to enhance the generative performance, a feature matching approach is

proposed in [73], which adds to the generative loss function an additional cost that

matches the statistic of the real and generated samples given by the activation on an

intermediate layer of the discriminator. The generator hence is trained to generate

fake samples that reflect the statistics (features maps) of real data rather than just

maximizing its discriminator scores.

To be specific, suppose we have a feature map ψ that maps each x ∈ X to a

feature vector ψ(x) = (ψ1(x),ψ2(x), . . . ,ψn(x)) ∈ Rn where each ψi ∈Cb(X), then

5.5. MCGAN for conditional time-series generation 95

the feature matching approach adds to the generative loss function an additional

cost defined as:

Rfm(θ ;φ) = ∥Eµ [ψ(x)]−Eνθ
[ψ(x)]∥2

2. (5.29)

Although empirical results already indicated the effectiveness of the feature

matching method, it lacks a theoretical guarantee that minimizing the difference of

features can help us reach the Nash equilibrium or optimality νθ = µ . Hence (5.29)

is commonly used as a regularization term rather than an individual loss function

like the one proposed in our MCGAN.

In the case of MCGAN, if we construct the discriminator as a linear trans-

formation of the feature map, i.e. Dφ = φ T (ψ(x),1) where φ ∈ Rn+1 is a linear

functional. Given the novel generative loss function in (5.19), we have

∇θ LG(θ ;φ) = ∇θ |Eµ [φ
T (ψ(x),1)]−Eνθ

[φ T (ψ(x),1)]|2.

Here, the generator is also trained to match the feature maps of real samples and

fake samples, but in a weighted average way. By using the linear transformation on

the feature map, the discriminator is trained to focus on the most relevant features

and assign them larger weights while assigning relatively smaller weights to less

important features. As a result, the generator is trained to match the feature maps

more efficiently and effectively.

This weighted average matching approach facilitates the learning of the im-

portant features in the data distribution. Through the discriminator’s linear trans-

formation, the generator can better capture the salient attributes of the real data

distribution, resulting in the generation of more authentic and high-quality samples.

5.5 MCGAN for conditional time-series generation
Now that we have discussed those advantages of MCGAN in the unconditional gen-

eration task, it is straightforward to apply the MCGAN framework to the conditional

time-series generation task.

Let us first revisit the problem setting. Let (Ω,F,(Ft)t≥0,P) be a filtered prob-

5.5. MCGAN for conditional time-series generation 96

ability space, and {Xt}t∈N a stationary stochastic process that takes value in Rd .

In this case, the target value is defined as future path Xfuture,t := (Xt+1, · · · ,Xt+q) ∈
Rd×q := X, and the conditioning variable is the p-lagged values of Xt which we

denote by Xpast,t := (Xt−p+1, · · · ,Xt) ∈ Rd×p := Y. We are interested in learning

the conditional law given p-lagged value Xpast,t which we denote by µp,q(y) :=

Law(Xfuture,t |Xpast,t = y),∀y ∈ Y. In other words, our goal is to train the generator

such that the conditional law νθ
p,q(y) induced by the generator can best approximate

µp,q(y). For clarity, we omit the p and q values in µp,q(y) and νθ
p,q(y), and use µ(y)

and νθ (y) instead.

Based on the MCGAN algorithm, we propose the following training objectives

for the conditional time-series generation task:

max
φ∈Φ

LD(φ ;θ) = Eµ

[
f1(Dφ (Xfuture,Xpast))

]
+Eνθ

[
f2(Dφ (Xfuture,Xpast))

]
,

min
θ∈Θ

LG(θ ;φ) = Eµ [|Dφ (Xfuture,Xpast)−Eνθ (Xpast)
[Dφ (Xfuture,Xpast)]|2],

(5.30)

where functions f1 and f2 depend on the choice of the discriminative loss function,

and Eµ denotes expectation taken over (Xfuture,Xpast) ∼ µ , Eµ(Xpast) denotes condi-

tional expectation taken over Xfuture ∼ µ(Xpast). Here the subscript t is omitted for

brevity. The discriminator Dφ : X×Y→ R is trained by a certain type of discrimi-

native loss function LD(φ ;θ) to obtain the discriminability described in Definition

5.2.2.

As discussed before, one advantage of using this generative loss function is

that it requires no additional approximation to the conditionally expected discrimi-

nator scores of real samples as needed when computing conditional W1 distance or

conditional Sig-W1 metric, which leads to more efficient and stable generator train-

ing in MCGAN. Similar to its unconditional version, conditional MCGAN has the

ability to learn the target distribution with a relatively weaker discriminator and is

capable of improving the training stability, which we would not bother to restate

through additional proof.

Remark 5.5.1. The extension from unconditional GAN to conditional GAN is triv-

5.6. Numerical experiments 97

ial. In a conditional GAN, the law of conditioning variable is fixed for both real

and synthetic distribution. This means that modeling the conditional distribution

in cGAN is, in essence, equivalent to modeling the joint distribution of the condi-

tioning variable and the target variable. Consequently, all the result and insights

obtained from the unconditional GAN can be naturally extended to the conditional

case.

5.5.1 Algorithm

As described in Section 4.2.1, we first construct samples of past/future pair from

a long realization of X in a rolling window fashion with fixed window size of

p+ q. For each training epoch, the MCGAN training process is divided into two

phases: discriminator training and generator training. In the discriminator train-

ing phase, we first randomly sample a mini-batch of real past/future path pairs

{(xi
past,x

i
future)}B

i=1 from the training dataset where B is the batch size, then we com-

pute the discriminative loss using these real past/future paths and update φ .

In the generator training phase, we again randomly sample another mini-batch

of real past/future path pairs {(xi
past,x

i
future)}B

i=1 from the training set. For each

past path xi
past, we apply the MC method to estimate the conditional expectation

of discriminator scores of the generated future path given xi
past. This estimate is

denoted as Ê
νθ (xi

past)
[Dφ (Xfuture,xi

past)]. Then we compute the generative loss with

this estimate, i.e. the MSE between the discriminator scores of real future path

Dφ (xi
future,x

i
past) and conditionally expected discriminator scores of generated future

path Ê
νθ (xi

past)
[Dφ (Xfuture,xi

past)], and update the parameter of generator θ based on

the generative loss. A flowchart of the generator training phase in the MCGAN

algorithm is provided in Figure 5.3.

The pseudo-code of the MCGAN algorithm for conditional time-series gener-

ation task is presented in Algorithm 3.

5.6 Numerical experiments
To benchmark with MCGAN, we choose RCGAN for the conditional time-series

generation task as presented in Section 4.4. To investigate the effectiveness of the

5.6. Numerical experiments 98

Algorithm 3 Algorithm of MCGAN
Input:

N: the number of epochs;
ND: number of discriminator iterations per generator iteration;
B ∈ N: batch size;
NMC: the number of Monte Carlo samples;
f ,g: choice of discriminative loss;
αφ ,αθ : learning rate for discriminator and generator.

Output:
(θ ∗,φ∗): approximation of the optimal parameters of the generator and discrim-

inator.
1: Initialize the model parameter (θ ,φ) of the generator G and discriminator D.
2: for n = 1 : N do
3: for nd = 1 : ND do
4: Sample batch {(xi

past,x
i
future)}B

i=1 ∼ pµ(Xpast,Xfuture)

5: Generate fake paths {(xi
past, x̂

i
future)}B

i=1 ∼ pνθ
(Xpast, X̂future)

6: Compute discriminative loss:

LD(φ ;θ)← 1
B

B

∑
i=1

f (Dφ (xi
future,x

i
past))+

1
B

B

∑
i=1

g(Dφ (x̂i
future,x

i
past));

7: Update parameter of discriminator:

φ ← φ +αφ ∇φ LD(φ ;θ);

8: end for
9: Sample batch {(xi

past,x
i
future)}B

i=1 ∼ pµ(Xpast,Xfuture);
10: Estimate the conditional expectation for each past path xi

past:

Ê
νθ (xi

past)
[Dφ (Xfuture,xi

past)]←
1

Nmc

Nmc

∑
j=1

Dφ (Gθ (xi
past,z

(j)),xi
past);

11: Compute generative loss:

LG(θ ;φ)← 1
B

B

∑
i=1

(Dφ (xi
future,x

i
past)− Ê

νθ (xi
past)

[Dφ (Xfuture,xi
past)])

2;

12: Update parameter of generator:

θ ← θ −αθ ∇θ LG(θ ;φ);

13: end for

5.6. Numerical experiments 99

Figure 5.3: Flowchart of generator training phase in MCGAN algorithm.

proposed generative loss function in MCGAN, both MCGAN and RCGAN use the

same discriminative loss, i.e., binary cross-entropy loss. In both cases, the dis-

criminator scores of real and fake samples are first computed, and then these dis-

criminator scores are used to compute the binary cross-entropy loss and update the

discriminator parameters. The only difference between MCGAN and RCGAN is

the generator training phase where RCGAN will update the generator by minimiz-

ing BCE while MCGAN computes the MSE by following the procedure described

in Algorithm 3. For all experiments, the Monte-Carlo size used in MCGAN imple-

mentation is set to 1000. We also include GMMN, TimeGAN, and SigCWGAN as

baseline models as did in Section 4.4. The hyper-parameter setting of each dataset

can be found in Section C.1.

In terms of test metrics, we again employ three main criteria:(a) the marginal

distribution of time series; (b) the temporal and feature dependence; (c) the useful-

ness - synthetic data should be as useful as the real data when used for the same

predictive purposes (i.e. train-on-synthetic, test-on-real). The definition of these

test metrics can be found in Section 4.4.

5.6.1 Vector autoregressive model

To demonstrate the model’s ability to generate realistic multi-dimensional time se-

ries in a controlled environment, we again consider synthetic data generated by the

Vector Autoregressive (VAR) model as we did in Section 4.4.1.

In our benchmark, we investigate the dimension d = 1,2,3 and various (φ ,σ).

Across all dimensions, we observe that the MCGAN considerably improves the

performance of RCGAN in terms of all the test metrics. Specifically, MCGAN con-

5.6. Numerical experiments 100

siderably outperforms RCGAN in terms of the predictive discriminator score. As

shown in Figure 5.4a, compared with RCGAN, MCGAN hugely improves the R2

error in all parameter sets. When d = 3,φ = 0.5,σ = 0.8, the MCGAN can reduce

the R2 relative error from 16.5% in RCGAN to only 1.6%. The performance gap is

rather huge in the multi-dimensional case. Figure 5.4b shows the correlation met-

rics of all baselines. The MCGAN achieves a much lower correlation error while

RCGAN appears not to fully capture the cross-correlation in the three-dimensional

case. A similar pattern can be observed in the comparison of ACF metric and den-

sity metric illustrated in Figure 5.4c and Figure 5.4d.

Moreover, we validate the improved training stability of MCGAN when com-

pared with RCGAN. Figure 5.5 shows the development of the norm of generator

gradient, abs metric, ACF metric, and cross-correlation metric through the course of

training for the 3-dimensional VAR(1) model. Observe that the generator gradient in

RCGAN oscillates heavily during the training process and ends up with a non-zero

gradient at the end of training. However, MCGAN has a much more stable gradient

dynamic, and thanks to the difference term in (5.19), the gradient converges nicely

toward zero at the end of the training, which indicates better training behavior. In

terms of the other three metrics, although the dynamics of MCGAN also oscillate

at the beginning, they become increasingly stable as the generator gets accurate and

converges to a better level than that of RCGAN, which again highlights the stability

and usefulness of the newly proposed generative loss (5.19) in MCGAN.

Apart from that, we also show the effectiveness of MCGAN in capturing the

target conditional distribution. Figure 5.6 illustrates that similar to SigCWGAN, the

MCGAN has a better fitting than other baselines in terms of conditional law as the

estimated mean (and standard deviation) is closer to that of the true model compared

with other baselines. More details of the numerical results including long-term ACF

plots of synthetic data can be found in Appendix C.2

5.6.2 ARCH model

We also implement extensive experiments on ARCH(k) with different k−lag values,

i.e. k ∈ {2,3,4} as in Section 4.4.2. The numerical results are summarized in Ta-

5.6. Numerical experiments 101

VAR(1,0.2,0.8)

VAR(1,0.5,0.8)

VAR(1,0.8,0.8)

VAR(2,0.2,0.8)

VAR(2,0.5,0.8)

VAR(2,0.8,0.2)

VAR(2,0.8,0.5)

VAR(2,0.8,0.8)

VAR(3,0.2,0.8)

VAR(3,0.5,0.8)

VAR(3,0.8,0.2)

VAR(3,0.8,0.5)

VAR(3,0.8,0.8)

Dataset

0

10

20

30

40

R
2_

q=
1

Comparison of the R2 relative error across different VAR datasets
MCGAN
SigCWGAN
TimeGAN
RCGAN
GMMN

(a) R2 relative error.

VAR(2,0.2,0.8)

VAR(2,0.5,0.8)

VAR(2,0.8,0.2)

VAR(2,0.8,0.5)

VAR(2,0.8,0.8)

VAR(3,0.2,0.8)

VAR(3,0.5,0.8)

VAR(3,0.8,0.2)

VAR(3,0.8,0.5)

VAR(3,0.8,0.8)

Dataset

0.0

0.1

0.2

0.3

0.4

cr
os

s_
co

rre
l

Comparison of the cross correlation metric across different VAR datasets
MCGAN
SigCWGAN
TimeGAN
RCGAN
GMMN

(b) Cross-correlation metric.

VAR(1,0.2,0.8)

VAR(1,0.5,0.8)

VAR(1,0.8,0.8)

VAR(2,0.2,0.8)

VAR(2,0.5,0.8)

VAR(2,0.8,0.2)

VAR(2,0.8,0.5)

VAR(2,0.8,0.8)

VAR(3,0.2,0.8)

VAR(3,0.5,0.8)

VAR(3,0.8,0.2)

VAR(3,0.8,0.5)

VAR(3,0.8,0.8)

Dataset

0.00

0.02

0.04

0.06

0.08

0.10

0.12

ac
f_

id
_l

ag
=1

Comparison of the ACF metric across different VAR datasets
MCGAN
SigCWGAN
TimeGAN
RCGAN
GMMN

(c) ACF metric.

VAR(1,0.2,0.8)

VAR(1,0.5,0.8)

VAR(1,0.8,0.8)

VAR(2,0.2,0.8)

VAR(2,0.5,0.8)

VAR(2,0.8,0.2)

VAR(2,0.8,0.5)

VAR(2,0.8,0.8)

VAR(3,0.2,0.8)

VAR(3,0.5,0.8)

VAR(3,0.8,0.2)

VAR(3,0.8,0.5)

VAR(3,0.8,0.8)

Dataset

0.000

0.005

0.010

0.015

0.020

0.025

ab
s_

m
et

ric

Comparison of the abs metric across different VAR datasets
MCGAN
SigCWGAN
TimeGAN
RCGAN
GMMN

(d) Abs metric.

Figure 5.4: Comparison of the performance across all parameter sets (d,φ ,σ) and bench-
marks.

5.6. Numerical experiments 102

200 400 600 800 1000
0.0

0.5

1.0

1.5

2.0
Norm of G gradient

200 400 600 800 1000

0.02

0.04

0.06

0.08
Abs metric

200 400 600 800 1000
of training step

0.0

0.1

0.2

0.3

0.4

0.5
Acf metric

200 400 600 800 1000
of training step

0.0

0.5

1.0

1.5

2.0
Cross correlation metric

MCGAN
RCGAN

Figure 5.5: Comparison of training dynamics of MCGAN (blue) and RCGAN (orange).
All four dynamics: (1) l2 norm of generator gradient; (2) abs metric;(3) ACF
metric;(4) cross-correlation metric is computed via the moving average (solid
line) and standard deviation (shaded area) using window size 50. The training
dataset is synthesized from VAR(1) model for d = 3, φ = 0.2 and σ = 0.8.

t-2 t-1 t t+1 t+2 t+3

1.0

0.5

0.0

0.5

MCGAN

t-2 t-1 t t+1 t+2 t+3

1.0

0.5

0.0

0.5

SigCWGAN

t-2 t-1 t t+1 t+2 t+3

1.0

0.5

0.0

0.5

RCGAN

fake real

t-2 t-1 t t+1 t+2 t+3

1.0

0.5

0.0

0.5

TimeGAN

t-2 t-1 t t+1 t+2 t+3

1.0

0.5

0.0

0.5

GMMN

Figure 5.6: Comparison of all models’ performance in fitting the conditional distribution of
future time series given one past path sample. The real and generated paths are
plotted in red and blue respectively with the shaded area as the 95% confidence
interval. The training dataset is synthesized from VAR(1) model for d = 3,
φ = 0.8 and σ = 0.8.

ble D.6. Although RCGAN achieves better cross-correlation metrics than MCGAN,

it suffers from much worse predictive performance and auto-correlation.

The distribution metrics (abs metric) of models across different k values are

plotted in Figure 5.7. Across all k values, we observe that the MCGAN outperforms

all baseline models including SigCWGAN in terms of the abs metric. In particular,

we find that RCGAN attains an abs metric of 0.01113 when k = 3. By using MSE

along with the Monte-Carlo method, MCGAN is able to achieve a value of 0.00489

in terms of the abs metric, which reduces the RCGAN abs metric by more than half.

This showcases the effectiveness of MCGAN in capturing the target distribution.

5.6. Numerical experiments 103

Similarly, in the R2 comparison for different k values plotted in Figure 5.7, we

can see that for all different k values, MCGAN consistently outperforms RCGAN in

terms of R2 relative error, highlighting its improvement on predictive power when

compared with RCGAN. The complete numerical results are summarized in Table

D.6. The best results among all the models are highlighted in bold.

In Figure 5.8, we also compare the ACF/PACF plot of the squared residuals

generated by each model. While MCGAN exhibits some proficiency in capturing

temporal dependencies at small lags, our observations reveal a limitation in its per-

formance when considering lags greater than 5. Ideally, the ACF/PACF at larger

lags should approach zero. However, MCGAN deviates from this expectation, dis-

playing notable values at larger lags. In this case, MCGAN falls short compared to

other models concerning the ACF/PACF of squared residuals.

K=2 K=3 K=4
0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

ab
s_

m
et

ric

Comparison of the abs metric across different lags
MCGAN
SigCWGAN
TimeGAN
RCGAN
GMMN

K=2 K=3 K=4
0

10

20

30

40

50

60

70

80

R
2_

q=
1

Comparison of the predictive score across different lags
MCGAN
SigCWGAN
TimeGAN
RCGAN
GMMN

Figure 5.7: (Left) The distributional metric (abs metric) comparison; (Right) the R2 error
(TSTR) comparison using ARCH(k) data for k = 2,3,4.

5.6.3 Stock dataset

As demonstrated in Section 4.4.3, we also assess the performance of MCGAN on

the empirical data. We train the model on the log return of the close prices and

the log of realized volatility of the S&P 500 index (SPX) and Dow Jones index

(DJI), which is retrieved from the Oxford-Man Institute’s “realized library”. Data

is normalized before being fed into the model.

Table 5.2 shows that MCGAN achieves superior or comparable performance to

the other baselines. For the SPX-only data, MCGAN performs better than RCGAN

in terms of the fitting of marginal distribution and feature correlation. Specifically,

MCGAN achieves 0.05641 of correlation metric which is 40% lower than 0.0926

5.6. Numerical experiments 104

0 10
0.0

0.5

1.0

Real
 (0.0)

0 10
0.0

0.5

1.0

SigCWGAN
 (0.530)

0 10
0.0

0.5

1.0

MCGAN
 (0.689)

0 10
0.0

0.5

1.0

GMMN
 (0.678)

0 10
0.0

0.5

1.0

RCGAN
 (0.675)

0 10
0.0

0.5

1.0

TimeGAN
 (0.544)

(a) ACF of squared residuals.

0 10
0.0

0.5

1.0

Real
 (0.0)

0 10
0.0

0.5

1.0

SigCWGAN
 (0.379)

0 10
0.0

0.5

1.0

MCGAN
 (0.579)

0 10
0.0

0.5

1.0

GMMN
 (0.647)

0 10
0.0

0.5

1.0

RCGAN
 (0.549)

0 10
0.0

0.5

1.0

TimeGAN
 (0.502)

(b) PACF of squared residuals.

Figure 5.8: ACF/PACF plot of squared residuals for ARCH(2) model. Here x-axis repre-
sents the lag value (with a maximum lag equal to 10) and the y-axis represents
the corresponding auto- correlation/partial auto-correlation. The length of the
real/generated time series used to compute the ACF is 1000. The number in
the bracket under each model is the sum of the absolute difference between the
correlation coefficients computed from real (dashed line) and generated (solid
line) samples.

obtained by RCGAN. When the MCGAN is outperformed by RCGAN (for exam-

ple, abs metric and ACF discriminator score for SPX and DJI data), the difference

is not significant.

Metrics abs metric ACF metric correlation R2 error(%) Sig-W1

MCGAN 0.00915,0.00937 0.03665,0.03386 0.05641,0.12938 4.20975,2.93112 4.73513,5.19871

RCGAN 0.01134,0.00933 0.04192,0.03367 0.0926,0.13699 5.06443,5.4847 4.74862,5.20083

SigCWGAN 0.01468,0.00879 0.02693,0.03988 0.00638,0.10354 6.25606,5.28866 4.74507,5.18462

TimeGAN 0.01064,0.01136 0.0341,0.03147 0.0101,0.11342 3.79664,2.90929 4.75276,5.22316

GMMN 0.00986,0.01438 0.05483,0.06668 0.07498,0.28339 11.37772 ,13.7324 4.75251,5.19631

GARCH 0.01583,0.01670 0.05392, 0.05337 0.15791, 0.7290 12.1253, 12.5686 4.75825, 5.25344

Table 5.2: Numerical results of the stock datasets. In each cell, the left/right numbers are
the results for the SPX data/ the SPX and DJI data respectively. We use the
relative error of TSTR R2 against TRTR R2 as the R2 metric.

The advantages of MCGAN are highlighted in terms of predictive discrimina-

tor scores. As shown in Figure 5.9, MCGAN consistently achieves better R2 error

(mostly lower than 4%) of different lags compared to RCGAN. Although TimeGAN

has the best R2 error at lag 1, its performance deteriorates fast as the lag increases,

which indicates its poor ability to generate realistic longer time series.

5.6. Numerical experiments 105

1 2 4 5 6 7 8
Lags

2

4

6

8

10

12

14

%

Comparison of R2 relative error
MCGAN
SigCWGAN
TimeGAN
RCGAN
GMMN

Figure 5.9: Comparison of R2 relative error (%) with different lags. All models are trained
on SPX and DJI data.

In Figure 5.10, we also present a comparison of the ACF/PACF of synthetic ab-

solute and squared returns. We can see from Figure 5.10 that when compared with

RCGAN, MCGAN achieved considerable improvement in capturing the temporal

dependency of absolute and squared returns. To be specific, the MCGAN demon-

strates a decent fitting of ACF/PACF of both absolute and squared returns at small

lags, outperforming RCGAN in this regard. It is important to note, however, that

both MCGAN and RCGAN struggle to capture the long-term ACF of both squared

and absolute returns.

In the context of the coverage ratio test of SPX/DJI returns, We have summa-

rized the results of the coverage ratio test in Table 5.3. Notably, MCGAN achieves

the second-best ratio for 1-day ahead returns, with a result of 4.29% for both SPX

and DJI. Furthermore, MCGAN excels by achieving the best ratio for 5-day ahead

returns, precisely 4.02%, equaling that of SigCWGAN. These results indicate that,

in contrast to SigCWGAN, which exhibited a poor VaR estimate for 1-day ahead

returns, MCGAN demonstrates decent 95% VaR estimates for both 1-day and 5-day

ahead returns.

In Figure 5.11, we plot the marginal distribution of the generated data by MC-

GAN compared with that of real SPX and DJI data, which shows that MCGAN is

able to generate realistic synthetic data of the SPX and DJI data. The example path

5.6. Numerical experiments 106

0 10 20
0.0

0.5

1.0
GARCH
 (1.535)

0 10 20
0.0

0.5

1.0
SigCWGAN

 (1.664)

0 10 20
0.0

0.5

1.0
MCGAN
 (3.292)

0 10 20
0.0

0.5

1.0
GMMN
 (5.472)

0 10 20
0.0

0.5

1.0
RCGAN
 (3.314)

0 10 20
0.0

0.5

1.0
TimeGAN
 (3.828)

(a) ACF of squared returns.

0 10 20
0.0

0.5

1.0
GARCH
 (1.411)

0 10 20
0.0

0.5

1.0
SigCWGAN

 (1.524)

0 10 20
0.0

0.5

1.0
MCGAN
 (1.374)

0 10 20
0.0

0.5

1.0
GMMN
 (2.176)

0 10 20
0.0

0.5

1.0
RCGAN
 (1.672)

0 10 20
0.0

0.5

1.0
TimeGAN
 (1.779)

(b) PACF of squared returns.

0 10 20
0.0

0.5

1.0
GARCH
 (2.274)

0 10 20
0.0

0.5

1.0
SigCWGAN

 (1.668)

0 10 20
0.0

0.5

1.0
MCGAN
 (3.071)

0 10 20
0.0

0.5

1.0
GMMN
 (6.167)

0 10 20
0.0

0.5

1.0
RCGAN
 (3.358)

0 10 20
0.0

0.5

1.0
TimeGAN
 (4.156)

(c) ACF of absolute returns.

0 10 20
0.0

0.5

1.0
GARCH
 (0.815)

0 10 20
0.0

0.5

1.0
SigCWGAN

 (1.281)

0 10 20
0.0

0.5

1.0
MCGAN
 (0.907)

0 10 20
0.0

0.5

1.0
GMMN
 (1.875)

0 10 20
0.0

0.5

1.0
RCGAN
 (1.219)

0 10 20
0.0

0.5

1.0
TimeGAN
 (1.161)

(d) PACF of absolute returns.

Figure 5.10: ACF/PACF plot of absolute and squared returns for SPX (green line) and DJI
(orange line). Here x-axis represents the lag value (with a maximum lag equal
to 10) and the y-axis represents the corresponding auto-correlation/partial
auto-correlation. The length of the real/generated time series used to com-
pute the ACF is 1000. The number in the bracket under each model is the sum
of the absolute difference between the correlation coefficients computed from
real (dashed line) and synthetic (solid line) samples.

of generated log returns can be found in Figure D.11. Other details of numerical

results can also be found in Appendix C.4.

7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.00.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

pd
f

SPX log-return
Historical
Generated

4 2 0 2 40.0

0.1

0.2

0.3

0.4

0.5

pd
f

SPX log-vol
Historical
Generated

7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.00.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

pd
f

DJI log-return
Historical
Generated

2 0 2 40.0

0.1

0.2

0.3

0.4

0.5

pd
f

DJI log-vol
Historical
Generated

Figure 5.11: Comparison of the marginal distributions of the generated MCGAN paths and
the SPX and DJI data.

5.7. Conclusions 107

Models Ratio of 1-day ahead returns Ratio of 5-day ahead returns

SigCWGAN 8.04%,9.11% 3.62%,4.02%

MCGAN 4.29%,4.29% 3.35%,4.02%

TimeGAN 6.70%,8.31% 5.63%,6.70%

RCGAN 4.95%,4,42% 3.62%,3.88%

GMMN 6.70%,6.70% 6.43%,6.30%

GARCH 9.70%,8.75% 7.63%,6.70%

Table 5.3: Results of coverage ratio test applied to SPX and DJI stock returns. In each
cell, the left/right numbers are the results for the SPX/ DJI data respectively. A
ratio that is closer to 5% indicates a more accurate 95% VaR estimate. The VaR
estimate of each model for each observation is obtained using 5000 generated
samples.

5.7 Conclusions

In this chapter, we introduced MCGAN, a more general framework that enhances

the generator’s performance. MCGAN incorporates mean squared error (MSE) and

the Monte-Carlo method into the generative loss function, providing strong supervi-

sion for the generator. As shown in this chapter, in order to learn the target distribu-

tion, we no longer require an optimal discriminator of a certain discriminative loss.

Instead, we expect the discriminator to obtain discriminability, a weaker condition

on the discriminator, such that when combined with MSE, the discriminability will

provide sufficient information to guide the generator training. Additionally, this

innovative generative loss function has better training stability compared with non-

saturating loss. A toy example named Dirac-GAN is employed to illustrate the ad-

vantage of MCGAN. In this example, while other unregularized GANs fail to con-

verge to the equilibrium point, the generator of MCGAN still successfully reaches

the optimum regardless of the failure of the discriminator, which is attributed to

the strong supervision provided by MSE. For the conditional time-series task, MC-

GAN can also avoid the additional least square regression used in SigCWGAN and

conditional WGAN to estimate the conditional expectation under the real measure,

which considerably improves the efficiency of the algorithm.

5.7. Conclusions 108

Numerical experiments on synthetic and empirical datasets presented in Sec-

tion 5.6 also validate the superiority of MCGAN compared with other baselines.

On VAR datasets, MCGAN consistently improves the performance of RCGAN in

terms of all test metrics. Moreover, MCGAN has better training stability and faster

convergence than RCGAN. Compared with other baseline models, it also better cap-

tures the conditional distribution of the VAR dataset. On the ARCH dataset, MC-

GAN also achieved the best abs metrics across all k values. On the stock dataset, it

is observed that MCGAN considerably outperforms RCGAN in terms of abs metric

and cross-correlation metric. Additionally, the MCGAN consistently demonstrates

significantly lower R2 relative error across different lag values, indicating better

short-term and long-term predictive power of MCGAN. All these state-of-the-art

results show the effectiveness and advantages of MCGAN in generating realistic

time series.

Chapter 6

Conclusion and future direction

6.1 Conclusion

To sum up, we proposed two methods in this thesis to improve the generative per-

formance of GANs for time-series generation. Specifically, from the discriminator

perspective, we propose SigCWGAN which is inspired by the Wasserstein distance

in signature feature space and provides an efficient and robust algorithm for condi-

tional time-series generation. SigCWGAN turns the conventional GAN framework

into supervised learning, which dramatically simplifies the training and improves

generative performance. From the generator perspective, we propose a more gen-

eral conditional generative model, namely the MCGAN algorithm, where we design

a novel generative loss function that utilizes MSE and Monte Carlo method to com-

pute the difference between the real and fake expected discriminator scores. Ben-

efiting from the strong supervision in MSE, this proposed generative loss function

enables the generator to learn the target distribution with a relatively weaker condi-

tion imposed on the discriminator. Additionally, it is shown to have better training

stability compared to the original GAN.

Numerical results shown in Sections 4.4 and 5.6 demonstrate that both SigCW-

GAN and MCGAN can achieve state-of-the-art performance on both synthetic and

empirical datasets. These results allow us to conclude that the proposed SigCW-

GAN and MCGAN are empirically useful in learning the conditional distributions

induced by time series, especially in capturing the temporal dependency. Addi-

6.2. Discussion and future direction 110

tionally, both of them substantially improve the training stability in the time-series

generation task compared with other baseline models.

6.2 Discussion and future direction
While SigCWGAN and MCGAN have shown impressive performance, it is impor-

tant to acknowledge their limitation and potential problems. In this section, we

discuss some potential problems of SigCWGAN and MCGAN and explore future

directions.

6.2.1 About SigCWGAN

In spite of the superior performance of SigCWGAN, it still has some potential prob-

lems. As already discussed in Section 5.1, the regression module we proposed in

Section 4.2.1 to estimate the conditionally expected signature has the risk of unsat-

isfactory estimation of the expected signature under the true measure. And it might

suffer from overfitting problems in the case of a very high degree of the signature.

Moreover, the residual assumption of linear regression models might not be ful-

filled in practice. As claimed in [26], the covariance of the residual under the linear

signature models has a special algebraic structure: the covariance is uniquely deter-

mined by the expected signature via shuffle product. Therefore, the homoscedas-

ticity assumption is violated, which can result in a biased estimator of the expected

signature.

Despite the motivation of Sig-W1 from the approximation of W Sig
1 , it is hard

to establish the theoretical results on the link between these two metrics. The main

difficulty comes from that the uniform approximation of the continuous function f

by a linear map L on K does not guarantee the closeness of their Lipschitz norms.

We conjecture that in general W Sig
1 (µ,ν) is not equal to Sig-W1(µ,ν). However,

it would be interesting but technically challenging to find out sufficient conditions

such that these two metrics coincide [20].

Apart from that, we are also interested in applying SigCWGAN in high-

dimensional time-series generation [74, 75, 76, 77]. However, SigCWGAN suffers

from the curse of dimensionality as the dimension
(

∑
k
i=0 di = dk+1−1

d−1

)
of the trun-

6.2. Discussion and future direction 111

cated signature grows geometrically in the dimension of the path d. For this reason,

the current SigCWGAN algorithm might not be able to perform high-dimensional

time-series generation tasks efficiently. To combat this challenge, one potential

solution is to apply dimension reduction techniques in path augmentation like coor-

dinates projection and random projections [28, 78]. The random projection consists

of multiple random affine transformations that map the high-dimension time series

into a smaller space, while coordinates projection can be used to compute the sig-

nature of multiple subsets of the coordinates individually. Although one can easily

incorporate these dimension reduction techniques into the SigCWGAN framework,

the efficiency of the algorithm remains an open question.

6.2.2 About MCGAN

As for the MCGAN model, it provides a more general framework than SigCW-

GAN and can be easily extended to other conditional generation tasks like condi-

tional image generation [79, 43, 80]. However, one potential problem of MCGAN

is the over-fitting of the generator. Especially when training sets are very limited,

the generator tends to generate only a handful of samples that can achieve large

discriminator output. Consequently, generated samples are of extremely low di-

versity no matter what noise you feed into the generator. In that case, we suggest

applying weight decay [59] that is used to limit the weight norm and hence improve

the network’s generalization. The effectiveness of weight decay in preventing the

generator from over-fitting has already been empirically demonstrated in [50]. By

applying weight decay on the generator network, we will be able to improve the

diversity of the generated samples under the usage of MSE.

Additionally, it will be intriguing to explore how the MC size affects the gen-

eration performance of MCGAN. Although a larger MC size will give us a better

estimator of conditional expectation, it might not lead to a better generalization of

the model. For example, if we fix the real samples and consider a sufficiently large

MC sample size, then in every training epoch we will have a very stable and accu-

rate MC estimator of the conditional expectation of fake discriminator output. In

this case, the job of the generator is rather easy, it only needs to output a constant

6.2. Discussion and future direction 112

sample such that the discriminator output given this sample is equal to the average

of the discriminator output of those fixed real samples, which leads to a terrible

generalization of the generator. This phenomenon is also connected to large-batch

training where there is a degradation in the quality of the model. Keskar et al. [81]

empirically investigate this problem. It is found that the small-batch (SB) method

usually achieves better test accuracy compared to the large-batch (LB) method al-

though the SB training accuracy is a bit worse. This lack of generalization is due to

the fact that the LB method tends to converge to sharp minimizers of the objective

function that is highly sensitive to the training set. In contrast, the SB method will

consistently converge to a flat minimizer which is less sensitive to the training set

and leads to a better generalization of the model. To overcome the degradation in

generalization when using the LB method, a prospective remedy includes dynamic

sampling where the batch size is increased gradually as the iteration progresses

[82, 83]. Similarly, in order to improve the generalization of the generator while

using a large MC sample size, we can also apply this warm-start method where we

start with a relatively smaller MC sample size at the beginning, then a larger size at

the later stage of training. It will also be interesting to theoretically prove how the

MC size affects the generalization of the generator.

Appendix A

Rough Paths

For the sake of precision, we introduce in this chapter the definition of p-rough path

and geometric p-rough path. Again, we follow the notations from [16].

A.1 p-rough paths
Let p ≥ 1 be a real number and X : J → E be a continuous path. Recall that the

p-variation of X on the interval J is defined by

||X ||p,J =
[

sup
D⊂J

r−1

∑
j=0

∣∣Xt j+1−Xt j

∣∣p] 1
p

, (A.1)

where the supremum is taken over any time partition of J, i.e. D= (t1, t2, · · · , tr). 1

Let Vp(J,E) denote the range of any continuous path mapping from J to E

of finite p-variation. The larger the p-variation is, the rougher a path is. For each

p ≥ 1, the p-variation norm of a path X ∈ Vp(J,E) is denoted by ||X ||p−var and

defined as follows:

||X ||p−var = ||X ||p,J + sup
t∈J
||Xt ||.

Before we go through the definition of p-rough paths, we first introduce the

Control function.

1Let J = [s, t] be a closed bounded interval. A time partition of J is an increasing sequence of
real numbers D = (t0, t1, · · · , tr) such that s = t0 < t1 < · · · < tr = t. Let |D| denote the number of

time points in D, i.e. |D|= r+1. ∆D denotes the time mesh of D, i.e. ∆D :=
r−1
max
i=0

(ti+1− ti).

A.1. p-rough paths 114

Definition A.1.1 (Control). Let ∆T denote the simplex {(s, t) ∈ [0,T]2 : 0≤ s≤ t ≤
T}. A control function on J = [0,T] is a continuous non-negative function ω on ∆T

which is super-additive in the sense that

ω(s, t)+ω(t,u)≤ ω(s,u), ∀s≤ t ≤ u ∈ J

and for which ω(t, t) = 0 for all t ∈ J.

Now we focus on collections of elements of T ((E)) which satisfy Chen’s iden-

tity. Such collections are called multiplicative functionals and the point of the the-

ory of rough paths is to take them as the fundamental objects driving differential

equations.

Definition A.1.2 (Multiplicative functional). Let n≥ 1 be an integer. Let X : ∆T →
T (n)(V) be a continuous map. For each (s, t) ∈ ∆T , denote by Xs,t the image by X

of (s, t) and write

Xs,t = (X0
s,t ,X

1
s,t , . . . ,X

n
s,t) ∈ R⊕V ⊕V⊗2⊕ . . .⊕V⊗n.

The function X is called a multiplicative functional of degree n in V if X0
s,t = 1 for

all (s, t) ∈ ∆T and

Xs,u⊗Xu,t = Xs,t ∀s,u, t ∈ [0,T],s≤ u≤ t.

So far, the only condition imposed on a functional X has been Chen’s identity,

which is a purely algebraic condition. We are now going to introduce a notion of

p-variation for multiplicative functionals.

Definition A.1.3. Let p ≥ 1 be a real number and n ≥ 1 be an integer. Let ω :

[0,T]→ [0,∞) be a control. Let X : ∆T → T (n)(V) be a multiplicative functional.

We say that X has finite p-variation on ∆T controlled by ω if

∥X i
s,t∥ ≤

ω(s, t)
i
p

β (i
p)!

∀i = 1 . . .n, ∀(s, t) ∈ ∆T ,

A.2. Expected signature of stochastic processes 115

where

β = p2

1+
∞

∑
r=3

(
2

r−2

) ⌊p⌋+1
p

 .

In general, we say that X has finite p-variation if there exists a control ω such that

the conditions above are satisfied.

A p-rough path is then defined to be a multiplicative functional of finite p-

variation and degree ⌊p⌋.

Definition A.1.4 (p-rough path). Let V be a Banach space. Let p ≥ 1 be a real

number. A p-rough path in V is a multiplicative functional of degree ⌊p⌋ in V with

finite p-variation. The space of p-rough paths is denoted by Ωp(V).

Given p ≥ q, a q-rough path can be extended to a multiplicative functional of

degree ⌊p⌋ with finite q-variation, hence finite p-variation. In particular, a path with

bounded variation can be considered canonically as a p-rough path for every p≥ 1.

Definition A.1.5 (Geometric p-rough path). A geometric p-rough path is a p-rough

path that can be expressed as a limit of 1-rough paths in the p-variation distance.

The space of geometric p-rough paths in V is denoted by GΩp(V).

For a more detailed description, we refer the interested readers to [16].

A.2 Expected signature of stochastic processes
Definition A.2.1. Let X denote a stochastic process, whose signature is well defined

almost surely. Assume that E[S(X)] is well defined and finite. We say that E[S(X)]

has infinite radius of convergence, if and only if for every λ ≥ 0,

∑
n≥0

λ
n|Πn(E[S(X)])|< ∞.

Appendix B

Basics of neural networks

In recent years, neural networks have been very popular in machine learning, which

has gained wide attention. It is one way to construct the function with a forecasting

ability in supervised learning problems which has been successfully applied to many

real world problems. The simplest neural network (NN) consists of two different

layers: one input layer where the data flows in and one output layer where the

prediction ŷ ∈ Re is made, which can be formulated as:

ŷ = σ(Wx+b), ∀x ∈ Rd,

where W ∈ Re×d is the weight matrix, b ∈ Rd is the bias vector and σ is called the

activation function which can add non-linearity to the neural network. Let the set

of parameters be denoted as θ where θ = {W,b}. The process of training a neural

network is indeed the following optimization problem:

argmin
θ

L(θ |{xi,yi}N
i=1),

where the function L is called the loss function which measures the difference be-

tween the ground-truth yi and the prediction ŷi given xi.

To make the model more complex, one can increase the number of layers. The

NN with L layers is a nonlinear map hL : Rd → Rd which receives the input x and

maps it to the output ŷ such that ŷ := hL(x). It usually consists of three different

layers: the input layer, the hidden layer, and the output layer. Here we present two

117

examples.

Feedforward Neural Network Conventionally, the feedforward neural network

(FNN) or deep neural network (DNN) is a NN with L > 2. Let l ∈ {1, · · · ,L− 1}
be the index for hidden layers and nl be the number of neurons, i.e. the number

of elements in the output vector of the lth layer. Layers in FNN are defined in the

following recursive way:

1. Input layer: h0 : Rd → Rd ,

h0(x) = x, ∀x ∈ Rd;

2. Hidden layer: hl : Rnl−1 → Rnl

hl(x) = σl(Wlhl−1(x)+bl), ∀x ∈ Rd

where Wl ∈ Rnl×nl−1 is the weight matrix, bl ∈ Rnl is the bias term and σl is

called the activation function.

3. Output layer: hL : RnL−1 → Re

hL(x) = σL(WLhL−1(x) = bL), ∀x ∈ R

where WL ∈ Re×nL−1 is the weight matrix, bL ∈ Re is the bias term and σL is

the activation function.

Thus the output of FNN is ŷ = hL(x) and the parameter set is θ := {(Wl,bl)}L
l=1.

The feedforward neural network is the simplest type of artificial neural network

devised. In FNN, the information moves in only one direction—forward, as its

name implies, from the input layer, through the hidden layer, and to the output

layer.

Recurrent Neural Networks As a descendant of FNN, recurrent neural networks

(RNN) have a totally different structure, where the data in RNN would flow back-

ward from the output of the hidden layer to the layer itself. Hence RNN is useful

B.1. AR-FNN architecture 118

when dealing with time-dependent data, such as solutions of stochastic differential

equations, human actions, hand-written characters, etc. The RNN is also composed

of three types of layers, i.e. the input layer, the hidden layer, and the output layer.

RNN takes the sequential input data {xt}T
t=1, where xt ∈Rd , and compute the output

{ot}T
t=1, where ot ∈ Re using Equation (B.1):

ht = σ(Uxt +Wht−1),

ot = q(Vht),
(B.1)

where {ht}T
t=1 is the hidden layer output with ht ∈ Rh and U ∈ Rh×d , W ∈ Rh×h

and V∈Re×h are model parameters, and σ and q are two activation functions in the

hidden layer and output layer respectively. We denote the RNN model as R((xt)t).

When training the RNN, the prediction is ŷt := R((xt)t) and θ := {U,W,V} is the

parameter set.

The model parameters of the neural network are updated during the training to

minimize the loss, and the choice of the loss function depends on the goal we want

to achieve. For generative models like GAN [35], the loss function is binary cross

entropy which is a measure of the difference between two probability measures for

a given random variable or set of events. The model parameters are updated to learn

the target distribution in such a way that the model can be used to generate new

samples that persist with the same property as the original dataset does.

B.1 AR-FNN architecture

In this section, we give a detailed description of the AR-FNN architecture below.

For this purpose, let us start with defining the employed transformations, namely

the parametric rectifier linear unit (PReLU) and the residual layer.

Definition B.1.1 (Parametric rectifier linear unit). The parametrised function φα ∈
C(R,R),α ≥ 0 defined as

φα(x) = max(0,x)+α min(0,x)

B.1. AR-FNN architecture 119

Affine F (x) PReLU ⊕
add

R(x)

output
x

skip connection
(identity)

x

ϕα ◦ F (x)

Figure B.1: Architecture of residual layer.

is called parametric rectifier linear unit (PReLU).

Definition B.1.2 (Residual layer). Let F : Rn→Rn be an affine transformation and

φα ,α ≥ 0 a PReLU. The function R : Rn→ Rn defined as

R(x) = x+φα ◦F(x),

where φα is applied component-wise, is called residual layer.

We provide an illustration of residual layer architecture in Figure B.1.

The AR-FNN is defined as a composition of PReLUs, residual layers, and

affine transformations. Its inputs are the past p-lags of the d-dimensional process

we want to generate as well as the d-dimensional noise vector. A formal definition

is given below.

Definition B.1.3 (AR-FNN). Let d, p ∈ N, A1 : Rd(p+1)→ Rn1 , A4 : Rn3 → Rd be

affine transformations, φα ,α ≥ 0 a PReLU and Ri : Rni−1 → Rni for i = 2,3 two

residual layers. Then the function ArFNN : Rd p×Rd → Rd defined as

ArFNN(x,z) = A4 ◦R3 ◦R2 ◦φα ◦A1(xz),

where xz denotes the concatenated vectors x and z, is called autoregressive feedfor-

ward neural network (AR-FNN).

In our implementation, the hidden dimension is set as n1 = n2 = n3 = 50. The

B.1. AR-FNN architecture 120

pseudo-code of generating the next q-step forecast using Gθ can be found in Algo-

rithm 1.

Appendix C

Supplementary numerical results

C.1 Implementation and hyper-parameters
The implementation of those numerical experiments included in this thesis can be

found in the GitHub repository 1. For all the numerical experiments, we use the

following hyper-parameters: length of past path p = 3, length of future path q = 3,

batch size B = 200, generator learning rate αθ = 1× 10−4, discriminator learning

rate αφ = 2×10−4, number of discriminator optimization steps per generator iter-

ation Nd = 3. Regarding the Monte Carlo sample size, MCGAN and SigCWGAN

share the same MC sample size for each dataset, which we list in Table D.1.

Dataset VAR(d=1) VAR(d=2) VAR(d=3) ARCH SPX SPX/DJI

MC size 500 1000 1000 2000 1000 1000

Table D.1: Monte Carlo sample size used in SigCWGAN and MCGAN for each example.

C.1.1 Truncation level of signature in SigCWGAN

We also provide Table D.2 that summarizes the truncation level of the signature

used in SigCWGAN for each example. The signature of future paths and past paths

share the same truncation level.

Dataset VAR(d=1) VAR(d=2) VAR(d=3) ARCH SPX SPX/DJI

Level 3 2 2 3 3 2

Table D.2: Truncation level of signature used in SigCWGAN for each example.

1https://github.com/Baoren1996/SigWGANandBeyond

https://github.com/Baoren1996/SigWGANandBeyond

C.2. VAR(1) dataset 122

C.2 VAR(1) dataset
We conduct the extensive experiments on VAR(1) with different hyper-parameter

settings, i.e. d ∈ {1,2,3}, σ ,φ ∈ {0.2,0.5,0.8}.

Test metrics of different models We apply MCGAN, SigCWGAN, and the other

above-mentioned methods on the VAR(1) dataset with various hyperparameter set-

tings. The summary of the test metrics of all models on d dimensional VAR(1) data

for d = 1,2,3 can be found in Table D.3, D.4 and D.5 respectively.

Table D.3: Numerical results of VAR(1) for d = 1

Temporal Correlations

Settings φ = 0.2 φ = 0.5 φ = 0.8

Metric on marginal distribution

SigCWGAN 0.00522 0.00610 0.00381
MCGAN 0.00402 0.00501 0.00384
TimeGAN 0.0259 0.02735 0.01691
RCGAN 0.00443 0.00683 0.00464
GMMN 0.00678 0.00659 0.00554

Absolute difference of lag-1 autocorrelation

SigCWGAN 0.00947 0.01464 0.00182
MCGAN 0.00648 0.02047 0.00324
TimeGAN 0.04269 0.04526 0.01651
RCGAN 0.00266 0.01943 0.00531
GMMN 0.01232 0.00106 0.00618

Relative R2 error (%)

SigCWGAN 0.45011 0.12953 0.00654
MCGAN 0.15403 0.39642 0.03417
TimeGAN 7.44523 2.12036 1.38983
RCGAN 2.16534 0.93133 0.19214
GMMN 0.34882 1.36565 2.10632

Sig-W1 distance

SigCWGAN 0.69598 1.09869 2.34807
MCGAN 0.69529 1.10365 2.35118
TimeGAN 0.71696 1.12885 2.37692
RCGAN 0.69653 1.0995 2.35203
GMMN 0.70083 1.10592 2.3526

C.2. VAR(1) dataset 123

Table D.4: Numerical results of VAR(1) for d = 2

Temporal Correlations (fixing σ = 0.8) Feature Correlations (fixing φ = 0.8)

Settings φ = 0.2 φ = 0.5 φ = 0.8 σ = 0.2 σ = 0.5 σ = 0.8

Metric on marginal distribution

SigCWGAN 0.01177 0.00537 0.00365 0.00383 0.00277 0.00365
MCGAN 0.00384 0.00651 0.00538 0.00457 0.00502 0.00538
TimeGAN 0.02059 0.02187 0.01113 0.00933 0.01099 0.01113
RCGAN 0.00613 0.00706 0.00466 0.00607 0.00886 0.00466
GMMN 0.00861 0.00912 0.00601 0.00474 0.00476 0.00601

Absolute difference of lag-1 autocorrelation

SigCWGAN 0.00658 0.00248 0.00419 0.00353 0.00555 0.00419
MCGAN 0.02137 0.04051 0.00716 0.00438 0.00840 0.00716
TimeGAN 0.04433 0.04567 0.00822 0.02446 0.00442 0.00822
RCGAN 0.01857 0.04249 0.03218 0.01227 0.03571 0.03218
GMMN 0.00699 0.02081 0.04263 0.08085 0.05893 0.04263

L1-norm of real and generated cross-correlation matrices

SigCWGAN 0.00804 0.01113 0.01122 0.00476 0.01198 0.01122
MCGAN 0.02653 0.01502 0.01149 0.01381 0.03842 0.01149
TimeGAN 0.08622 0.07002 0.07494 0.07455 0.04685 0.07494
RCGAN 0.01200 0.02846 0.03460 0.08187 0.03317 0.03460
GMMN 0.00745 0.00565 0.02705 0.00973 0.00917 0.02705

Relative R2 error (%).

SigCWGAN 1.24036 0.09027 0.01252 0.01381 0.01248 0.01252
MCGAN 10.24923 1.61850 0.42136 0.26449 0.35319 0.42136
TimeGAN 40.1273 4.92783 1.21018 1.05100 0.89636 1.21018
RCGAN 18.33682 4.31191 1.39435 3.94201 1.58417 1.39435
GMMN 35.25094 15.76457 6.56956 12.42385 9.88914 6.56956

Sig-W1 distance

SigCWGAN 1.92823 2.42590 3.60068 3.02208 3.23497 3.60068
MCGAN 1.93087 2.42466 3.61617 3.02879 3.2390 3.61617
TimeGAN 1.98070 2.47622 3.63571 3.04472 3.26746 3.63571
RCGAN 1.93333 2.43379 3.61464 3.03564 3.21083 3.61464
GMMN 1.94517 2.43949 3.60922 3.02910 3.23898 3.60922

Training stability Figures D.1 to D.3 demonstrate the stability of the SigCWGAN

and MCGAN optimization in terms of training iterations in contrast to other base-

lines, in particular two baselines involving the min-max game optimization.

C.2. VAR(1) dataset 124

Table D.5: Numerical results of VAR(1) for d = 3

Temporal Correlations (fixing σ = 0.8) Feature Correlations (fixing φ = 0.8)

Settings φ = 0.2 φ = 0.5 φ = 0.8 σ = 0.2 σ = 0.5 σ = 0.8

Metric on marginal distribution

SigCWGAN 0.01463 0.01240 0.00477 0.00423 0.00452 0.00477
MCGAN 0.00476 0.00436 0.00596 0.00715 0.00661 0.00596
TimeGAN 0.02359 0.02096 0.00886 0.01054 0.00915 0.00886
RCGAN 0.01068 0.00634 0.00577 0.00836 0.00597 0.00577
GMMN 0.01001 0.01024 0.00987 0.01427 0.01323 0.00987

Absolute difference of lag-1 autocorrelation

SigCWGAN 0.00570 0.00508 0.00131 0.00330 0.00172 0.00131
MCGAN 0.00684 0.01805 0.0199 0.00947 0.00529 0.0199
TimeGAN 0.04601 0.09309 0.01643 0.03144 0.04736 0.01643
RCGAN 0.05663 0.04925 0.02041 0.01894 0.01863 0.02041
GMMN 0.04041 0.06024 0.08998 0.10196 0.13395 0.08998

L1-norm of real and generated cross-correlation matrices

SigCWGAN 0.01214 0.01311 0.00317 0.01715 0.02862 0.00317
MCGAN 0.04076 0.03819 0.03659 0.04631 0.08001 0.03659
TimeGAN 0.20056 0.43239 0.15509 0.09314 0.09228 0.15509
RCGAN 0.24082 0.16809 0.09657 0.16257 0.11514 0.09657
GMMN 0.09850 0.12638 0.20142 0.3096 0.37507 0.20142

Relative R2 error (%).

SigCWGAN 1.393190 0.34009 0.07690 0.05323 0.03498 0.07690
MCGAN 14.63272 1.62564 0.56412 0.32549 0.42388 0.56412
TimeGAN 36.71498 8.94899 2.38110 2.61944 3.80723 2.38110
RCGAN 70.69909 16.50512 2.83140 1.44543 2.79532 2.83140
GMMN 152.87792 38.97992 17.94085 25.12542 26.93346 17.94085

Sig-W1 distance

SigCWGAN 11.57390 17.66105 30.46722 30.75008 25.24824 30.46722
MCGAN 11.57797 17.69298 30.48571 30.73360 25.22319 30.48571
TimeGAN 11.88320 18.09083 30.70047 30.86857 25.36035 30.70047
RCGAN 11.53368 17.72101 30.40070 30.74105 25.30295 30.40070
GMMN 11.61313 17.73444 30.59544 30.79028 25.38754 30.59544

C.2. VAR(1) dataset 125

0 200 400 600 800 1000
of training step

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Abs metric

0 200 400 600 800 1000
of training step

0.0

0.1

0.2

0.3

0.4

0.5
ACF metric

(a) SigCWGAN

0 200 400 600 800 1000
of training step

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Abs metric

0 200 400 600 800 1000
of training step

0.0

0.1

0.2

0.3

0.4

0.5
ACF metric

(b) MCGAN

0 200 400 600 800 1000
of training step

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Abs metric

0 200 400 600 800 1000
of training step

0.0

0.1

0.2

0.3

0.4

0.5
ACF metric

(c) RCGAN

0 200 400 600 800 1000
of training step

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Abs metric

0 200 400 600 800 1000
of training step

0.0

0.1

0.2

0.3

0.4

0.5
ACF metric

(d) TimeGAN

0 200 400 600 800 1000
of training step

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Abs metric

0 200 400 600 800 1000
of training step

0.0

0.1

0.2

0.3

0.4

0.5
ACF metric

(e) GMMN

Figure D.1: Example development of the considered distances and score functions during
training for the 1-dimensional VAR(1) model with autocorrelation coefficient
φ = 0.8 and co-variance parameter σ = 0.8. The colors blue and orange indi-
cate the relevant distance/score for each dimension.

C.2. VAR(1) dataset 126

0 200 400 600 800 1000
of training step

0.02

0.04

0.06

0.08 Abs metric

0 200 400 600 800 1000
of training step

0.0
0.1
0.2
0.3
0.4
0.5 ACF metric

0 200 400 600 800 1000
of training step

0.0

0.5

1.0

1.5

2.0 Cross-correlation metric

(a) SigCWGAN

0 200 400 600 800 1000
of training step

0.02

0.04

0.06

0.08 Abs metric

0 200 400 600 800 1000
of training step

0.0
0.1
0.2
0.3
0.4
0.5 ACF metric

0 200 400 600 800 1000
of training step

0.0

0.5

1.0

1.5

2.0 Cross-correlation metric

(b) MCGAN

0 200 400 600 800 1000
of training step

0.02

0.04

0.06

0.08 Abs metric

0 200 400 600 800 1000
of training step

0.0
0.1
0.2
0.3
0.4
0.5 ACF metric

0 200 400 600 800 1000
of training step

0.0

0.5

1.0

1.5

2.0 Cross-correlation metric

(c) RCGAN

0 200 400 600 800 1000
of training step

0.02

0.04

0.06

0.08 Abs metric

0 200 400 600 800 1000
of training step

0.0
0.1
0.2
0.3
0.4
0.5 ACF metric

0 200 400 600 800 1000
of training step

0.0

0.5

1.0

1.5

2.0 Cross-correlation metric

(d) TimeGAN

0 200 400 600 800 1000
of training step

0.02

0.04

0.06

0.08 Abs metric

0 200 400 600 800 1000
of training step

0.0
0.1
0.2
0.3
0.4
0.5 ACF metric

0 200 400 600 800 1000
of training step

0.0

0.5

1.0

1.5

2.0 Cross-correlation metric

(e) GMMN

Figure D.2: Example development of the considered distances and score functions during
training for the 2-dimensional VAR(1) model with autocorrelation coefficient
φ = 0.8 and co-variance parameter σ = 0.8. The colors blue and orange indi-
cate the relevant distance/score for each dimension.

C.2. VAR(1) dataset 127

0 200 400 600 800 1000
of training step

0.02

0.04

0.06

0.08 Abs metric

0 200 400 600 800 1000
of training step

0.0
0.1
0.2
0.3
0.4
0.5 ACF metric

0 200 400 600 800 1000
of training step

0.0

0.5

1.0

1.5

2.0 Cross-correlation metric

(a) SigCWGAN

0 200 400 600 800 1000
of training step

0.02

0.04

0.06

0.08 Abs metric

0 200 400 600 800 1000
of training step

0.0
0.1
0.2
0.3
0.4
0.5 ACF metric

0 200 400 600 800 1000
of training step

0.0

0.5

1.0

1.5

2.0 Cross-correlation metric

(b) MCGAN

0 200 400 600 800 1000
of training step

0.02

0.04

0.06

0.08 Abs metric

0 200 400 600 800 1000
of training step

0.0
0.1
0.2
0.3
0.4
0.5 ACF metric

0 200 400 600 800 1000
of training step

0.0

0.5

1.0

1.5

2.0 Cross-correlation metric

(c) RCGAN

0 200 400 600 800 1000
of training step

0.02

0.04

0.06

0.08 Abs metric

0 200 400 600 800 1000
of training step

0.0
0.1
0.2
0.3
0.4
0.5 ACF metric

0 200 400 600 800 1000
of training step

0.0

0.5

1.0

1.5

2.0 Cross-correlation metric

(d) TimeGAN

0 200 400 600 800 1000
of training step

0.02

0.04

0.06

0.08 Abs metric

0 200 400 600 800 1000
of training step

0.0
0.1
0.2
0.3
0.4
0.5 ACF metric

0 200 400 600 800 1000
of training step

0.0

0.5

1.0

1.5

2.0 Cross-correlation metric

(e) GMMN

Figure D.3: Example development of the considered distances and score functions during
training for the 3-dimensional VAR(1) model with autocorrelation coefficient
φ = 0.8 and co-variance parameter σ = 0.8. The colors blue and orange indi-
cate the relevant distance/score for each dimension.

C.2. VAR(1) dataset 128

0 5 10 15 20
0.0

0.5

1.0

Real
 (0.0)

dim 1
dim 2
dim 3

0 5 10 15 20
0.0

0.5

1.0

SigCWGAN
 (1.441)

0 5 10 15 20
0.0

0.5

1.0

MCGAN
 (1.575)

0 5 10 15 20
0.0

0.5

1.0

GMMN
 (2.767)

0 5 10 15 20
0.0

0.5

1.0

RCGAN
 (1.937)

0 5 10 15 20

0.0

0.5

1.0

TimeGAN
 (2.093)

Figure D.4: ACF plot for each channel on the 3-dimensional VAR(1) dataset with autocor-
relation coefficient φ = 0.8 and co-variance parameter σ = 0.8. Here x-axis
represents the lag value (with a maximum lag equal to 100) and the y-axis rep-
resents the corresponding auto-correlation. The length of the real/generated
time series used to compute the ACF is 1000. The number in the bracket under
each model is the sum of the absolute difference between the correlation coef-
ficients computed from real (dashed line) and generated (solid line) samples.

C.3. ARCH(k) 129

C.3 ARCH(k)
We implement extensive experiments on ARCH(k) with different k−lag values, i.e.

k ∈ {2,3,4}. We choose the optimal degree of signature as 3. The numerical results

are summarized in Table D.6. The best results among all the models are highlighted

in bold.

C.3. ARCH(k) 130

Table D.6: Numerical results of the ARCH(k) datasets.

Settings k = 2 k = 3 k = 4

Metric on marginal distribution

SigCWGAN 0.01956 0.00884 0.01342
MCGAN 0.00883 0.00489 0.00638
TimeGAN 0.01712 0.01501 0.01239
RCGAN 0.01249 0.01113 0.00814
GMMN 0.02079 0.01498 0.00980

Absolute difference of lag-1 autocorrelation

SigCWGAN 0.01178 0.00601 0.00687
MCGAN 0.05063 0.05070 0.00647
TimeGAN 0.06774 0.04640 0.00788
RCGAN 0.03317 0.02608 0.02679
GMMN 0.02131 0.01270 0.00943

l1-norm of real and generated cross correlation matrices

SigCWGAN 0.01002 0.00991 0.02645
MCGAN 0.04777 0.03374 0.05829
TimeGAN 0.00243 0.01321 0.12278
RCGAN 0.00674 0.00775 0.02941
GMMN 0.04594 0.05310 0.03074

Relative error (%) of R2 obtained from TSTR.

SigCWGAN 0.42229 0.22901 0.51255
MCGAN 1.66906 2.41386 3.53569
TimeGAN 7.99938 2.28691 11.3179
RCGAN 6.30669 7.65128 5.68634
GMMN 77.6923 26.9197 20.6545

Sig-W1 distance

SigCWGAN 2.78657 4.25746 7.10808
MCGAN 2.80282 4.27829 7.11126
TimeGAN 2.83394 4.29551 7.12979
RCGAN 2.80822 4.27600 7.11534
GMMN 2.85250 4.30627 7.14542

C.3. ARCH(k) 131

Model
Lag

1 2 3 4 5 6 7 8

SigCWGAN 0.22901 0.34059 0.61954 0.74292 0.74742 0.79215 1.57154 1.03204

MCGAN 2.41386 4.06995 6.30312 6.72356 8.65506 10.22342 12.17741 12.58088

TimeGAN 2.28691 6.19728 15.37614 30.2916 46.70249 62.8842 79.76519 91.16927

RCGAN 7.65128 6.85297 9.81539 11.52681 13.94434 15.80158 18.10313 15.93167

GMMN 26.9197 28.68219 39.458 53.78034 53.56911 57.89666 58.25836 58.76633

Table D.7: Relative R2 error (%) of the ARCH(3) model for different lag values.

C.3. ARCH(k) 132

4 2 0 2 40.0

0.1

0.2

0.3

0.4

pd
f

Historical
s = 0.00

= 0.12

Generated
s = 0.11

= 0.06

Historical
Generated

4 2 0 2 4

10 3

10 2

10 1

lo
g-

pd
f

Historical
Generated

0 1 2
Lags

0.0

0.2

0.4

0.6

0.8

1.0

AC
F

Historical
Generated

0 2 4 6 80.0

0.2

0.4

0.6

pd
f

Historical
s = 2.02

= 6.50

Generated
s = 1.47

= 3.42

Historical
Generated

0 2 4 6 8

10 3

10 2

10 1

100

lo
g-

pd
f

Historical
Generated

0 1 2
Lags

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AC
F

Historical
Generated

(a) MCGAN

4 2 0 2 40.0

0.1

0.2

0.3

0.4

pd
f

Historical
s = 0.00

= 0.12

Generated
s = 0.03

= 0.10

Historical
Generated

4 2 0 2 4

10 3

10 2

10 1

lo
g-

pd
f

Historical
Generated

0 1 2
Lags

0.0

0.2

0.4

0.6

0.8

1.0

AC
F

Historical
Generated

0 2 4 6 80.0

0.2

0.4

0.6

0.8

pd
f

Historical
s = 2.02

= 6.50

Generated
s = 2.10

= 6.71

Historical
Generated

0 2 4 6 8

10 3

10 2

10 1

100

lo
g-

pd
f

Historical
Generated

0 1 2
Lags

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AC
F

Historical
Generated

(b) SigCWGAN

4 2 0 2 40.0

0.1

0.2

0.3

0.4

pd
f

Historical
s = 0.00

= 0.12

Generated
s = 0.03

= 0.25

Historical
Generated

4 2 0 2 4

10 3

10 2

10 1

lo
g-

pd
f

Historical
Generated

0 1 2
Lags

0.0

0.2

0.4

0.6

0.8

1.0

AC
F

Historical
Generated

0 2 4 6 80.0

0.2

0.4

0.6

pd
f

Historical
s = 2.02

= 6.50

Generated
s = 1.79

= 5.73

Historical
Generated

0 2 4 6 8

10 3

10 2

10 1

100

lo
g-

pd
f

Historical
Generated

0 1 2
Lags

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AC
F

Historical
Generated

(c) TimeGAN

4 2 0 2 40.0

0.1

0.2

0.3

0.4

pd
f

Historical
s = 0.00

= 0.12

Generated
s = 0.11

= 0.07

Historical
Generated

4 2 0 2 4

10 3

10 2

10 1

lo
g-

pd
f

Historical
Generated

0 1 2
Lags

0.0

0.2

0.4

0.6

0.8

1.0

AC
F

Historical
Generated

0 2 4 6 80.0

0.2

0.4

0.6

pd
f

Historical
s = 2.02

= 6.50

Generated
s = 1.43

= 3.63

Historical
Generated

0 2 4 6 8

10 3

10 2

10 1

100

lo
g-

pd
f

Historical
Generated

0 1 2
Lags

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AC
F

Historical
Generated

(d) RCGAN

4 2 0 2 40.0

0.1

0.2

0.3

0.4

pd
f

Historical
s = 0.00

= 0.12

Generated
s = 0.27

= 0.24

Historical
Generated

4 2 0 2 4

10 3

10 2

10 1

lo
g-

pd
f

Historical
Generated

0 1 2
Lags

0.0

0.2

0.4

0.6

0.8

1.0

AC
F

Historical
Generated

0 2 4 6 80.0

0.2

0.4

0.6

pd
f

Historical
s = 2.02

= 6.50

Generated
s = 1.29

= 3.50

Historical
Generated

0 2 4 6 8

10 3

10 2

10 1

100

lo
g-

pd
f

Historical
Generated

0 1 2
Lags

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AC
F

Historical
Generated

(e) GMMN

Figure D.5: The plot displays a comparison of the marginal distribution on the linear- and
log-scale, as well as the fit of the auto-correlation for ARCH(3) data. His-
tograms and the auto-correlation of the data are indicated in blue and the fits
from the generator are colored in orange.

C.3. ARCH(k) 133

0 5 10 15 20
0.0

0.5

1.0

Real
 (0.0)

dim 1
dim 2

0 5 10 15 20
0.0

0.5

1.0

SigCWGAN
 (1.107)

0 5 10 15 20
0.0

0.5

1.0

MCGAN
 (1.113)

0 5 10 15 20
0.0

0.5

1.0

GMMN
 (1.501)

0 5 10 15 20
0.0

0.5

1.0

RCGAN
 (1.112)

0 5 10 15 20
0.0

0.5

1.0

TimeGAN
 (1.143)

Figure D.6: ACF plot for each channel on the ARCH(2) dataset. Here x-axis represents
the lag value (with a maximum lag equal to 100) and the y-axis represents the
corresponding auto-correlation. The length of the real/generated time series
used to compute the ACF is 1000. The number in the bracket under each
model is the sum of the absolute difference between the correlation coefficients
computed from real (dashed line) and generated (solid line) samples.

C.4. SPX and DJI dataset 134

C.4 SPX and DJI dataset
Here we provide the supplementary results on the SPX and DJI datasets. The sum-

mary of test metrics of different models is given by Table D.8. The test metrics over

the training process of each method on (1) the SPX dataset and (2) the SPX and DJI

dataset can be found in Figure D.7 and Figure D.8. The fitting of different models

in terms of the cross-correlation matrix of the log-return and log-realized volatility

of SPX/ SPX and DJI are presented in Figure D.9.

C.4. SPX and DJI dataset 135

Table D.8: Numerical results of the stocks datasets.

Data type SPX SPX + DJI

Metric on marginal distribution

SigCWGAN 0.01468 0.00879
MCGAN 0.00915 0.00937
TimeGAN 0.01064 0.01136
RCGAN 0.01134 0.00933
GMMN 0.00986 0.01438
GARCH 0.01583 0.01670

Absolute difference of lag-3 autocorrelation

SigCWGAN 0.02693 0.03988
MCGAN 0.03665 0.03386
TimeGAN 0.0341 0.03147
RCGAN 0.04192 0.03367
GMMN 0.05483 0.06668
GARCH 0.05392 0.05337

L1-norm of real and generated cross-correlation matrices

SigCWGAN 0.00638 0.10354
MCGAN 0.05641 0.12938
TimeGAN 0.0101 0.11342
RCGAN 0.0926 0.13699
GMMN 0.07498 0.28339
GARCH 0.15791 0.72901

Relative R2 error (%).

SigCWGAN 5.56765 5.28866
MCGAN 3.87395 4.12438
TimeGAN 8.5833 7.13335
RCGAN 3.74567 5.75112
GMMN 5.33373 12.17658
GARCH 12.1253 12.5686

Sig-W1 distance

SigCWGAN 4.74507 5.18462
MCGAN 4.73513 5.19871
TimeGAN 4.75276 5.22316
RCGAN 4.74362 5.20083
GMMN 4.75251 5.17637
GARCH 4.75825 5.25344

C.4. SPX and DJI dataset 136

0 200 400 600 800 1000
of training step

0.02

0.04

0.06

0.08 Abs metric

0 200 400 600 800 1000
of training step

0.0
0.1
0.2
0.3
0.4
0.5 ACF metric

0 200 400 600 800 1000
of training step

0.0

0.5

1.0

1.5

2.0 Cross-correlation metric

(a) SigCWGAN

0 200 400 600 800 1000
of training step

0.02

0.04

0.06

0.08 Abs metric

0 200 400 600 800 1000
of training step

0.0
0.1
0.2
0.3
0.4
0.5 ACF metric

0 200 400 600 800 1000
of training step

0.0

0.5

1.0

1.5

2.0 Cross-correlation metric

(b) MCGAN

0 200 400 600 800 1000
of training step

0.02

0.04

0.06

0.08 Abs metric

0 200 400 600 800 1000
of training step

0.0
0.1
0.2
0.3
0.4
0.5 ACF metric

0 200 400 600 800 1000
of training step

0.0

0.5

1.0

1.5

2.0 Cross-correlation metric

(c) TimeGAN

0 200 400 600 800 1000
of training step

0.02

0.04

0.06

0.08 Abs metric

0 200 400 600 800 1000
of training step

0.0
0.1
0.2
0.3
0.4
0.5 ACF metric

0 200 400 600 800 1000
of training step

0.0

0.5

1.0

1.5

2.0 Cross-correlation metric

(d) RCGAN

0 200 400 600 800 1000
of training step

0.02

0.04

0.06

0.08 Abs metric

0 200 400 600 800 1000
of training step

0.0
0.1
0.2
0.3
0.4
0.5 ACF metric

0 200 400 600 800 1000
of training step

0.0

0.5

1.0

1.5

2.0 Cross-correlation metric

(e) GMMN

Figure D.7: Example development of the considered distances and score functions during
training for SPX data.

C.4. SPX and DJI dataset 137

0 200 400 600 800 1000
of training step

0.02

0.04

0.06

0.08 Abs metric

0 200 400 600 800 1000
of training step

0.0
0.1
0.2
0.3
0.4
0.5 ACF metric

0 200 400 600 800 1000
of training step

0.0

0.5

1.0

1.5

2.0 Cross-correlation metric

(a) SigCWGAN

0 200 400 600 800 1000
of training step

0.02

0.04

0.06

0.08 Abs metric

0 200 400 600 800 1000
of training step

0.0
0.1
0.2
0.3
0.4
0.5 ACF metric

0 200 400 600 800 1000
of training step

0.0

0.5

1.0

1.5

2.0 Cross-correlation metric

(b) MCGAN

0 200 400 600 800 1000
of training step

0.02

0.04

0.06

0.08 Abs metric

0 200 400 600 800 1000
of training step

0.0
0.1
0.2
0.3
0.4
0.5 ACF metric

0 200 400 600 800 1000
of training step

0.0

0.5

1.0

1.5

2.0 Cross-correlation metric

(c) TimeGAN

0 200 400 600 800 1000
of training step

0.02

0.04

0.06

0.08 Abs metric

0 200 400 600 800 1000
of training step

0.0
0.1
0.2
0.3
0.4
0.5 ACF metric

0 200 400 600 800 1000
of training step

0.0

0.5

1.0

1.5

2.0 Cross-correlation metric

(d) RCGAN

0 200 400 600 800 1000
of training step

0.02

0.04

0.06

0.08 Abs metric

0 200 400 600 800 1000
of training step

0.0
0.1
0.2
0.3
0.4
0.5 ACF metric

0 200 400 600 800 1000
of training step

0.0

0.5

1.0

1.5

2.0 Cross-correlation metric

(e) GMMN

Figure D.8: Example development of the considered distances and score functions during
training for SPX and DJI data.

C.4. SPX and DJI dataset 138

SPX

1.00

-0.19

-0.19

1.00

real

1.00

-0.21

-0.21

1.00

SigCWGAN

1.00

-0.19

-0.19

1.00

MCGAN

1.00

-0.17

-0.17

1.00

TimeGAN

1.00

-0.16

-0.16

1.00

RCGAN

1.00

-0.22

-0.22

1.00

GMMN

SPX_DJI

1.00

-0.19

0.98

-0.19

-0.19

1.00

-0.19

0.97

0.98

-0.19

1.00

-0.19

-0.19

0.97

-0.19

1.00

1.00

-0.19

0.98

-0.20

-0.19

1.00

-0.20

0.98

0.98

-0.20

1.00

-0.21

-0.20

0.98

-0.21

1.00

1.00

-0.20

0.98

-0.22

-0.20

1.00

-0.24

0.96

0.98

-0.24

1.00

-0.25

-0.22

0.96

-0.25

1.00

1.00

-0.09

0.99

-0.08

-0.09

1.00

-0.11

0.99

0.99

-0.11

1.00

-0.10

-0.08

0.99

-0.10

1.00

1.00

-0.22

0.98

-0.26

-0.22

1.00

-0.22

0.98

0.98

-0.22

1.00

-0.25

-0.26

0.98

-0.25

1.00

1.00

-0.29

0.92

-0.24

-0.29

1.00

-0.26

0.96

0.92

-0.26

1.00

-0.17

-0.24

0.96

-0.17

1.00

Figure D.9: Comparison of real and synthetic cross-correlation matrices for SPX/ SPX and
DJI data. On the far left the real cross-correlation matrix from SPX/ SPX and
DJI log-return and log-volatility data is shown. x/y-axis represents the feature
dimension while the color of the (i, j)th block represents the correlation of X (i)

t

and X (j)
t . Observe that the historical correlation between log returns and log

volatility is negative, indicating the presence of leverage effects, i.e. when log
returns are negative, log volatility is high.

Model
Lag

1 2 3 4 5 6 7 8

SigCWGAN 6.25606 3.22038 5.2733 4.42471 3.82947 3.8639 4.57777 5.56765

MCGAN 4.20975 3.39397 3.38214 3.39932 3.28247 3.07611 3.32665 3.87395

TimeGAN 3.79664 3.8673 3.83001 4.11029 4.67948 5.1156 6.09387 8.5833

RCGAN 5.06443 4.20889 3.33699 3.68433 4.0931 3.65047 3.58021 3.74567

GMMN 11.37772 8.38272 8.0536 6.11822 5.17814 4.99595 5.1035 5.33373

Table D.9: Relative R2 error (%) of the SPX data for different lag values.

Model
Lag

1 2 3 4 5 6 7 8

SigCWGAN 3.82897 4.36748 3.67481 4.54616 4.25157 4.73639 4.00567 5.28866

MCGAN 2.93112 2.39898 3.62457 3.15994 2.82198 3.12895 2.99333 4.12438

TimeGAN 2.90929 3.0085 3.51063 4.21676 4.81641 5.08649 6.08654 7.13335

RCGAN 5.4847 4.64733 6.34131 5.64255 4.84939 4.58869 4.3158 5.75112

GMMN 13.73239 12.04712 10.90208 10.96817 9.80816 10.5603 10.38836 12.17658

Table D.10: Relative R2 error (%) of the SPX and DJI data for different lag values.

C.4. SPX and DJI dataset 139

0 100
0.0

0.5

1.0
Real
 (0.0)

0 100
0.0

0.5

1.0
SigCWGAN

 (4.924)

0 100
0.0

0.5

1.0
GARCH
 (7.028)

SPX_log_ret
SPX_log_vol
DJI_log_ret
DJI_log_vol

0 100
0.0

0.5

1.0
GMMN

 (13.552)

0 100
0.0

0.5

1.0
RCGAN

 (10.272)

0 100
0.0

0.5

1.0
TimeGAN
 (10.750)

Figure D.10: ACF plot for each channel on the SPX/DJI dataset. Here x-axis represents the
lag value (with a maximum lag equal to 100) and y-axis represents the corre-
sponding auto-correlation. The length of the real/generated time series used
to compute the ACF is 1000. The number in the bracket under each model is
the sum of the absolute difference between the correlation coefficients com-
puted from real (dashed line) and generated (solid line) samples.

Model
Lag

1 2 3 4 5

SigCWGAN 0.02048,0.01567 0.04697,0.01118 0.02693,0.03988 0.06516,0.04697 0.08845,0.04504

MCGAN 0.02392,0.02257 0.01844,0.03866 0.03665,0.03386 0.0593,0.04871 0.07881,0.05291

TimeGAN 0.02676,0.00927 0.02752,0.01752 0.0341,0.03147 0.04489,0.03729 0.04396,0.04433

RCGAN 0.03085,0.01663 0.03568,0.01747 0.04192,0.03367 0.06414,0.04773 0.06858,0.05919

GMMN 0.02301,0.01929 0.02236,0.00836 0.05483,0.06668 0.07812,0.12326 0.08671,0.12287

Table D.11: Autocorrelation metric for the stock datasets for different lag values. In each
cell, the left/right numbers are the result for the SPX data/ the SPX and DJI
data respectively.

C.4. SPX and DJI dataset 140

0 200 400 6004

2

0

2

4

(a) Real

0 200 400 6004

2

0

2

4

(b) MCGAN

0 200 400 6004

2

0

2

4

(c) SigCWGAN

0 200 400 6004

2

0

2

4

(d) TimeGAN

0 200 400 6004

2

0

2

4

(e) RCGAN

0 200 400 6004

2

0

2

4

(f) GMMN

Figure D.11: Example paths of SPX log returns generated by each model. Since the path
of DJI log returns is similar to that of SPX, there is no need to make another
plot for DJI.

Bibliography

[1] Samuel A Assefa, Danial Dervovic, Mahmoud Mahfouz, Robert E Tillman,

Prashant Reddy, and Manuela Veloso. Generating synthetic data in finance:

opportunities, challenges and pitfalls. In Proceedings of the First ACM Inter-

national Conference on AI in Finance, pages 1–8, 2020.

[2] Steven M Bellovin, Preetam K Dutta, and Nathan Reitinger. Privacy and syn-

thetic datasets. Stan. Tech. L. Rev., 22:1, 2019.

[3] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-

sarial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q.

Weinberger, editors, Advances in Neural Information Processing Systems, vol-

ume 27. Curran Associates, Inc., 2014.

[4] Magnus Wiese, Lianjun Bai, Ben Wood, and Hans Buehler. Deep hedging:

learning to simulate equity option markets. Available at SSRN 3470756, 2019.

[5] Magnus Wiese, Robert Knobloch, Ralf Korn, and Peter Kretschmer. Quant

gans: deep generation of financial time series. Quantitative Finance,

20(9):1419–1440, 4 2020.

[6] Christa Cuchiero, Wahid Khosrawi, and Josef Teichmann. A generative ad-

versarial network approach to calibration of local stochastic volatility models.

Risks, 8(4):101, 2020.

Bibliography 142

[7] Hans Buehler, Blanka Horvath, Terry Lyons, Imanol Perez Arribas, and Ben

Wood. A data-driven market simulator for small data environments. arXiv

preprint arXiv:2006.14498, 2020.

[8] Adriano Koshiyama, Nick Firoozye, and Philip Treleaven. Generative adver-

sarial networks for financial trading strategies fine-tuning and combination.

Quantitative Finance, 0(0):1–17, 2020.

[9] Patryk Gierjatowicz, Marc Sabate-Vidales, David Siska, Lukasz Szpruch, and

Zan Zuric. Robust pricing and hedging via neural sdes. Available at SSRN

3646241, 2020.

[10] Farzan Farnia and Asuman Ozdaglar. Gans may have no nash equilibria. arXiv

preprint arXiv:2002.09124, 2020.

[11] Eric V Mazumdar, Michael I Jordan, and S Shankar Sastry. On finding local

nash equilibria (and only local nash equilibria) in zero-sum games. arXiv

preprint arXiv:1901.00838, 2019.

[12] Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, and Olivier

Bousquet. Are gans created equal? a large-scale study. arXiv preprint

arXiv:1711.10337, 2017.

[13] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training

methods for gans do actually converge? In International conference on ma-

chine learning, pages 3481–3490. PMLR, 2018.

[14] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida.

Spectral normalization for generative adversarial networks. arXiv preprint

arXiv:1802.05957, 2018.

[15] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive

growing of gans for improved quality, stability, and variation. arXiv preprint

arXiv:1710.10196, 2017.

Bibliography 143

[16] Terry J Lyons, Michael Caruana, and Thierry Lévy. Differential equations

driven by rough paths. Springer, 2007.

[17] Weixin Yang, Terry Lyons, Hao Ni, Cordelia Schmid, Lianwen Jin, and Ji-

awei Chang. Leveraging the path signature for skeleton-based human action

recognition. arXiv preprint arXiv:1707.03993, 2017.

[18] Shujian Liao, Terry Lyons, Weixin Yang, and Hao Ni. Learning stochastic

differential equations using rnn with log signature features. arXiv preprint

arXiv:1908.08286, 2019.

[19] Hao Ni, Lukasz Szpruch, Marc Sabate-Vidales, Baoren Xiao, Magnus Wiese,

and Shujian Liao. Sig-wasserstein gans for time series generation. arXiv

preprint arXiv:2111.01207, 2021.

[20] Hao Ni, Lukasz Szpruch, Magnus Wiese, Shujian Liao, and Baoren Xiao.

Conditional sig-wasserstein gans for time series generation. arXiv preprint

arXiv:2006.05421, 2020.

[21] Laurence C Young. An inequality of the hölder type, connected with stieltjes

integration. 1936.

[22] Ben Hambly and Terry Lyons. Uniqueness for the signature of a path of

bounded variation and the reduced path group. Annals of Mathematics, pages

109–167, 2010.

[23] Horatio Boedihardjo, Xi Geng, Terry Lyons, and Danyu Yang. The signature

of a rough path: uniqueness. Advances in Mathematics, 293:720–737, 2016.

[24] Horatio Boedihardjo and Xi Geng. The uniqueness of signature problem

in the non-markov setting. Stochastic Processes and their Applications,

125(12):4674–4701, 2015.

[25] Yves Le Jan and Zhongmin Qian. Stratonovich’s signatures of brownian mo-

tion determine brownian sample paths. Probability Theory and Related Fields,

157(1-2):209–223, 2013.

Bibliography 144

[26] Daniel Levin, Terry Lyons, and Hao Ni. Learning from the past, predict-

ing the statistics for the future, learning an evolving system. arXiv preprint

arXiv:1309.0260, 2013.

[27] Ilya Chevyrev and Terry Lyons. Characteristic functions of measures on geo-

metric rough paths. Annals of Probability, 44:4049–4082, 2016.

[28] James Morrill, Adeline Fermanian, Patrick Kidger, and Terry Lyons. A gener-

alised signature method for multivariate time series feature extraction. arXiv

preprint arXiv:2006.00873, 2020.

[29] Ilya Chevyrev and Andrey Kormilitzin. A primer on the signature method in

machine learning. arXiv preprint arXiv:1603.03788, 2016.

[30] Guy Flint, Ben Hambly, and Terry Lyons. Discretely sampled signals and the

rough hoff process. Stochastic Processes and their Applications, 126(9):2593–

2614, 2016.

[31] Weixin Yang, Terry Lyons, Hao Ni, Cordelia Schmid, and Lianwen Jin. Devel-

oping the path signature methodology and its application to landmark-based

human action recognition. In Stochastic Analysis, Filtering, and Stochastic

Optimization: A Commemorative Volume to Honor Mark HA Davis’s Contri-

butions, pages 431–464. Springer, 2022.

[32] Terry Lyons and Harald Oberhauser. Sketching the order of events. arXiv

preprint arXiv:1708.09708, 2017.

[33] Jinsung Yoon, Daniel Jarrett, and Mihaela van der Schaar. Time-series gen-

erative adversarial networks. In Advances in Neural Information Processing

Systems, pages 5509–5519, 2019.

[34] Cristóbal Esteban, Stephanie L Hyland, and Gunnar Rätsch. Real-valued

(medical) time series generation with recurrent conditional gans. arXiv

preprint arXiv:1706.02633, 2017.

Bibliography 145

[35] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-

sarial nets. Advances in neural information processing systems, 27, 2014.

[36] Martin Arjovsky and Léon Bottou. Towards principled methods for training

generative adversarial networks. arXiv preprint arXiv:1701.04862, 2017.

[37] Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han. Differentiable

augmentation for data-efficient gan training. Advances in Neural Information

Processing Systems, 33:7559–7570, 2020.

[38] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and

Stephen Paul Smolley. Least squares generative adversarial networks. In

Proceedings of the IEEE international conference on computer vision, pages

2794–2802, 2017.

[39] Ilya Kavalerov, Wojciech Czaja, and Rama Chellappa. cgans with multi-hinge

loss. arXiv preprint arXiv:1912.04216, 2019.

[40] Aude Genevay, Marco Cuturi, Gabriel Peyré, and Francis Bach. Stochastic

optimization for large-scale optimal transport. Advances in neural information

processing systems, 29, 2016.

[41] Gintare Karolina Dziugaite, Daniel M Roy, and Zoubin Ghahramani. Train-

ing generative neural networks via maximum mean discrepancy optimization.

arXiv preprint arXiv:1505.03906, 2015.

[42] Jae Hyun Lim and Jong Chul Ye. Geometric gan. arXiv preprint

arXiv:1705.02894, 2017.

[43] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training

for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096,

2018.

Bibliography 146

[44] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative

adversarial networks. In International conference on machine learning, pages

214–223. PMLR, 2017.

[45] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and

Aaron C Courville. Improved training of wasserstein gans. Advances in neural

information processing systems, 30, 2017.

[46] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets.

arXiv preprint arXiv:1411.1784, 2014.

[47] Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional im-

age synthesis with auxiliary classifier gans. In International conference on

machine learning, pages 2642–2651. PMLR, 2017.

[48] Minguk Kang, Woohyeon Shim, Minsu Cho, and Jaesik Park. Rebooting ac-

gan: Auxiliary classifier gans with stable training. Advances in Neural Infor-

mation Processing Systems, 34:23505–23518, 2021.

[49] Takeru Miyato and Masanori Koyama. cgans with projection discriminator.

arXiv preprint arXiv:1802.05637, 2018.

[50] Peng Zhou, Lingxi Xie, Bingbing Ni, Cong Geng, and Qi Tian. Omni-gan:

On the secrets of cgans and beyond. In Proceedings of the IEEE/CVF Inter-

national Conference on Computer Vision, pages 14061–14071, 2021.

[51] Chang Lu, Chandan K Reddy, Ping Wang, Dong Nie, and Yue Ning. Multi-

label clinical time-series generation via conditional gan. arXiv preprint

arXiv:2204.04797, 2022.

[52] Giorgia Ramponi, Pavlos Protopapas, Marco Brambilla, and Ryan Janssen.

T-cgan: Conditional generative adversarial network for data augmentation in

noisy time series with irregular sampling. arXiv preprint arXiv:1811.08295,

2018.

Bibliography 147

[53] Tianyi Lin, Chi Jin, and Michael Jordan. On gradient descent ascent for

nonconvex-concave minimax problems. In International Conference on Ma-

chine Learning, pages 6083–6093. PMLR, 2020.

[54] Constantinos Daskalakis and Ioannis Panageas. The limit points of

(optimistic) gradient descent in min-max optimization. arXiv preprint

arXiv:1807.03907, 2018.

[55] Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis, and Haoyang

Zeng. Training gans with optimism. arXiv preprint arXiv:1711.00141, 2017.

[56] Panayotis Mertikopoulos, Christos Papadimitriou, and Georgios Piliouras. Cy-

cles in adversarial regularized learning. In Proceedings of the Twenty-Ninth

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2703–2717.

SIAM, 2018.

[57] Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. The numerics of

gans. Advances in neural information processing systems, 30, 2017.

[58] Casper Kaae Sønderby, Jose Caballero, Lucas Theis, Wenzhe Shi, and Ferenc

Huszár. Amortised map inference for image super-resolution. arXiv preprint

arXiv:1610.04490, 2016.

[59] Anders Krogh and John Hertz. A simple weight decay can improve general-

ization. Advances in neural information processing systems, 4, 1991.

[60] Riccardo Passeggeri. On the signature and cubature of the fractional brownian

motion for h¿ 12. Stochastic Processes and their Applications, 130(3):1226–

1257, 2020.

[61] Thomas Fawcett. Problems in stochastic analysis: connections between rough

paths and non-commutative harmonic analysis. PhD thesis, University of Ox-

ford, 2002.

Bibliography 148

[62] Siran Li and Hao Ni. Expected signature of stopped brownian motion on

d-dimensional c2, α-domains has finite radius of convergence everywhere:

2≤ d ≤ 8. Journal of Functional Analysis, 282(12):109447, 2022.

[63] Adeline Fermanian. Functional linear regression with truncated signatures.

Journal of Multivariate Analysis, page 105031, 2022.

[64] Robert F Engle. Autoregressive conditional heteroscedasticity with estimates

of the variance of united kingdom inflation. Econometrica: Journal of the

econometric society, pages 987–1007, 1982.

[65] Shuang Liu, Olivier Bousquet, and Kamalika Chaudhuri. Approximation and

convergence properties of generative adversarial learning. Advances in Neural

Information Processing Systems, 30, 2017.

[66] Junbo Zhao, Michael Mathieu, and Yann LeCun. Energy-based generative

adversarial network. arXiv preprint arXiv:1609.03126, 2016.

[67] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training gen-

erative neural samplers using variational divergence minimization. Advances

in neural information processing systems, 29, 2016.

[68] XuanLong Nguyen, Martin J Wainwright, and Michael I Jordan. Estimating

divergence functionals and the likelihood ratio by convex risk minimization.

IEEE Transactions on Information Theory, 56(11):5847–5861, 2010.

[69] Kun Xu, Chongxuan Li, Jun Zhu, and Bo Zhang. Understanding and stabiliz-

ing gans’ training dynamics using control theory. In International Conference

on Machine Learning, pages 10566–10575. PMLR, 2020.

[70] William Fedus, Mihaela Rosca, Balaji Lakshminarayanan, Andrew M Dai,

Shakir Mohamed, and Ian Goodfellow. Many paths to equilibrium: Gans

do not need to decrease a divergence at every step. arXiv preprint

arXiv:1710.08446, 2017.

Bibliography 149

[71] Abdul Jabbar, Xi Li, and Bourahla Omar. A survey on generative adversar-

ial networks: Variants, applications, and training. ACM Computing Surveys

(CSUR), 54(8):1–49, 2021.

[72] Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled gen-

erative adversarial networks. arXiv preprint arXiv:1611.02163, 2016.

[73] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Rad-

ford, and Xi Chen. Improved techniques for training gans. Advances in neural

information processing systems, 29, 2016.

[74] Rajat Sen, Hsiang-Fu Yu, and Inderjit S Dhillon. Think globally, act locally:

A deep neural network approach to high-dimensional time series forecasting.

Advances in neural information processing systems, 32, 2019.

[75] Xiajun Jiang, Ryan Missel, Zhiyuan Li, and Linwei Wang. Sequential latent

variable models for few-shot high-dimensional time-series forecasting. In The

Eleventh International Conference on Learning Representations.

[76] Matteo Barigozzi, Haeran Cho, and Dom Owens. Fnets: Factor-adjusted

network estimation and forecasting for high-dimensional time series. arXiv

preprint arXiv:2201.06110, 2022.

[77] Jörg P Bachmann and Johann-Christoph Freytag. High dimensional time se-

ries generators. arXiv preprint arXiv:1804.06352, 2018.

[78] Terry Lyons and Harald Oberhauser. Sketching the order of events. 8 2017.

[79] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen,

and Timo Aila. Analyzing and improving the image quality of stylegan.

In Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition, pages 8110–8119, 2020.

[80] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark

Chen. Hierarchical text-conditional image generation with clip latents. arXiv

preprint arXiv:2204.06125, 2022.

Bibliography 150

[81] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyan-

skiy, and Ping Tak Peter Tang. On large-batch training for deep learning: Gen-

eralization gap and sharp minima. arXiv preprint arXiv:1609.04836, 2016.

[82] Richard H Byrd, Gillian M Chin, Jorge Nocedal, and Yuchen Wu. Sample

size selection in optimization methods for machine learning. Mathematical

programming, 134(1):127–155, 2012.

[83] Michael P Friedlander and Mark Schmidt. Hybrid deterministic-stochastic

methods for data fitting. SIAM Journal on Scientific Computing, 34(3):A1380–

A1405, 2012.

	Introduction
	Main contributions
	Outline

	Preliminary
	Rough path theory
	Path with finite p-variation
	Tensor algebra space
	Signature of a path
	Important properties of signature
	Expected signature of stochastic processes
	Path augmentation

	Generative adversarial network (GAN)
	Classical generative adversarial network
	Wasserstein generative adversarial network (WGAN)
	Conditional generative adversarial network
	Problem of GAN training

	Signature-based W1 metric
	Sig-W1 metric
	 Conditional Sig-W1 metric

	Signature-based conditional WGAN
	Conditional AR-FNN generator
	Signature-based loss function
	Learning the conditional expected signature under true measure

	Algorithm
	Numerical results
	Vector autoregressive model
	ARCH model
	S&P 500 and DJI market data

	Conclusions

	Monte-Carlo GAN
	Motivation
	Discriminability
	Monte Carlo GAN
	Relation to f-divergence
	Improved stability
	A toy example: Dirac-GAN

	Related work
	Relation to feature matching

	MCGAN for conditional time-series generation
	Algorithm

	Numerical experiments
	Vector autoregressive model
	ARCH model
	Stock dataset

	Conclusions

	Conclusion and future direction
	Conclusion
	Discussion and future direction
	About SigCWGAN
	About MCGAN

	Appendices
	Rough Paths
	p-rough paths
	Expected signature of stochastic processes

	Basics of neural networks
	AR-FNN architecture

	Supplementary numerical results
	Implementation and hyper-parameters
	Truncation level of signature in SigCWGAN

	VAR(1) dataset
	ARCH(k)
	SPX and DJI dataset

	Bibliography

