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Abstract. Providing 3D navigation in colonoscopy can help decrease di-
agnostic miss rates in cancer screening by building a coverage map of the
colon as the endoscope navigates the anatomy. However, this task is made
challenging by the lack of discriminative localisation landmarks through-
out the colon. While standard navigation techniques rely on sparse point
landmarks or dense pixel registration, we propose edges as a more natural
visual landmark to characterise the haustral folds of the colon anatomy.
We propose a self-supervised methodology to train an edge detection
method for colonoscopy imaging, demonstrating that it can effectively de-
tect anatomy related edges while ignoring light reflection artifacts abun-
dant in colonoscopy. We also propose a metric to evaluate the temporal
consistency of estimated edges in the absence of real groundtruth. We
demonstrate our results on video sequences from the public dataset Hy-
perKvazir. Our code and pseudo-groundtruth edge labels are available
at https://github.com/jwyhhh123/HaustralFold Edge Detector.

Keywords: Colonoscopy · Scene understanding · Edge detection · Land-
mark detection

1 Introduction

Reconstructing 3D gastrointestinal (GI) tract maps from endoscopy videos is a
research challenge receiving increasing attention in recent years [4]. In the context
of colon cancer screening, real-time 3D reconstruction would enable monitoring
which surfaces have already been inspected [14,13], making it easier to ensure
complete coverage and reduce the chance of missing polyps [18]. It would also
enable complete reporting, associating polyps with precise colon map locations.

Simultaneous Localization and Mapping (vSLAM) is a popular algorithm
framework that has been translated to colonoscopy 3D reconstruction [6,17].
However, we are still far from reliably reconstructing entire colons in real cases
due to multiple imaging challenges. The majority of established methods builds
3D maps relying on the detection of point landmarks in the visualised scene
across different frames. In colonoscopy, however, the detection and matching
of point landmarks are extremely challenging due to scene textures being very
similar, fast camera motions, abundant presence of light reflections, blur, and
multiple types of occlusions.

https://github.com/jwyhhh123/HaustralFold_Edge_Detector
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Fig. 1: We aim at detecting haustral folds (denoted by green arrows) in colonoscopy
video. Formulating the problem as edge detection, these are circular contours
on the colon wall (denoted by black lines). Sample predictions from our method
are provided in black and white masks.

While there is some research towards making point landmark detection more
reliable in endoscopy [3], other alternatives involve bypassing the detection of
points altogether. Some works perform registration of different frames by directly
estimating depth [17] or relative motion [20] using end-to-end deep learning
networks. The main challenge here is obtaining the necessary training data. Using
virtual simulation has been suggested to train such algorithms [21], however,
there is still a gap in generalising its results to real images.

A different alternative to bypass point landmark detection would be to fo-
cus on detecting scene edges instead. The colon anatomy has clearly visible and
identifiable edges corresponding to its haustral folds (Fig. 1). While edge detec-
tion has seen significant progress in computer vision [19], there has been very
little investigation on its application to endoscopy. Therefore, we introduce the
following contributions:

– We introduce a method to detect haustral fold edges in colonoscopy based
on the DexiNed architecture [19]. To the best of our knowledge, it’s the first
time this problem has been investigated.

– Given the inexistence of groundtruth for colonoscopy edge detection, we
propose a combination of transfer learning and self-supervision to train our
method.

– We propose an unsupervised evaluation process to measure the temporal
consistency of edge predictions in continuous video frames.

– We will release both our code and pseudo-groundtruth edge masks for a
subset of the public dataset HyperKvazir.

2 Related Work

While most of the classic 3D navigation and reconstruction literature deals with
rigid scenes containing unique and easy to recognise visual landmarks, in en-
doscopy there are two striking differences. The first one is the presence of de-
formable tissue. A few works have extended visual SLAM to explicitly model
deformation of the 3D scene over time [12,22]. The second difference is that it is
much more challenging to detect and track reliable landmarks on the GI tract
due to simple tissue textures, frequent camera blur, light reflections and other
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dynamic occlusions. This paper will focus on this latter challenge which we now
review in more detail.

Endoscopic scenes contain wet tissues illuminated by a close-range, moving
light source. This produces abundant specular light reflections on tissue surfaces
and makes it difficult to find landmarks with stable visual appearance. One
approach to tackle this is to detect and inpaint specular reflections prior to
landmark detection and matching [7]. A large amount of literature is dedicated
to detection, filtering and inpainting of specular reflections in surgery [16,1,9].

The different visual appearance of endoscopic scenes presents a very specific
domain shift in comparison to well established applications (e. g. outdoors/in-
doors human-made environments), and therefore machine learning approaches
have been useful in bridging this gap. The SuperPoint [8] feature detector can
be fine-tuned on endoscopy scenes in a self-supervised way [3], optimising its
performance to this particular environment. There are a few other recent deep
learning point feature detector alternatives that to the best of our knowledge
have not been tried on endoscopy scenes [23,26,25].

Notably, there has been little investigation into the detection of features
with other shapes than points. In the context of colonoscopy, this would be a
promising direction since the colon is characterised by haustral folds, i. e. thin,
ring-shaped structures on its surface (Fig. 1). A recent work has investigated the
semantic segmentation of haustral folds [15]. However, we show that its results
are still limited and inconsistent when applied to sequences of consecutive frames.
We believe there is intrinsic ambiguity in labelling segmentations of these folds,
as they do not have a well defined contour in the regions where they join the
colon wall. Therefore, we propose to focus instead exclusively on the well defined
portion of haustral fold contours using edge detection.

There have been recent advances in performing edge detection with deep
learning architectures [24,19]. While pre-trained models are publicly available,
these have been trained for general purpose vision, and we show in this paper that
they are extremely sensitive to specular reflections. Furthermore, these methods
have been trained in a fully supervised fashion, requiring either manually edge
labels or proxy edges from semantic segmentation labels. While it would be a
burdensome task to produce colonoscopy edge labels in sufficient numbers, we
focus instead on self-supervised transfer learning.

3 Methodology

We aim at performing classification of each pixel in colonoscopic images as either
edge or not-edge. Our target edges result from the colon shape (i. e. contours
of the haustral folds) and not from its surface texture (i. e. vessels, shadows,
reflections, etc).

Method outline As a baseline we start from the DexiNed model [19] which is a
state-of-the-art edge detector trained on non-medical image data. This network is
a sequence of 6 convolutional blocks, each of them performing pixel-dense edge
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Fig. 2: Model fine-tuning. Pseudo-groundtruth labels are predicted by the pretrained
DexiNed on the inpainted images in the pre-processing step. DexiNed is then
further trained with a loss combining the pixel-wise loss LMSE and consistency
loss LTC . The encoder uses a SegNet model to produce embedding vectors.

detection at different image scales. Using skip connections and up-sampling,
these 6 detections are fused into a final multi-scale edge detection result. The
network is originally trained with a modified BDCN loss [10] in a fully supervised
manner, using manually drawn edges as groundtruth labels.

A pre-trained model of DexiNed is publicly available, and we verify that it
is able to detect haustral folds in colonoscopy videos. However, it also produces
a significant amount of other false positive detections, mostly artifacts from
illumination patterns. While DexiNed is pre-trained in a fully supervised man-
ner, we aim at improving its results on endoscopy data without any additional
groundtruth labels available.

Our first observation is that false positive detections can be removed by pre-
processing the videos with a temporal specularity inpainting method [7]. In [7],
a spatial-temporal transformer is used as a generator within a GAN structure
to inpaint specular occlusions. While this produces very appealing results, un-
fortunately the pre-processing step restricts its usage to offline inference. This
is because reliable inpainting results require processing a window of both past
and future frames in a single inference step to take advantage of temporal cues.
Furthermore such a pipeline would require running two different networks at
inference time which is computationally sub-optimal.

To obtain a single model capable of online operation in an end-to-end fash-
ion, we will leverage edges generated with offline pre-processing as pseudo-
groundtruth labels to fine-tune DexiNed in a self-supervised manner.

Training pipeline Our training methodology is summarised in Fig. 2. We ini-
tialise the network with the weights from the original pre-trained DexiNed model,
and then fine-tune it on endoscopy video. Our training procedure differs from
[19] in the following aspects: (1) Instead of manually annotated groundtruth, we
automatically generate pseudo-groundtruth labels with offline processing. (2)
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Instead of BDCN, we use a mean squared error (MSE) loss, as we empirically
verified better results. (3) We train the network on batches of consecutive video
frames rather than independent photos. (4) We also add a triplet loss term to
improve temporal consistency in continuous video inference.

For a given set of training video clips c = 1, ..., C, we generate a set of pseudo-
groundtruth label masks Gc,t for all frames Xc,1, ..., Xc,Tc

in three steps. First,
we pre-process all frames with the inpainting method from [7]. Secondly, we run
the pre-trained DexiNed model on the inpainted training data, generating clean
edges of haustral folds. As a last step, we apply a mask to remove any edges
resulting from field-of-view and interface overlays typically present in endoscopy
images, resulting in the pseudo-groundtruth masks Gc,t.

Loss function We train our model with a loss combining two terms weighted
by a parameter γ

L = γLMSE + (1− γ)LTC (1)

LMSE is the mean squared error between edge predictions Ec,t and respective
pseudo-labels Gc,t

LMSE =
1

P

C∑
c=1

Tc∑
t=1

I∑
i=1

J∑
j=1

(Ec,t(i, j)−Gc,t(i, j))
2

(2)

where I, J are respectively the vertical and horizontal image resolution and P is
the total number of pixels in the training data.

LTC is a triplet loss that measures temporal consistency. We take edge pre-
dictions from 3 consecutive frames (Ec,t, Ec,t+1, Ec,t+2) and obtain their lower
dimensional embedding vectors with an encoder ψ(). We use the encoder from
SegNet [2], pre-trained on the Cars dataset 3. The triplet loss is then calculated:

LTC =

C∑
c=1

Tc−2∑
t=1

max(∥ψ(Ec,t)− ψ(Ec,t+1)∥2−

∥ψ(Ec,t)− ψ(Ec,t+2)∥2 + β, 0)

(3)

where β is a pre-defined margin parameter. In triplet loss terminology, Ec,t rep-
resents the anchor, Ec,t+1 the positive sample, and Ec,t+2 the negative sample.

Evaluation Edge predictions are typically evaluated by comparison against
groundtruth labels, through Optimal Dataset Scale (ODS), Optimal Image Scale
(OIS) and Average Precision (AP) [24,19]. In addition, our main motivation is
to investigate edges as alternative features for navigation, and therefore we aim
at temporally consistent estimations that can be further registered in video se-
quences for camera motion estimation. To this end, we also propose an unsuper-
vised temporal consistency metric based on [27] that was originally introduced
for semantic segmentation.

3 The pretrained SegNet is available on https://github.com/foamliu/Autoencoder
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Fig. 3: The framework of consistency evaluation. The motion tracking block produces
a pair of edge-maps E′

t and Et+1 aligned via optical flow (FlowNet 2.0). The
overlap of aligned edge-maps is measured as the class-weighted IoU of binarised
distance fields D′

t and Dt+1. These distance fields represent pixels within a
distance T2 to the edge predictions.

Our evaluation method is summarised in Fig. 3. We measure the temporal
consistency TCt+1

t of two independent edge predictions Et, Et+1 by first warping
Et into E

′
t using optical flow then measuring the overlap between E′

t and Et+1.
We assume that edge predictions E′

t and Et+1 are binarised with a threshold
T1. For optical flow we use FlowNet 2.0 [11]. While [27] computes intersection
over union (IoU) between E′

t and Et+1 we find this is not adequate for deal-
ing with thin edges. Small spatial shifts in edge predictions result in drastic IoU
decrease without it necessarily corresponding to a drastic decrease in edge consis-
tency. Instead, we apply a distance transform to both E′

c,t and Ec,t+1, generating
grayscale fields with intensity values representing the distance to the closest edge.
The distance fields are binarised with a threshold T2, resulting in masks D′

t,Dt+1

denoting all pixels with a distance smaller or equal to T2 from edges in E′
t,Et+1

respectively. The temporal consistency TCt+1
t is a class-weighted IoU between

D′
t and Dt+1. We weight classes based on their frequency in the image, due to

the extreme imbalance between edge and not-edge pixels. Finally, the metric is
averaged on all pairs of consecutive frames in the test data.

4 Experiments

Experimental Setup We train and test our model on a subset of the Hy-
perKvasir dataset [5], defined as all 31 videos of lower GI with adequate bowel
preparation (i. e. labelled as BBPS 2-3). We split the data into training, valida-
tion, and test with respectively 12, 8, and 11 videos. The images contain black
margins and often an endoscope pose display on the lower left corner that pro-
duce irrelevant edge detections. We mask out these regions for all images. To
compute temporal consistency metrics, we use the totality of the test video data.
For comparison against groundtruth, we manually annotated a sparse sub-set of
78 randomly selected images from the test data.



Edge Detector of Haustral Folds in Colonoscopy Video 7

original frames pretrained DexiNed

t+2

t+1

t+3

pseudo-GT triplet+mseFoldit

t

Fig. 4: Edge detection results on four consecutive frames. The predictions in the last
column are made by our method. We highlight the red box where significant
differences between methods and pseudo-groundtruth can be visualised.

Our method is implemented in Pytorch 1.12.1 with an Intel i7 CPU with 3
GHz and an Nvidia 3090 GPU. Video frames are cropped and resized to 256x256.
DexiNed is trained with a RMSprop optimiser with α = 0.99 and ϵ = 1× 10−8,
using a constant learning rate η = 1× 10−8. We use a triplet loss margin β = 1.
A threshold T1 = 240 is set to binarise edge-maps. We use T2 = 5 for model
evaluation. We used two-stage training where all models are trained with MSE
loss for 5 epochs, followed by 5 epochs of our complete loss in Eq. 1.

Experimental Results Fig. 4 displays qualitative results for our model, pseudo-
groundtruth, and baselines for a sample sequence of 4 frames. Our model is able
to significantly reduce the number of false positive detections caused by highlight
reflections. This is a combined effect of the pseudo-groundtruth with temporal
consistency (i. e. reflections are less consistent than haustral folds). We note that
our method is able to capture the outer edge (see red box) which was not visible
either in pre-trained DexiNed or pseudo-groundtruth. We also display results of
Foldit [15] for the same sequence, which produces temporally inconsistent fold
segmentations that also generally provide less detail about the scene.
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ID Method TC mean TC std edge pixel rate ODS OIS AP

1 pretrained DexiNed 0.8840 0.0244 0.1564 0.6332 0.6613 0.5258
2 pseudo-GT 0.9028 0.0172 0.1300 0.7271 0.7556 0.6704
3 Ours (γ=.1) 0.9348 0.0107 0.0350 0.6491 0.6668 0.5145
4 Foldit 0.8708 0.0359 0.4976

Table 1: Temporal Consistency (TC), edge pixel rate and results of edge detection
metrics (ODS, OIS and AP). We note that Foldit is an image segmentation
model (rather than edge detection), which explains the significant differences.

ID Method TC mean TC std edge pixel rate

1 triplet+mse (γ=.1) 0.9348 0.0107 0.0350
2 triplet+mse (γ=.3) 0.9314 0.0111 0.0357
3 triplet+mse (γ=.5) 0.9278 0.0112 0.0351
4 triplet+mse (γ=.7) 0.9310 0.0110 0.0336
5 triplet+mse (γ=.9) 0.9268 0.0117 0.0409
6 triplet+mse (γ=1.0) 0.8445 0.0259 0.4080

Table 2: Ablation of loss weight γ. All values have similar TC except for γ = 1 (MSE).

In Table. 1 we report the temporal consistency (TC), the average percentage
of detected edge pixels for each of the tested methods, and also conventional
edge accuracy metrics [24,19] ODS, OIS and AP. Our method has higher TC
score than all others, including pseudo-groundtruth. This can be explained by
the effect of the triplet loss. On average our method detects fewer edge pixels
than others which in part is explained by the reduced number of false positive
reflection detections (when compared to pre-trained DexiNed) and also due to its
thinner edge predictions (when compared to pseudo-groundtruth). In terms of
groundtruth evaluation, we observe a comparable performance to the pretrained
model when evaluating edge detection metrics. The significantly higher scores
obtained for the pseudo-groundtruth validate the reliability of our pseudo-labels.
We also highlight that the FoldIt quantitative results should be interpreted with
caution (we present them for the sake of completeness) as the detected regions
are much larger than our proposed edges. However, its lower TC is consistent
with the clearly visible temporal inconsistencies in Fig. 4. In Table. 2, we show
an ablation of the loss function weight γ. γ = 1.0 corresponds to using the MSE
loss alone, which significantly reduces the TC score.

We must note that, as with any unsupervised metric, TC values cannot be
analysed in a vacuum. In extreme, a method that never predicts any edge has
the highest TC score but this is undesirable. Therefore we should also make sure
edge pixel rates are not approaching zero. Our method has an edge pixel rate
of 3.5% which is still deemed reasonable for the given data. We note that it is
significantly lower than other methods due to detecting thinner edges.
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5 Conclusions

We demonstrate that end-to-end detection of haustral fold edges in colonoscopy
videos is feasible and can be made robust to the abundant reflection artifacts
present in these scenes with a simple self-supervised training pipeline. We be-
lieve these are stable and consistent features across multiple views that can be
exploited for colonoscopy video navigation and place recognition, but so far have
been underexplored. While our method shows promising qualitative results and
temporal consistency, future work should evaluate these features in downstream
tasks such as endoscope motion estimation, 3D reconstruction, and place recog-
nition.
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N., Schlicht, P., Hüger, F., Fingscheidt, T.: Unsupervised temporal consistency
metric for video segmentation in highly-automated driving. In: 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).
pp. 1369–1378 (2020). https://doi.org/10.1109/CVPRW50498.2020.00176

https://arxiv.org/abs/2112.02250
https://arxiv.org/abs/2112.02250
https://doi.org/10.1109/WACV45572.2020.9093290
https://doi.ieeecomputersociety.org/10.1109/WACV45572.2020.9093290
https://doi.ieeecomputersociety.org/10.1109/WACV45572.2020.9093290
https://doi.org/10.1109/CVPRW50498.2020.00176

	A Self-supervised Approach for Detecting the Edges of Haustral Folds in Colonoscopy Video

