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representation of the proposed discriminators, which
alleviates the need for expensive training. We validate
our method on both synthetic and empirical dataset and
observe that our method consistently and significantly
outperforms state-of-the-art benchmarks with respect to
measures of similarity and predictive ability.
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1 | INTRODUCTION

Ability to generate high-fidelity synthetic time-series datasets can facilitate testing and validation
of data-driven products and enable data sharing by respecting the demand for privacy constraints
(Assefa et al., 2020; Bellovin et al., 2019; Tucker et al., 2020). Until recently, time-series mod-
els were mostly conceived by handcrafting a parsimonious parametric model, which would best
capture the desired statistical and structural properties or the so-called stylized facts of the time
series data. Typical examples are discrete time autoregressive econometric models (Tsay, 2005),
or continuous time stochastic differential equations (SDEs) (Karatzas & Shreve, 1998). In many
applications, such as finance and economics, one cannot base models on well-established “phys-
ical laws” and the risk of handcrafting inappropriate models might be significant. It is, therefore,
tempting to build upon success of nonparametric unsupervised learning method such as deep
generative modeling (DGM) to enable data-driven model selection mechanisms for dynamically
evolving data sets such as time-series. However, off-the-shelf DGMs perform poorly on the task
of learning the temporal dynamics of multivariate time series data x;.7 = (X, ..., x7) € R due
to (1) complex interaction between temporal features and spatial features, and (2) potential high
dimension for the joint distribution of x (e.g., when T >> 1), see, for example, Mescheder et al.
(2018).

In this work, we are interested in developing a data-driven nonparametric model for the con-
ditional distribution Law(xf,gure|Xpqs:) Of future time series given X,a5¢ *= X;_p41:;- This setting
includes classical auto-regressive processes. Learning conditional distributions is particularly
important in the cases of (1) predictive modeling: it can be directly used to forecast future time
series distribution given the past information; (2) causal modeling: conditional generator can be
used to produce counterfactual statements; and (3) building the joint law through conditional
laws enables to incorporate a prior into the learning process, which is necessary for building
high-fidelity generators.

Learning the conditional distribution is often more desirable than learning the joint law and
can lead to more efficient learning with a smaller amount of data (Buehler et al., 2020; Ng &
Jordan, 2002). To see that, consider the following example.

Example 1.1 (Auto regressive process). Let Z, ~ N(0, £) be d-dimensional Gaussian random vari-
able. Fixa : R™P x R? — R?. Define an auto-regressive process (X;);s( with the initial condition
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Xi:p = X1:p, 88 X1 = a(X;_py1:, Z141)- Hence, one can see that

p

Law(Xy.7) = H Law(X ;111 Xi—pi1:e) -
t

As a consequence, the problem of learning distribution over R%<" can be reduced to learning
conditional distribution over R9.

In our setting, the conditional law is time invariant and hence having only one data trajectory
Xp.7 gives T — p — 1 samples. This should be contrasted with having one sample when trying to
learn Law(X;.7) directly.

Structure

The problem of calibrating a generative model in the time series domain is formulated in Sec-
tion 2. There we overview the key results of this work against the work available in literature. In
Section 3, we introduce the signature of a path formally. In Section 4, we establish key theoretical
results of this work. In Section 5, we present the algorithm while in Section 6, we present extensive
numerical experiments.

2 | PROBLEM FORMULATION

FixT > 0and X := (X;,...,X7) € RT is a d-dimensional time series of length T. Let W be the
window size (typically W << T). Suppose that we have access to one realization of X, that is,
(x1, ..., x7) and then obtain the N copies of time series segment of a window size W by sliding
window. We assume that for each ¢, the time series segment (x;,; : -+, X;1) is sampled from
the same but unknown distribution on the time series (path) space u € P(R¥W). The objective
of the unconditional generative model is to train a generator such as to produce a R™>" -valued
random variable whose law is close to u using time series data x.!

In contrast, this paper focuses on the task of the conditional generative model of
future time series when conditioning on past time series. Let p,§ denote the window
size of the past time series Xpu; 1= (Xi—ps1,-,X;) € RP =: X and future time series
Xiuturey += Xig15 > Xp4g) € R9%4 =: Y, respectively. Assume that the joint distribution of
Xtuture,t» Xpast,r) = (X¢—p41,.+¢) does not depend on time ¢. Given a realization of time series
(%1, ..., x7), at each time ¢, the pairs of past path X, := (X;—p11,-,X;) € X and future path
Xfuture,t - = (Xi415 > Xr4q) € Y are sampled from the same but unknown distribution of X X -
valued random variable, denoted by (Xpast, Xfuture)- We aim to train a generator to produce the
conditional law, denoted by w;(x) := Law(Xfyure,t [ Xpast,r = X)- As y;(x) is independent with ¢
and hence we write u(x) for simplicity. But of course, the methodology developed here all applies
if one can access a collection of (ngst,Xg)mre)Ii\i , of N independent copies of the past and future
time series for N > 1.

More specifically, the aim of the conditional generative model is to map samples from some
basic distribution u? supported on Z C R% together with data Xpast, into samples from the
conditional law u(xp.s). Given latent (Z, B(Z)), conditional (X, B(X)) and target (Y, B(Y))
measurable spaces, one considers a map G : 0® x X x Z — Y, with @® being a parameter
space. Given parameters 6®© € ©® and Xpast,ts G(e®, Xpast,) transports u, into »(6®, Xpast,) - =

G(6®), xpas) itz = (GO, x5t ) "1(B)), B € B(Y). The aim is to find 6 such that (6, X st
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is a good approximation of (X p,.) With respect to a suitable metric. Often the metric of choice
is a Wasserstein distance, which leads to

Wi (:u(xpast)’ V(e(g)’ xpast)) = Ssup [E/,c(xpast)[f(Xfuture)] - [Ev(e(g),xpast)[f(Xfuture)] D

[flLip=<1

The optimal transport metrics, such as Wasserstein distance, are attractive due to their abil-
ity to capture meaningful geometric features between measures even when their supports do
not overlap, but are expensive to compute (Genevay et al., 2019). Furthermore, when comput-
ing Wasserstein distance for conditional laws, one needs to compute the conditional expectation
IE/"(xpast)[ [ Xfuture)] using input data. In the continuous setting studied in this paper, this is com-
putationally heavy and typically will introduce additional bias (e.g., due to employing least square
regression to compute an approximation to the conditional expectation).

Since our aim is to learn the conditional law for all possible conditioning random variables, we
consider

[EXpast~,L4 [W, (Iu(Xpast)’ v(6, Xpast)) l.

Note that, since W, is non-negative, E[W;(u(Xpast), V(6, Xpast))] = 0 implies that p(xpas) =
V(6, Xpast) almost surely.

Challenges in implementing W,-GAN for conditional laws

There are two key challenges when one aims to implement W;-GAN for conditional laws.
Challenge 1: Min-max problem. A typical implementation of W;-GAN would require intro-

duction of a parametric function approximation @@ x ¥ 3 (6, w) = (69, w) such that w

(6@, w) is 1-Lip. In the case of neural network approximation, this can be achieved by clipping

the weights or adding penalty that ensures V,, f(69), w) is less than 1, see Gulrajani et al. (2017).

Recall a definition of W in Equation (1) and define

£©09,6@) 1= Ex, oy [Eyxpne) [FOD X)) = Byo sy [FODs X |
Training conditional W1-GAN constitutes solving the min-max problem

min max ¢(6®,8(@) )
6@

In practice, the min-max problem is solved by iterating gradient descent-ascent algorithms
and its convergence can be studied using tools from game theory (Lin et al., 2020; Mazumdar
et al., 2019). However, it is well known that the first order method, which is typically used in
practice, might not converge even in the convex-concave case (Daskalakis et al., 2017; Daskalakis
& Panageas, 2018; Mertikopoulos et al., 2018). Consequently, the adversarial training is notoriously
difficult to tune (Farnia & Ozdaglar, 2020; Mazumdar et al., 2019), and generalization error is very
sensitive to the choice of discriminator and hyper-parameters, as it was demonstrated in large
scale study in Lucic et al. (2018).

Challenge 2: Computation of the conditional expectation. In addition to the challenge of
solving a min-max for each new parameter 6@, one needs to compute the conditional expectation
Eppast) LS 6D, X¢urure)] (or Epxpus) [ Vo f (69, Xsyeure)] if one can interchange differentiation

85UBD 17 SUOWILLIOD BA eI 3 |ced ! (dde ay) Aq pausenoh a.e sapile YO ‘88N JO S3|nJ 10y ARiqiT auljuQ 8|1 UO (SUORIPUOI-pUR-SWLLIBIALI0D A3 | IM' ARe1q 1 Ul |uo//SdiL) SUORIPUOD PUe SWB | 8L} 89S *[£202/TT/60] Uo ARlqiauluo A3 |1IM ‘'ssoIARS Aeiqi 1DN uopuoafe|jo0 AisieAlun Ag €2v2T 1Jew/TTTT OT/I0p/wW09 A8 | 1m Azeiq 1 puI U0/ SANY WOl pepeojumoq ‘0 ‘S966.9T



LIAO ET AL.

Wi LEYJ—5

and integration). From Doob-Dynkin lemma, we know that this conditional expectation is a mea-
surable function of X, and approximation of these is computationally heavy and can be recast
as a mean-square optimization problem

E [lf (6(d)’Xfuture) - [EM(Xpast) [f(e(d)aXfuture)] |2] = inf E [|f(e(d)’Xfuture) - h(Xpast)|2] .

h measurable

Practical solution of this problem requires an additional function approximation, which may
introduce additional bias and makes the overall algorithm much harder to tune.

2.1 | Summary of the key results

Discrete time econometric models can be viewed as discretisation of certain SDEs type models
(Kliippelberget al., 2004). The continuous time perspective by embedding discrete time series into
a path space, which we follow in this paper, is particularly useful when learning from irregularly
sampled data sets and designing efficient training methods that naturally scale when working
with high and ultra high frequency data (Cuchiero et al., 2020; Gierjatowicz et al., 2022; Liu et al.,
2019). Our approach utilizes the signature of a path, which is a mathematical object that emerges
from rough-path theory and provides a highly abstract and universal description of complex multi-
modal data streams that has recently demonstrated great success in several machine learning tasks
(Kidger et al., 2019; Xie et al., 2017; Yang et al., 2022). To be more precise, we add a time dimen-
sion to d dimensional time series (x[)tT:1 and embed itinto X : [0,T] —» E := Re¢withd =d + 1.
For example, this is easily done by linearly interpolating discrete time data points. We assume
that X is regular (c.f. Section 3.2) and denote the space of all such regular paths by Q,([0, T], E).
The signature of a path determines the path up to tree-like equivalence (Boedihardjo & Geng,
2015; Hambly & Lyons, 2010). Roughly speaking, there is an almost one-to-one correspondence
between the signature and the path, but when restricting the path space to Qy([0, T], E), the sig-
nature (feature) map S : x — S(x), x € Qy([0,T], E), is bijective. In other words, the signature
of a path in Qy([0, T], E) determines the path completely (Levin et al., 2016). Let S(Qq ([0, T], E))
denote the range of the signature of all the possible paths in Qy([0, T], E). Note that the signature
map S, defined on Q,([0, T], E), is continuous with respect to the 1-variation topology (Lyons et al.,
2007). A remarkable property of the signature is the following universal approximation property.

Theorem 2.1 Universality of signature (Levin et al., 2016). Consider a compact set K C
S(Qy([0,T], E)). Let f : K — R beany continuous function. Then, for any ¢ > 0, there exists a linear
functional L € T((E))* acting on the signature such that

sup | f(S) — L(S)| <e. 3)
SeK

Theorem 2.1 applies to any subspace topology on (S(Q([0, T1, E)), which is inherited from the
Hausdorff topology T((E)), that is finer than the weak topology. The theorem tells us that any
continuous functional on the signature space can be arbitrarily well approximated by a linear
combination of coordinate signatures.

Since the signature S is bijective and continuous when restricting the path space to Q,([0, T1, E),
the pushforward of the measure on the path space, u(B) := (Syu)(B) = u(S~'(B)) for B in the o-
algebra of S(Q(J, E)), induces the measure on the signature space. With this in mind, the W; on
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the signature space is given by

Wy v) 1= sup B ,[F(S)] - EsoLFS)].

A NLip <1

Motivated by the universality of signature, we consider the following Sig-W metric as the proxy
for Wflg by restricting the admissible test functions to be linear functionals:

Sig-W1(u,v) = sup Es ulL(S)] — Eswy[L(S)].

[IL]|zip<1,Lis a linear functional

The Sig-W; metric was initially proposed in Ni et al. (2021), where the Lipschitz norm of f
is obtained by endowing the underlying signature space equipped with the [> norm. Here, we
consider a more general case, where the norm of the signature space is chosen as I” for some
p>1

In Lemma 4.5, we show that when

L —
[|L||Lip :=  sup M for some p > 1,

x#y,x,yETPE) [|x =yl |p

where TP(E) is the set of all the tensor series elements with finite I norm, then Sig-W; admits
analytic formula

Sig-Wi(u, v) = ”[ES~/.L[S] - [ES~11[S]”p .

The significance of this result is that Sig-W;-GAN framework reduces the challenging min-max
problem to supervised learning, without severing loss of accuracy when compared with Wasser-
stein distance on the path space. Figure 1 of the two-dimensional VAR(1) dataset illustrates that the
SigCWGAN helps stablize the training process and accelerate the training to converge compared
with the CWGAN when keeping the same conditional generator for both methods.

In the conditional setting studied here, we lift both (X5, Xfuture) into the signature space, that
is Xpast’Xfuture) = (Spast’ Sfuture) ‘= (S(Xpast)»S(Xfuture))- The corresponding Sig'Wl distance is
given

Sig'Wl(M(spast)a 1}(Spast)) = ”[ESN/,L(Spast)[S] - [ES~11(Spast)[S]”p
= ”[ESNM[Sfuture | Spast] - [ES~v[Sfuture | Spast]”p~ .

where S denotes (Spasts Sfuture)- From Doob-Dynkin lemma, we know that the conditional expec-
tations are measurable functions of S, Assuming the continuity of conditional expectation,
and by the universal approximation results, these can be approximated arbitrarily well by linear
functional of signature. Hence, we have

[ES~,u[|Sfuture - Ey(spast)[sfuture“z] ~ inf [ES~,u[|Sfuture - L(Spast)lz] . (4)

L linear functional

Due to linearity of the functional L, the solution of the above optimization problem can be
estimated by linear regression.
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— Xpast

T Xfuture

Construct samples of (S(X[vpﬂst):S(Xt,future))

Xpast Fake Xfyture

Conditional Generator 6(9(9), Xpast )

FIGURE 2 Theillustration of the flowchart of SigCWGAN. [Color figure can be viewed at
wileyonlinelibrary.com]

Let L denote the linear regression estimator of the conditional expectation x ~
[ESN,u[Sfuturelspast = x].

Unlike classical W;-GAN described above, the conditional expectation under the data mea-
sure needs to be computed only once. Complete training is then reduced to solving following
supervised learning problem

f(e(g)) r= EXpas ”I:(Spast) - [ES[ulure~v(6(8),Xpasl)[Sfuture]||p] . Q)

Note that for each 8¢, one needs to approximate Esv(0@)[Stuture] using Monte Carlo simu-
lations. A complete approximation algorithm also requires Monte Carlo approximation of outer
expectation and truncation of the signature map (see Section 5.2 for exact details). The flowchart
of SigCWGAN algorithm is given in Figure 2.

2.2 | Related work

In the time series domain, the unconditional generative model was approached by various works
such as Koshiyama et al. (2021) and Wiese et al. (2020). Among the signature-based models,
Kidger et al. (2019) used Sig-MMD, originated in Chevyrev and Oberhauser (2022), a version of
the maximum mean discrepancy (MMD) with the signature feature, to generate the Ornstein-
Uhlenbeck process. Independently, Ni et al. (2021) proposed the Sig-Wasserstein GAN motivated
by combining the Wasssertain-1 distance and the signature feature. Also the conditional genera-
tive objective was approached by various authors. Esteban et al. (2017), Koochali et al. (2021), Fu
et al. (2020), Wiese et al. (2019) used FNNs/LSTMs with recurrent conditional GANs (RCGANSs),
Donahue et al. (2019), Engel et al. (2019) use GANSs to generating log-magnitude spectrograms and
phases directly for audio synthesis, and Buehler et al. (2020) pair log-signatures with variational
autoencoders (VAEs) and formulate a conditional generator in log-signature space. Conditional
VAEs with the log-signature in Buehler et al. (2020) are well adapted to small data environment,
but it may require an additional step of inverting synthetic log-signature to the path for time
series generation. TimeGAN (Yoon et al., 2019) demonstrates the improvement by adding the
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TABLE 1 Notation summary table.

Symbol Meaning

E E=R?

T((E)) The tensor algebra space of E

TP(E) The set of all the elements in T((E)) with finite [’ norm

11, The [P norm on TP(E)

[1-1lq The l9 norm on T((E))*

X E-valued time series of length T, thatis, X = (X;,...,X7) € RAXT
X1 past The p lagged values of X,, that is, (X;_p41,...,X;) € R®>P =: X,
X, future The next g step forecast of X, that is, (X1, ..., Xi45) € R =: y,
p The window size of the past path X, ;.

g The window size of the future path X, e

S past The signature of X, .

St future The signature of X e

supervised loss to the adversarial loss to force network to adhere to the dynamics of the train-
ing data during sampling. The supervised loss of TimeGAN is defined in terms of the sample-wise
discrepancy between the true latent variable h,,; and the generated one-sample estimator A, ;
given h,. However, even if the estimator /,,; has the same conditional distribution as 4, ;, the
supervised loss may not be equal to zeros, and hence it suggests that the proposed loss function
might not be suitable to capture the conditional distribution of the latent variable h;,; given the
h;.

Conditional moment matching network (CMMN) introduced in Ren et al. (2016) derives the
conditional MMD criteria based on the kernel mean embedding of conditional distributions,
which avoids the approximation issues mentioned in the above conditional WGANs. However,
the performance of CMMN depends on the kernel choice and it is yet unclear how to choose
the kernel on the path space. While our SigWGAN method is built on the conditional WGANSs
and the signature features, we would like to highlight the difference of method to the condi-
tional WGAN and its link to CMMD. SigCWGAN resolves the computational bottleneck of the
conditional WGANSs given the past time series by using the analytic formula for the conditional
discriminator without training. Building upon Ni et al. (2021), our work expands the SigWGAN
framework from its initial application to unconditional generative models to enable conditional
generative modeling. Moreover, one can view the SigCWGAN as the combination of unnormal-
ized Sig-MMD (Chevyrev & Oberhauser, 2022) and CMMD, which has not been explored in the
literature. It is worth noting that we also extend the definition of Sig-W; in Ni et al. (2021), from the
I? norm of the signature space to the general [” for some p > 1. We provide Table 1 to summarize
the commonly used notations of our paper.

3 | SIGNATURES AND EXPECTED SIGNATURES

In order to introduce formally the optimal conditional time series discriminator, in this section,
we recall basic definitions and concepts from rough path theory.
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3.1 | Tensor algebra space

We start with introducing the tensor algebra space of E, where the signature of a E-valued path
takes values. For simplicity, fix E = R¢ throughout the rest of the paper. E has the canonical basis
{e, ..., e4q}. Consider the successive tensor powers E®" of E.? If one thinks of the elements e; as
letters, then E®" is spanned by the words of length n in the letters {e;, ..., €4}, and can be identified
with the space of real homogeneous noncommuting polynomials of degree z in d variables, that

..........

as follows.

Definition 3.1. The space of all formal E-tensors series, denoted by T((E)) is defined to be the
following space of infinite series:

T{(E)) = {a =(ay,ay,...)|a, € E®",Vn > O}.

It is equipped with two operations, an addition and a product defined as follows: Va =
(ap, ay5...),b = (by, by, ...) € T((E)), it holds that

a+b=(ay+bg,a; +by,..);

a®b=(ccq,...)
where ¢, = Z:.l:o aj®b,_;.

We endow the space T((E)) with the action of R by Aa = (1ay,Aa,...) is a real non-
communtative untial algebra with the unit1 = (1, 0,0, ...) Lyons et al. (2007).
Let us first introduce the function || - [[, : T((E)) — [0, +oo] for some p > 1. For any element

a:i= ZHEN Z[e{l dn arer € T((E)):

1/p
llall, = (Z |an|§> , (6)

neN

1

.....

..........

write

Then [|L||, is defined as

IILIlg = (Z > |LI|‘I)1/Q. ©)

neN I=(iy,...,i,) €{1,....d}"
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In particular, we consider the subspace TP (E), consisting with all the elements a € T((E)) with
finite [|a||,. In this case, || - ||, becomes the [’ norm of T?((E)).

Definition 3.2. Fix some p > 1. We denote by TP(E) the following space equipped with the [P
topology:

TP(E) := {a € T(E))| llall, < +o0}.
Furthermore, we define
TP(E) ={a € TP(E)|ay = 1}.

In practice, instead of the signature (an infinite series of E-tensors), we often work with the
truncated signature. Hence, we introduce the corresponding truncated tensor algebra space.

Definition 3.3. Let n>1 be an integer. Let B, = {a = (ay,ay,...)|ag = --- = a,, = 0}. The
truncated tensor algebra T"(E) of order n over E is defined as the quotient algebra

TOY(E) = T((E))/By. (8)

The canonical homomorphism T((E)) — TM(E) is denoted by 7,,.

3.2 | Signature of time series

Embed time series in the path space

The signature feature takes a continuous function perspective on discrete time series. It allows
the unified treatment on irregular time series (e.g., variable length, missing data, uneven spac-
ing, asynchronous multidimensional data) to the path space (Chevyrev & Kormilitzin, 2016). To
embed time series to the signature space, we first lift discrete time series to a continuous path of
bounded 1-variation.

Let X = (xt)tT:1 € R™T be a d-dimensional time series of length T. We embed X to X :
[0,T] — R with d = d + 1 as follows: (1) interpolate the cumulative sum process of % to get the
d-dimensional piecewise linear path; (2) add the time dimension to the Oth coordinate of X.

Let Qy([0, T], R%) denote the space of continuous d-dimensional paths of finite 1-variation start-
ing from the origin, with the Oth coordinate being the time dimension. We endow Q,([0, T'], R%)
with the 1-variation metric.> For any d-dimensional time series, its embedded path X lives in
Q,([0,T], R?). Figure 3 gives one concrete example to illustrate the time series embedding.

Throughout the rest of the paper, we restrict our discussion on the path space Qq(J, E). How-
ever, our methodology discussed later can be applied to other methods of transforming discrete
time series to the path space provided that the embedding ensures the uniqueness of the signature.
The commonly used path transformations with such uniqueness property are listed in Section B.1.

The signature of the path
We first introduce the k-fold iterated integral of a path X € Qy([0, T], R%). Let I = (iy,...,i;) be a
multi-index of length k, where iy, ...,i, €{0,1,2,...,d —1}. Let X @ denote the ith coordinate of
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FIGURE 3 (Left) Embed one dimensional time series X = (x;, X,, X3) to X (in blue) in the path space. First

we compute (X, ?:o’ which is the cumulative sum of (x,)}_,, that is, X, = 0 and Xt(l) = Z;l X, XEO) =t for

t = 1,2,3. Then we linearly interpolate X to a continuous path in Q,([0, 3], R?); (right) embed the time series to
the path space and visualize the low order signature. [Color figure can be viewed at wileyonlinelibrary.com]

X, which is a real-valued function. The iterated integral of x indexed by I is defined as

S (x) = / dejl’ ng» dXt(ik).

0<ty<ty<---<ty<T

Collecting the iterated integrals of X with all possible indices of length k gives rise to the kth
fold iterated integral of X. It can also be written in the tensor form, that is,

/ dX; ® dX,, ® --- @ dX, € E®".
0<t1<tp<---<t

Figure 3 (left) shows the one-fold iterated integral of X, which is the increment of X, that is, X5 —
Xy, and the two-fold iterated integral of X, which is given by

X® = (59900, SO0, sE0(X), STVX)),
where SGD(X) = %(AX 2 and SOD(X),s19(X) are blue and yellow area in Figure 3
(right), respectively.
Now we are ready to introduce the signature of a path X.
Definition 3.4 (Signature of a path). Let X € Qq(J, E). The signature of the path X is defined as
S0 = (1,XW,X@, ) e T(B)), ©

whereX®W = [ _ _ _ dX, ®dX, ® - ®dX,.

The truncated signature of the path X of degree M, denoted by Sy,(X) and defined by
Su(0) 1= my(S0) = 1, XWD,..,.XM).

Lemma 3.5. Fixsome p > 1. Forany X € Qy([0, T], R%), the signature of X is an element of TP(E).
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Proof. 1t is a consequence of the factorial decay of the signature of a path of bounded 1-variation
(c.f.,, Lemma A.2 in Appendix A). O

Lemma 3.6 (Uniqueness of signature). For any X € Qy([0,T],E), the signature of X uniquely
determines X.

Proof. We refer the proof to that of Lemma 2.14 in Levin et al. (2016). O

The universality and uniqueness of signature, described in Section 2.1, make it an excellent
candidate as a feature extractor of time series.

As we mainly work on the signature space in the later section, we provide a remark on the
structure of the range of S on Qy([0, T], E).

Remark 3.7. Let K denote a compact set of Qy([0, T], E). Then the range S(KX) is a compact set of
TP(E) endowed with [P topology. We defer the proof to that of Lemma A.3 at Appendix A.

3.3 | Expected signature

Expected signature

Since the signature S is a bijective and continuous map when restricting the path space to
Qy([0, T], E), the pushforward of the measure on the path space, u(B) := (Sxu)(B) = u(S~1(B))
for B in the o-algebra of S(Q(([0, T], E)), induces the measure on the signature space.

Lemma 3.8. Let u,v be two measures defined on the path space Qy(J,E). Then for u(B) :=
(Syu)(B) and v(B) := (Suv)(B) with B in the g-algebra of S(Qy(J, E)) we have

U=V U=

Proof. This is an immediate result of the bijective property of the signature map S, when S is
restricted to Qy(J, E). O

By Proposition 6.1 in Chevyrev et al. (2016), we have the following result:

Theorem 3.9. Let u and v be two measures on the path space Qy(J, E). Let u(B) := (Syu)(B)
and v(B) := (S4v)(B) for B is in the g-algebra of S(Qy(J, E)). Suppose that Eg.,[S] exists and has
infinite radius of convergence®. If EsulS] = Es,[S], then u = v.

In other words, under the regularity condition, the distribution u on the path space is character-
ized by Ex.,[S(X)]. We call Ex..,[S(X)] the expected signature of the stochastic process X under
measure u. Intuitively, the signature of a path plays a role of a noncommutative polynomial on the
path space. Therefore, the expected signature of a random process can be viewed as an analogy of
the moment generating function of a d-dimensional random variable. For example, the expected
Stratonovich signature of Brownian motion determines the law of the Brownian motion in Lyons
et al. (2015). However, it is challenging to establish a general condition to guarantee the infinite
radius of convergence (ROC). In fact, the study of the expected signature of stochastic processes is
an active area of research. For example, the expected signature of fractional Brownian motion for
the Hurst parameter H > 1/2 is shown to have the infinite ROC (Fawcett, 2002; Passeggeri, 2020),
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whereas the ROC of the expected signature of stopped Brownian motion up to the first exit domain
is finite (Boedihardjo et al., 2021; Li & Ni, 2022). Chevyrev et al. (2016, Theorem 6.3) provide a
sufficient condition for the infinite ROC of the expected signature, potentially offering an
alternative way to show the infinite ROC without directly examining the decay rate of the
expected signature.

4 | SIG-WASSERSTEIN METRIC

In this section, we formalize the derivation of Signature Wasserstein-1 (Sig-W) metric introduced
in Section 2.1. The Sig-W is a generalization of the one proposed in Ni et al. (2021) by considering
the general I” metric of the signature space.

Let f : Q — R, where Q is a generic metric space. Define

||f||Lip,Q = sup M

, (10)
X#y,X,yEQ D(x,y)

where D is a metric defined on Q. Let x and v be two compactly supported measures on the path
space Q([0, T, E) such that the corresponding induced measures on the signature space u and
v, respectively, have a compact support K C S(Qy([0,T], E)) C TP(E). Recall that

W) = W) = sup  Eg ,[F(S)] - Esoy[F(S)].

A Lipaes1

From the definition of the supremum, there exists a sequence of f, : X - R with bounded
Lipschitz norm along which the supremum Wflg(/,t, v) is attained. By the universality of the sig-
nature, it implies that for any € > 0, for each f,,, there exists a linear functional L, : £ - R to
approximate f, uniformly, that is,

< 2e.

/fn(S)#(dS) — Fn(S)v(dS) - </ L,(S)u(dS) —Ln(S)V(dS))>
K K

AsLy, : K — Rislinear, there is a natural extension of L,, mapping from T?(E) to R.
Motivated by the above observation, to approximate Wf’ lg(u, v), we restrict the admissible set
of f to be linear functionals L : T((E)) — R, which leads to the following definition.

Definition 4.1 (Sig-W; metric). For two measures u, v on the path space Q([0, T], E)) such that
their induced measures g and v, respectively, has a compact support £ € S(Qy([0,T], E)),

Sig-W1(w,v) = sup (Es~pl L(S)] = Esy [L(S)]).-

[|IL||Lip<1,L is a linear functional:

Here we skip the domain TP(E) in the Lip norm of ||L||;, for the simplicity of the notation.

Remark 4.2. Despite the motivation of Sig-W; from the approximation of Wfig ,itis hard to estab-
lish the theoretical results on the link between these two metrics. The main difficulty comes from
that the uniform approximation of the continuous function f by a linear map L on K does not
guarantee the closeness of their Lipschitz norms. We conjecture that in general, Wflg (u,v)is not

85UBD 17 SUOWILLIOD BA eI 3 |ced ! (dde ay) Aq pausenoh a.e sapile YO ‘88N JO S3|nJ 10y ARiqiT auljuQ 8|1 UO (SUORIPUOI-pUR-SWLLIBIALI0D A3 | IM' ARe1q 1 Ul |uo//SdiL) SUORIPUOD PUe SWB | 8L} 89S *[£202/TT/60] Uo ARlqiauluo A3 |1IM ‘'ssoIARS Aeiqi 1DN uopuoafe|jo0 AisieAlun Ag €2v2T 1Jew/TTTT OT/I0p/wW09 A8 | 1m Azeiq 1 puI U0/ SANY WOl pepeojumoq ‘0 ‘S966.9T



LIAO ET AL. W l L E Y 15

equal to Sig-W;(u, v). However, it would be interesting but technically challenging to find out the
sufficient conditions such that these two metrics coincide.

To derive the analytic formulae for the Sig-W metric, we shall introduce the following auxiliary
lemma on the [? norm of the tensor space TP(E) and its dual space.

Lemma 4.3. Fixp,q > 1suchthat—+— =1(ie,q= ;).
For any linear functional L € TP(E)* lt holds that
sup |La| = ||L||g, (11)
llallp=1
Similarly, for any a € TP(E), it holds that
sup |La| = sup |La| = |lall,. (12)

[IL]lg=<1 [IL][g=1
We refer to the proof of Lemma 4.3 in Appendix A.3.

Remark 4.4. The sequence space L,(7) is defined as

Ly(I) = {(aI)IeI| Z lap|P < oo},

Iel

where 7 is a general index set and p > 1. It is well known that the dual space of L,(T) for p > 1
has naturally isomorphic to L,(Z). This isomorphism is exactly the same as the map L* : TP(E) \
{0} — TP(E)* \ {0} : a — L*(a) used in our proof. Similarly, the dual space of L,(Z)* has a natural
isomorphism with L,(Z) for any p > 1.

By exploiting the linearity of the functional L € TP(E)*, we can compute the Lip norm of L
analytically for D being the I[P norm of TP(E) without the need of numerical optimization. By
Lemma 4.3, the Lip norm of L is the Lp norm of L, given as

|L(x — y)I
IL||gip =  sup ~ ———— = sup |La|=|[|Llly,

xyxyerr(E) X =Yllp  jjaj,=1

where - + 1 =1 and D(x,y) = [|x — y||, with some p > 1.
P g
The simplification of the Lip norm enables us to derive an analytic formula of the corresponding
Sig-W; metric.

Lemma 4.5. For two measures [, v on the path space Qy([0, T, E) such that their induced measures
M and v have a compact support K C S(Qy([0, T1, E)). Then it holds that

Sig-Wi(u,v) = ”[ESN[.,L[S] - [ES~11[S]”p = ”[EX~/1[S(X)] - [EXNV[S(X)]”p' (13)
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Proof. Letalinear functional L : K — R endowed with the Lip norm when D(x, y) = [|x — y[| -
In this case, the Lip norm coincides with [9 norm. The compact support K of u and v ensures
that Eg.,(S) and Eg.,(S) are in TP(E). Let a = Eg.,(S) — Es.,, (X)) and a = (a;);. Then by
Lemma 4.3, one can derive the analytic formula of Sig-W; metric as follows:

Sig-W1(u,v) = sup L(Eg.,(S)) — L(Es.,(S)) = sup L(a)=|lallp-
IILIlg<1 IILIlg<1

O

Remark 4.6. When p = 2, Sig-W; is the same as the unnormalised Sig-MMD metric proposed
in Chevyrev and Oberhauser (2022). The theoretical results in Chevyrev and Oberhauser (2022)
might be useful for studying the properties of Sig-Wasserstein metric.

Throughout the rest of the paper, by default, we use Sig-W; metric when D is > norm on T((E)),
thatis, Sig-W1(u,v) = ||Ex.,[S(X)] = Ex.., [SX)]]l,. In practice, we truncate the Sig-W; (i, v) up
to degree M, that is,

Sig-W™M (1, v) = [|Ex~u[Si )] = Exo [Sir GOl

5 | SIG-WASSERSTEIN GANS FOR CONDITIONAL LAW

In this section, we introduce a general framework, so-called conditional Sig-Wasserstein GAN
(SigCWGAN) based on Sig-W; metric to learn the conditional distribution (Xgyure|Xpast) from
data x. The C-SigWGAN algorithm is mainly composed of two steps:

1. We apply a one-off linear regression to learn the conditional expected signature under true
measure Ex, o0 ) [SXrurure)] (see Section 5.1);

2. We solve an optimization problem to find optimal parameters 8® of the conditional generator,
when using loss (5) (see Section 5.2).

past)

In the last subsection of this section, we propose a conditional generator, that is, AR-FNN gen-
erator, which is a nonlinear generalization of the classical autoregressive models by using a
feed-forward neural network. It can generate the future time series of arbitrary length.

5.1 | Learning the conditional expected signature under the true
measure

The problem of estimating the conditional expected signature under the true measure u(Spaq),
by Equation (4) and the universality of the signature (Theorem 2.1), can be viewed as a linear
regression task, with the signature of the past path and future path respectively (Levin et al., 2016).

More specifically, given a long realization of x := (xy, ..., x7) € R and fixed window size of
the past and future path p, g > 0, we construct the samples of past/future path pairs (X past, Xtuture)
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in a rolling window fashion, where the ith sample is given by

x® x® ) = (Xpast. x 1)
past® “fature | — \*‘pasti+p—1> *uture,i+g—1) -

Assuming stationarity of the time series, the samples of past and future signature pairs are
identically distributed

(a1, (x5 ) ot (¥ighae ) ). = oty (Kpast)  Sot, e

where M1, M, are the degrees of the signature of the past and future paths, which can be chosen by
cross-validation in terms of fitting result. One may refer to Fermanian (2022) for further discussion
on the choice of the degree of the signature truncation.

In principle, linear regression methods on the signature space could be applied to solve
this problem using the above constructed data. When we further assume that under the true

measure,
® \_ 5
Su, (Xfumre) - (le (Xpast>> +ep

iid i . . .
where ¢; ~ ¢and E[e;|X®] = 0, then an ordinary least squares regression (OLS) can be directly
used. This simple linear regression model on the signature space achieves satisfactory results on
the numerical examples of this paper. But it could be potentially replaced by other sophisticated
regression models when dealing with other datasets.

We highlight that this supervised learning module to learn E ,u(xpast)[SM (Xtuture)] is one-off and
can be done prior to the generative learning. It is in striking contrast to the conditional WGAN
learning, which requires to learn E /"(Xpast)[ foaXtuture)] €Very time the discriminator f, is updated,
and hence saves significant computational cost.

5.2 | Sig-Wasserstein GAN algorithm for conditional law

We recall that in order to quantify the goodness of the conditional generator v(6®, Xpast,) - =
G(6®, Xpast)#Mz> We defined the loss

f(e(g)) = [EXPaS[ [| Iﬁ(spast) - [Esmture~v(6(g>xpast)[Sfuture]| Ip] ’

where L denotes the linear regression estimator for the conditional expectation L : x
Es-ul[Stuture|Spast = X]. Given the conditional generator G(6®, ), the conditional expected signa-
ture [EX~1/(X o) [S(X)] can be estimated by Monte Carlo method. We denote by ¥; the empirical

ast !
approximation of v(6, xpast) computed by sampling the future trajectory X l(i)l t+g using G(6®, )

and a conditioning variable X, ;. This leads to the following empirical loss function:

£ @(g) = i <SM1(xg;st)>> - [Eﬁi [SMZ ( gl)ture)] ”P ' (14)
i=1
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ALGORITHM 1 Pseudocode of SigCWGAN

Input: (x[)thl, the signature degree of future path M,, the signature degree of past path M;, the

length of future path g, the length of past path p, learning rate », batch size B, the number of
epochs N, number of Monte Carlo samples Ny;c.

Output: O—the optimal parameter of the generator G(6, -).

1: Compute truncated signature of the past and future paths: (S, (X;—p4+1:¢)> Shr, (Xps1: 146D+
2: Compute linear regression coefficient L using (St (Xe—p1:0)> Sty (Xps1:14.9))i- (See Section 5.1.)
3: Initialize the parameters 6 of the generator.
4: fori=1:Ndo
5 > Denote the set of time index of the batch as 7.
6: for j =1 : # of batches do
7: We randomly select the set of time index of batch size B, denoted by 7.
8: Initialize I®)(8) « 0.
9: fort € Tz do
10: Simulate ny;c samples of the simulated future path segments (fc(f))?ﬁ by the generator
G(0, ) given the past path x;_5,1.,-
11: Compute
. 10 ,
Exon@xpur (S, O] = 2= JZ Sar, B9
12: Update [P(6) « 1) + IL(Sw, (xi—ps1:0) = Exsio,_pr.o) [Saa, COTIL2-
13: 06— d[(z;(e).
returnd.

Using empirical loss function (14), one updates the generator parameters 8¢ with stochastic
gradient descent algorithm until it converges or achieves the maximum number of epochs. See
Algorithm 1 for pseudocode.

5.3 | The conditional AR-FNN generator

In this subsection, we further assume that the target time series X is stationary and satisfies the
following autoregressive structure, that is,

X1 = g(Xt,past’ €41)s 15)

where f : X x Z —» R? is continuous and (g;), are i.i.d. random variables and ¢, and X past
are independent. Time series of such kind include the autoregressive model (AR) and the
Autoregressive conditional heteroskedasticity (ARCH) model.

The proposed conditional AR-FNN generator is designed to capture the autoregressive struc-
ture of the target time series by using the past path X, as additional input for the AR-FNN
generator. The function f in Equation (15) is represented by forward neural network with resid-
ual connections (He et al., 2016) and parametric ReLUs as activation functions (He et al., 2015)
(see Section B.2 for a detailed description).
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We first consider a step-1 conditional generator Gl(e<g>, ) RI%P x Z — RY, which takes the
past path x and the noise vector Z; to generate a random variable to mimic the conditional dis-
tribution of step-1 forecast u(X; 41 [Xpasi; = X). Here the noise vector Z, has the standard normal
distribution in Z = R9,

One can generate the future time series of arbitrary length g > 1 given X, by applying
G,(6®),") in a rolling window fashion with i.i.d. noise vector (Z,), as follows. Given X, =
(X1, -5 Xp) € R9%P_ we define time series (%,), inductively; we first initialize the first p term %
as Xpagr> and then for ¢ > p, use G,(6®), ) with the p-lagged value of %, conditioning variable and
the noise Z, to generate %,,; in formula,

X, ift < p;

% =4G1(6®), %_p,...%y ,Z), ift>p. (16)
———
p lagged values of %;

Therefore, we obtain the step-q conditional generator, denoted by Gq(a<g>, D) 1 RIXP 5 RIXG
and defined by xpa5 = (Xp415 -5 Xpig), Where (Rp11, ..., Xpyg) is defined in Equation (16). We
omit g in G4 for simplicity. (See Algorithm 2 in Supplementary Material.)

6 | NUMERICAL EXPERIMENTS

To benchmark with SigCWGAN, we consider the baseline conditional WGAN (CWGAN) to
compare the performance and training time. Besides, we benchmark SigCWGAN with three rep-
resentative generative models for the time-series generation, that is, (1) TimeGAN Yoon et al.
(2019), (2) RCGAN (Hyland et al., 2018)—a conditional GAN and (3) GMMN (Li et al., 2015)—an
unconditional MMD with Gaussian kernel. For a fair comparison, we use the same neural net-
work generator architecture, namely the three-layer AR-FNN described in Section B.2, for all the
above generative models. Furthermore, we compare the proposed SigCWGAN with Generalized
autoregressive conditional heteroskedasticity model (GARCH), which is a popular econometric
time series model.

To demonstrate the model’s ability to generate realistic multidimensional time series in a con-
trolled environment, we consider synthetic data generated by the Vector Autoregressive (VAR)
model, which is a key illustrative example in TimeGAN (Yoon et al., 2019). We also provide two
financial datasets, that is, the SPX/DJI index data and Bitcoin-USD data to validate the efficacy of
the proposed SigCWGAN model on empirical applications. The additional example of synthetic
data generated by ARCH model is provided in the appendix.

To assess the goodness of the fitting of a generative model, we consider three main criteria (a)
the marginal distribution of time series; (b) the temporal and feature dependence; (c) the useful-
ness (Yoon et al., 2019)—synthetic data should be as useful as the real data when used for the same
predictive purposes (i.e., train-on-synthetic, test-on-real).” In the following, we give the precise

definition of the test metrics. More specially, we use D;c, = (xgl)mre)ﬁi L and Dy 1= (fcgl)mre fi 1
NO)

to compute the test metrics, where X;©  is a simulated future trajectory sampling by the condi-

tional generator G(6®), xgzst). D,ea1 and Dgyy. are the samples of the R%*9-valued random variable
Xtuture Under real measure and synthetic measure resp. The test metrics are defined below.
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* Metric on marginal distribution: For each feature dimension i € {1, ..., d}, we compute two
empirical density functions (epdfs) based on the histograms of the real data and synthetic data

Al Al
resp. denoted by d f, and df ;. We take the absolute difference of those two epdfs as the metric
on marginal distribution averaged over feature dimension, that is,

Q|

d . .
Z |dAfr - dAfcll-
i=1

* Metric on dependency:

(1) Temporal dependency: We use the absolute error of the auto-correlation estimator by
real data and synthetic data as the metric to assess the temporal dependency. For each feature
dimension i € {1, ..., d}, we compute the auto-covariance of the ith coordinate of time series
data X with lag value k under the real measure and the synthetic measure, respectively, denoted
by pi(k) and pg(k). Then the estimator of the lag-1 auto-correlation of the real/synthetic data

PO pi(0)
correlation given as follows:

is given by The ACF score is defined to be the absolute difference of lag-1 auto-

pi) P61
PL(0)  pL(0)

d
1
Note p(k) and p.(k) can be estimated empirically by Equations (C.1) and (C.2) in Appendix C,
respectively, which allows us to compute the ACF score on the dataset. In addition, we present
the ACF plot, which illustrates the autocorrelation of each coordinate of the time series with
different lag values. The synthetic data’s quality is evaluated by how closely its ACF plot
resembles that of the real data, as it indicates the synthetic data’s ability to capture long-term
temporal dependencies.

(2) Feature dependency: For d > 1, we use the I' norm of the difference between cross
correlation matrices. Let 7, and rlc’;j denote the correlation of the ith and jth feature of time
series under real measure and synthetic measure, respectively. The metric on the correlation
between the real data and synthetic data is given by I' norm of the difference of two correlation
matrices, that is,

We defer the estimation of the correlation matrix 7,” and rlG’J from the true data and fake data
to Appendix C.

* R? comparison: Following Esteban et al. (2017) and Yoon et al. (2019), we consider the problem
of predicting next-step temporal vectors using the lagged values of time series using the real data
and synthetic data. First, we train a supervised learning model on real data and evaluate it in
terms of R?(TRTR). Then we train the same supervised learning model on synthetic data and
evaluate it on the real data in terms of R? (TSTR). The closer two R? are, the better the generative
model it is. To assess the performance of the proposed SigCWGAN to generate the longer time
series, we consider the R? score for the regression task to predict the next g-step, where g can
be even larger than q.

85UBD 17 SUOWILLIOD BA eI 3 |ced ! (dde ay) Aq pausenoh a.e sapile YO ‘88N JO S3|nJ 10y ARiqiT auljuQ 8|1 UO (SUORIPUOI-pUR-SWLLIBIALI0D A3 | IM' ARe1q 1 Ul |uo//SdiL) SUORIPUOD PUe SWB | 8L} 89S *[£202/TT/60] Uo ARlqiauluo A3 |1IM ‘'ssoIARS Aeiqi 1DN uopuoafe|jo0 AisieAlun Ag €2v2T 1Jew/TTTT OT/I0p/wW09 A8 | 1m Azeiq 1 puI U0/ SANY WOl pepeojumoq ‘0 ‘S966.9T



LIAO ET AL. WI LEYM

TABLE 2 Numerical results of VAR(1) for d = 3 with fixed training time of 2 min.
Metrics Marginal distribution Auto-correlation R*(%) Sig-w,
SigCWGAN 0.0314 0.0085 0.0394 0.4286
CWGAN 0.0086 0.0110 0.0350 0.4384
TimeGAN 0.0243 0.0320 0.0229 0.4680
RCGAN 0.0095 0.0332 0.0214 0.4466
GMMN 0.0084 0.0298 0.0026 0.4499

The train and test split is 80 and 20%, respectively, in all the numerical examples. We conduct
the hyper-parameter tuning for the signature truncation level. We set p = 2 in the [P norm used
in the Sig-W; metric. Appendix B contains the additional information on implementation details
of SigCWGAN, including path transformations and network architecture of the generator. We
refer the Appendix C for more details on the evaluation metrics. We also provide the extensive
supplementary numerical results of VAR(1) data, ARCH(1) data and empirical data in
Appendix D. Implementation of SigCWGAN can be found in https://github.com/SigCGANs/
Conditional-Sig-Wasserstein-GANS.

6.1 | Synthetic data generated by vector autoregressive model

In the d-dimensional VAR(1) model, time series (X, I)tT=1 are defined recursively for t € {1, ..., T —
1} through

X1 = X, €41, 17)

where (<—:[)IT:1 are iid Gaussian-distributed random variables with co-variance matrix o1 + (1 —
o)I; I is a d X d identity matrix. Here, the coefficient ¢ € [—1,1] controls the auto-correlation
of the time series and o € [0, 1] the correlation of the d features. In our benchmark, we investigate
the dimensions d = 1, 2,3 and various (o, ¢). We set T = 40,000 and p = g = 3. In this example,
the optimal degree of signature of both past paths and future paths is 2.

First, we empirically prove that the proposed SigCWGAN can serve as an enhancement of
CGWAN model. One can see from Figure 4, when the CWGAN training is fed into a more reli-
able estimator of the conditional mean under real measure E :u(xpast)[ fXfuture)]» the training tends
to converge faster. However, the commonly used one-sample estimator (Xg,yre) in the CWGAN
training may suffer from large variance, leading to inefficiency of training. In contrast to it, the
SigCWGAN may alleviate this problem by its supervised learning module. Additionally, the sim-
plification of the min-max game to optimization via SigCWGAN leads to further acceleration
and stablization of training SigCWGANS, and hence brings the performance boost, as shown in
Table 2. Figure 4 illustrates that the SigCWGAN has a better fitting than CWGAN in terms of con-
ditional law as the estimated mean (and standard deviation) is closer to that of the true model
compared with CWGAN. Moreover, Tables D.1-D.3 show that the SigCWGAN consistently beats
the CWGAN in terms of performance for varying d, ¢, and o.

We then proceed with the comparison of CSigWGN with the other state-of-the-art baseline
models. Across all dimensions, we observe that the CSigWGAN has a comparable performance or
outperforms the baseline models in terms of the metrics defined above. In particular, we find that
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Comparison of the predictive score across different VAR datasets
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FIGURE 5 Comparison of predictive score across the VAR(1) datasets. The three numbers in the bracket
indicate the hyperparameters d, ¢, o used to generate the corresponding VAR dataset. The predictive score was
computed by taking the absolute difference of the R? obtained from TSTR and TRTR. [Color figure can be viewed
at wileyonlinelibrary.com]

as the dimension increases, the performance of SigCWGANSs exceeds baselines. We illustrate this
finding in Figure 5, which shows the relative error of TSTR R?> when varying the dimensionality
of VAR(1). Observe that the SigCWGAN remains a very low relative error, but the performance
of the other models deteriorates significantly, especially the GMMN.

Moreover, we validate the training stability of different methods. Figure 6 shows the develop-
ment of the loss function and ACF scores through the course of training for the three-dimensional
VAR(1) model. It indicates the stability of the SigCWGAN optimization in terms of training iter-
ations, in contrast to all the other algorithms, especially RCGAN and TimeGAN that involve a
min-max optimization, as identified in the 1st challenge in Section 2. While the ACF scores of the
baseline models oscillate heavily, the SigCWGAN ACF score and Sig-W distance converge nicely
towards zero. Also, although the MMD loss converges nicely towards zero, in contrast, the ACF
scores do not converge. This highlights the stability and usefulness of the Sig-W; distance as a
loss function.

To assess the efficiency of different algorithms, we train all the algorithms for the same amount
of time (2 min) and compare the test metrics of each method. Table 2 shows a higher efficiency of
SigCWGAN, which yields the best performance in terms of all the metrics except for the metric
on the marginal distribution.

Furthermore, the SigCWGAN has the advantage of generating the realistic long time series over
the other models, which is reflected by that the marginal density function of a synthetic sampled
path of 80,000 steps is much closer to that of real data than baselines in Figure 7.

6.2 | SPX and DJI index dataset

The dataset of the S&P 500 index (SPX) and Dow Jones index (DJI) consists time series of indices
and their realized volatility, which is retrieved from the Oxford-Man Institute’s “realized library”
(Heber et al., 2009). We aim to generate a time series of both the log return of the close prices
and the log of median realized volatility of (a) the SPX only; (b) the SPX and DJI. Here we choose
the length of past and future path to be 3. By cross-validation, the optimal degree of signature
(M; = M,) is 3 and 2 for the SPX dataset and SPX/DJI dataset, respectively.
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TABLE 3 Numerical results of the stock datasets. In each cell, the left/right number are the result for the SPX
data/the SPX and DIJI data, respectively. We use the relative error of TSTR R? against TRTR R? as the R? metric.

Marginal
Metrics distribution Auto-correlation Correlation R*(%) Sig-w,
SigCWGAN 0.01730, 0.01674 0.01342, 0.01192 0.01079, 0.07435 2.996, 7.948 0.18448, 4.36744
TimeGAN  0.02155, 0.02127 0.05792, 0.03035 0.12363, 0.61488 5.955, 8.586 0.58541, 5.99482
RCGAN 0.02094, 0.01655 0.03362, 0.04075 0.04606, 0.15353 2.788, 7.190 0.47107, 5.43254
GMMN 0.01608, 0.02387 0,01283, 0.02676 0.04651, 0.22380  9.049, 7.384 0.59073, 6.23777

GARCH 0.01583,0.01670  0.13392, 0.11337 0.15791, 0.7290 12.1253,12.5686 0.64825, 6.15344

TABLE 4 Numerical results of BTC-USD data experiment. We use the relative error of TSTR R? against
TRTR R? as the R? metric.

Metrics Marginal distribution Auto-correlation R%(%) Sig-W,
SigCWGAN 2.0532 0.091 0.3320 0.0829
TimeGAN 2.8037 0.1203 0.7582 0.1675
RCGAN 2.8603 0.0532 0.3165 0.0994
GMMN 2.8212 0.2093 0.3904 0.0846
GARCH 4.5063 0.0872 123.77 2.73

Table 3 shows that SigCWGAN achieves the superior or comparable performance to the other
baselines. The SigCWGAN generates the realistic synthetic data of the SPX and DJI data shown
by the marginal distribution comparison with that of real data in Figure 8. For the SPX only data,
GMMN performs slightly better than our model in terms of the fitting of lag-1 auto-correlation
and marginal distribution (<0.0013), but it suffers from the poor predictive performance and
feature correlation in Table 3 and Figure 9. When the SigCWGAN is outperformed, the differ-
ence is negligible. Furthermore, the test metrics, that is, the ACF loss and density metric, of our
model are evolving much smoother than the test metrics of the other baseline models shown in
Figure D.7. Moreover, the ACF plot shown in Figure 10 shows that SigCWGAN has the better fit-
ting for the auto-correlation for various lag values, which indicates the superior performance in
terms of capturing long temporal dependency.

It is worth noting that our SigCWGAN model outperforms GARCH, the classical and widely
used time series model in econometrics, on both the SPX and SPX/DIJI data, as shown in Table 3.
The poor performance of the GARCH model could be attributed to its parametric nature and the
potential issues of model mis-specification when applied to empirical data.

6.3 | Bitcoin-USD dataset

The Bitcoin-USD dataset contains hourly data of Bitcoin price in USD from 2021 to 2022. We use
the data in 2021 (2022) for the training (testing), respectively, which are illustrated in Figure 11.
We apply our method to learn the future log-return of the future 6 h given the past 24 h. We
encode the future and past paths with their signatures of depth 4. Table 4 demonstrates that our
proposed SigCWGAN outperforms the other baselines in terms of almost all the test metrics. The
R? score of the RCGAN (0.3165) is slightly better than that of the SigCWGAN by 0.0155, whilst
SigCWGAN achieves superior performance than the RCGAN in terms of other metrics, especially
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SEe s

FIGURE 9 Comparison of real and synthetic cross-correlation matrices for SPX and DJI log-return and

log-volatility data. On the far left, the real cross-correlation matrix from SPX and DJI data is shown. x/y-axis
represents the feature dimension while the color of the (i, j)th block represents the correlation of X fi) and X, [(j ),
The color bar on the far right indicates the range of values taken. [Color figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 10 ACF plot for each channel on the SPX/DJI dataset. Here x-axis represents the lag value (with
maximum lag equal to 100) and y-axis represent the corresponding auto-correlation. The length of real/generated
time series used to compute the ACF is 1000. The number in the bracket under each model is the sum of the

absolute difference between the correlation coefficients computed from real (dashed line) and generated (solid
line) samples. [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 11 The evolution of the close value (left) and log return of BTC-USD from January 2021 to January
2023. [Color figure can be viewed at wileyonlinelibrary.com]
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marginal distribution (2.0532 vs. 2.803). The better performance of the SigCWGAN to capture the
temporal dependency is also verified by the additional results of the autocorrelation metric and
the R?>-metric for different lag values is provided in Tables D.8 and D.9.

7 | CONCLUSION

In this paper, we developed the conditional Sig-Wasserstein GAN for time series generation based
on the explicit approximation of W; metric using the signature features space. This eliminates
the problem of having to approximate a costly critic/discriminator and, as a consequence, dra-
matically simplifies training. Our method achieves state-of-the-art results on both synthetic and
empirical dataset.

Our proposed conditional Sig-Wasserstein GAN is proved to be effective for generating time
series of a moderate dimension. However, it may suffer the curse of dimensionality caused by
high path dimension. It might be interesting to explore how to combine SigCWGAN with the
implicit generative model to learn the low-dimensional latent embedding and hence cope with
the high-dimensional path case. Moreover, on the theoretical level, it is worthy of investigating the
conditions, under which the W, metric on the signature space coincides with the Sig-W; metric.

ACKNOWLEDGMENTS

H.N. is supported by the EPSRC under the program Grant EP/S026347/1. H.N. and L.S. are sup-
ported by the Alan Turing Institute under the EPSRC Grant EP/N510129/1. All authors thank the
anonymous referees for constructive feedback, which greatly improves the paper. Moreover, HN
extends her gratitude to Siran Li, Terry Lyons, Chong Lou, Jiajie Tao, and Hang Lou for their
helpful discussion.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are openly available in Conditional-Sig-
Wasserstein-GANs repository at https://github.com/SigCGANs/Conditional-Sig-Wasserstein-
GANSs. These empirical data were derived from the following resources available in the public
domain: (1) the Oxford-Man Institute’s “realized library” https://realized.oxford-man.ox.ac.uk/
data ;(2) https://github.com/David-Woroniuk/Historic_Crypto.

ORCID
Hao Ni® https://orcid.org/0000-0001-5485-4376

ENDNOTES

!For any distribution uX € P(R™W), one can construct a stochastic process X : Q — R®W such that Law(X) =
¥, see Dudley (1989, Proposition 9.1.2 and Theorem 13.1.1).

2The tensor power E®" is defined based on the concept of the tensor product. Consider two vector spaces V and W
over the same field F with basis By, and By, respectively. The tensor product of V and W, denoted by V ® W, isa
vector space consisting of basis b ® b’, where b € By, and b’ € By, that is equipped with a bilinear map ®. Here
b ® b’ can be regarded as a function V X W — R, which maps every (v, w) to 1, ,-p . For any two elements
V= ZbGBV vp,beVandw = Zb,eBW wy b' €W, thenv@w =3, ; ,cp (VW) b@D.

3One may refer Definition A.1, Appendix A for the p-variation metric of a path.

“The definition of infinite radius of convergence of expected signature can be found in Definition A.4
of Appendix A.
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5To solely focus on the fitting of the conditional law of X, We use real past paths as the input data of
train-on-synthetic experiment. In contrast, the input of train-on-synthetic in Yoon et al. (2019) is synthetic
past path with the goal of assessing the unconditional generation of a long synthetic sequence in terms of its
auto-regressive structure.

6LetJ = [s,t] be a closed bounded interval. A time partition of J is an increasing sequence of real numbers D =
(tgs ty, ..., t,)suchthats = t, <t < --- <t, =t.Let|D| denote the number of time points in D, thatis, |D| = r + 1.

r-1
AD denotes the time mesh of D, that is, AD := m%x(ti 1 5)-
i=
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APPENDIX A: PRELIMINARY

For the sake of precision, we start by introducing basic concepts around the signature of a path,
which lays the foundation for our analysis on the signature approximation for Wasserstein-1 Dis-
tance. We complete this section by providing the proof of Lemma 4.3, which is essential for the
derivation of the proposed Sig-W; metric.

A.l | Signature of a path

We introduce the p-variation as a measure of the roughness of the path. For ease of notation, let
J denote a compact time interval.

Definition A.1 (p-Variation). Let p > 1 be a real number. Let X : J — E be a continuous path.
The p-variation of X on the interval J is defined by

r—1

1X11ps = |sup X" [Xe,,, = X,
p DC]J':O j+1 j

p
| , (A.D)

where the supremum is taken over any time partition of J, that is, D = (t, t5, ..., t,). ©

Let CP(J, E) denote the set of all continuous paths mapping from J to E of finite p-variation.
The larger the p-variation is, the rougher a path is. The compactness of the time interval J cannot
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ensure the finite 1-variation of a continuous path in general. For example, Brownian motion has
(2 + ¢)-variation a.s Ve > 0, but it has infinite p-variation a.s.Vp € [1,2].

Foreach p > 1, the p-variation norm of a path X € C,,(J, E) is denoted by || X|| ,_,, and defined
as follows:

||X||p—uar = ”X”p,] +SU§)||X[||.
te.

Recall that 7, is the projection map from the tensor algebra element to its truncation up to level
n. To differentiate with 7,,, we also introduce another projection map IT,, : T((E)) — E®", which
maps any a = (ay, ay, ... , Ay, ...) to its nth term a,,.

For concreteness, we state the decay rate of the signature for paths of finite 1-variation. However,
there is a similar statement of the factorial decay for the case of paths of finite p-variation (Lyons
et al., 2007).

Lemma A.2 (Factorial decay of the signature). Let X € C;(J, E). Then there exists a constant C > 0,
such that for allm > 0,

m

|X
IMA(SCO)| < C— .

Lemma A.3. Let K denote a compact set of Qu([0,T], E). Then the range S(Qy([0,T],E)) is a
compact set on TP(E) endowed with [P topology.

Proof. The proof boils down to showing the continuity of the signature map S from Qy([0, T], E)
with 1-variation norm to TP(E) with [P topology. Let X, Y € Q([0, T], E), which are controlled by
the control function w, for example, w(s, t) := max(| X |1—pqr> | Yssl1—ver) forall0 <s <t <T.
Let | X[g ) — Yisl1—var < €@(s, t) for some e € R*. Then by the continuity of the signature map in
Theorem 3.10, Lyons et al. (2007), and the admissible norm 1, it holds that for an integern > 1,

1, (SCX)) = (S, < e 28D
pn!

where 8 = 2(1 + ZZs(é)z)' The direct calculation leads to that

11SX) = S, < [1SX) = S|, < Z < CO(OWY;!)M> =%

m=1

Ms

<—w(0, D™ > < +0o0.

|
| m!

3
[

O

A.2 | Expected signature of stochastic processes

Definition A.4. Let X denote a stochastic process, whose signature is well defined almost
surely. Assume that E[S(X)] is well-defined and finite. We say that E[S(X)] has infinite radius
of convergence, if and only if for every 4 > 0,

D> AMILESCOD] < oo

n>0
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A3 | The signature Wasserstein-1 metric (Sig-W;)
In the following, we provide the proof of Lemma 4.3.

Proof. Let (e; = e; ® -+~ ¢; ); be the canonical basis of T((E)). For any a € T((E)), we write a =

.....

L=7Y le;.

To pIrové Equation (11), we solve the constraint optimization of maximizing La with the con-
straint ||a||, = 1 by the Lagrange multiplier method. W.l.o.g, we only prove the case for L # 0 as
it is trivial for L = 0, (when L = 0, La =0, ||L||; = 0, and Equation 11 holds). More specifically,
we solve the unconstrained optimization

L(a,A) :=sup |La| +/1<2 la;|P — 1>,
a I

where L # 0.
The optimal (a*, 1*) is a solution to the below equations:

oL . .
da; (sign(a; 1Dl + (A(plag P~ sign(a)))) = 0,1

oL
= =Y|glP-1=0.

1 1

. . . . L] P=1 . 1] P—1 .
Then we obtain that a* = (a}); with a} = sign(l;)————— = sign(l;))—————. Then it
follows th ' ' (3 /o=y (= piay?
ollows that

L
L] p1 1,14
liaf = || - Ll Ll > 0;

07 (g, 10)7?

yRING 1-1/p 1/q

« 1

ILa*| = La* = Y liaj = ————~ = (Z W) = <2 W) = [ILIl,-
I (Z[ |ll|q) 1 I

By Holder’s inequality,

sup |Lal < sup |la|lp[|Lllg = [ILllg,

llallp=1 llallp=1

and the superum ||L]||, is obtained when a = a*. We complete the proof of Equation (11).

The proof of Equation (12) is similar to the above. We only need to show the supremum taken
over ||L|| =1 is the same as that ||L|| < 1. Again we only prove for a # 0 as the a = 0 case is
trivial. Similarly to the above, when L*(a) := (I}) with

1
lay| P~

B (A.2)
(X, lag9) "

I = sign(a;)
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L*(a) attains the supremum SUP) L 1,=1 L(a) = ||al|p and ||L*||, = 1. By Holder’s inequality,

sup |Lal < sup |lallplILllg < llallp. (A.3)
IILllg<1 IILIlg<1

As SUP) L, <1 La can not exceed ||al|, and L*(a) = ||a||p, it follows

sup |L(a)| = [lallp.
IIL1lg<1

APPENDIX B: CONDITIONAL SIGNATURE WASSERSTEIN GANS
In this section, we provide the algorithmic details of the conditional signature Wasserstein GANs
for practical applications.

B.1 | Path transformations

The core idea of SigCWGAN is to lift the time series to the signature feature as a principled and
more effective feature extraction. In practice, the signature feature may often be accompanied
with several of the following path transformations:

* Time jointed transformation (Definition 4.3, Levin et al., 2013);

* Cumulative sum transformation: it is defined to map every (X, zT:1 to CS; := Z;lei,Vt S
{1,...,T}and CS, = 0 (eq. (2.20) in Chevyrev & Kormilitzin, 2016).

* Lead-Lag transformation (eq. (2.8) in Chevyrev & Kormilitzin, 2016).

* Lag added transformation: The m-lag added transformation of (X; sz1 is defined as follows:
Lag,,(X) = (Y, th_lm, such that

Y[ = (Xt’ eee ’Xt+m)'

Although in our analysis on the Sig-W; metric, we use the time augmented path to embed the
discrete time series X to a continuous path for the ease of the discussion. However, to use Sig-
W, metric to differentiate two measures on the path space, the only requirement for the way of
embeddings, a discrete time series to a continuous path is that this embedding needs to ensure
the bijection between the time series and its signature. Therefore, in practice, we can choose other
embedding to achieve that; for example, by applying the lead-lag transformation to time series,
one can ensure the one-to-one correspondence between the time series and the signature.

B.2 | AR-FNN architecture

We give a detailed description of the AR-FNN architecture below. For this purpose, let us begin
by defining the employed transformations, namely the parametric rectifier linear unit and the
residual layer.
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Definition B.1 (Parametric rectifier linear unit). The parametrized function ¢, € C(R,R),x > 0
defined as

¢ (x) = max(0, x) + o min(0, x)
is called parametric rectifier linear unit (PReLU).

Definition B.2 (Residual layer). Let F : R"” — R”" be an affine transformation and ¢,,a >0 a
PReLU. The function R : R" — R" defined as

R(x) = x + ¢,0F(x)
where ¢, is applied component-wise, is called residual layer.

The AR-FNN is defined as a composition of PReLUs, residual layers, and affine transforma-
tions. Its inputs are the past p-lags of the d-dimensional process we want to generate as well as
the d-dimensional noise vector. A formal definition is given below.

Definition B.3 (AR-FNN). Let d,p € N, A; : RIP+D 5 R 4, : R — RY be affine trans-
formations, ¢,,a > 0 a PReLU and R,,R; : R — R two residual layers. Then the function
ArFNN : R9 x R4 — R? defined as

ArFNN(x, z) = A40R30R;0¢,0A;(xz)

where xz denotes the concatenated vectors x and z, is called autoregressive feedforward neural
network (AR-FNN).

The pseudocode of generating the next g-step forecast using G is given in Algorithm 2.

ALGORITHM 2 Pseudocode of generating the next g-step forecast using G°
Input: x;_p,:.,, Gg

Output: X,,,./44

Xfurure < a matrix of zeros of dimension d X q.

% «the concatenation of x,_p,;., and Zpyre-

fori=1:qgdo

We sample Z; from the iid standard normal distribution.

A A

R = G(-)ActJri—p:Hi—l’Zi)-

return®; ;.. q.

APPENDIX C: NUMERICAL IMPLEMENTATIONS
We use the following public codes for implementing the below three baselines:

* RCGAN: https://github.com/ratschlab/RGAN
* Time-GAN: https://github.com/jsyoon0823/TimeGAN
* GMMN: https://github.com/yujiali/gmmn
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Additionally, we implement a conditional Wasserstein GAN (CWGAN) in the VAR(1) example:
we perform the min-max optimization (2) where the discriminator is parametrized by the same
neural network architecture as the generator, that is, a three-layer FNN. We ensure that the
discriminator is 1-Lipschitz by adding a gradient penalty term introduced by Gulrajani et al. (2017).

For a fair comparison, we use the same neural network generator architecture, namely the
three-layer AR-FNN described in Section B.2, for the SigCWGAN, TimeGAN, RCGAN, and
GMMN. The TimeGAN and RCGAN discriminators take as inputs the conditioning time series
X, p concatenated with the synthetic time series X5, ;. 5, 4. Both discriminators use the AR-FNN
as the underlying architecture. However, the first affine layer is adjusted such that the AR-FNN
is defined as a function of the concatenated time series, that is, p + ¢ lags and not p-lags as for
the generator. Similarly, the MMD is computed by concatenating the conditioning and synthetic
time series. In order to obtain the bandwidth parameter for computing the MMD of the GMMN,
we benchmarked the median heuristic against using a mixture of bandwidths spanning multiple
ranges as proposed in Li et al. (2015) and found latter to work best. In our experiments, we used
three kernels with bandwidths 0.1, 1, 5.

All algorithms were optimized for a total of 1000 generator weight updates. The neural net-
work weights were optimized by using the Adam optimizer (Kingma & Ba, 2015) and learning
rates for the generators were set to 0.001. For the RCGAN and TimeGAN, we applied two time-
scale updates (TTUR) (Heusel et al., 2017) and set the learning rate to 0.003. Furthermore, we
updated the discriminator’s weights two times per generator weight update in order to improve
convergence of the GAN.

In our numerical experiments, to compute the signature for the SigCWGAN method, we choose
to apply the following path transformations on the time series before computing the signatures:
(1) we combine the path xp, with its cumulative sum transformed path, denoted by yp.s, which
is a 2d-dimensional path; (2) we apply 1-lag added transformation on y ,,; (3) it follows with the
lead-lag transformation. The signature of such transformed path can well capture the marginal
distributions, auto-correlations, and other temporal characteristics of the time-series data.

In the following, we describe the calculation of the test metrics precisely. Let (X [)thl denote a
d-dimensional time series sampled from the real target distribution. We first extract the input-

out pairs (X;_p41:1,Xi41:04q)ier> Where T is the set of time indexes. Given the generator G, for
each input sample (X;_;,.;), we generate one sample of the g-step forecast X ffl 1+q (if Gisnota
E?Lt g without any conditioning

);» which we use to compute

conditional generator, we generate a sample of §-step forecast X
O]

variable.). The synthetic data generated by G are given by (X, e

the test metrics.

Metric on marginal distribution. Following Wiese et al. (2019), we use (X;41:11g)ier and
( At(i?l " q-)teT as the samples of the marginal distribution of the real data and synthetic data per
each time step. For each feature dimension i € {1, ..., d}, we compute two empirical density func-
tions based on the histograms of the real data and synthetic data, respectively, denoted by dAf: and

dAflG Then the metric on marginal distribution of the true and synthetic data is given by

df, —df;

Q-

d
i=1

1
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Absolute difference of lag-1 auto-correlation. The auto-covariance of ith feature of the real data
with lag value k is computed by

T—k
pi(k) 1= k Z(Xl XN, — XD, (c)

where X' is the average of (X))T_
For the synthetic data, we estimate the auto-covariance of ith feature with lag value k is
computed by

I7] I7] I7]
1 o (0. p(0). 1 o0 [ _L o().d
’oG( ) |T| ZXt+1Xz+k+1 “\7 ZXr+1 171 ZXt+k+1 ) (C2)
t=1 t=1

pr(l) / pG(l)
r(O) PG (0)
ACF score is defined to be the absolute difference of lag-1 auto-correlation given as follows:

The estimator of the lag-1 auto-correlation of the real/synthetic data is given by ===

pi) P
PL0) L)

d
1
P2

Metric on the correlation. We estimate the covariance of the ith and jth feature of time series from

the true data as follows:
T 1 T 1 T
Y xix (TZX;)<TZX{). (C3)
=1 =1 =1

Similarly, we estimate the covariance of the ith and jth feature of time series from the synthetic
data by

HI'—‘

COV

7| ¢
1 i (0] 1 o(0),i 1 (0).j
COVG - T _Zz t+s t+s - T ZX[+S T Z Xt+s . (C'4)
lqa = & |7 |7

teT te|T|

Thus the estimator of the correlation of the ith and ]th feature of time series from the

LJ
cov,

real/synthetic data are given by T,, = ———= and ‘l.' := ——=—. Then the metric on

cov lcov’ o 1/ cov covj J

the correlation between the real data and synthetlc data is given by ll norm of the difference of
two correlation matrices (T,l,’j )i, jef,..d} and (1' )l JElL..d}

TRTR/TSTR R?. We split the input-output pairs (X;_ p+1:1-X41) from the real data into the train
set and test set. We apply the linear signature model on real training data (X;_;1.1, X;41), val-
idate it and compute the corresponding R? on the real test data (TRTR R?). Then we apply the
same linear signature model on the synthetic data (X,_ ﬁ+1:t’X i+1), Where X, is simulated by
the generator conditioning on the X;_;,,.,. We evaluate the trained model on the real test data
and corresponding R? is called (TSTR R?).
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APPENDIX D: SUPPLEMENTARY NUMERICAL RESULTS

D.1 | VAR(1) dataset
We conduct the extensive experiments on VAR(1) with different hyper-parameter settings, that is,
de{1,2,3}, 0,4 €{0.2,0.5,0.8}.

Test metrics of different models

We apply SigCWGAN, CWGAN, and the other above-mentioned methods on VAR(1) different

set with various hyper-parameter settings. The summary of the test metrics of all models on d

dimensional VAR(1) data for d = 1,2, 3 can be found in Tables D.1-D.3, respectively.
Additionally, apart from Figure 5, the R?> comparison, we provide the bar charts to com-

pare the performance of different methods on the VAR data in terms of other test metrics in

Figures D.1-D.4.

TABLE D.1 Numerical results of VAR(1) ford = 1.

Temporal correlations

Settings ¢=0.2 $=05 $=038
Metric on marginal distribution

SigCWGAN 0.0124 0.0100 0.0069
CWGAN 0.0070 0.0085 0.0110
TimeGAN 0.0304 0.0307 0.0194
RCGAN 0.0187 0.0065 0.0054
GMMN 0.0096 0.0087 0.0073
Absolute difference of lag-1 autocorrelation

SigCWGAN 0.0124 0.0039 0.0044
CWGAN 0.0614 0.0179 0.0109
TimeGAN 0.0495 0.0787 0.0100
RCGAN 0.0429 0.0124 0.0029
GMMN 0.0219 0.0248 0.0118
R? obtained from TSTR. (TRTR first row)

TRTR 0.0457 0.2568 0.6434
SigCWGAN 0.0451 0.2562 0.6431
CWGAN 0.0338 0.2406 0.6269
TimeGAN 0.0432 0.2506 0.6365
RCGAN 0.0437 0.2562 0.6429
GMMN 0.0452 0.2539 0.6317
Sig-W, distance

SigCWGAN 0.0524 0.0476 0.0393
CWGAN 0.0560 0.0584 0.0528
TimeGAN 0.0648 0.0641 0.0660
RCGAN 0.0546 0.0505 0.0437
GMMN 0.0540 0.0482 0.0378
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Comparison of the density metric across different VAR datasets
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GURE D.1 Comparison of the performance on the density metric across all algorithms and benchmarks.
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TABLE D.2 Numerical results of VAR(1) for d = 2.
Temporal correlations (fixing o = 0.8) Feature correlations (fixing ¢ = 0.8)

Settings $=02 $=0.5 $=038 c=02 c=0.5 c=0.38
Metric on marginal distribution
SigCWGAN 0.0270 0.0122 0.0084 0.0089 0.0088 0.0084
CWGAN 0.0197 0.0134 0.0105 0.0154 0.0131 0.0105
TimeGAN 0.0270 0.0270 0.0173 0.0197 0.0164 0.0173
RCGAN 0.0120 0.0115 0.0091 0.0092 0.0104 0.0091
GMMN 0.0098 0.0110 0.0101 0.0104 0.0106 0.0101
Absolute difference of lag-1 autocorrelation
SigCWGAN 0.0069 0.0035 0.0054 0.0070 0.0062 0.0054
CWGAN 0.0523 0.0198 0.0415 0.1138 0.0219 0.0415
TimeGAN 0.0484 0.0589 0.0110 0.0300 0.0345 0.0110
RCGAN 0.0401 0.0057 0.0294 0.0308 0.0373 0.0294
GMMN 0.0318 0.0505 0.0537 0.0868 0.0679 0.0537
L,-norm of real and generated cross correlation matrices
SigCWGAN 0.0060 0.0097 0.0122 0.0040 0.0054 0.0122
CWGAN 0.0820 0.1909 0.0048 0.0254 0.1592 0.0048
TimeGAN 0.0435 0.0243 0.0134 0.0401 0.0441 0.0134
RCGAN 0.0669 0.0286 0.0160 0.1614 0.1551 0.0160
GMMN 0.0066 0.0006 0.0014 0.0110 0.0103 0.0014
R? obtained from TSTR. (TRTR first row)
TRTR 0.0420 0.2563 0.6467 0.6421 0.6444 0.6467
SigCWGAN 0.0406 0.2552 0.6458 0.6416 0.6438 0.6458
CWGAN —0.0019 0.1573 0.5901 0.5850 0.6038 0.5901
TimeGAN 0.0337 0.2327 0.6298 0.6239 0.6344 0.6298
RCGAN 0.0295 0.2130 0.6166 0.5997 0.5984 0.6166
GMMN 0.0291 0.2296 0.6156 0.5823 0.5943 0.6156
Sig-W, distance
SigCWGAN 0.1913 0.1590 0.1190 0.2535 0.1235 0.1190
CWGAN 0.2684 0.2702 0.2244 0.3487 0.2158 0.2244
TimeGAN 0.2057 0.2036 0.1372 0.2719 0.1445 0.1372
RCGAN 0.2116 0.2165 0.1657 0.3292 0.2386 0.1657
GMMN 0.2118 0.1831 0.1508 0.2977 0.1761 0.1508

Training stability

Figures D.5 and D.6 demonstrate the stability of the SigCWGAN optimization in terms of train-
ing iterations in contrast to other baselines, in particular two baselines involving the min-max
game optimization.

D.2 | ARCH(p)

We implement extensive experiments on ARCH(p) with different p-lag values, thatis, p € {2, 3,4}.
We choose the optimal degree of signature 3. The numerical results are summarized in Table D.4.
The best results among all the models are highlighted in bold.

85UBD 17 SUOWILLIOD BA eI 3 |ced ! (dde ay) Aq pausenoh a.e sapile YO ‘88N JO S3|nJ 10y ARiqiT auljuQ 8|1 UO (SUORIPUOI-pUR-SWLLIBIALI0D A3 | IM' ARe1q 1 Ul |uo//SdiL) SUORIPUOD PUe SWB | 8L} 89S *[£202/TT/60] Uo ARlqiauluo A3 |1IM ‘'ssoIARS Aeiqi 1DN uopuoafe|jo0 AisieAlun Ag €2v2T 1Jew/TTTT OT/I0p/wW09 A8 | 1m Azeiq 1 puI U0/ SANY WOl pepeojumoq ‘0 ‘S966.9T



il_ LIAO ET AL.

WILEY

TABLE D.3 Numerical results of VAR(1) for d = 3.

Temporal correlations (fixing o = 0.8) Feature correlations (fixing ¢ = 0.8)

Settings $=02 $=0.5 $=038 c=02 c=0.5 c=0.38
Metric on marginal distribution
SigCWGAN 0.0254 0.0112 0.0077 0.0085 0.0076 0.0077
CWGAN 0.0142 0.0148 0.0194 0.0210 0.0113 0.0194
TimeGAN 0.0222 0.0218 0.0193 0.0188 0.0110 0.0193
RCGAN 0.0112 0.0157 0.0121 0.0156 0.0159 0.0121
GMMN 0.0098 0.0092 0.0101 0.0176 0.0162 0.0101
Absolute difference of lag-1 autocorrelation
SigCWGAN 0.0137 0.0066 0.0054 0.0045 0.0025 0.0054
CWGAN 0.0590 0.0242 0.1325 0.0864 0.0785 0.1325
TimeGAN 0.0554 0.0385 0.0374 0.1219 0.0879 0.0374
RCGAN 0.0864 0.0532 0.0217 0.1434 0.1303 0.0217
GMMN 0.0315 0.0584 0.0968 0.1183 0.1348 0.0968
L,-norm of real and generated cross correlation matrices
SigCWGAN 0.0331 0.0498 0.0055 0.0532 0.0401 0.0055
CWGAN 0.0628 0.2067 0.2812 0.4365 0.2071 0.2812
TimeGAN 0.6549 0.3619 0.1542 0.2644 0.3153 0.1542
RCGAN 0.4552 0.3441 0.0500 0.1448 0.4355 0.0500
GMMN 0.0811 0.1225 0.2405 0.3018 0.3883 0.2405
R? obtained from TSTR. (TRTR first row)
TRTR 0.0420 0.2532 0.6509 0.6459 0.6485 0.6509
SigCWGAN 0.0388 0.2490 0.6492 0.6446 0.6469 0.6492
CWGAN —0.0150 0.1770 0.5928 0.5462 0.5676 0.5928
TimeGAN —0.0088 0.2039 0.6045 0.5600 0.6026 0.6045
RCGAN 0.0092 0.1994 0.5921 0.5064 0.5456 0.5921
GMMN —0.0115 0.1683 0.5388 0.4899 0.4920 0.5388
Sig-W, distance
SigCWGAN 0.4289 0.3817 0.2374 0.2648 0.3999 0.2374
CWGAN 0.4653 0.4173 0.3226 0.3875 0.4692 0.3226
TimeGAN 0.5030 0.4321 0.3087 0.3753 0.4415 0.3087
RCGAN 0.4751 0.4418 0.3034 0.4334 0.4859 0.3034
GMMN 0.4621 0.4159 0.3151 0.3946 0.4939 0.3151

D.3 | SPX and DJI dataset

We provide the supplementary results on the SPX and DJI dataset. The summary of test metrics of
different models is given by Table D.5. The test metrics over the training process of each method on
(1) SPX dataset and (2) SPX and DJI dataset can be found in Figures D.7 and D.8. The fitting of dif-
ferent models in terms of the cross-correlation matrix of the log-return and log-realized volatility
of SPX is presented in Figure D.9 (see Tables D.6 and D.7).

D.4 | Bitcoin dataset
We provide the additional numerical results on the Bitcoin dataset as follows.
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Comparison of the cross-correlation score across different VAR datasets
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FIGURE D.4 Comparison of the performance on the cross-correlation metric across all algorithms and
benchmarks. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE D.4 Numerical results of the ARCH(p) datasets.

Settings p=2 p=3 p=4
Metric on marginal distribution

SigCWGAN 0.00918 0.00880 0.01142
TimeGAN 0.02569 0.02119 0.2191
RCGAN 0.01069 0.01612 0.01182
GMMN 0.00744 0.00783 0.01259
Absolute difference of lag-1 autocorrelation

SigCWGAN 0.00542 0.00852 0.01106
TimeGAN 0.01714 0.02401 0.03267
RCGAN 0.05372 0.01685 0.04879
GMMN 0.02056 0.00859 0.01441
L;-norm of real and generated cross correlation matrices

SigCWGAN 0.00462 0.00546 0.00489
TimeGAN 0.00315 0.06551 0.04408
RCGAN 0.01604 0.08823 0.00235
GMMN 0.04326 0.03930 0.01603
R? obtained from TSTR. (TRTR first row)

TRTR 0.32168 0.32615 0.33305
SigCWGAN 0.31623 0.31913 0.31642
TimeGAN 0.30835 0.30556 0.30240
RCGAN 0.31146 0.30727 0.30924
GMMN 0.27982 0.28072 0.30742
Sig-W; distance

SigCWGAN 0.12210 0.14682 0.14098
TimeGAN 0.20228 0.22761 0.23398
RCGAN 0.18781 0.20943 0.21876
GMMN 0.26797 0.26853 0.25811
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TABLE D.5 Numerical results of the stocks datasets.
Data type SPX SPX + DJI
Metric on marginal distribution
SigCWGAN 0.0142 0.0093
CWGAN 0.0111 0.0151
TimeGAN 0.0089 0.0156
RCGAN 0.0088 0.0140
GMMN 0.0107 0.0181
Absolute difference of lag-1 autocorrelation
SigCWGAN 0.0302 0.0447
CWGAN 0.1617 0.0571
TimeGAN 0.0180 0.0232
RCGAN 0.0350 0.0515
GMMN 0.0273 0.0106
L,-norm of real and generated cross correlation matrices
SigCWGAN 0.0503 0.0747
CWGAN 0.0131 0.3908
TimeGAN 0.0793 0.5401
RCGAN 0.0654 0.3959
GMMN 0.0409 0.2103
R? obtained from TSTR. (TRTR first row)
TRTR 0.3689 0.3731
SigCWGAN 0.3576 0.3466
CWGAN 0.2744 0.2694
TimeGAN 0.3551 0.3602
RCGAN 0.3037 0.3532
GMMN 0.3375 0.3368
Sig-W, distance
SigCWGAN 0.0985 0.1307
CWGAN 0.1684 0.2881
TimeGAN 0.1265 0.2321
RCGAN 0.1462 0.2353
GMMN 0.1257 0.2448

TABLE D.6 R? metric (%) of the stock datasets for different lag values. In each cell, the left/right number

are the result for the SPX data/ the SPX and DJI data, respectively.

Model lag 1 2 4

SigCWGAN 2.996, 7.948 3.510, 5.928 3.801, 7.439
TimeGAN 5.955, 8.586 8.470, 9.925 10.838, 14.816
RCGAN 2.788,7.190 3.701, 5.425 5.090, 9.407
GMMN 9.049, 7.384 11.275, 9.150 19.302, 14.466
GARCH 104.776, 100.749 99.359, 109.313 103.137,109.53

6

3.944,9.103
13.163, 20.139
6.033,12.424
25.832, 21.690
102.939, 107.669

8

5.534,10.742
16.922, 22.870
9.380, 16.599
28.269, 24.778
102.527,104.779
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FIGURE D.5

(d) GMMN

Exemplary development of the considered distances and score functions during training for

the two-dimensional VAR(1) model with autocorrelation coefficient ¢ = 0.8 and covariance parameter o = 0.8.
The colors blue and orange indicate the relevant distance/score for each dimension. [Color figure can be viewed

at wileyonlinelibrary.com]
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FIGURE D.6 Exemplary development of the considered distances and score functions during training for

the three-dimensional VAR(1) model with autocorrelation coefficient ¢ = 0.8 and covariance parameter o = 0.8.

The colors blue, orange, and green indicate the relevant distance/score for each dimension. [Color figure can be

viewed at wileyonlinelibrary.com]
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FIGURE D.7
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SPX data. [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE D.8
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ExemplARCHry development of the considered distances and score functions during
training for SPX and DJI data. [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE D.9 Comparison of real and synthetic cross-correlation matrices for SPX data. On the far left, the

o o o o o
o N B o0 @ O

real cross-correlation matrix from SPX log-return and log-volatility data is shown. x/y-axis represents the feature
dimension while the color of the (i, j)th block represents the correlation of X l(i) and X, [(j ). The colorbar on the far
right indicates the range of values taken. Observe that the historical correlation between log-returns and
log-volatility is negative, indicating the presence of leverage effects, that is, when log-returns are negative,
log-volatility is high. [Color figure can be viewed at wileyonlinelibrary.com]|

TABLE D.7 Autocorrelation metric for the stock datasets for different lag values. In each cell, the left/right
number are the result for the SPX data/the SPX and DJI data, respectively.

Modellag 1 2 3 4 5
SigCWGAN  0.01342,0.01192  0.02234, 0.02576  0.05744, 0.03592  0.07389, 0.08646  0.12571, 0.1057
TimeGAN 0.05792, 0.03035  0.06070, 0.03182 0.06823, 0.09887  0.05735, 0.10609  0.08387, 0.15083

RCGAN 0.03362, 0.04075  0.03134, 0.03977  0.06692, 0.08859  0.05641, 0.07687 0.09089, 0.11083
GMMN 0.01283, 0.02676  0.0177, 0.0253 0.04293, 0.06476  0.06740, 0.06952 0.09589, 0.09906
GARCH 0.4721, 0.4559 0.4661, 0.4741 0.6198, 0.6282 0.7292, 0.7312 0.8250, 0.8212

TABLE D.8 Autocorrelation metric for the BTC dataset for different lag values.

Model lag 1 2 3 4 5
SigCWGAN 0.0911 0.2814 0.3 0.3021 0.3028
TimeGAN 0.1203 0.2170 0.2312 0.2329 0.2568
RCGAN 0.0533 0.1486 0.15 0.1654 0.1751
GMMN 0.2093 0.3436 0.3448 0.3478 0.4333
GARCH 0.0872 0.1314 0.1378 0.1471 0.1501

TABLE D.9 R? metric (%) of the BTC dataset for different lag values.

Model lag 1 2 4 6
SigCWGAN 0.3320 0.2681 0.3843 0.3128
TimeGAN 0.7582 0.5962 0.6394 0.6018
RCGAN 0.3165 0.2191 0.2898 0.2261
GMMN 0.3904 0.3436 0.2583 0.3426
GARCH 123.77 87.35 96.47 117.34
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