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A B S T R A C T   

This review explores the criteria used for the selection of genetic instruments of sleep traits in the context of 
Mendelian randomisation studies. This work was motivated by the fact that instrument selection is the most 
important decision when designing a Mendelian randomisation study. As far as we are aware, no review has 
sought to address this to date, even though the number of these studies is growing rapidly. The review is divided 
into the following sections which are essential for genetic instrument selection: 1) Single-gene region vs poly
genic analysis; 2) Polygenic analysis: biologically-vs statistically-driven approaches; 3) P-value; 4) Linkage 
disequilibrium clumping; 5) Sample overlap; 6) Type of exposure; 7) Total (R2) and average strength (F-statistic) 
metrics; 8) Number of single-nucleotide polymorphisms; 9) Minor allele frequency and palindromic variants; 10) 
Confounding. Our main aim is to discuss how instrumental choice impacts analysis and compare the strategies 
that Mendelian randomisation studies of sleep traits have used. We hope that our review will enable more re
searchers to take a more considered approach when selecting genetic instruments for sleep exposures.   

1. Introduction 

Sleep is a complex phenotype regulated by homeostatic and circa
dian processes [1] and characterised by multiple dimensions such as 
duration, quality and timing or chronotype [2]. Studies have shown that 
these specific sleep traits are moderately heritable, with twin studies 
estimating that between 44 and 50 % of their variability is genetically 
determined [3,4], while SNP-based heritability studies have shown that 
heritability of self-reported traits ranges from 5 to 15 % [5–8]. More
over, these dimensions have been consistently associated with several 
adverse health outcomes. For example, inadequate sleep duration, poor 
quality, and inappropriate timing are associated with adverse health 
consequences [9]. However, as most research has used observational 
epidemiology to study these associations, whether these links are causal 
remained elusive until very recently. 

Mendelian randomisation (MR) is a method that uses genetic vari
ants to assess causal relationships [10]. The MR method addresses two 
questions: whether an observational association between an exposure 
and an outcome is causal alongside the magnitude of this effect [11,12]. 
MR is increasingly used to overcome some limitations of traditional 
observational epidemiology, such as unmeasured confounding and 
reverse causality [10], and the analysis is facilitated by MR packages, 
such as the widely used “MendelianRandomization” package for the R 
open-source software environment [13] or the “mrrobust” Stata package 
[14]. Recently, numerous MR studies examined the causal relationship 
between genetic instruments of sleep traits and different health out
comes [15–60]. 

In the context of MR, a genetic variant can be considered an instru
mental variable (IV) for a given exposure if it satisfies the following 
assumptions: i) it is associated robustly with the exposure of interest, ii) 
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it does not influence the outcome through a pathway other than the 
exposure (horizontal pleiotropy) and iii) it is not associated with the 
outcome due to confounding [12]. Genetic variants used as IVs in MR 
are usually single-nucleotide polymorphisms (SNPs), a common varia
tion at a single position of DNA sequence [10]. 

MR studies have steadily grown as genetic variants reliably associ
ated with different exposures have increased over the last decade, 
thanks to genome-wide association studies (GWAS) [11]. GWA studies 
now test millions of genetic variants for their association with a given 
trait. Thus, finding genetic polymorphisms to use in an MR study is 
becoming more feasible. However, selecting optimal genetic in
struments can be challenging [61]. 

Although several guides exist for conducting MR studies [12,61,62], 
these are not widely adopted in the field of epidemiology of sleep; thus 
authors using genetic instruments for sleep traits have taken different 
approaches to the selection process. This review explores the criteria 
used for instrument selection in MR studies of sleep traits, discussing 
how this choice impacts analysis and some steps in the selection process 
that are often overlooked. We aim to demonstrate the importance of a 
careful selection of instruments to conduct an MR study. Nonetheless, it 
is worth mentioning that the selection process will always depend on the 
aim of the research and the specific exposure under study, and while we 
focus on MR studies of sleep traits, many of the issues discussed here 
apply to other behavioral phenotypes as well. In addition, even though 
MR has been particularly useful for understanding the causal role of 
sleep phenotypes on several health outcomes, other causal methods 
must also be used for replication and triangulation purposes. A summary 
of the main points to consider when selecting sleep genetic instruments 
in MR is presented in Fig. 1. 

2. Criteria used to select genetic instruments in MR for sleep 
traits 

2.1. Single-gene region vs. polygenic analysis 

The first step in instrument selection is to decide whether the anal
ysis will be performed using variants from a single gene region or 
multiple regions (a polygenic analysis). When a particular region has 
been reported to have a specific biological link to the exposure, the se
lection usually focuses on these variants [12]. This approach has the 
advantage of specificity, leading to a more plausible MR [63]. However, 
for complex risk factors such as sleep, no single gene region encodes this 
risk factor [64]. In fact, numerous genomic variants have been discov
ered by sleep GWAS in adults, indicating that sleep is a highly polygenic 
trait. For example, for insomnia, 554 risk loci have been reported in a 
recent study [65]. Thus, a polygenic analysis is often used in MR studies 
of sleep traits. 

A polygenic analysis supposes the inclusion of multiple variants [12]. 
If the variants are all valid instruments, power is maximised because 
each SNP contributes incrementally to affect levels of the biomarker [61, 
63]. In the case of sleep, as common individual genetic variants confer 
small effects, the polygenic approach will typically have greater power 
to detect a causal effect than the single gene region approach [12]. 

2.2. Polygenic analysis: biologically-driven vs statistically-driven 
approach 

For a polygenic analysis, one of two approaches may be chosen for 
selecting genetic variants: a biologically-driven or a statistically-driven 
approach [12]. The former implies selecting variants from regions 
with a highly plausible biological link with the exposure of interest [12, 
61]. The advantage of this approach is that these instruments may be 
less susceptible to horizontal pleiotropy [61]. However, biological un
derstanding is rarely infallible [12], and the biological basis of sleep in 
humans is not fully understood [66]. Thus, instrument selection is often 
performed using a statistically-driven approach [67] or a combination of 

both approaches [12]. 
The statistically-driven approach exploits the increasing availability 

of SNPs associated with specific exposures in GWAS [61]. For this 
reason, authors tend to search for the latest and largest GWA study 
available and select SNPs robustly associated with the exposure of in
terest (MR assumption 1). However, it is important not to assume that 
the latest and largest study will always yield the best instruments. For 
example, most published GWAS of sleep traits have been performed in 
European samples and are also not sex-specific. Nonetheless, some 
GWAS have been performed in other ethnic groups, including Hispani
c/Latino Americans [68] and multi-ancestry samples [69–74]. Further
more, some have employed sex-stratified analyses for obstructive sleep 
apnea and insomnia, which display marked sexual dimorphism in dis
ease prevalence [69,75]. However, further work is needed to better 
understand sex-related sleep differences, which have been associated 
with the influence of sex hormones on sleep regulation but have been 
understudied [76]. 

When using a statistically-driven approach, it is crucial to evaluate 
the reported SNPs carefully. Briefly, as described more thoroughly in the 
review, some important criteria for instrument selection include: 1) 
evaluating the number of variants to incorporate and their p-value, 
minor allele frequency (MAF) and whether they are palindromic; 2) 
selecting independent variants; 3) avoiding sample overlap between the 
discovery GWAS and the data under study (where possible); 4) priori
tisation of GWAS with well-measured/defined phenotypes and deter
mine whether to use a continuous or a binary exposure; 5) choosing 
variants based on their total and average strength and; 6) taking into 

Fig. 1. Flowchart with the main points to consider when selecting sleep genetic 
instruments in MR. 
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account confounders of the genetic instrument-outcome relationship. If 
the instruments are not suitable, they could be selected from a different 
GWA study, which could even mean choosing them from an older one. In 
addition, combining the SNPs into a single instrument is another option 
if various studies report adequate variants. Where possible, it is best 
practice to choose SNPs found both in the discovery dataset and in a 
replication cohort, as these are likely to be more reliable. 

In Table 1, we present the latest GWAS of sleep phenotypes (for a 
detailed list of SNPs reported in the GWAS see Supplementary Table 1). 
Of note is that some sleep traits are still lacking robust instruments. This 
is the case of sleep quality and multidimensional sleep (whereby rather 
than a series of single separate characteristics, sleep is thought of as a 
multidimensional construct with domains including regularity, satis
faction, alertness/sleepiness, timing, efficiency, and duration, among 
others) [77,78]. 

2.3. P-value 

A common statistical approach, and usually the first step in MR 
studies, is to evaluate the level of statistical significance of the genetic 
variants associated with the exposure of interest and to include all 
variants at a given level of significance. The conventional threshold is p 
< 5 × 10− 8 [12]. This threshold is the equivalent of p < 0.05 when 
corrected for the multiple testing based on performing a Bonferroni 
correction for all the independent common SNPs across the human 
genome and thus, it is referred to as “genome-wide level of significance”. 
Using this threshold has been shown to lead to robust results [79]. 
Nonetheless, given the more recent mega-GWAS because of access to 
large biobanks, there have been proposals to change it to p < 5 × 10− 9 to 
decrease the chances of false-positive associations. However, the latest 
MR studies of sleep traits have selected variants using the traditional 
threshold [30,44,51,52]. 

In the field of sleep, some of the first GWAS published discovered 
genetic variants for restless leg syndrome, a neurological disorder that 
causes involuntary leg movements during sleep [80,81]. Recently, a 
large GWAS reported that some of the variants previously associated 
with restless leg syndrome did not reach genome-wide significance, 
emphasising the need for stringent thresholds [82]. Even though it is 
important to consider the p-value threshold, this is not the only factor to 
consider when selecting variants for an MR study. The following sections 
will discuss other steps to assess whether variants are valid genetic 
instruments. 

2.4. Linkage disequilibrium clumping 

Linkage disequilibrium refers to the correlation between SNPs at 
different positions. This phenomenon occurs because of the physical 
proximity of variants on the chromosome [10]. In GWAS, the reported 
variants are often ‘clumped’ to near independence using distance-based 
or correlation-based thresholds [67]. 

The distance-based approach consists of pruning the variants to 
include those separated by a certain distance (usually 500,000 base 
pairs = 500 kilobases). In the correlation-based approach, only variants 
that are correlated at a certain threshold (usually r2 < 0.01, 0.1 or 0.2) 
are included [67]. Implementing the correlation-based approach, Bro
berg et al. (2021) [19], in their study about the association between 
insomnia and pain, decided to use an r2 = 0.6 as their primary threshold 
and an r2 = 0.1 as their secondary threshold. Cullel et al. (2021) [24] 
and Zhou et al. (2021) [42] clumped genetic variants considering both 
approaches, an r2 < 0.001 and a kb = 10,000 distance, which is more 
conservative. 

It is important to consider LD when selecting the variants as it could 
violate core MR assumptions. Genetic variants that are correlated with 
the variants used may have effects on competing risk factors. The LDkit 
(a graphical user interface software) or PLINK (open-source C/C++

toolset) could be used for calculating linkage disequilibrium [83,84]. 

Testing the association of potential confounders of the variants could 
reduce concerns about making invalid inferences due to LD [67]. 

2.5. Sample overlap 

When selecting a GWA study, it is essential to understand in detail 
the sample studied. This is because when using genetic variants 
discovered in the analytical sample, a bias called “winner’s curse” may 
occur. This bias implies overestimating the strongest variant in the data 
under analysis [85]. An overestimation will generally occur when the 
associations with confounders are stronger than expected by chance. 
Thus, an overlap between the genetic variant discovery dataset and the 
data under analysis may overestimate the variant–outcome associations 
and lead to false-positive results [67]. To overcome this issue, Liu et al. 
(2022) [44] excluded data from participants in the UKB from their 
COVID-19 outcome dataset since their exposures (sleep and circadian 
phenotypes) were derived from this biobank. 

The ideal situation to avoid this bias is having two non-overlapping 
datasets, what is called “Two-sample MR” [12]. MR-Base, a platform 
that integrates a database of GWAS results with an application pro
gramming interface, a web application and R packages, allows the 
automation of two-sample MR [86]. However, different datasets are not 
always available with the data or sample size necessary to perform the 
analysis. To mitigate potential issues with sample overlap, there are 
several alternatives thought to balance the risk of an imprecise estima
tion [67]. One option is to calculate the bias due to sample overlap, 
which can be done with the formulae from Burgess, Davies & Thompson 
(2016) [87]. Henry et al. (2019) [45] did this in their MR study about 
the impact of sleep duration on cognitive outcomes. In their study about 
the association of insomnia with depressive symptoms and subjective 
well-being, Zhou et al. (2021) [42] also calculated sample overlap 
finding a bias ranging from 3 % to 14 %. 

Another possible solution is to perform the MR analysis using a 
reduced genetic instrument replicated in an independent cohort, which 
could be a good option as a sensitivity analysis for studies that are un
able to bypass sample overlap. In our own MR study, which examined 
the association between genetically-instrumented habitual daytime 
napping (using 92 SNPs) and cognitive function and brain volume, we 
replicated our findings using a reduced instrument consisting of 17 SNPs 
that were replicated in an independent cohort (23andMe) with no 
sample overlap with UKB (our analytical sample) [88]. Additional an
alyses with this reduced instrument were largely consistent with our 
main findings. We are unaware of other studies using genetic in
struments of sleep traits taking this approach. However, a study which 
investigated the relationship between glycaemia and cognitive function, 
brain structure and incident dementia, used a reduced genetic instru
ment for diabetes to avoid the “winner’s curse” bias [89]. 

2.6. Type of exposure 

When deciding which GWA study to select, it is important to pri
oritise well-measured/defined phenotypes used for identifying the ge
netic instruments. One aspect to consider is whether the phenotype was 
measured using self-reported data or an objective method (e.g. 
accelerometer-derived data). Many of the GWAS of sleep traits available 
are based on self-report questions, but some used and/or have been 
replicated with accelerometer-derived data, polysomnography or elec
tronic medical records [69,90,91]. Moreover, those using self-reported 
data sometimes have support from objective measures. For example, 
Dashti et al. (2019) [92] tested whether the 78 loci found for 
self-reported habitual sleep duration (using a question on hours of sleep) 
in their GWA study were also associated with accelerometer-derived 
sleep estimates. Another study by Dashti et al. (2019) [27] found that 
the variants were also valid when sleep duration was determined by bed 
and wake times. Ideally, genetic instruments discovered and replicated 
based on objective data should be selected. 
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Table 1 
Genome-wide association studies of sleep phenotypes since 2016.  

Author (yeara) 
[reference] 

Phenotype Phenotype 
measurement 

N Ancestry Number of novel SNPs Number of replicated 
SNPs from previous 
studies 

Examples of health 
outcomes studied using 
these instruments 

Cade et al. 
(2016) [68] 

Obstructive sleep 
apnea 

Apnea monitors and 
polysomnography 

12,558 Hispanic/ 
Latino 
Americans 

1 + 1 suggestive (P < 5 
× 10− 7) 
(Apnea–hypopnea 
index)/1 + 4 suggestive 
(Respiratory event 
duration)/2 suggestive 
(Sleep Sp O2) 

– Cancer [28] 

Hu et al. (2016) 
[104] 

Morningness Self-reported 
questions 

89,283 European 15 – Inflammatory bowel 
disease [22] 

Jones et al. 
(2016) [105] 

Morningness and 
sleep duration 

Self-reported 
question 

128,266 European 
(validation 
in Koreans) 

10 (morningness) + 2 
suggestive (P < 1 × 10- 
4)/3 (sleep duration) 

3 + 1 suggestive from 
Lane et al. (2016) 
(morningness) 

Caffeine consumption [60] 

Lane et al. 
(2016) [106] 

Chronotype Self-reported 
question 

100,420 European 12 – – 

Hammerschlag 
et al. (2017) 
[75] 

Insomnia 
symptoms 

Self-reported 
question validated 
with questionnaires 
and a structured 
interview 

113,006 European 11 + 2 suggestive (P < 2 
× 10− 3) 

1 + 1 suggestive from 
Lane et al. (2017) 

Caffeine consumption 
[60]; Peptic ulcer disease 
[40] 

Lane et al. 
(2017) [107] 

Sleep duration, 
insomnia 
symptoms, 
excessive daytime 
sleepiness & 
composite sleep 
traitb 

Self-reported 
questions 

112,586 European 1 + 3 suggestive (P < 5 
× 10− 7) (sleep 
duration)/5 + 3 
suggestive (insomnia 
symptoms)/3 + 7 
suggestive (excessive 
daytime sleepiness)/3 
(composite sleep trait) 

1 suggestive from 
Jones et al. (2016) 
(sleep duration)/3 
from Jones et al. 
(2016) & Lane et al. 
(2016) (composite 
sleep trait) 

– 

Schormair et al. 
(2017) [108] 

Restless legs 
syndrome 

Interviews and self- 
reported question 

110,851 European 19 1 from Lane et al. 
(2017) 

Parkinson’s disease [53]; 
Essential tremor [109] 

Chen et al. 
(2018) [69] 

Obstructive sleep 
apnea 

Polysomnography 19,733 Multi- 
ancestry 

23 suggestive (P < 1.0 ×
10− 6) 
(Apnea-Hypopnea Index 
total)/10 suggestive 
(Apnea-Hypopnea Index- 
Non-Rapid Eye 
Movement)/7 suggestive 
(Apnea-Hypopnea Index- 
Rapid Eye Movement). 

1 suggestive from 
Cade et al. (2016) 
(Apnea-Hypopnea 
Index total) 

Amyotrophic lateral 
sclerosis [57]; 
Neurodegenerative 
diseases [24]; Parkinson’s 
disease [57] 

Doherty et al. 
(2018) [91] 

Sleep duration Accelerometer data 91,105 European 7 1 from Lane et al. 
(2017) 

– 

Ferguson et al. 
(2018) [110] 

Low relative 
amplitude 

Accelerometer data 71,500 European 3 – – 

Stein et al. 
(2018) [73] 

Insomnia disorder Questionnaire 17,651 Multi- 
ancestry 

4 + 8 suggestive (P < 1 
× 10− 6) 

– – 

Dashti et al. 
(2019) [6] 

Sleep duration Self-reported 
question supported 
by accelerometer 
data 

446,118 European 77 1 from Jones et al. 
(2019) 

Alzheimer’s disease [17, 
111]; Amyotrophic lateral 
sclerosis [57]; Atrial 
fibrillation [41]; Cancer 
[59,112]; Cardiovascular 
diseases [15]; COVID-19 
[44]; Dietary intake [16]; 
Fracture [58]; Glycated 
hemoglobin [30]; Heart 
failure [41]; Heel bone 
mineral density [20]; 
Intracranial aneurysm and 
Aneurysmal subarachnoid 
hemorrhage [55]; 
Ischemic stroke [113]; 
Longevity [50]; Major 
depressive disorder [111]; 
Metabolomic traits [18]; 
Migraine [114]; 
Osteoarthritis [33]; 
Parkinson’s disease [57]; 
Periodontal disease [43]; 
Renal function [32]; 
Stroke [37] 

Jansen et al. 
(2019) [8] 

Insomnia 
symptoms 

Self-reported 
question 

1,331,010 European 243 5 from Jones et al. 
(2016, 2019), Lane 
et al. (2017) & 
Doherty et al. (2018) 

Asthma [29]; Body 
composition [52]; Cancer 
[35,51]; Cardiovascular 
conditions [31,39]; 

(continued on next page) 
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Table 1 (continued ) 

Author (yeara) 
[reference] 

Phenotype Phenotype 
measurement 

N Ancestry Number of novel SNPs Number of replicated 
SNPs from previous 
studies 

Examples of health 
outcomes studied using 
these instruments 

Depressive symptoms [42]; 
Fracture [58]; 
Hypertension [115]; 
Intracranial aneurysm and 
Aneurysmal subarachnoid 
hemorrhage [55]; 
Longevity [50]; Major 
depressive disorder [116]; 
Metabolomic traits [18]; 
Migraine [23]; 
Osteoarthritis [33]; Pain 
diagnoses [19]; Subjective 
well-being [42]; Suicidal 
behavior [46] 

Jones et al. 
(2019) [7] 

Morningness Self-reported 
question 

697,828 European 344 7 from Hu et al. 
(2016), Lane et al. 
(2016, 2017) & Jones 
et al. (2016) 

Alzheimer’s disease [17, 
111]; Amyotrophic lateral 
sclerosis [57]; Cancer [36, 
51,112]; COVID-19 [44]; 
Depressive symtoms [34]; 
Food intake [26]; Fracture 
[58]; General anxiety 
disorder [34]; General 
wellbeing [34]; Glycated 
hemoglobin [30]; Heel 
bone mineral density [20]; 
Inflammatory bowel 
disease [22]; Ischemic 
stroke [113]; Major 
depressive disorder [25, 
34,111]; Metabolomic 
traits [18]; Migraine 
[114]; Neurodegenerative 
diseases [24]; Parkinson’s 
disease [57] 

Jones et al. 
(2019) [117] 

Sleep traits 
derived by 
accelerometer 
data 

Accelerometer data 85,670 European 9 (sleep duration)/1 
(sleep midpoint)/4 (sleep 
eficiency)/20 (number of 
sleep episodes). 

2 from Lane et al. 
(2017) & Doherty 
et al. (2018) (sleep 
duration)/1 from 
Lane et al. (2017) 
(sleep eficiency)/1 
from Jansen et al. 
(2019) (number of 
sleep episodes). 

Alzheimer’s disease [17, 
111]; Amyotrophic lateral 
sclerosis [57]; Cancer [36]; 
Major depressive disorder 
[111]; Neurodegenerative 
diseases [24]; Parkinson’s 
disease [57] 

Lane et al. 
(2019) [93] 

Insomnia 
symptoms 

Self-reported 
question 

453,379 European 51 6 from Lane et al. 
(2017), Doherty et al. 
(2018) & Jansen et al. 
(2019) 

Alzheimer’s disease [17, 
111]; Amyotrophic lateral 
sclerosis [57]; Cancer 
[112]; COVID-19 [44]; 
Heel bone mineral density 
[20]; Inflammatory bowel 
disease [22]; Ischemic 
stroke [113]; Major 
depressive disorder [111]; 
Migraine [114]; 
Neurodegenerative 
diseases [24]; Pain 
diagnoses [19]; 
Parkinson’s disease [57] 

Wang et al. 
(2019) [118] 

Daytime 
sleepiness 

Self-reported 
question 

452,071 European 40 2 from Jones et al. 
(2016) & Jansen et al. 
(2019) 

Alzheimer’s disease [17]; 
Amyotrophic lateral 
sclerosis [57]; COVID-19 
[44]; Glycated hemoglobin 
[30]; Heel bone mineral 
density [20]; 
Inflammatory bowel 
disease [22]; Migraine 
[114]; Neurodegenerative 
diseases [24]; Parkinson’s 
disease [57] 

Campos et al. 
(2020) [119] 

Snoring Self-reported 
question 

408,000 European 41 – Amyotrophic lateral 
sclerosis [57]; Atrial 
fibrillation [54]; Body 
mass index [54]; Fracture 
[58]; Major depressive 

(continued on next page) 
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Moreover, it is essential to understand how the exposure was ana
lysed. For example, Lane et al. (2019) [93] performed two parallel 
GWAS for frequent and any insomnia symptoms based on participants’ 
responses to the question “Do you have trouble falling asleep at night, or 
do you wake up in the middle of the night?”. For frequent insomnia, they 
considered participants who responded “usually” as cases and “never/
rarely” as controls, with those reporting “sometimes” being excluded. 
For any insomnia, they considered participants who responded “some
times” or ”usually” as cases and “never/rarely” as controls. On the 
contrary, a GWA study by Jansen et al. (2019) [8], using the same 
question, defined insomnia cases as participants who answered “usu
ally”, while participants who answered “never/rarely” or “sometimes” 
were defined as controls. In this example, insomnia symptoms are ana
lysed in three different ways using the same underlying question. Un
derstanding how the exposure was measured is crucial for adequately 
interpreting results. 

Another crucial aspect of genetic instrument selection is whether the 
exposure is continuous or binary. It is well-established that continuous 
measures should be used where possible in MR [94]. However, using 
continuous exposures has the caveat that sometimes MR studies aim to 
test whether a particular disease status (e.g., insomnia) might be caus
ally related to a specific outcome. Furthermore, some sleep traits are 
often considered binary: chronotype (evening vs. morning types), nap
ping (frequent vs. infrequent nappers), and duration (longer vs. shorter 
sleepers), amongst others. In the case of using a binary exposure, it is 
important to be aware of its limitations. Burgess and Labrecque’s paper 
(2018) [94] explained that the problem arises when using a binary 
exposure that dichotomises a continuous variable (e.g. short/long sleep 
arises from dichotomised sleep duration). In the cases of MR studies 
using these types of exposures, the results should be conceptualised in 

terms of the underlying continuous risk factor. 

2.7. Total (R2) and average strength (F-statistic) metrics 

Selection of genetic instruments is often conducted by considering 
each variant’s effect size to avoid weak-instrument bias. This bias can 
occur when the genetic instruments explain a small proportion of the 
variance in the exposure. Weak instruments may lead to non-robust 
results and bias the estimates towards the confounded observational 
estimate [95]. 

Some of the most commonly used effect indicators are the proportion 
of the phenotypic variance explained by all of the genome-wide signif
icant SNPs (R2) and the F-statistic obtained from regressing the exposure 
on the genetic instrument (in a multivariable linear regression) [62]. 
The R2 provides information about the total strength of the genetic 
variant, and usually, the larger, the better. Swerdlow et al. (2016) [62] 
argue that the R2 is the most useful effect metric when selecting genetic 
instruments for MR analysis. However, the F-statistic provides infor
mation about the average strength of the instrument, with an F > 10 
indicating that substantial weak instrument bias is unlikely [95]. 

Several options for obtaining F-statistics are available. If individual- 
level data are available for the exposure, the ‘Individual-level data 
regression’ approach can be performed. However, if individual-level 
data are not available and the R2 from the exposure GWA study is 
obtainable, the Cragg-Donald F-statistic method may be used [95]. This 
method uses the R2, sample size (n), and the number of instruments (k) 
to calculate the statistic (F=(n− k− 1/k) (R2/1− R2)) [67]. Liu et al. 
(2021) [31] used this formula reporting a F-statistic of 143.24 in their 
study about the association between genetically-instrumented insomnia 
and cardiovascular diseases. When the R2 is unknown, the ‘t-statistic’ 

Table 1 (continued ) 

Author (yeara) 
[reference] 

Phenotype Phenotype 
measurement 

N Ancestry Number of novel SNPs Number of replicated 
SNPs from previous 
studies 

Examples of health 
outcomes studied using 
these instruments 

disorder [56]; Parkinson’s 
disease [57] 

Didriksen et al. 
(2020) [120] 

Restless legs 
syndrome 

Clinical diagnosis 
and questionnaire 

480,982 European 3 + 2 suggestive at (P <
7 × 10− 7) 

20 from Lane et al. 
(2017) & Schormair 
et al. (2017) 

– 

Farias Tempaku 
et al. (2020) 
[70] 

Obstructive sleep 
apnea 

Polysomnography 1074 Multi- 
ancestry 

2 + 21 suggestive (P < 5 
× 10− 6) 

– – 

Song et al. 
(2020) [90] 

Insomnia disorder Electronic health 
records 

18,055 European 1 – – 

Dashti et al. 
(2021) [121] 

Daytime napping Self-reported 
question 

452,633 European 119 4 from Jones et al. 
(2016, 2019) & 
Jansen et al. (2019) 

COVID-19 [44]; Dietary 
intake [16]; Glycated 
hemoglobin [30]; 
Inflammatory bowel 
disease [22]; Migraine 
[114] 

Khoury et al. 
(2021) [71] 

Sleep quality Questionnaire 2868 Multi- 
ancestry 

3 + 11 suggestive (P ≤ 5 
× 10− 7) 

– – 

Strausz et al. 
(2021) [122] 

Obstructive sleep 
apnea 

Electronic health 
records 

217,955 European 5 – Atrial fibrillation [21] 

Yao et al. (2022) 
[123] 

Sleep health 
scorec 

Self-reported 
questions 

336,463 European 31 1 from Lane et al. 
(2017) 

– 

Watanabe et al. 
(2022) [65] 

Insomnia 
symptoms 

Self-reported 
questions 

2,365,010 European 364 190 from Jansen et al. 
(2019), Lane et al. 
(2017, 2019) & 
Hammerschlag et al. 
(2017) 

Sepsis [124] 

Austin- 
Zimmerman 
et al. (2023) 
[74] 

Sleep duration Self-reported 
questions 

493,142 Multi- 
ancestry 

71 (short sleep duration) 13 (short sleep 
duration) + 1 (long 
sleep duration) from 
Gottlieb et al. (2015) 
& Song et al. (2020) 

–  

a We reported studies since 2016 because at that time there was a proliferation of GWAS of sleep phenotypes (previously most studies were done on restless legs 
syndrome). 

b Composite trait of sleep duration, insomnia symptoms, excessive daytime sleepiness and chronotype. 
c Overall assessment of sleep duration, snoring, insomnia symptoms, chronotype, and daytime dozing. 
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summary-level method can be used (F = β2/SE2). In this case, the 
F-statistic will be an approximation because it uses the sample size for 
the discovery GWA study, not the one from the data under analysis. 
Finally, the “MendelianRandomization” R package allows the calcula
tion of the F-statistic [13]. 

2.8. Number of SNPs 

MR studies including large numbers of genetic variants are rapidly 
increasing. This growth is related to the proliferation of GWAS and the 
desire to obtain more precise estimates. However, as previously dis
cussed, not all variants are valid IVs [96], and an enlarged set of genetic 
instruments is not always better [12]. Selecting a large number of var
iants could lead to a larger R2 but a weaker F-statistic and greater 
chances of including pleiotropic variants, violating a core MR assump
tion. Including more variants also allows the use of more robust 
methods, including common sensitivity analyses such as the MR-Egger 
test. On the contrary, fewer variants will lead to a lower R2 but poten
tially a greater F-statistic, which could lead to an instrument with 
insufficient power [96]. 

To understand how the strength of the instrument depends on the 
number of SNPs, we present Liu et al. (2022) [30] study on the rela
tionship between sleep traits and glycated haemoglobin -HbA1c- (see 
Table 2). In this study, the F-statistic for all exposures was higher than 10 
(which indicates an appropriate average strength), while the R2 ranged 
between 0.06 and 2.09 %. In the case of long sleep duration, including 
fewer variants (five) lead to a low total strength (R2 = 0.06 %) and a 
good average strength (F-statistic = 41). 

2.9. Minor allele frequency and palindromic variants 

MAF is the proportion of minor alleles for a specific SNP in a given 
population [67]. In other words, it is the frequency at which the second 
most common allele occurs. Usually, GWAS identify common variants 
[97]; however, SNPs with a wide distribution of MAFs can sometimes be 
included. Some MR studies exclude variants with a low MAF because 
causal estimates from those variants may have low precision [96,98]. 
For example, Chen et al. (2021) [20] decided to remove variants with a 
MAF<1 % in their study about the association between sleep traits and 
low bone mineral density. However, excluding variants with low MAF 
could mean removing variants associated with the exposure of interest. 
For example, low-frequency variants in PERIOD3 have been associated 
with chronotype [7] and familial advanced sleep phase syndrome [99]. 

Another potential problem is palindromic variants because they can 
introduce ambiguity into the identification of the effect allele. A palin
dromic SNP occurs when the two possible alleles are complementary 
base pairs [86]. Additional care should be taken with palindromic var
iants because studies might report effects of the same SNP using 
different strands (e.g. a study reports an SNP with A/G alleles and 
another with T/C alleles). In those cases, the ambiguity can be identified 
if the effect allele frequency is reported and the MAF is substantially 

below 50 % [100]. For example, if a specific SNP has alleles A/T, with 
allele A frequency being 0.11 in the GWA study and 0.91 in the data 
under study (both coding this allele as the effect allele) and both studies 
have the same ethnic origin, this means that authors used different 
reference strands. In this case, it is necessary to switch the direction of 
the effect in either the discovery GWA study or the analytical sample, a 
procedure called “variant harmonisation” [86]. 

However, if it is not possible to verify that alleles are correctly 
orientated, it may be necessary to take some precautions [67]. There are 
options to deal with this problem: replace the variants with suitable, 
non-palindromic linkage disequilibrium proxies, perform sensitivity 
analyses to evaluate the impact of these variants on the results or 
exclude them [100]. For example, in a study by Alimenti et al. (2021) 
[16] about causal links between habitual sleep duration/napping and 
macronutrient composition palindromic SNPs with MAF close to 0.50 
were excluded and the remaining palindromic instruments were aligned 
based on their MAF. 

2.10. Confounding 

The third MR assumption states that the genetic variant-outcome 
association is unconfounded [101]. Violations of this assumption 
could be due to at least two different types of confounding. One is 
confounding by ancestry (e.g., if SNPs associated with sleep duration 
have higher/lower frequencies in different ancestry groups in the sam
ple under study and additionally, cultural differences have an impact on 
the outcome under study), which could be controlled by restricting the 
sample to a single ancestry group, and/or adjusting for principal com
ponents of ancestry. A second source of confounding occurs if SNPs 
associated with the exposure of interest are also associated with com
mon confounders of the relationship under study. One of the advantages 
of MR is that it exploits the fact that genotypes are not generally asso
ciated with confounders. However, such associations may occur, espe
cially when using weak instruments or small samples [67]. Thus, it is 
important to test whether the genetic instruments are associated with 
confounders of the exposure-outcome relationship [10]. 

To address this issue, authors must first identify common con
founders previously reported between their exposures and outcomes. 
For example, in the case of the association between obstructive sleep 
apnea and hypertension, weight and age are proposed as two of the main 
confounding factors in this putative relationship [102]. For the long 
sleep-mortality association, some authors have argued that depression is 
most likely to confound this relationship [103]. Therefore, it is essential 
that, regardless of the exposure of interest, a literature review is carried 
out to identify the confounders to be considered. 

Then, authors often statistically test associations between their ge
netic instrument and variables reported in the literature as potential 
confounders in the exposure-outcome association. This is crucial as MR 
aims to give causal estimates that are not biased due to confounding 
[67]. In the MR study performed by Henry et al. (2019) [45], the authors 
explored the validity of their instruments by testing associations of 

Table 2 
Instrument strength metrics from Liu et al. (2022).  

Information of the discovery GWAS Two-sample MR 

Author (year) [reference] Trait n Cohort nSNPs identified R2 nSNPs merged R2a F-statisticsb 

Jansen et al. (2019) [8] Insomnia symptoms 1,331,010 UKB/23andMe 248 2.60 % 179 0.55 % 41 
Dashti et al. (2019) [92] Sleep duration 446,118 UKB 78 0.69 % 54 0.49 % 41 
Dashti et al. (2019) [92] Short sleep duration 411,934 UKB 27 – 20 0.13 % 27 
Dashti et al. (2019) [92] Long sleep duration 339,926 UKB 8 – 5 0.06 % 41 
Wang et al. (2019) [118] Daytime sleepiness 452,071 UKB 37 – 26 0.25 % 44 
Dashti et al. (2021) [121] Daytime napping 993,966 UKB/23andMe 108 1.10 % 71 0.56 % 79 
Jones et al. (2019) [7] Chronotype 697,828 UKB/23andMe 351 – 250 2.09 % 60 

GWAS: Genome-wide association studies; nSNPs: number of single-nucleotide polymorphism; UKB: UK Biobank. 
a R2 was calculated via Sum(R2i = K*Fi/(N–K-1+K*Fi), K = 1, Fi = BetaXGi^2/seBetaXGi^2 (BetaXGi and seBetaXGi were obtained from the discovery GWAS). 
b F statistic was calculated via the Cragg-Donald method. 
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potential confounders (such as sex, age, educational attainment and use 
of sleep-inducing medication) with their sleep duration genetic score. 

3. Conclusions 

In this article, we explored the criteria used for selecting genetic 
instruments for sleep traits in the context of MR, discussing how 
instrumental choice impacts analysis. We also presented GWAS of sleep 
phenotypes since 2016 and discussed MR studies using genetic sleep 
instruments to date. We are convinced that instrument selection is the 
most important decision when designing an MR study and that this is 
becoming even more important as the number of sleep genetic variants 
found in GWAS increases. We hope this review will aid researchers in 
designing robust MR studies and continue to elucidate our under
standing of the causal role of sleep on health outcomes. 
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Lledós M, et al. Sleep/wake cycle alterations as a cause of neurodegenerative 
diseases: a Mendelian randomization study. Neurobiol Aging 2021;106:320. 
e1–320.e12. https://doi.org/10.1016/j.neurobiolaging.2021.05.008. 

[25] Daghlas I, Lane JM, Saxena R, Vetter C. Genetically proxied diurnal preference, 
sleep timing, and risk of major depressive disorder. JAMA Psychiatr 2021;78:903. 
https://doi.org/10.1001/jamapsychiatry.2021.0959. 

[26] Dashti HS, Chen A, Daghlas I, Saxena R. Morning diurnal preference and food 
intake: a Mendelian randomization study. Am J Clin Nutr 2020;112:1348–57. 
https://doi.org/10.1093/ajcn/nqaa219. 

[27] Dashti HS, Redline S, Saxena R. Polygenic risk score identifies associations 
between sleep duration and diseases determined from an electronic medical 
record biobank. Sleep 2019;42. https://doi.org/10.1093/sleep/zsy247. 

[28] Gao X-L, Jia Z-M, Zhao F-F, An D-D, Wang B, Cheng E-J, et al. Obstructive sleep 
apnea syndrome and causal relationship with female breast cancer: a mendelian 
randomization study. Aging 2020;12:4082–92. https://doi.org/10.18632/ 
aging.102725. 

[29] Kim DJ, Ha T-W, Jung HU, Baek EJ, Lee WJ, Kim HK, et al. Characterisation of 
insomnia as an environmental risk factor for asthma via Mendelian 
randomization and gene environment interaction. Sci Rep 2021;11:21813. 
https://doi.org/10.1038/s41598-021-01291-6. 

[30] Liu J, Richmond RC, Bowden J, Barry C, Dashti HS, Daghlas I, et al. Assessing the 
causal role of sleep traits on glycated hemoglobin: a mendelian randomization 
study. Diabetes Care 2022;45:772–81. https://doi.org/10.2337/dc21-0089. 

V. Paz et al.                                                                                                                                                                                                                                      

https://doi.org/10.1016/j.sleep.2023.10.036
https://doi.org/10.1016/j.sleep.2023.10.036
http://refhub.elsevier.com/S1389-9457(23)00414-8/sref1
https://doi.org/10.1016/j.pmedr.2019.100851
https://doi.org/10.1093/sleep/zsw048
https://doi.org/10.1016/j.smrv.2021.101448
https://doi.org/10.1016/j.smrv.2020.101413
https://doi.org/10.1016/j.smrv.2020.101413
https://doi.org/10.1038/s41467-019-08917-4
https://doi.org/10.1038/s41467-018-08259-7
https://doi.org/10.1038/s41467-018-08259-7
https://doi.org/10.1038/s41588-018-0333-3
https://doi.org/10.1038/s41588-018-0333-3
https://doi.org/10.2147/NSS.S134864
https://doi.org/10.1093/ije/dyg070
https://doi.org/10.1146/annurev-genom-090314-050016
https://doi.org/10.12688/wellcomeopenres.15555.2
https://doi.org/10.1093/ije/dyx034
https://doi.org/10.1093/ije/dyy195
https://doi.org/10.1093/eurheartj/ehab170
https://doi.org/10.1093/cdn/nzab019
https://doi.org/10.1093/ije/dyaa183
https://doi.org/10.1093/ije/dyaa183
https://doi.org/10.1186/s12916-021-01939-0
https://doi.org/10.1186/s12916-021-01939-0
https://doi.org/10.1093/sleep/zsab025
https://doi.org/10.1002/jbmr.4406
https://doi.org/10.1186/s12920-022-01180-5
https://doi.org/10.3389/fphar.2021.763649
https://doi.org/10.2147/PGPM.S305780
https://doi.org/10.2147/PGPM.S305780
https://doi.org/10.1016/j.neurobiolaging.2021.05.008
https://doi.org/10.1001/jamapsychiatry.2021.0959
https://doi.org/10.1093/ajcn/nqaa219
https://doi.org/10.1093/sleep/zsy247
https://doi.org/10.18632/aging.102725
https://doi.org/10.18632/aging.102725
https://doi.org/10.1038/s41598-021-01291-6
https://doi.org/10.2337/dc21-0089


Sleep Medicine 112 (2023) 342–351

350

[31] Liu X, Li C, Sun X, Yu Y, Si S, Hou L, et al. Genetically predicted insomnia in 
relation to 14 cardiovascular conditions and 17 cardiometabolic risk factors: a 
mendelian randomization study. J Am Heart Assoc 2021;10:e020187. https:// 
doi.org/10.1161/JAHA.120.020187. 

[32] Mazidi M, Shekoohi N, Katsiki N, Banach M. Longer sleep duration may 
negatively affect renal function. Int Urol Nephrol 2021;53:325–32. https://doi. 
org/10.1007/s11255-020-02624-6. 

[33] Ni J, Zhou W, Cen H, Chen G, Huang J, Yin K, et al. Evidence for causal effects of 
sleep disturbances on risk for osteoarthritis: a univariable and multivariable 
Mendelian randomization study. Osteoarthritis Cartilage 2022;30:443–50. 
https://doi.org/10.1016/j.joca.2021.11.021. 

[34] O’Loughlin J, Casanova F, Jones SE, Hagenaars SP, Beaumont RN, Freathy RM, 
et al. Using Mendelian Randomisation methods to understand whether diurnal 
preference is causally related to mental health. Mol Psychiatr 2021;26:6305–16. 
https://doi.org/10.1038/s41380-021-01157-3. 

[35] Shen J, Zhou H, Liu J, Zhang Y, Zhou T, Chen G, et al. Genetic liability to 
insomnia and Lung cancer risk: a mendelian randomization analysis. Front Genet 
2021;12:756908. https://doi.org/10.3389/fgene.2021.756908. 

[36] Sun X, Ye D, Jiang M, Qian Y, Mao Y. Genetically proxied morning chronotype 
was associated with a reduced risk of prostate cancer. Sleep 2021;44:zsab104. 
https://doi.org/10.1093/sleep/zsab104. 

[37] Titova OE, Yuan S, Baron JA, Lindberg E, Michaëlsson K, Larsson SC. Sleep- 
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