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Active automata learning algorithms cannot easily handle conflict in the observation data (different
outputs observed for the same inputs). This inherent inability to recover after a conflict impairs their
effective applicability in scenarios where noise is present or the system under learning is mutating.

We propose the Conflict-Aware Active Automata Learning (C 3AL) framework to enable han-
dling conflicting information during the learning process. The core idea is to consider the so-called
observation tree as a first-class citizen in the learning process. Though this idea is explored in recent
work, we take it to its full effect by enabling its use with any existing learner and minimizing the
number of tests performed on the system under learning, specially in the face of conflicts. We eval-
uate C 3AL in a large set of benchmarks, covering over 30 different realistic targets, and over 18,000
different scenarios. The results of the evaluation show that C 3AL is a suitable alternative framework
for closed-box learning that can better handle noise and mutations.

1 Introduction

Formal methods have a long history of success in the analysis of critical systems through abstract models.
These methods are rapidly expanding their range of applications and recent years saw an increase in
industrial teams applying them to (large-scale) software [6, 9, 10, 12, 13, 25]. The applicability of such
methods is limited by the availability of good models, which require time and expert knowledge to be
hand-crafted and updated. To overcome this issue, a research area on automatic inference of models,
called model learning [32], has gained popularity. Broadly, there are two classes of model learning:
passive learning, which attempts to infer a formal model from a static log, and active learning, where
interaction with the system is allowed to refine knowledge during the inference.

In this paper, we focus on active learning, motivated by its successful use in verification tasks, e.g. in
analyzing network protocol implementations, as TCP [18], SSH [19], and QUIC [15], or understanding
the timing behavior of modern CPUs [34]. Current state-of-the-art active learning algorithms rely on
the Minimally Adequate Teacher (MAT) framework [4], which formalizes a process with two agents: a
learner and a teacher. The learner tries to infer a formal model of a system, and the teacher is omniscient
of the system, being able to answer queries on potential behaviors and the correctness of the learned
model. MAT assumes that the interactions between both agents are perfect and deterministic.

Learning In Practice Interactions with the System Under Learning (SUL) are often non-deterministic
in some way, e.g. the communications can be noisy (i.e. query answers do not only reflect the actual
system output, but are instead a consequence of its interaction with the environment), or the SUL itself
can change during learning. This can lead to conflicts, which we define in the following way:

A conflict appears when a query’s answer formally contradicts a previous query in a way that
cannot be expressed by a model of the target class.
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Current MAT Learners cannot handle the conflicts that arise during learning. Thus, when used in
practice, MAT learner implementations use artifacts to circumvent conflicting observations.

For example, in the case of noise, each interaction has a chance of diverging from its usual behavior.
To handle this, MAT learners repeat each query n times and majority-vote the result. They aim to guess
an n sufficiently large to prevent any noisy observation from reaching the learner, but small enough to let
the computation finish before timeout. As a consequence, noise threatens both efficiency and correctness
of learning. We provide a framework alleviating this issue without tailoring it to specific MAT learners.

Irrespective of the nature of the conflicts detected, dealing with them requires the ability to backtrack
certain decisions that were made based on what is now considered incorrect information. This pinpoints
the issue with current MAT learners: there is no notion of information storage other than the internal data
structure that the learners use to build the model, which is not easily updatable in the face of conflict.
This structure in fact needs to be fully rebuilt if a conflict is found, generating many superfluous (and
expensive!) queries to the SUL. Separating the learning process from the information gathered through
the queries allows us to retain all the previous non-conflicting information. This alleviates the main cost
of conflict handling: the unnecessary repetition of tests on the system. The Learner then only needs to
rebuild its data structure based on the information already available.

Contribution Based on the ideas above, this paper proposes the Conflict Aware Active Automata
Learning (C 3AL, pronounced seal) framework. Any existing MAT learner can be used in C 3AL. When
a conflict arises, we provide a method for updating the learner’s internal state — without making assump-
tions on its data-structure — so that it remains conflict-free while removing only inconsistent information.

In a nutshell, this paper aims to provide classic MAT learners with a way to recover from conflicts
caused by either noise or potential mutations of the system.

At the heart of C 3AL is the use of an observation tree, a data structure (external to the learner)
used to store information gathered from the SUL. It can be efficiently updated and used by the learner
to construct its own internal data structure. When a conflict appears, we update the observation tree
to reflect our knowledge, while the learner’s data structure is pruned to a conflict-free point and then
expanded from the observation tree. Crucially, the learner uses the observations already stored in the
tree without requiring tests on the SUL for already observed behaviors. C 3AL’s main features are:

• The SUL is a first-class citizen, instead of being abstracted. C 3AL notably does not rely on equivalence
queries, replacing them with either a check of the stored knowledge (when sufficient) or an equivalence
test, using an m-complete testing algorithm (e.g. the Wp-method [20] or Hybrid-ADS [26, 29]).

• The information obtained through tests on the SUL is stored in an observation tree managed by a new
Reviser agent that is responsible for handling the conflicts and answering the learner’s queries like a
teacher. Providing a teacher interface is an important aspect as it enables the use of any MAT-based
algorithm seamlessly, only requiring the ability to restart a classic MAT learner.

• The Reviser alone interacts with the SUL by means of tests meant to expand its observation tree.

Crucially, C 3AL is less abstract than MAT, representing directly the objects and challenges of practical
active learning, while still allowing the design of Learners to enjoy the simplifying abstraction of MAT.

After some preliminaries in Section 2 we formalize and prove the above claims in Section 3. We
evaluate C 3AL in Section 4 using a broad range of experiments [27]. We compare several state-of-the-
art algorithms (namely L⋆ [4], KV [24], TTT [22] and L# [33]) for targets of different sizes and different
levels of noise, while varying the controllable parameters for both MAT and C 3AL. The experimental
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Learner Teacher

Membership query: i ∈ Σ∗

M ∗(i) ∈ Γ∗

Equivalence Query: H correct?

Yes / (No + cex)

Figure 1: The Minimally Adequate Teacher framework.

results show that in the case of noise, C 3AL allows us to drastically reduce the number of repeats required
to learn correct models by handling some conflicts in the information it gathers from the system. This
allows C 3AL to achieve a success rate of 95.5% compared to MAT’s 79.5% in our experiments.

A long version of this paper, complete with the appendices presenting the proofs, some more formal-
ization, extensive experimental results and some more discussion can be found in [16]. References are
given when it can be useful.

2 Preliminaries

In this section, we recall Mealy machines and MAT. Fix an alphabet A (a finite set of symbols). The set
of finite words is denoted A∗, the empty word ε , and the set of non-empty words by A+. The length of a
word w ∈ A∗ is denoted |w|, its sets of prefixes by prefixes(w), its k-th element by w[k] and the subword
from the i-th to the j-th element by w[i, j]. The concatenation of word w with symbol a is denoted by wa.

Mealy Machines For the rest of the paper, we fix an input and output alphabet pair (Σ,Γ). A Mealy
machine over alphabets (Σ,Γ) is a tuple M = (Q,q0,δ ,λ ) where Q is a finite set of states, q0 ∈ Q is the
initial state, δ : Q×Σ→Q is a transition function and λ : Q×Σ→ Γ an output function. Mealy machines
assign output words (o ∈ Γ∗) to input words (i ∈ Σ∗) — one reads input letters using δ and collects all
output letters given by λ . This is achieved using inductive extensions of δ and λ :

δ
∗ : Q×Σ

∗→ Q δ
∗(q,ε) = q δ

∗(q, ia) = δ (δ ∗(q, i),a)

λ
+ : Q×Σ

+→ Γ λ
+(q, ia) = λ (δ ∗(q, i),a)

We now build the semantics function M ∗ : Σ∗→ Γ∗ given by

M ∗(a1 · · ·a j) = b1 · · ·b j where bk = λ
+(q0,a1 · · ·ak), for all k = 1, . . . , j.

Note the preservation of length of input words in output. When the functions δ and λ are partial we call
the Mealy machine M partial. A partial tree-shaped Mealy machine is called an observation tree.

Example 1. On the left below is the tree representing the tests {(aaa,aab),(aab,aaa),(ab,ab)} and on
the right the tree representing {(aaa,abb),(ab,ab)}.

a/a a/a

b/b

a/b

b/a

a/a a/b

b/b

a/b

Active Model Learning Active learning is a process in which a learner can interact with an omniscient
teacher to build a model of an unknown system. Formally, this type of learning uses the Minimally
Adequate Teacher (MAT) framework [4] (see Fig. 1). The teacher is supposed to have enough knowledge
about the target machine M to be able to answer two types of queries:

Membership The learner sends an input word i to the teacher, who answers with the output word M ∗(i).
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Equivalence The learner proposes a hypothesis model H . The teacher either confirms the model as
correct or provides a counterexample cex ∈ Σ∗ such that H ∗(cex) ̸= M ∗(cex).

The MAT framework is an interesting abstraction to design algorithms and conduct proofs, and has
been the basis for active model learning since its introduction (see e.g. L⋆ [4], KV [24], TTT [22] or
L# [33]). The teacher abstracts the system under learning (SUL), which complicates discussions on the
practical interfaces between the learner and the SUL during applications. MAT does not separate the
learner’s core features (i.e. choosing the queries to be made and building hypotheses) from the storage
of observations. This has led the community to resort to caches, often implemented through observation
trees, to access observations directly. Being mostly tricks to avoid repeating queries, caches are rarely
discussed in the literature (although used during experiments), which had so far delayed a discussion on
the practical implications of a proper handling of observations. This paper addresses this.

Noise on communications The term noise is usually used to described a wide range (if not any form)
of perturbations that can happen between the designed agent (in our case the Learner) and the SUL. In
the case of this study we are primarily interested in the classification between input and output noise.

Output noise We call output noise a perturbation that only affects what our agent sees from the world,
i.e. the outputs of the SUL. Formally, this kind of noise can be represented as a non-deterministic
function of M ∗(i) returning a different output word of same size.

Input noise This kind of noise instead affects the query i inputted into the SUL, so that a different input
word i′ of same size is processed instead.

Noise can have different levels of structure, being generated by different kinds of models or proba-
bility distributions. As this paper strives for a generic approach, no assumption is made on the structure
of noise. Furthermore, experiments will use generic noise that has a fixed probability for each symbol
of the word, taken in sequence, to replace it with a random one according to a uniform distribution.
One notable restriction of our approach is that it does not target adversarial modifications — such as an
attacker trying to change the Learner’s hypotheses.

Remark 1. We do not further formalize noise, as it stems for very practical considerations that may re-
quire a wide array of different formalizations. The method we propose is generic and aims to demonstrate
that paying attention to noise and conflicts allows significant efficiency gains without any specialization
towards a specific model of noise.

3 Conflict Aware Active Automata Learning

We now introduce our alternative to MAT in practice — the Conflict-Aware Active Automata Learning
(C 3AL) framework. C 3AL’s main features are as follows:

• The SUL is a first class citizen, allowing for clearer practical discussions and modularity.

• The information obtained through tests on the SUL is stored in a new Reviser agent that handles
the conflicts and answers the learner’s queries like a teacher.

• The Reviser alone interacts with the SUL by means of tests meant to expand its observation tree.
The learner’s queries are answered from the observation tree.
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Learner Reviser System

MQ

output
EQ

CE

input

output

Prune

Figure 2: Simplified view of the C 3AL framework. See Fig. 4 and 5 for more detail.

3.1 Framework Overview

C 3AL (Fig. 2) is centered around three agents — the Learner, the System (SUL), and the Reviser — and
the interfaces between them. The Learner plays the same general role as in MAT. Crucially, any MAT
learner can be used in C 3AL (e.g. L⋆, KV, TTT, L#). The Learner does not have to store the information
obtained from tests on the system. It focuses on the questions “What is the next query to make?” and
“How is the hypothesis built?”. The System is the System Under Learning, together with its environment
(e.g. noise). The Reviser handles knowledge and conflicts. It answers the question “What do we know
about the system?”. It is set between the Learner and the System with interfaces to both of them.

C 3AL is designed to improve the practical learning of reactive systems like Mealy machines. As
such, it makes use of features that are core to such models, like causality and closure under inputs and
outputs. However, the main ideas behind C 3AL’s philosophy and separation of concerns can be adapted
to learn other types of automata, such as acceptors like DFAs.

Remark 2. The Reviser acts as a MAT teacher w.r.t. the Learner, answering membership and equiva-
lence queries, with the added ability to Prune the learner to place it in a state coherent with the Reviser’s
information. On the System’s view, the Reviser acts as a tester, providing input sequences (tests) and
recording the system output. The outside views of the learner and system in C 3AL are illustrated below.

Learner
System

Reviser

Teacher
MQ

EQ

(a) Learner’s view

Learner
System

Reviser

Tester
input

output

(b) System’s view

Figure 3: Reviser’s interfaces

The interfaces on the Learner side are similar to MAT: the Learner can perform membership queries
(MQ) and equivalence queries (EQ) on the Reviser, with the latter potentially resulting in a counterex-
ample (CE). Note that the queries are sent to the Reviser and not directly to the SUL: a crucial design
choice. This allows us to control the information that the Learner obtains, and reuse the information in
the Reviser with no new tests. Formally, C 3AL provides the following functions as module interfaces:

• MQ : Σ∗→ (Γ∗∪{Prune}) the membership query of the learner that the Reviser has to implement.
It varies from the MAT function as the Reviser may return a command to prune the learner’s state
instead of an output.

• EQ : Mealy→ ((Σ∗×Γ∗)∪{Prune}) the equivalence query of the learner that the Reviser has to
implement. It may return “Prune ” instead of “Yes”.

• System : Σ∗→ (Σ∗×Γ∗) is a call to the system for a specific test. The system returns the corre-
sponding behavior (input and output), with the effect of noise applied.
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In the interface mentioned above, an EQ can never return “Yes” as in MAT. This work is left to the Reviser,
that will halt the learning process according to the termination criterion chosen (see Section 3.2). The
Prune signal does not require us to modify the code of a MAT Learner, as it can be implemented by
restarting the Learner without requiring further access to the Learner’s internals. The Reviser’s caching
of observations ensures that this operation does not add to the query complexity of the process.
Remark 3. The main cost of learning comes from unit interactions with the system — each individual
symbol that is inputted into or outputted by the system — as these tests are generally costly to perform
and that cost cannot be compensated.

3.2 The Reviser

The Reviser agent is the core of the C 3AL framework. It concretizes its main idea: taking the storage and
handling of observations out of the Learner’s prerogatives. Its task is to update the observation tree T
on which a Learner is trained. We will assume the following interface is made available to the Reviser:
Definition 1 (Operations on observation trees). Given an observation tree T , we define the following
functions to access and modify T :

• LOOKUPT : Σ∗→ (Γ∗∪{NULL}) receives an input word i and returns output o if (i,o) is present
in the observation tree T . Otherwise, NULL is returned.

• UPDATET : (Σ∗×Γ∗)→ 2 updates the observation tree T to take into account a new query pair,
revoking conflicting information if necessary. Returns ⊤ if the new information conflicts with T .

Note that the function UPDATE is the only one that alters the tree and handles conflicts. Implemen-
tations of these functions are given in [16, Appendix A]. Using these functions, we can now define the
language of an observation tree as the set of observations that it can transmit to a Learner, and provide a
formal definition of a conflict as a non-additive change to the language of T .
Definition 2. Given an observation tree T , we call language of T the following set

LT = {(i,LOOKUPT (i)) ∈ Σ
∗×Γ

∗ | LOOKUPT (i) ∈ Γ
∗} .

Definition 3. An observation (i,o) conflicts with an observation tree T when the tree U obtained
by calling UPDATET (i,o) satisfies ∃(i′,o′) ∈ LT , o′ ̸= LOOKUPU (i′). Two observations (i,o) and
(i′,o′) conflict, written (i,o) E(i′,o′), when there is an input word i′′ ∈ prefixes(i)∩prefixes(i′) such that
o[|i′′|] ̸= o′[|i′′|].

Note that a conflict appears not between the System and the Reviser, but signifies that the Reviser
wants to update its answer to some information previously given to the Learner.
Definition 4 (Reviser). The Reviser contains an observation tree T and implements four operations:

1 APPLYT : (Σ∗×Γ∗)→ (Γ∗∪{Prune}) updates T with the observation gained from a system test.
It then either returns the query output or prunes the learner if a conflict is detected.

2 READT : Σ∗→ (Γ∗ ∪{Prune}) looks in T for a query answer and either returns it or tests the
system if necessary. Note that if a test is performed, then T is updated accordingly.

Algorithm 1: APPLYT (i,o)
Data: (i,o) trace from the SUL.
if UPDATET (i,o) then

return Prune;
return o;

Algorithm 2: READT (i)
Data: The queried string i.
o← LOOKUPT (i);
if o ̸= NULL then return o ;
return APPLYT (System(i));
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3 CHECKT : Mealy→ ((Σ∗×Γ∗)∪{NULL}) performs a consistency check of a given Mealy ma-
chine hypothesis against the observation tree T . Returns a counterexample if found or NULL if
no divergences are found.

4 TESTT : Mealy→ ((Σ∗×Γ∗)∪{Prune}) is the function used to look for counterexamples in the
System. It takes a hypothesis proposed by the learner and coherent with the observation tree, and
tests the SUL until a counterexample or a conflict is found. The tests are taken from sampleWord

which is instantiated by an off-the-shelf test suite generating algorithm (e.g. the Wp-method [20]
or Hybrid-ADS [26, 29]) in practice.

Algorithm 3: CHECKT (H )

Data: Hypothesis H
for (i,o) ∈T do

if H ∗(i) ̸= o then
return (i,o);

return NULL;

Algorithm 4: TESTT (H )

Data: A hypothesis H coherent with T .
while ⊤ do

w← sampleWord();
(i,o)← System(w);
if APPLYT (i,o) = Prune then return
Prune ;

if H (i) ̸= o then return (i,o) ;

Crucially, the above functions rely on the observation tree’s interface to handle the conflict as they
arise, forwarding the Prune command to the Learner when needed.

Update Strategies At the core of dealing with conflicts is the idea of identifying information that will
be sacrificed for the sake of cohesion. The way this is achieved depends largely on the type of conflict,
and the meaning of observing such a conflict. We propose two ways to resolving conflicts in C 3AL:

1 Most Recent: When a conflict is identified, the most recently observed (freshest) query information
is committed to the observation tree, and the previous one suppressed, if needed. This approach makes
sense, for example if the target system has mutated and we are only interested in capturing the most up-
to-date behavior, or as a base default strategy. We define prefixes(i,o) = {(i[1,n],o[1,n]) | 0≤ n≤ |i|}.

Proposition 1. In the case of the Most Recent update strategy, given a stream of tests ((ik,ok)k∈N), at
any step K ∈ N: LT = {prefixes(ik,ok) | 0≤ k ≤ K ∧ ̸ ∃k < l ≤ K, s.t. (ik,ok) E(il,ol)}.

Example 2. In Example 1, the right-hand tree is the result of observing (aaa,abb) starting from the
left-hand tree. Notice that the sets prefixes of the sets of observations in Example 1 verify Proposition 1.

2 Most Frequent: When two possible output sequences conflict for a given input sequence, the most
frequently observed one is returned to the Learner. This information can be obtained passively by keeping
track of naturally occurring repetitions of queries, or actively by specifying a sample size on which the
frequency is estimated. This approach makes sense for example for conflicts that are due to unwanted
statistical noise in the observations.

We define Count(i,o) = |{k | (i,o) ∈P(prefixes)({(ik,ok)k∈K})}| as the number of observations of
which (i,o) is a prefix in an observation stream (ik,ok)k∈N considered at step K.

Proposition 2. In the case of the Most Frequent update strategy, given a stream of tests ((ik,ok)k∈N),
at any step K ∈ N:

mf ((ik,ok),(il,ol))≜ Count(ik,ok)< Count(il,ol) ∨ (Count(ik,ok) = Count(il,ol) ∧ k < l)

LT = {prefixes(ik,ok) | k ≤ K ∧ ̸ ∃k < l ≤ K, s.t. (ik,ok) E(il,ol) ∧mf ((ik,ok),(il,ol))}
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We present implementations of UPDATE and LOOKUP fitting these two strategies in [16, Appendix
A], and proofs of the above properties in [16, Appendix B].

Remark 4. An observation (i,o) conflicting with an observation tree T implies that (i,o) E(i′,o′) for
some (i′,o′) ∈ LT . The other implication is not always true, e.g. for the Most Frequent update
strategy.

Termination The termination criteria of C 3AL are the same as those used in MAT in practice: in our
experiment, we terminate when our currently selected hypothesis has survived for a fixed number of tests
that is deemed sufficient, or if a predefined limit number of queries is reached.

Hypothesis Selection Active automata learning involves the production of a sequence of hypotheses
that are refined over time, with the goal of converging towards a correct one. As such, a key characteristic
of different approaches to automata learning is how a final model is to be selected, out of the many
hypotheses. In the case of MAT this is simple: Learning produces a sequence of ever more accurate
models, until termination occurs with a positive equivalence query. It is then logical to pick the most
recently produced hypothesis as the final model. However, when dealing with conflicts and different
update strategies, this is no longer necessarily the case for C 3AL. In particular, when it comes to electing
a model out of a sequence of hypothesis, C 3AL has two options:

• Most Recent: This hypothesis selection strategy is the one known classically: the most recently
produced hypothesis is the one to be elected as final. This strategy is sensible in the case of learning
with no noise, or in the case of learning targets that evolve over time.

• Most Frequent: In this selection strategy, the sequence of hypotheses is analyzed to elect a final
model. We count the frequency of each unique model (up to language equivalence) over the sequence,
and elect the most frequently occurring one. This strategy makes sense when dealing with noise, as we
may be producing (rarely) hypotheses that capture noisy behavior that is fixed over time. As such, we
want to select not the latest model produced, but the one that is the most stable. This strategy can be
implemented efficiently in practice (using hash fingerprints and counters, for example) and on-the-fly
during learning, allowing us to not have to store the whole sequence of hypotheses as it is produced.

3.3 Interface Implementation

We now explain how to build the interface described in Sec. 3.1 using the Reviser. This mostly amounts
to implementing membership and equivalence queries, as the testing interface is simply composed of
calls to System. Membership queries can be defined, for i ∈ Σ∗, as MQ(i) = READT (i). When T
does not have the answer to this particular query, READT sends it through to the SUL (with the call to
System) and the result is applied in T . This process is illustrated in Fig. 4.

Learner

Reviser
READT

APPLYT

Systemo

i

Prune

i

(i,o)

Figure 4: Implementation of Membership Queries (MQ) in the Reviser.

Equivalence queries are handled in two steps. First, the hypothesis given by the learner is checked
against the observation tree using CHECKT . If a counterexample is found, it is returned. Otherwise, the
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Reviser tests the System to discover new information and update the tree. If a counterexample is found,
either it is returned to the learner or, if a conflict arose, the learner is pruned. (Fig. 5).

Learner

Reviser
CHECKT

APPLYT T
E

S
T

T

System(i,o)

H

Prune

i

(i,o)

Figure 5: Implementation of Equivalence Queries (EQ) in the Reviser.

Remark 5 (Modularity). We present C 3AL in the case of black-box learning where we do not have
access to any information from the system but can interact with it. However, the framework is fully
modular, as can be seen from the high-level functions presented in Section 3.2: one can interface any
model-checking (or other) method before the calls to system in TESTT and READT when related models
(specifications, parts of the System. . . ) are available, allowing C 3AL to perform gray-box or even white-
box learning. C 3AL focuses on the storage of information, without restrictions on its acquisition.

Correctness Proposition 1 and Proposition 2 characterize the language of the Reviser, and the fol-
lowing results describe its interactions with the Learner and the System (as proved in [16, Appendix
B]).

Lemma 1. During an execution of C 3AL, all tests on the System are integrated in T through UPDATET ,
and the Learner queries are answered according to LT .

Proposition 3. Prune is sent to the Learner exactly when a new observation conflicts with T .

3.4 Optimizations

C 3AL allows us to implement two main optimizations, both in the framework and its algorithms.

Query Caching One of the direct benefits of the presence of the Reviser is that the learner does not
have to cache membership queries to avoid repeating them, as it obtains knowledge through the
Reviser’s data structure. It especially offers a good basis to discuss algorithms that are based on
the observation tree themselves [30, 33], for which the Learner’s data structure is very limited.

Specialized Pruning In order to fully support the simplistic interface of a classic MAT learner, we
restart it — at no extra query cost (see Section 3.1) — when the Prune signal is sent. For specific
Learner data structures, the time-complexity of this operation can be enhanced by suppressing only
the part of the data structure that is impacted by the conflict (instead of restarting it completely).
This optimization, however, will be specific to each learning algorithm. In the same way as the
Learner can read the Reviser’ observation tree, a C 3AL-specific Learner could compute its internal
data-structure directly from it after a pruning without requiring restarts.

4 Evaluation

We introduced C 3AL to extend the power of classic MAT learners into environments that may cause
conflicts, for instance caused by noise. In practice, each symbol inputted in or outputted by the SUL can
be noisy, making longer queries more likely to have noisy results overall. Recall that poorly guessing
the number n of query repetitions can lead to a learning failure (if noise is integrated in the system), or a
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timeout (if too many repetitions are made). Hence noise does not only affect the efficiency, but also the
success rate of the learning, i.e., the proportion of runs that end with a correct hypothesis.

It is then important to measure how well C 3AL can avert these negative effects. In particular, we are
interested in testing if C 3AL’s approach is sufficient to allow for an improvement of learning environ-
ments plagued by noise1. We evaluate this through the following research question:

Across different realistic model learning targets, types of noise, and noise levels, does C 3AL
provide a better learning environment in terms of both success rates and number of tests issued
when compared to the state-of-the-art MAT-based approaches?

4.1 Experiments

We first present the experimental setup and the outlines of the experimental results. We focus on the
difference between uncontrollable parameters, i.e., that are part of the target and its environment and
can’t be altered by the learning setup, and the controllable ones, that are chosen when designing a
learning session. Uncontrollable parameters are related to the SUL and its environment.

Realistic Targets We run our experiments over a range of 36 Mealy machines representing real world
systems from previous successful model learning applications [27]. These range in size between 4
and 66 states, with alphabet sizes between 7 and 22 input symbols.

Different Types of Noise We run the targets on different types of realistic simulated noise, namely input
and output noise as described above.

Different Levels of Noise We run the above mentioned noise types over 3 different levels: 0.01, 0.05,
and 0.1. These indicate the probability that each symbol has of being noisy.

Given the above constraints, we aim to reach the best performing learning session by manipulating the
following controllable parameters:

Framework We run each experiment under both MAT and C 3AL.

Algorithm We run each experiment under L#, TTT, KV, and L⋆. We use the implementations of these
algorithms provided in LearnLib [23]. Notably, L⋆ is implemented with Rivest & Schapire’s im-
provements [28] and we re-implemented L# completely to incorporate it into the LearnLib library.

Number of Repeats We compare different numbers of repeats used in majority voting test results to
remove noise in MAT, or in sampling frequencies for the update strategy in C 3AL. We use one of
3 different levels of repeats, in pairs of (min repeats,max repeats): (5,10),(10,20),(20,30)2.

Each experiment uses the following settings to enhance its learning, independent of the above men-
tioned variables. Firstly, caching of previously observed queries is done wherever possible in MAT, and
the Most Recent update and Most Frequent hypothesis selection strategies are used in C 3AL, for
simplicity. Secondly, the Hybrid-ADS [26] equivalence testing algorithm is used for all runs as we found
it to be the best performing for our experiments. Thirdly, each independent experiment is performed with
100 runs, and its results averaged for consistency. And finally, each run is allowed to use up to 10 million
queries before an unsuccessful timeout is declared.

1We compare success rates and number of tests issued instead of running times as to make hardware-agnostic benchmarks
that capture the main factors in both efficiency and correctness.

2Each test is repeated min repeats times and then if at least 80% of the queries agree the result is returned. Else, the query
is repeated until it is the case or max repeats is reached at which point the majority answer is returned.
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Due to the vast number of variables considered, we are unable to fully describe the result of the over
18,000 distinct experiments, and close to 2 million runs that we have performed. However this is not
required to rigorously answer our research question. What we have to consider is, for each combination
of our independent variables (target, noise type, and noise level), which framework allows for the most
efficient learning configuration.

The graphs below (Figs. 6 - 11) summarize, for each target and for all levels and types of noise, the
success rates and number of symbols tested of the best controllable parameter profile for both MAT and
C 3AL. We have also included all the data used, as well as conclusions in [16, Appendix C].

4.2 Analysis

We now analyze the results of these experiments to draw some high-level conclusions about how MAT
and C 3AL compare and answer our research question.

Success Rates First and foremost, we discuss the impact of different parameters on the success rates
of the experiments. We can see from the graphs (Figs. 6a - 11a) that, as expected, while the exact type
of noise does not have a significant impact on success rates and test counts, the level of noise does. In
particular, at a very low level of 0.01% (Figs. 6a, 9a) both frameworks are capable of maintaining perfect
success rates. However, once the level increases to 0.05% (Figs. 7a, 10a), MAT’s success rate starts to
fluctuate, more so in bigger targets. C 3AL too seems to be slightly affected by an increase in noise, but
overall maintains a success rate close to 100%. Once the noise is increased to its highest level, 0.1%
(Figs. 8a, 11a), we can see that MAT’s success rates reduce significantly, while C 3AL’s tend to stay high
for a great number of targets, until they inevitably decrease when faced with massive targets at this level
of noise. C 3AL manages to stay consistently reliable in the face of these large alphabets.

Efficiency Let us now turn our attention to the system test count graphs (Figs. 6b - 11b). Overall we
see an expected picture: Larger systems require more tests to be learned. A particular caveat to notice
however, is that while MAT appears to have quite efficient runs on large noisy targets, their respective
success rates are considerably lower. Although efficiency of learning is certainly important, it is of low
use if at the end the reported hypothesis is not correct. This result is expected: If a learning run fails due
to, for example, high noise not being fully filtered out, the MAT learner will collapse before it finishes
running. This leaves a final test count that is quite low, but also gives us an incorrect hypothesis.

Overall Results Perhaps most importantly, C 3AL provides the most efficient correct configuration
in 70% of the experiments, having a better success rate than MAT or the same with a lower average
number of tests used. We provide this result for each individual experiment in [16, Appendix C]. In
particular, in every experiment C 3AL performs with a success rate that is at least as high as MAT’s, often
outperforming it. In addition to this, experiments ran with C 3AL had an overall success rate of 95.5%
compared to MAT’s 79.5% success rate. This alone has allowed C 3AL to perform successful runs that
no configuration of MAT was able to perform, namely learning moderate to large targets at 0.1% noise.

We found that a lot of the improvements provided by C 3AL are commonly a consequence of it being
more successful when running at a lower number of repeats when compared to the ones required by MAT.
This solidifies our initial hypothesis of there being a benefit in reducing the number of repeats used when
learning noisy targets. The above provides enough supporting evidence to answer our research question
positively: C 3AL provides a better learning environment in terms of both success rates and number
of tests issued when compared to the state-of-the-art MAT-based approaches.
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Figure 6: INPUT noise at 0.01%.
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Figure 7: INPUT noise at 0.05%.
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Figure 9: OUTPUT noise at 0.01%.
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Figure 10: OUTPUT noise at 0.05%.
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Other Findings We report on other interesting findings in [16, Appendix D]. Two results, however,
are of particular significance: As already accepted by the community [5], we can confirm that indeed
most of the tests spent in learning are used to realize equivalence queries. In particular, we found that
equivalence tests account for 89.1% of tests in MAT, 59.8% in C 3AL, and 66.3% on average.

Perhaps more surprisingly, the commonly accepted ordering of Learner efficiencies did not surface
in our experiments. From theoretically most performant to least we have L#, TTT, KV, and L⋆, based on
complexity analyses in MAT. Through our experiments we have found that, at least in our particular case
of black-box learning (i.e. learning from SUL tests only) of Mealy machines with noise and randomized
testing algorithms, this ordering cannot be seen in the results. The best configurations for each framework
were not consistent on which algorithm performed the best. Not only was there no clear ”winning”
algorithm, we found no pattern based on noise, target and alphabet size, or number of repeats that had a
strong enough correlation to the better performance of any one algorithm.

We believe that this is not a flaw of the complexity analyses themselves. It is simply that complexity
analyses in MAT abstract away the biggest cost of learning: equivalence tests. It may be that more recent
algorithms have a theoretical (and membership query based) advantage over classic algorithms, however
the nature of randomized equivalence oracles seems to be a bigger agent of chaos, and a good or bad run
of the equivalence oracle quickly overshadows the small advantage that some algorithms may have.

5 Related Work

There has been extensive work on finding ways of applying classic learning algorithms like L⋆ [4],
KV [24], TTT [22], and L# [33] to real world systems such as passports [2], network protocol imple-
mentations [15, 18, 19], and bank cards [1]. All these works rely on ad-hoc implementations of noise
handling which is inefficient and not formalized in the MAT framework. One of the goals of our frame-
work, which replaces the teacher with the SUL and the Reviser, is to discuss how noise can be dealt
with in the learning process, independently of the type of Learner being used. The LearnLib library [23]
provides caches that can be placed in the learning environment to avoid the repetition of queries, much
like observation trees. Note that our Reviser agent goes further than LearnLib as it provides the ability to
act as membership and equivalence oracles, test the system, and act on conflicts by pruning the learner’s
data structure in an efficient (query-wise) and correct manner.

There has also been previous work in improving the efficiency of model learning strategies for mutat-
ing targets by reusing previously learned behavior, using adaptive learning algorithms [11,14,17,21,35].
These algorithms work by being able to start learning with pre-seeded information of previous runs that
has been confirmed to still apply in the current target, or by being able to filter this information them-
selves if it is found to no longer apply. Additionally, there has been some work on Lifelong Learning [7],
where model learning and model checking are used together to run over the development lifecycle of a
system. This allows for the quick discovery of bugs in the development cycle. However, when these are
found and corrected, learning needs to be manually restarted.

Our model learning framework improves on these two lines of work, being able to autonomously
correct itself when faced with conflicts. It can do so without any notification of mutations in the system,
allowing it to be applied to complete closed-box systems, unlike the current state-of-the-art adaptive
algorithm [17]. Additionally, it is capable of continuously checking for changes in the system, much like
Lifelong Learning, but requiring no human interaction on system changes. These characteristics make it
resilient to real world noise, allowing the learner to correct itself as it identifies the correct behavior.

Our work participates in the current trend trying to link learning to testing, which spans communities,
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e.g. formal approaches [3], genetic approaches [31], and fuzzing [36]. In this context, C 3AL provides a
modular framework upon which other techniques can be added. In active model learning, this trend also
matches the interest in observation-tree based algorithms [30, 33], which we instantiate in C 3AL. The
role of observation structures in learning and testing is a long-standing lore [8] that can be leveraged to
enhance the learning approach and its modularity with testing methods.

6 Conclusion and Future Work

This paper explores efficient ways to handle conflicts during active learning. We build on the idea that
recovering from conflicts is best done by splitting information collection and the construction of the
Learner’s data structure, two operations that are conflated in MAT.

We introduce the Conflict Aware Active Automata Learning (C 3AL) framework as an alternative
to MAT. C 3AL directly represents the SUL and introduces a Reviser tasked with testing it, storing and
curating the observations. C 3AL provides a way to accept some conflicts to reach the Learner and to
recover from them without requiring to test the SUL anew.

To test the efficiency of C 3AL, we conducted a large body of experiments on real targets using several
state-of-the-art algorithms. We found that not only does C 3AL always improves on MAT in terms of
success rates, obtaining an overall success rate of 95,5% against MAT’s 79,5% it most importantly
enables the learning of previously un-learnable SULs, typically complex systems plagued with a high
level of noise. Our experiments further put into light the impact of equivalence tests, both in terms of
variability of the results and sheer cost, with an average of 66.3% of testing cost spent on equivalence.

In the future, we would like to explore the use and design of testing algorithms for active learning,
as their efficiency seems to be able to overshadow the difference between learning algorithms. C 3AL’s
modular nature also allows us to seamlessly build a gray-box environment i.e. to gain information from
different sources in the Reviser (e.g. specifications, access to source code). This would offset the cost of
equivalence queries by using cheaper sources of observations when searching for counterexamples.

Assessing the efficiency of C 3AL on a real case of mutating targets would be of interest, as an
evaluation, as an opportunity to fine-tune the framework for such task, and as a demonstration of the
improved reach of active learning. Similarly, testing the Most Frequent update strategy in practice
against high noise levels would be of interest.
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