
Peaks and Valleys:
A Journey Through Predictive

Modelling for Software Engineering

Rebecca Moussa

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

November 3, 2023

2

I, Rebecca Moussa, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has

been indicated in the work. The scientific contributions made in this thesis have

been published in five peer-reviewed articles as follows:

Chapter 3: Sarro, F., Moussa, R., Petrozziello, A., Harman, M. (2020) Learning From

Mistakes: Machine Learning Enhanced Human Expert Effort Estimates.

IEEE Transactions on Software Engineering.

Chapter 4: Moussa, R., Sarro, F. and Harman, M. (2023) The Role of ML Libraries in Ef-

fort Estimation Studies. Transactions on Software Engineering (TSE), under

review.

Chapter 5: Moussa, R., Sarro, F. (2022) On the use of evaluation measures for defect pre-

diction studies. Proceedings of the 31st ACM SIGSOFT International Sym-

posium on Software Testing and Analysis (ISSTA).

Chapter 6: Moussa, R., Guizzo, G., Sarro, F. (2022) MEG: Multi-objective ensem-

ble generation for software defect prediction. Proceedings of the 16th

ACM/IEEE International Symposium on Empirical Software Engineering

and Measurement (ESEM).

Chapter 6: Moussa, R., Guizzo, G., Sarro, F. (2023). MEG: Multi-objective Ensemble

Generation for Software Defect Prediction (HOP GECCO’23). In Proceed-

ings of the Companion Conference on Genetic and Evolutionary Computation

(GECCO).

The following manuscripts are not directly related to the material in this thesis, but

were produced in parallel to the research undertaken in this thesis:

1 Hort, M., Moussa, R., Sarro, F. (2023). Multi-Objective Search for Gender-

Fair and Semantically Correct Word Embeddings. Applied Soft Computing.

2 Tawosi, V., Moussa, R., Sarro, F. (2022). Agile Effort Estimation: Have We

Solved the Problem Yet? Insights From a Replication Study. IEEE Transac-

tions on Software Engineering.

3

3 Tawosi, V., Moussa, R., Sarro, F. (2022). On the Relationship between Story

Points and Development Effort in Agile Open-source Software. In Proceed-

ings of the 16th ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement.

5 Tawosi, V., Al-Subaihin, A., Moussa, R., Sarro, F. (2022). A versatile dataset

of agile open source software projects. In Proceedings of the 19th Interna-

tional Conference on Mining Software Repositories (MSR).

6 Hort, M., Moussa, R., Sarro, F. (2023). Multi-objective Search for Gender-

fair and Semantically Correct Word Embeddings (HOP GECCO’23). In Pro-

ceedings of the Companion Conference on Genetic and Evolutionary Com-

putation (GECCO).

7 Dakhama, A., Ding, Z., Mendoza, K., Menendez, H., Moussa, R., Sarro, F.

(2023). EPICCap: Optimising Automated Generation of Figure Captions via

SBSE+LLM, under-review.

8 Dakhama, A., Ding, Z., Mendoza, K., Menendez, H., Kelly, D., Moussa,

R., Sarro, F. (2023). StableYolo: Optimizing Image Generation for Large

Language Models, under-review.

9 Moussa, R., Azar, A., Sarro, F. (2020), Investigating the Use of One-Class

Support Vector Machine for Software Defect Prediction (arXiv).

Impact Statement

The work presented in this thesis advances software analytics research, precisely

predictive modelling for Software Effort Estimation (SEE) and Software Defect

Prediction (SDP).

We propose an entirely orthogonal deployment route for estimation technol-

ogy, one that advocates for techniques that facilitate human-machine cooperation

to address the necessary tasks of software development effort estimation and soft-

ware defect prediction. We show that human estimation errors are predictable by

machine and such predictions can then be used to adjust and improve human expert

effort estimates. We also show that machines can relieve engineers from the burden

of manual design and experimentation in the quest for an optimal defect prediction

models while still giving human experts the freedom to select optimal solutions

based on the property of interest given the software application domain.

The work in this thesis also advances the state-of-the-art practices for predic-

tion model evaluation to achieve more robust empirical evaluations in SEE and SDP

research studies. Our work unveils crucial weakness in the methodology used in the

empirical evaluation of prediction models for SEE and SDP, which impact the sci-

entific conclusion stability and reproducibility of the results. Our findings draw on

the community to reflect further on the selection of appropriate evaluation measures

and machine learning libraries to support the scientific conclusions on the effective-

ness of defect prediction and effort estimation models, respectively.

Abstract

Over the last decade automated predictive models have become very popular in a

wide range of software engineering research areas, including software requirements,

software design and development, testing and debugging and software maintenance.

Despite the huge rise in these automated approaches and the investigation of

their use in a wide range of areas, optimal results have not yet been reached, exper-

imental and evaluation pitfalls still exist, and few studies have sought how they can

be applied in industry. As a result, both researchers and practitioners still seek ways

to achieve more accurate estimates, as well as increase the adoption of automated

predictive models in practice. Therefore, enhancing the design, use and evaluation

of predictive models is of great need.

The work in this thesis seeks new ways to achieve machine-human coopera-

tion to help ameliorate the performance and real-world applicability of automated

prediction models. It also investigates current prediction evaluation measures and

the use of different machine learning APIs as possible sources of conclusion insta-

bility (i.e., inability to consistently and uniformly present the results of empirical

software engineering models), in order to increase the robustness of the empirical

studies. The approaches presented herein target two of the main areas for soft-

ware engineering predictive models, specifically the areas of software effort estima-

tion and software defect prediction, and advances them with both algorithmic and

methodological contributions.

Acknowledgements

I would like to express my heartfelt gratitude to all those who have contributed to

the completion of this degree. This journey would not have been possible without

the support, encouragement, and guidance of many individuals and loved ones.

First and foremost, I am deeply thankful to my advisor, Professor Federica

Sarro, for her exceptional mentorship, unwavering support, and invaluable guid-

ance throughout the entirety of my doctoral research. Her expertise, patience, and

commitment to excellence have been instrumental in shaping this work. You set the

bar high yet made sure I kept swimming!

I would also like to express my gratitude to my second advisor, Professor Mark

Harman. His invaluable insights, experience and humility have been inspirational

and have taught me a tremendous amount. "A paper rejected is just one not yet

accepted" will stick with me throughout my career.

Federica and Mark, your unwavering belief in my abilities has played a crucial role

in my journey and for that I will be forever grateful!

I extend my heartfelt appreciation to the members of the SOLAR group at

UCL. They have been colleagues, friends and great supporters. Vali, Max and Gio-

vani, it has been great working with you, thank you for the great collaborations!

This dissertation stands as a testament to the collective input of the countless

individuals who have played a role, in the past and present, in my academic pursuits.

I am deeply thankful for your support and encouragement on this transformative

path of knowledge.

I also wish to acknowledge the members of the professional service at UCL.

Dawn and Wendy, thank you for all your help and for bearing with me during the

Acknowledgements 7

past few years. Our chats have always been endearing.

To the close friends and those scattered around this globe, I am forever thankful

for your existence in my life, your support means more than you can imagine. Our

chats have kept my spirits high!

And last but certainly not least, I dedicate this work to my Mom, Rima, Robert,

Roy and their wonderful families! You have been my pillars and a constant source of

love, encouragement, motivation and support. Your belief in my abilities sustained

me through the highs and lows of this journey and your sacrifices and understanding

have always been immeasurable. Thank you is too little of an expression...

Contents

1 Introduction 17

1.1 Contributions . 20

1.2 Thesis Organisation . 23

2 Background 24

2.1 Software Development Effort Estimation 24

2.1.1 Data and Cost Drivers . 25

2.1.2 Validation Processes . 27

2.2 Software Defect Prediction . 28

2.2.1 Data and Metrics . 29

2.2.2 Validation Processes . 31

3 Literature Review 33

3.1 Effort Estimation . 33

3.1.1 The Role of Humans and Bias in Software Effort Estimations 34

3.1.2 The Role of Machine Learning Libraries in Software Effort

Estimations . 36

3.2 Defect Prediction . 38

3.2.1 The Role of Search-Based and Ensemble Models in Defect

Prediction . 38

3.2.2 The Role of Evaluation Measures in Defect Prediction . . . 40

4 Learning From Mistakes: Machine Learning Enhanced Human Expert

Effort Estimates 42

Contents 9

4.1 Introduction . 43

4.2 LFM for Software Effort Estimation 45

4.3 Empirical Study Design . 48

4.3.1 Research Questions . 49

4.3.2 Datasets . 50

4.3.3 Classification and Regression Techniques 54

4.3.4 Validation Approach . 56

4.3.5 Evaluation Criteria and Statistical Tests 57

4.3.6 Threats to Validity . 59

4.4 Empirical Study Results . 60

4.4.1 RQ1. Predicting Type/Severity of Human Expert Misesti-

mations . 60

4.4.2 RQ2. Predicting the Magnitude of Human Expert Misesti-

mations . 62

4.4.3 RQ3. Enhancing Software Effort Estimates via LFM 64

4.5 Conclusions and Future Work . 66

5 The Role of Machine Learning Libraries in Effort Estimation Studies 68

5.1 Introduction . 69

5.2 Research Questions . 71

5.3 Methodology . 72

5.3.1 Collection of SEE Research Papers 72

5.3.2 Empirical Study Design 74

5.3.3 API Analysis . 79

5.4 Results . 80

5.4.1 RQ1: Current Literature 80

5.4.2 RQ2: Prediction Results 81

5.4.3 RQ3: Change in Prediction Performance 82

5.4.4 RQ4: Change in Ranking 86

5.4.5 RQ5: API Analysis . 88

5.5 Actionable Conclusions for Software Engineering Researchers . . . 93

Contents 10

5.6 Threats to Validity . 94

5.7 Conclusions and Future Work . 95

6 On the Use of Evaluation Measures for Defect Prediction Studies 97

6.1 Introduction . 97

6.2 Related Work . 100

6.3 A Hitchhiker’s Guide to Defect Prediction Evaluation Measures . . 102

6.4 Investigating the Use of Evaluation Measures in the Defect Predic-

tion Literature . 106

6.4.1 Search Methodology . 106

6.4.2 Results . 107

6.5 Empirical Study Design . 110

6.5.1 Research Questions . 111

6.5.2 Ranking Disagreement and Rank Disruption 112

6.5.3 Datasets . 114

6.5.4 Validation Scenarios . 114

6.5.5 Techniques . 116

6.6 Empirical Study Results . 117

6.6.1 RQ1. Ranking Disagreement 117

6.6.2 RQ2. Rank Disruption . 120

6.7 Threats to Validity . 125

6.8 Conclusions . 126

7 MEG: Multi-objective Ensemble Generation for Software Defect Pre-

diction 129

7.1 Introduction . 129

7.2 Background . 131

7.2.1 Ensemble Learning . 131

7.2.2 Multi-Objective Evolutionary Optimisation 133

7.3 MEG: Multi-objective Ensemble Generation 133

7.3.1 Representation . 135

Contents 11

7.3.2 Fitness Functions . 136

7.3.3 Genetic Operators . 138

7.3.4 Implementation Aspects 139

7.4 Experimental Design . 139

7.4.1 Research Questions . 140

7.4.2 Benchmark Techniques . 141

7.4.3 Datasets . 142

7.4.4 Validation Criteria . 143

7.4.5 Evaluation Criteria . 144

7.4.6 Threats to Validity . 146

7.5 Results . 147

7.5.1 Answer to RQ1 – MEG vs. Base Classifiers 147

7.5.2 Answer to RQ2 – MEG vs. Traditional Ensemble 148

7.5.3 Answer to RQ3 – MEG vs. Pareto-ensemble 149

7.5.4 Final Remarks . 150

7.6 Conclusions and Future Work . 152

8 Conclusion 154

Appendices 156

A Mathematical Formulation of Linear Programming 156

Bibliography 158

List of Figures

1.1 Predictive Modeling Process. 18

4.1 The Learning From Mistakes Approach (LFM). The numbers on

the arrows correspond to each of the phases described in Section 4.2. 45

4.2 RQ1: Critical Difference (CD) diagram of the post-hoc Nemenyi

test with α = 0.05. The difference between two methods is signifi-

cant if the gap between their ranks is larger than the critical distance.

There is a line between two methods if the rank gap between them

is smaller than the critical distance. 61

4.3 RQ2. Boxplots of the absolute errors achieved by CART, KNN,

LP, RF and RG when predicting the magnitude of human expert

misestimations. 63

4.4 RQ3. Boxplots of absolute errors obtained by LFM, Human Ex-

perts and traditional automatic estimators (i.e. CART, KNN, LP,

RF) when predicting software projects’ effort. 64

5.1 The ratio of studies reporting the ML libraries and versions over the

years. 80

5.2 RQ4: Ranking of the ML techniques based on the results of the

Nemenyi Test for the (a) out-of-the-box-ml scenario and the (b)

tuned-ml scenario. The worst performing technique (with the high-

est MAE) is displayed at the top. 86

6.1 Number of measures used in prior studies. 108

List of Figures 13

6.2 The frequency of measure use for 2010-2020. Blue lines signify an

increase in measure usage while the red lines denote a decrease. . . 110

6.3 RQ2. Rank disruption (average across all datasets) of each evalu-

ation measure for the top three techniques (a,d), top two (b,e) and

first ranked technique (c,f) for each scenario investigated based on

statistical significance analysis (a,b,c) and effect size measure (d,e,f). 123

7.1 An overview of our proposed Multi-objective Ensemble Generation

(MEG) approach. 134

List of Tables

4.1 Descriptive statistics of the target variables used for each research

question. 48

4.2 Descriptive statistics of the datasets used. 53

4.3 RQ1: AUC-ROC values obtained by CART, KNN, NB and RF

when predicting the type and the severity of human expert misesti-

mations. 61

4.4 RQ2: Results of the Wilcoxon test (p-value and r effect size) com-

paring the absolute errors provided by CART, KNN, LP and RF vs.

each other and vs. RG when predicting the human expert Misesti-

mationMagnitude. 63

4.5 RQ3: Results of the Wilcoxon test (p-value and r effect size) com-

paring the absolute errors obtained by LFM vs. those obtained by

human experts and traditional automatic learners (i.e. CART, KNN,

LP, RF) when predicting software projects’ effort. 65

5.1 Machine learners investigated and corresponding class/method

name in SCIKIT-LEARN, CARET and WEKA. 76

5.2 RQ2-RQ3: Differences in MAE values obtained when building pre-

diction models using SCIKIT-LEARN (Sk), CARET (C) and WEKA

(W) in the (a) out-of-the-box-ml scenario and the (b) tuned-ml sce-

nario. The ↑ indicates that the 1st tool produces worse predictions

than the 2nd , whereas the ↓ indicates that 1st tool produces better

predictions than the 2nd . 82

List of Tables 15

5.3 RQ3: Number of cases the results provided by a given ML library

differ from another of at least 100 hours, 500 hours and 1,000 hours

for the out-of-the-box-ml scenario and the tuned-ml scenario. 84

5.4 RQ4: Rankings of prediction models based on the MAE results

obtained by each of the ML libraries for each of the five datasets for

the (a) out-of-the-box-ml scenario and the (b) tuned-ml scenario. . . 86

5.5 RQ2-3: MAE results obtained by each of the ML libraries for each

of the five datasets for the (a) out-of-the-box-ml scenario and the (b)

tuned-ml scenario. 88

5.6 RQ5. Number of total parameters per ML library and machine

learner, and number of parameters matching the same functional-

ity, name, and default value across all and each pair of libraries. . . . 92

6.1 The definition of the measures. 103

6.2 Confusion Matrix for Binary Classification. 103

6.3 Number of studies using a given measure. 108

6.4 An example of the procedure used to compute the ranking disagree-

ment and the rank disruption. 113

6.5 Datasets used in our empirical study. 115

6.6 RQ1. Ranking disagreement results for the Within-Project scenario.

For each dataset, we report whether a given evaluation measure dis-

agrees with more than a half, or all the other measures, based on

statistical significance and effect size analyses. 118

6.8 RQ2. Percentage of rank disruption per measure based on statistical

significance analysis. 121

6.9 RQ2. Percentage of rank disruption per measure based on effect

size analysis. 122

List of Tables 16

6.7 RQ1. Ranking disagreement results for the Cross-Version and

Cross-Project scenarios. For each dataset, we report whether a

given evaluation measure disagrees with more than a half, or all

the other measures, based on statistical significance and effect size

analyses. 128

7.1 Confusion Matrix for Binary Classification. 137

7.2 Total number of modules and percentage of faulty components for

each of the datasets used in our empirical study. We used the two

lowest version numbers (one at time) for training the prediction

models and the highest one for testing them. 145

7.3 MCC values obtained on the test set by the base learners (NB, DT,

k-NN, SVM), MEG, DIVACE, over 30 runs. 148

7.4 Mann-Withney U pair-wise test results / Vargha-Delaney Â12 ef-

fect sizes obtained comparing MEG with DIVACE, Stacking, and

base classifiers (NB, DT, k-NN, SVM). Â12: Large – L; Medium

– M; Small – S; Negligible – N. Cells highlighted in blue (p-value

< 0.05 and effect size > 0.5) indicate that MEG is statistically sig-

nificantly better than the algorithms in the corresponding columns.

Cells highlighted in orange (p-value < 0.05 and effect sizes < 0.5)

indicate that MEG is significantly statistically worse. The last three

rows show the number of times MEG yields better, equivalent, and

worse results, respectively. 149

Chapter 1

Introduction

In the rapidly evolving world of software development, data has become a core fac-

tor and a crucial aspect in the software development process. With a wealth of data

found in a software’s life-cycle including feature specifications, source code, test

cases and user-feedback, we can draw a vast amount of information about the qual-

ity of the software and its services. And the recent emergence of public repositories,

for example, allows for such data to be accessible. However, the massive amount

of data makes it extremely hard, if not impossible, for practitioners to manually

analyse it and draw insights from it. To this end, software engineering researchers

and practitioners have investigated the use of data analytic to understand software-

related data, thus leading to the rise of the now very well-known area of Software

Analytics (SA). By leveraging analytical techniques, SA helps developers, project

managers, and other stakeholders make informed decisions, improve software qual-

ity, optimize resource allocation, and enhance the overall user experience. It plays

a vital role in modern software development and maintenance processes, allowing

organizations to efficiently manage and evolve their software systems [1].

Predictive modeling is a key technology in SA which has been adopted to

tackle different software engineering research areas, ranging from project manage-

ment [2, 3, 4, 5, 6, 7, 8], and requirements engineering [9, 10], to software testing

[11, 12, 13, 14, 15] and maintenance [16, 17, 18, 19, 18]. It exploits informa-

tion from past events in order to determine patterns and predict future outcomes

and trends. To this end data mining, statistics, machine learning, and artificial in-

18

Figure 1.1: Predictive Modeling Process.

telligence techniques could be applied. Figure 1.1 presents a general predictive

modeling process, which involves five main stages, namely Business Objective

and Model Goal Understanding, Data Collection and Preparation, Model Selec-

tion, Model Training and Model Validation and Evaluation. The work in this thesis

addresses different stages within the predictive modeling process, in an attempt

to further bridge the gap and find common grounds between software engineers

and automated predictive models for Software Effort Estimation (SEE) and Soft-

ware Defect Prediction (SDP). Figure 1.1 highlights our work with respect to those

stages.

SEE aims at predicting the amount of time required to realise a software

project. It is a crucial activity for project planning and monitoring, specifically for

ensuring that the product is delivered on time and within budget [20, 21]. Studies

have shown that inaccurate estimates can negatively affect the outcome of software

projects leading to great losses [22, 21]. SDP aims at assisting software engineers in

the early identification of software defects during the development process, and ide-

ally, before it is shipped to its customers. This is a critical task as it helps software

developers and quality assurance teams prioritize their efforts, allocate resources

efficiently, and improve the overall quality and reliability of the software by ad-

19

dressing vulnerabilities and weaknesses early in the development process [23].

While both SEE and SDP are among the earliest and most popular areas of ap-

plication of automated prediction models with a copious amount of work proposed,

both areas still face shortcomings when it comes to the adoption of automated tech-

niques, with the uptake of such solutions still being relatively limited [24, 25, 26].

One reason for this is that previous work has mainly focused on the data and

model selection stages, overlooking aspects which could facilitate the model adop-

tion in practice. This is also due to the practitioners’ low trust in the accuracy of

automated models given that the SE predictive model literature suffer from a well-

known conclusion instability problem (i.e., different sets of best predictors exist

under various situations) [27, 28, 29]. For example, SEE still relies on human ex-

pert judgement to produce an estimate of the effort required to realise a software

project [30]. The use of predictive models as a black-box has also left practition-

ers sceptical about their usage. However, previous studies have shown that there

tends to be inaccuracies in human expert estimations, which can negatively affect

the outcome of software projects leading to great losses [31, 30, 32, 33, 22, 21].

The ultimate aim of this thesis is to investigate and help build solutions to allow

software engineers to confidently utilise automated predictive modeling by facilitat-

ing a closer cooperation between human and machine. To this end, we address two

main research objectives: (1) investigating new technologies for human-machine

cooperation for SEE and SDP; (2) advancing the state-of-the-art practices for pre-

diction model evaluation to achieve more robust empirical evaluations in SEE and

SDP research studies.

With respect to the first objective, this thesis presents

• a novel approach for SEE, dubbed LEARNING FROM MISTAKES (LFM),

that supports human experts in estimating development effort (see Chapter 4)

by providing automatic feedback on the expert’s own judgements, rather than

seeking to second-guess them.

• a novel approach for SDP, dubbed MULTI-OBJECTIVE ENSEMBLE

GENERATION (MEG) that allows software engineers to encode model goals

1.1. Contributions 20

and constraints based on the business objectives set by the decision-maker,

and, at the same time, allows them to automatically find, among a large

search space of possible solutions, a prediction model optimised with respect

to these properties of interest (see Chapter 7).

With respect to the second objective the work in this thesis contributes to im-

portant methodological aspects by unveiling factors that can lead to conclusion in-

stability in SEE and SDP, as follows:

• We investigate for the first time in the SEE literature, the role of ML libraries

within the prediction process, which we found to be yet another factor that

plays a role in SEE conclusion instability. Moreover, our study unveils the

existence of a replicability problem resulting from the lack of reporting of ML

libraries in the heart of the SEE literature which can no longer be neglected

(see Chapter 5).

• We investigate a crucial factor which can lead to conclusion instability in DP

studies. Specifically, we study the impact of the choice of evaluation mea-

sures. While previous work has raised alarms about the way researchers have

employed evaluation measures to assess the effectiveness of the prediction

models proposed for defect prediction [23, 34, 35, 36, 37, 38], in this thesis

(see Chapter 6) we unveil that the importance of adopting suitable measures

is still overlooked and that this has a significant impact on the results of a

study and on the scientific conclusions made (see Chapter 6).

In the following subsection we summarise, for each of the contributions, the

problem, the novelty of the proposed solution, and the main findings.

1.1 Contributions
Chapter 4. While a wide range of automated predictive models have been proposed

for software effort estimations, the estimates, in practice, are still mainly based on

human expert judgement. This is due to the fact that these models usually provide

1.1. Contributions 21

point effort estimates without additional explanations or guidance to the practition-

ers, resulting in little confidence in using predictive modeling. The work presented

in Chapter 4 proposes a different approach to using predictive modeling: We use

predictive modeling as an aiding tool which attempts to learn the errors committed

by human experts when estimating software effort and automatically adjusting the

expert’s estimates accordingly. LEARNING FROM MISTAKES (LFM), is a novel

approach to predictive modeling where the core idea is that the error resulting from

expert judgement when estimating the effort of a software project is predictable and

can be used to improve the expert’s final estimate. We demonstrate the effective-

ness of LFM with an empirical study involving human expert effort estimates (and

related errors) from 402 industrial software projects developed by different soft-

ware companies. The results show that human misestimates are indeed predictable

and that exploiting these predictions yield significantly better estimates than those

provided by random guessing and traditional machine learners. Our results also

highlight that providing this adjustment to the human expert estimate enhances the

final predictions. This empirical evidence opens the door to the development of

techniques that use the power of machine learning, coupled with the observation

that human errors are predictable, to support engineers in estimation tasks rather

than replacing them with machine-provided estimates.

Chapter 5. In the past two decades, several ML libraries have become freely

available for the use of such models. Many studies have used these libraries to

carry out empirical investigations on software development effort estimation. How-

ever, the differences stemming from using one library over another have been over-

looked, implicitly assuming that using any of these libraries to build a certain ma-

chine learner would provide the user with the same or at least very similar results.

The work presented in Chapter 5 precisely aims at investigating this overlooked as-

pect. We explore, for the first time, the accuracy achieved by the effort estimations

produced by a same prediction model provided by different Machine Learning (ML)

libraries. To this end we empirically investigate four deterministic machine learners,

widely used in SEE, as provided by three very popular ML open-source ML libraries

1.1. Contributions 22

written in different languages (namely, SCIKIT-LEARN, CARET and WEKA). Our

findings highlight that the ML library is an important design choice for SEE stud-

ies, which can lead to large differences in performance. However, such a difference

is under-documented and it leads to a pivotal replicability problem at the heart of

the scientific literature. This suggests that end-users need to take such differences

into account when choosing an ML library, and developers need to improve the doc-

umentation of their ML libraries to enable the end user to make a more informed

choice.

Chapter 6. Another factor that can influence the results of a study, is the choice

of the measure used to evaluate the results. While in software effort estimation the

use of problematic measures has been addressed and current literature mostly fol-

low best practices, the use of different evaluation measures is still a concern for

software defect prediction, despite the various warnings which have been raised

[23, 39]. The work presented in Chapter 6 reviews a total of 111 studies published

between 2010 and 2020 to understand the way the community has handled this crit-

ical threat following previous warnings. Moreover, it presents the first empirical

investigation exploring a comprehensive set of measures based on statistical signif-

icance and effect size analysis. The results shows that the level of disagreement

among the evaluation measure is very high and can have a dramatic impact on the

conclusion validity resulting from the assessment of current binary classifiers in

defect prediction. Therefore, future studies need to carefully select and justify the

evaluation measures used.

Chapter 7. Recent studies have found that ensemble prediction models (i.e.,

aggregation of multiple base classifiers) can achieve more accurate results than

those that would have been obtained by relying on a single classifier when used

for the early detection of software defects. However, designing an ensemble re-

quires a non-trivial amount of effort and expertise with respect to the choice of the

set of base classifiers, their hyper-parameter tuning, and the choice of the strategy

used to aggregate the predictions. An inappropriate choice of any of these aspects

can lead to over- or under-fitting, thereby heavily worsening the performance of the

1.2. Thesis Organisation 23

prediction model. Examining all possible combinations is not computationally af-

fordable, as the search space is too large, and there is a strong interaction among

these aspects, which cannot be optimized separately. The work presented in Chapter

7 leverages the power of multi-objective evolutionary search to automatically gen-

erate defect prediction ensembles. We dubbed our proposal as MULTI-OBJECTIVE

ENSEMBLE GENERATION (MEG). The main purpose of MEG is to automatically

generate ensemble classifiers by choosing a set of base classifiers, tuning them, and

then selecting an aggregation strategy to produce the final ensemble. MEG is not

only novel with respect to the more general area of evolutionary generation of en-

sembles, but it also advances the state-of-the-art in the use of ensemble in defect

prediction. We assess the effectiveness of MEG by empirically benchmarking it

with respect to the most related proposals we found in the literature on defect pre-

diction ensembles and on multi-objective evolutionary ensembles. Our results show

that MEG is able to advance the state-of-the-art by producing similar or more ac-

curate predictions in 73% of the cases, with favourable large effect sizes in 80% of

them. MEG achieves such a high performance by automatically selecting the clas-

sifiers, tuning them, and identifying the most suitable aggregation technique, thus

also relieving the engineers from the challenge and burden of carrying out each of

these tasks manually.

1.2 Thesis Organisation
The remaining of this thesis is organiseed as follows. Chapters 2 and 3 discuss the

background and previous work related to SSE and SDP, respectively. Chapters 4 to

7 present each of the contributions in greater detail. Chapter 8 concludes the thesis

by summarising the main achievements and discussing open challenges in the field.

Chapter 2

Background

In this chapter, we provide an overview of the features, datasets and validation pro-

cesses found in the literature in both, the effort estimation and defect prediction

areas.

2.1 Software Development Effort Estimation
Software Development Effort Estimation is a crucial activity for project planning

and monitoring, specifically for ensuring that the product is delivered on time and

within budget. Studies have shown that inaccuracies in the estimations can lead

to great losses [40]. In the literature, there are two types of erroneous predictions:

under- and over-estimation. Overestimation occurs when the predicted effort ex-

ceeds the actual effort, whereas underestimation occurs when the the effort pre-

dicted is lower than the actual effort needed to complete a project. Both types of

errors have detrimental effects on a company’s reputation, performance and pro-

ductivity [20, 41, 42]. For example, overestimated projects can result in the team

stretching their work hours to cover the unnecessary gap leading to a reduced pro-

ductivity rate [43] and missed opportunities of promising ideas due to poor resource

allocation. On the other hand underestimating the effort a software project requires

to be developed leads to schedule and budget overruns, possibly resulting in project

cancellation which effects the reputation and performance of the company [41, 42].

As a result, practitioners have highlighted the importance and need of proposing

methods that support better estimates and improve estimation accuracy. To this end,

2.1. Software Development Effort Estimation 25

different types of data-driven approaches have been explored in the literature. These

approaches take certain cost-drivers as input in order to predict an informative esti-

mate of the effort required to develop or complete a project.

2.1.1 Data and Cost Drivers

In order to estimate the effort required to develop a software project, researchers

have used several cost drivers related to the software which are known at the time

of estimation and hence at an early stage of a project’s life cycle. One of the most

common factors considered is the estimated size of the software. Researchers have

identified two main approaches to measure the size of a software system. One is

solution-oriented; expressing the software in terms of the size of the code written

by counting the source lines of code, while the other is problem-oriented; measur-

ing the size of the software based on its requirements. However, the former showed

to be problematic and received a lot of criticism for reasons regarding the lack of

accepted standardised guidelines [44, 45], regarding the fact that it is highly depen-

dent on the programming language [46] and that it would be difficult to estimate

at an early stage in the project life cycle [47]. On the other hand, Functional Size

Measurement (FSM) were introduced and standardised as a mean to measure soft-

ware systems based on their functional user requirements which can be derived and

used at the project planning stage. Another advantage of FSM is that it is not de-

pendent on the technology and programming language used to develop the software

rendering it more adaptable and applicable to a wide range of software types.

Several procedures were proposed to achieve this. Two very well known and

widely used FSM methods are the IFPUG Function Point Analysis (FPA) and the

Common Software Measurement International Consortium (COSMIC). FPA was

the 1st FSM method proposed [48] to evaluate the functionality of a system by quan-

tifying the functions contained within the software in terms that can be expressed as

requirements to the users. It defines five function types that are based on, internal

and external, data and transaction functions and that can be extracted from early life

cycle documents. These describe the internal and external resources that affect the

system and the processes that are exchanged between the user, any external applica-

2.1. Software Development Effort Estimation 26

tion and the system being measured. FPA was mainly developed to measure Man-

agement Information Systems and despite its popularity, it has driven researchers to

propose improvements in order to broaden the types of systems for which it can be

used. To this end, several other 1st generation variants were proposed with the aim

of improving FSM and its applicability for various types of software [49]. COS-

MIC was established for the same reasons and was considered a 2nd generation

method mainly due to its compliance to the standard ISO/IEC14143/1 [50] and its

distinguishing characteristics, including its applicability to business, real-time, and

infrastructure software (or their hybrids) [51], and possibility to extend its usage to

other kinds of software such as Web and Mobile applications[52, 53, 54, 55, 56, 57].

Unlike FPA, instead of describing internal and external functions, COSMIC focuses

on four main data movements (read, write, entry, exit) of each functional process

among the users, external applications and the system being measured. Other less

popular methods of measuring software size include use case points and object

points. These methods have not been internationally standardised and as a result

are not widely supported.

Different types of software management and development processes call for

different units of measurements. For example, in agile development, one of the

most widely used methods includes the count of story points. Story points describe

the overall effort and reflect the difficulty required to implement the requirements

of a system by assigning point values to its user stories.

There are also measures that do not relate to the size and the requirements of

the system. Instead, they focus more on factors such as the manager and team’s

experience, developer training, clarity of the system’s manual, etc. Unfortunately,

while these measurements can provide information that might improve the predic-

tive model’s performance and, as a result, provide more accurate estimates, this data

is considered sensitive and it is usually only available within the company (i.e., in-

ternally). While large companies have the resources to collect this data, they refrain

from sharing it publicly. On the other hand, small sized companies which are the

ones who will likely to benefit the most from the collection of this data, usually

2.1. Software Development Effort Estimation 27

do not have the required resources and cannot afford to do so, making it extremely

difficult for researchers to investigate and adopt them within their proposed models

given that they cannot be accessed/obtained publicly.

Several datasets, composed of projects mainly described in terms of functional

size cost drivers, have been made publicly available over the years. For example,

PROMISE [58] is a repository which currently host a number of datasets, such

as such as China, Desharnais, Finnish, Maxwell, Miyazaki, etc., which have been

widely used by practitioners as well as researchers for software project effort es-

timation studies. These datasets represent a varied sample of industrial software

projects collected from a single company or several software companies. The

datasets cover a diversity of application domains and project characteristics. An-

other widely known repository is the International Software Benchmarking Stan-

dards Group (ISBSG) repository [59], which includes data that describe software

projects submitted by leading IT and metrics companies from around the world.

While the ISBSG is a global and independent source of software metrics data for

IT projects, access to its resources needs to be purchased for either commercial or

academic purposes.

The datasets used in each of the empirical studies presented in this thesis, will

be described in detail in their own chapter along with the motivation for their choice.

2.1.2 Validation Processes

When comparing or proposing new prediction methods, one very important factor

is the way in which they are assessed. However, in an area, like SEE, where data is

scarce and the number of projects in a dataset is usually very small, the validation

process can be very challenging. Studies are often left with a handful of projects for

training and evaluating their proposed models [60, 61, 62, 63].

To this end, different validation processes have been applied and evaluated in

order to test a proposed model’s performance when estimating software effort on

unseen data. One of the most widely used validation techniques is Cross-Validation

(CV). The latter is described as a resampling procedure which has a single param-

eter, k, referring to the number of groups that a given data sample is to be split

2.2. Software Defect Prediction 28

into. The model is then trained on k-1 folds, and tested on the remaining fold. This

process is done for each fold and the entire procedure is repeated multiple times to

minimise bias and account for any randomness that might be present in the model’s

algorithm/behaviour. For example, 5-fold CV indicates that the data is split into

five folds of approximately equal size. The model is then trained on four folds and

tested on the remaining one, repeating the process for a total of five times.

Multiple values for k have been previously explored in the literature. Among

the most common ones are the 3-fold CV [64, 65, 62], 10-fold CV [66, 62, 67]

and the widely used Leave One Out (LOO) CV where the k is equal to one

[68, 69, 70, 71, 63, 72]. In this case, given a dataset of size n, n-1 instances are

used to train the model and the remaining single instance is used as the target. This

results in n pairs of training and testings sets. In their work, Kocaguneli and Men-

zies [73] investigate the use of the aforementioned evaluation procedures in terms

of stability and execution time. They highlight that future work should consider

assessments via LOO given the technique’s deterministic nature which eliminates

conclusion instability. The authors also report that LOO is not necessarily slower

than 3-fold or 10-fold CV and that it does not generate different biases and vari-

ances. However in a more recent study, Sigweni et al. [74] propose a more realistic

time-based approach, when chronological data is available, based on a grow-one-

at-a-time (GOAT) validation principle. This better reflects a real life setting given

that projects can only be used for prediction after they have been completed.

2.2 Software Defect Prediction

Software bugs can be very costly to both, the users and the company providing the

software. Among several software failures experienced by international airlines,

was that of British Airways in 2019. This glitch caused chaos as more than a 100

flights were cancelled and more than 300 were delayed [75]. As the world becomes

more dependent on software, tasks such as detecting defects become more essential

and critical. In a severe case scenario, their cost can be life-threatening as in the case

of the IT glitch of the UK National Health Service which put 10,000 patients at risk

2.2. Software Defect Prediction 29

of being given the wrong medication in 2018 [76]. The earlier, in the process, a

bug is found and fixed, the less it costs. According to Capers [77], addressing bugs

post-release costs $16,000, but a bug found at the design phase costs $25. In his

study, Boehm [78] also revealed that, at least for small non-critical systems, the

ratio between finding a bug in the development stage as opposed to finding it while

the system is already in production is 5:1. Quality assurance budget is often spent

on fixing post-release bugs which could have been fixed earlier on for much less.

As a result, software defect prediction aims to reduce testing cost and effort by

flagging possible problematic software components, before their deployment. This

allows engineers to better focus their testing efforts, and hence allocate resources

effectively.

In order to achieve this, researchers have explored different automated tech-

niques that can generate a prediction system from known training examples. These

techniques usually use a wide range of metrics as inputs as described in the follow-

ing section.

2.2.1 Data and Metrics

One crucial component in the process of defect prediction is the identification of

measurable properties about the software modules, known as metrics. Similar to

the area of Software Effort Estimation, the earliest metric proposed was also based

on the size of the system under study [79] by capturing information such as Lines

of Code (LOC). However researchers also found the complexity of a software to

be a good indicator to whether a module could be defective or not. To this end,

McCabe’s cyclomatic complexity metric [80] and Halstead’s metrics [81] were pro-

posed. The former is a measure of the maximum number of linearly independent

circuits in a program control graph, while the latter provides information about the

number of operators, operands and the total use of each. However, the complexity

of a software could not entirely be described by these metrics alone. As a result,

Chidamber and Kemerer [82] proposed, what is now, one of the most popular metric

suites describing software complexity by capturing object-oriented concepts such as

cohesion and coupling.

2.2. Software Defect Prediction 30

Since then, a wide range of metrics treated as features have been used for defect

prediction to improve software quality. They can be divided into three classes [83]:

(i) Object-Oriented Code Measures [84, 85, 86, 87, 88, 89, 90]; (ii) Delta Measures

[91, 92, 93] and (iii) Process Measures [94, 95, 96].

The aforementioned metrics have been widely explored and used in the litera-

ture. In fact, in a systematic literature review, Radjenovic et al. [97] show that 49%

of the studies have used object-oriented code measures, while 24% of them referred

to process measures for their work.

Object-oriented code measures, also known as structural measures, are based

on the Chidamber and Kemerer metrics suite [82], derived from the source code

and are based on aspects of the code such as the size and complexity. Some of these

measures include the lines of code, the number of methods in the class, lack of

cohesion of methods and the cyclomatic complexity in the class, etc. Delta measures

refer to the change that has occurred on the files between two successive releases.

They include information about the way the structure of code has changed over

versions of a code unit. For example, the number of lines of code deleted and added

to a specific class. On the other hand process measures focus on the way the code

had been developed. They include features that describe a surrogate measure of the

experience of each developer and the number of developers that have made changes

to a file. More recently measures drawn from software testing [14] and networking

[98] have been found to carry out useful information about defect-prone software

components.

There are multiple repositories providing datasets, some of which are publicly

available, based on the metrics described above. According to a study done in 2013,

Shepperd et al. [99] identified 24 different dataset families. Among them, the pub-

lic NASA software defect repository [58] was found to be the most popular. The

NASA Metrics Data Program datasets describe a variety of systems, mainly writ-

ten in C and C++, ranging from spacecraft instruments and flight software for earth

orbiting satellite to storage management for receiving and processing ground data

and real-time predictive ground systems. While the adoption of the NASA datasets

2.2. Software Defect Prediction 31

became very popular among researchers due to their original format, which made

it very easy to apply in defect prediction studies, these datasets were not released

with a lot of contextual information, making it challenging to verify the consis-

tency of the metrics extracted. This led previous work to question and investigate

the quality of the NASA datasets. Specifically, Gray et al. [100] identified several

erroneous factors such as the presence of repeated or inconsistent instances, con-

stant and repeated attributes, missing values and invalid data values. Shepperd et

al. [101] and later Petric et al. [102] further presented a set of cleaning steps for

removing erroneous data from the NASA Metrics Data Program datasets. Other

widely known repositories, such as the Tera-PROMISE [103], host Apache datasets

describing Java libraries and tools of multiple version releases.

2.2.2 Validation Processes

The work in defect prediction has been mainly evaluated in three different scenarios:

(i) Within project [104, 105, 106, 107]; (ii) Cross-version (CVDP) [108, 109, 110,

111] and (iii) Cross-project (CPDP) defect prediction [112, 113, 114, 115].

In the within-project scenario, practitioners usually aim to predict defect within

a project by training the techniques on the modules within that project. K-fold

Cross-Validation, is usually applied to validate the performance of the predictive

models being used. This scenario has proven to work well as long as there is suf-

ficient data on which the model can be trained [90]. In practice, however, this is

not always the case as small companies might have little data to work with, or even

no past data for the first release of a product. The other two scenarios, namely

cross-version and cross-project defect prediction are alternative solutions for small

sized releases of a given project or for a company not having any previous releases,

respectively.

The former scenario is applicable to companies who have released multiple

versions of their system. In this scenario, predictive models are usually trained on

one or multiple previously released versions in order to predict defects in the latest

version.

While this solves the problem for companies who release small sized versions

2.2. Software Defect Prediction 32

or updates of their systems, it does not help those who would like to predict defects

for their first release. To this end, researchers and practitioners have proposed the

use of cross-project defect prediction, where the model is trained on data collected

from a different project than the one to be predicted for. Due to the heterogeneous

nature of the training and testing data, this task has been shown to be more difficult,

on which predictive models have achieved results relatively lower than the other

two scenarios [113].

Chapter 3

Literature Review

In this chapter we review the main work that has tackled the problems of effort

estimation and defect prediction relevant to the work presented in this thesis.

3.1 Effort Estimation
Previous research has been carried out to support engineers in estimating software

development effort, focusing on the following aspects:

– Improving the accuracy of software effort estimates by searching for a single

best approach, i.e. proposing and comparing a large number of techniques

such as regression and analogy-based [116, 117], machine learning [118],

ensemble [119], search-based [120].

– Experimenting with, and comparing, different size measures as cost drivers

(e.g. [121, 122, 123, 124, 125]).

– Experimenting with, and comparing, within- vs. -cross company data (e.g

[126, 127, 128, 129]).

– Investigating estimate uncertainty (e.g. [31, 130, 131, 132]) and prediction

intervals (e.g. [133, 134, 135, 136, 137, 138, 139]).

– Studying human bias in effort estimates (e.g. [140, 141, 142, 143, 144]).

A comprehensive review on the use of expert judgement, formal models and

their combination can be found in the work conducted by Jørgensen et al. [145].

3.1. Effort Estimation 34

In the following, we focus on those studies that have investigated human bias in

predicting task duration, and specifically in predicting software development effort,

which are relevant to the work we present in Chapters 4 and 5.

3.1.1 The Role of Humans and Bias in Software Effort Estima-

tions

Predicting task duration has been the focus of a lot of research in different fields.

Despite the different nature of tasks under examination, previous studies almost

universally show that human predictions tend to be biased. For example, studies in

psychology and human cognition show that humans might be subject to the phe-

nomenon of the central tendency of judgement, which describes the tendency for

humans to over-estimate small tasks and under-estimate large ones [146], as well as

to the phenomenon of planning fallacy, which is the human tendency to underesti-

mate future task duration despite knowing that previous similar tasks could not be

completed on time [147]. This kind of bias has been later attributed to misremem-

bering previous task duration (i.e. memory-bias) and using such a duration as a basis

for future predictions. For example, Roy and Christenfeld [148] studied whether a

systematic memory-bias has an effect, or could explain, a similar systematic bias

in prediction, and showed that people tend to underestimate the duration of future

events because they based their estimation on the perceived duration rather than

actual duration of similar events that had occurred in the past. Subsequent studies

have shown that this prediction bias can be reduced when feedback about previous

task duration is provided, thus refreshing and ultimately correcting the memory (see

e.g. [149]).

The principle of human bias in predictions has also been studied, from different

perspectives, for the task of software effort estimation, as detailed below.

Surveys on estimation practice in the software industry found that human ef-

fort estimates are over-optimistic [?, 31] and there is a strong over-confidence in

their accuracy [32]. A recent survey on agile practice also revealed that half of the

respondents believe that their effort estimates on average are under/over estimated

by an error of 25% or more [33].

3.1. Effort Estimation 35

Other studies have looked into possible reasons for bias mainly basing their in-

vestigation on statistical analysis of project characteristics and questionnaires posed

to project managers [140, 142, 143, 150, 144]. Lederer and Prasad [140] found that

the main cause of misestimates was from the management control side. Specif-

ically, the lack of tasks like consideration in performance reviews as to whether

estimates were met, project control comparing estimates and actual performance,

and careful examination of the estimate by the management of the information sys-

tem department resulted in inaccurate estimates. Whereas Gray et al. [142] used

contingency table analysis, logistic regression and log-linear modeling to prove that

the expert-derived effort prediction used to develop a collection of modules from a

large health-care system showed systematic biases involving the size and type of the

modules understudy. Jørgensen [143] investigated the accuracy and bias variation

of effort estimates through the use of a regression analysis-based model. The study

analyses 49 software tasks from a single organisation using collected information

about variables that were believed to have an effect on accuracy or the bias of the

estimates. The results highlight that several factors influence the increase of error in

estimates, such as the estimates being provided by a software developer rather than

a project leader or the customer prioritizing time-to-delivery as opposed to quality

or cost. Jørgensen and Moløkken-Østvold [150] also studied differences in types of

reasons for estimation error depending on the role of the estimators, data collection

approach, and analysis technique with results showing that all three types of rea-

sons play a major role in estimate inaccuracies. In a more recent study, Jørgensen

and Grimstad [144] examined the relationship between biases resulting from ef-

fort estimates produced by software developers, and developer cultural dimensions

such as the way one sees oneself, the thinking style, nationality, experience, skill,

education, sex, and organizational role. Results showed that estimation bias was

present along most of the studied dimensions and that there was a strong correlation

between estimation bias and the developer level of interdependence.

While the aforementioned work has focused on reasons for human bias to sup-

port experts in making more accurate and realistic estimates, our study uses ma-

3.1. Effort Estimation 36

chine learning predictions of human bias to automatically adjust and enhance the

expert’s final estimate of the overall effort which, to the best of our knowledge, has

not been explored yet. This concept of using error to adjust future estimates has

been used by Kultur et al. [151], however it has been applied to adjust for errors

resulting from machine estimates of effort. Their work proposes an ensemble of

neural networks with associative memory (ENNA) and takes the machine learner’s

estimation bias into account by using KNN to retrieve past projects that are similar

to the new one. The estimated bias of the nearest neighbors ensemble is calculated

as the average of the differences between the actual and the estimated values for

those projects. This bias is then added to the estimated effort of the new project.

Results show that ENNA provides estimates that are significantly better than neural

networks and regression trees. On the other hand, we propose the use of automated

models in order to predict the errors made by human experts (rather than predicting

the effort) when estimating effort and exploiting this information to adjust their fi-

nal estimates. Rather than seeking solely to compete with (or even replace) human

experts, our approach aims to use machine learners to learn, from both traditional

past projects cost drivers and from past expert judgements, essentially building into

the predictive model the ability to learn from their past estimation errors. Although

a part of our work also proposes to adjust the final estimates by taking into account

or adding an error/bias (Phase 3), the main idea behind our proposed approach is

to automatically learn from and predict human expert error, and to show that these

predictions can be exploited to help experts improve their final estimates.

3.1.2 The Role of Machine Learning Libraries in Software Ef-

fort Estimations

The increasing growth and success of ML has attracted researchers and practitioners

of various skill levels to use popular and publicly available ML libraries to carry out

Software Engineering (SE) tasks, including critical prediction tasks such as software

development effort estimation [116, 5, 152], defect prediction [23], bug fixing time

estimation [153]. The number of such ML libraries has been rapidly growing and

their development is fast paced, leaving the engineer with a wide range of tools to

3.1. Effort Estimation 37

choose from. Previous work has provided reviews of some of these popular libraries

[154, 155, 156].

With the rise in the use of these libraries, the question that emerges is: Would it

matter if one uses one library over another? If the results reported by these tools are

largely consistent, then one can be confident in using any of them. While previous

studies in effort estimation have shown that differences in training data, learning

techniques, hyper-parameter tuning and evaluation procedures can lead to variance

in the prediction result causing conclusion instability [157, 27, 28, 158, 159], no

study has investigated the impact that the use of different ML libraries to build the

prediction model can have on the variance in the estimates across different libraries,

and unfortunately, our work, found in Chapter 5, proves that similarly to the other

design aspects (i.e., validation approach, machine learning models, etc.), the choice

of ML libraries does have an important impact on a study’s conclusion stability.

Moreover, recent studies have highlighted that developers fail to grasp how

to make ML, and more generally AI, libraries work properly, and very often

seek further documentation or support from their peers on forums such as Stack

Overflow [160, 161]. Therefore, researchers have started focusing their atten-

tion on understanding potential problems faced by engineers when using these li-

braries [162, 163, 164] and to ultimately improve, both the software documentation

[165, 161] and testing practices [166, 167] for ML/AI software. Moreover, some pre-

vious work has looked into the variance due to the stochastic nature of most of the

approaches used for deep learning [168, 169], sentiment analysis [170, 171, 172],

or classification models [173, 174, 175, 176]. Differently from these studies, which

mainly investigated the variance of non-deterministic approaches [169, 177] in other

application domains, the work we present in Chapter 5 intentionally designs an em-

pirical study in a way that reduces, as much as possible, all those factors that would

introduce stochasticity in the machine learner output. This allows us to analyse the

variances in performance that are primarily due to the use of different ML libraries.

To the best of our knowledge, no previous work investigates differences arising

from the use of ML libraries for SEE.

3.2. Defect Prediction 38

3.2 Defect Prediction
A great deal of research has been conducted to improve the quality of software

systems. One important component of that is the prediction of software defects and

the module in which these defects might be located. As a result, researchers have

mainly focused on the following aspects:

- Improving the accuracy of defect predictions by searching for a single best

approach, i.e. proposing and comparing a number of machine learning tech-

niques [178, 179, 105], statistical methods [180], search-based approaches

[181, 182].

- Experimenting with, and comparing, the use of different software defect met-

rics [183, 184, 91].

- Investigating the class-imbalance problem [107, 185, 186].

- Experimenting with, and comparing, within-project, cross-version and cross-

project defect prediction [104, 108, 113, 187].

In the following, we focus on previous studies that are considered relevant

to the work in this thesis. Specifically, we first look into the literature of work

aiming at improving the accuracy of defect predictions by proposing and comparing

new approaches such as machine learning and search-based techniques, and those

aiming at improving defect prediction research by strengthening the methodology

used in empirical studies.

3.2.1 The Role of Search-Based and Ensemble Models in Defect

Prediction

Search-Based Software Engineering (SBSE) has been shown to be a powerful tool

to address Software Engineering prediction tasks [188, 189, 190], such as software

effort estimation, change prediction, defect prediction and maintainability predic-

tion [191].

SBSE is an approach to software engineering in which search based optimi-

sation algorithms are used to identify optimal or near optimal solutions and to get

3.2. Defect Prediction 39

insight into SE problems characterised by a large space of possible solutions, which

cannot be exhaustively explored in a reasonable time.

In the context of defect prediction, previous studies have investigated the use

of both single- and multi-objective search-based approaches [192] to either build

[182] or fine-tune [193, 194, 195] learning models. Ensemble learning models have

also been explored to build defect prediction models [196, 197, 198, 199, 200, 201].

Ensemble Learning is a technique used for building more robust machine learn-

ing models achieving better performance by the means of combining multiple clas-

sifiers trained to solve the same problem.

However, no previous defect prediction study has explored the product of com-

bining both types of approaches together, specifically the use of search-based ap-

proaches to guide the construction of ensemble models, which have instead been

exploited to solve general-purpose classification tasks. Moreover, to the best of

our knowledge, the work by Petrić et al. [202] is the only to contemplate diversity,

together with accuracy, in order to build more robust ensembles.

Previous work which provides a comprehensive view on machine learning

models for defect prediction is that conducted by Hall et al. [23]; for search-based

approaches in defect prediction is the one by Malhotra et al., [191]; for ensemble

models in defect prediction are those published by Afzal et al. [203] and Matloob

et al. [196]; and for general-purpose evolutionary ensembles is the one conducted

by Ren et al. [204]. The rest of this section focuses on the work most related to the

one proposed in this thesis.

While the use of Multi-Objective Evolutionary Algorithms (MOEAs) [205] in

the context of ensemble generation by considering both accuracy and diversity as

target objectives for different domains has been explored previously [206, 207, 208,

209], none had been previously conducted in the context of defect prediction. In

addition, all this work has relied on the Pareto approach to generate the ensembles

(more details are provided in Chapter 7). Among these, the closest work to ours

is that by Chandra and Yao [207], who used multi-objective optimisation based on

NSGA-II in their algorithm called DIVACE, to evolve and train the set of weights

3.2. Defect Prediction 40

of 3-layer neural networks by simultaneously optimising accuracy and diversity.

Studies in the AutoML literature have also investigated EAs for such optimi-

sations, such as Autostacker [210]. However, work in this area generally optimises

the parameters of the classifier composing the multi-layered ensemble, but does

not encompass their selection or the aggregation strategy choice. Other work used

MOEAs to make an optimal selection of pre-defined (or pre-trained) classifiers with

feature selection for other classification tasks [211, 212, 213, 214, 210]. None of

them leverage diversity as an objective.

In this thesis (see Chapter 7), we instead propose an alternative and novel

way, named MEG, to automatically generate ensemble models, based on whole-

ensemble generation which has been inspired by the idea proposed in the work of

Petrić et al. [202] where both diversity and accuracy are optimised.

3.2.2 The Role of Evaluation Measures in Defect Prediction

Software defect prediction research has adopted various evaluation measures to

assess the performance of prediction models. The use of appropriate evaluation

measures is crucial given that it guides practitioners and researchers to understand

whether a given prediction model is fit for their purpose [23].

The first comprehensive study to present a survey of commonly used model

evaluation measures as well as a comparison of the results obtained by the use of

different measures on NASA datasets was carried out in 2008 by Jiang et al. [39].

In their investigation of methods to build and evaluate defect prediction mod-

els, previous work proposed by Arisholm et al. [83] also acknowledges the impact

of using different evaluation measures and compares several alternative ways of as-

sessing the performance of the models under study. The authors conclude that what

is considered the best model is highly dependent on the criteria used to evaluate and

compare predictive models.

Subsequently, Jingxiu and Shepperd [215] performed a meta-analysis of eight

papers on defect prediction in order to understand the differences resulting from the

use of F-measure as opposed to MCC. They illustrated potential biases by using

confusion matrices that portray different scenarios and found that the use of F-

3.2. Defect Prediction 41

measure is problematic. However they did not quantify the differences resulting

from the comparison, in fact as they state, their study "captures a change in direction

of the effect, it does not, however, capture the magnitude of the effect"[215]). In

Chapter 6, we specifically study the magnitude of the effect of using six different

evaluation measures (including F-measure and MCC) based on both statistical and

effect size analyses. This analysis is crucial to provide solid empirical evidence

on whether the use of a measure over another significantly changes the way model

performance is interpreted with respect to the business needs.

Other studies highlighting that the problem exists, is that of Xuan et al. [216]

and Hall et al. [23]. While Xuan et al. investigate the performance of defect pre-

diction approaches on a large number of evaluation metrics in order to find the best

performing technique, the comprehensive survey by Hall et al. [23] reviews defect

prediction studies published up to 2010. Despite the fact that the primary goal of

the survey was not to investigate bias resulting from the use of different evalua-

tion measures, they do observe that this is an issue. As this study was published in

2012, we expected subsequent research to adopt/follow these guidelines, however

the work we present in Chapter 6 shows that this has not been the case.

Chapter 4

Learning From Mistakes: Machine

Learning Enhanced Human Expert

Effort Estimates

In this chapter, we introduce a novel approach to predictive modeling for software

engineering, named Learning From Mistakes (LFM). The core idea underlying our

proposal is to automatically learn from past estimation errors made by human ex-

perts, in order to predict the characteristics of their future misestimates, therefore

resulting in improved future estimates. We show the feasibility of LFM by inves-

tigating whether it is possible to predict the type, severity and magnitude of er-

rors made by human experts when estimating the development effort of software

projects, and whether it is possible to use these predictions to enhance future esti-

mations. To this end we conduct an empirical study investigating 402 maintenance

and new development industrial software projects. The results of our study reveal

that the type, severity and magnitude of errors are all, indeed, predictable. More-

over, we find that by exploiting these predictions, we can obtain significantly better

estimates than those provided by random guessing, human experts and traditional

machine learners in 31 out of the 36 cases considered (86%), with large and very

large effect sizes in the majority of these cases (81%).

4.1. Introduction 43

4.1 Introduction
Software development effort estimation is a crucial activity for project planning and

monitoring, specifically for ensuring that the product is delivered on time and within

budget [20, 21].

Studies have shown that engineers make inaccurate effort estimations [30, 31,

32, 33], which can negatively affect the outcome of software projects leading to

great losses [22, 21].

To support engineers in obtaining more accurate estimates, researchers and

practitioners have attempted to devise various automated methods over the last three

decades [20, 120]. However, despite the rise of automated predictive modeling,

human expert judgement is still the most commonly applied strategy for software

effort estimation [217, 33] and their expertise has not been fully exploited in com-

bination with automated approaches [145, 130].

This observation motivates us to depart from received wisdom and current re-

search practice in the predictive modeling community. In this work, we shift the

focus from creating automated models able to predict software effort to creating au-

tomated models able to predict the errors made by human experts when estimating

effort and using this to adjust their estimates. Rather than seeking solely to compete

with (or even replace) human experts, our approach learns, not only from traditional

past projects cost drivers, but also from past expert judgements, essentially building

into the predictive model the ability to learn from their past estimation errors (i.e.

misestimates). We name this approach Learning From Mistakes (LFM) as it argues

that:

1. it is possible to predict the type, severity and magnitude of human experts

misestimates by learning from the estimation errors they have made in the

past;

2. these predictions can be usefully exploited in order to enhance future effort

estimates.

In order to evaluate the feasibility and effectiveness of LFM, we carry out an

4.1. Introduction 44

empirical study following best practice for the evaluation of prediction models in

Software Engineering [218, 219, 73].

To address the first claim, we study the predictability of 402 human expert

misestimates in terms of their type (i.e. under-/over- estimates), severity (i.e. low,

medium, high), and magnitude (i.e. estimation error relative to the true effort value).

If we can show that these misestimate characteristics are indeed predictable,

then we can investigate whether their prediction can be used to improve future ef-

fort estimates. In particular, to address the second claim, we adjust the original

human expert estimates with the predicted magnitude errors and compare the two

(i.e. originalestimate vs. originalestimate− predictedmisestimate).

The results of our empirical study show that:

1. Human expert misestimates are predictable. The average classification

accuracy, measured in Area Under the ROC Curve, for both the type of mis-

estimation and its level of severity of all techniques over all datasets, is 71%

and 70%, respectively. Also, the prediction of the amount of misestimation

made by human experts is very close to the true amount of misestimation (i.e.

the average median absolute error of all classifiers across all datasets is 0.28).

2. This predictability can be usefully exploited. That is, LFM enhances hu-

man experts’ effort predictions obtaining estimates that are significantly better

than those provided by random guessing, human experts and traditional auto-

mated learners in 32 out of 36 cases (89%) (with large and very large effect

sizes observed in 81% of these cases), and never worse in the remaining 11%

cases.

The scientific contribution of these findings is the empirical evidence to sup-

port the claim that human estimation errors are, indeed, predictable and can be used

to improve human experts’ effort estimates. This is the first time this question has

been investigated in the software engineering literature. The finding is important

because it provides an entirely orthogonal deployment route for estimation tech-

nology: Instead of replacing human estimators with machine learnt estimations,

4.2. LFM for Software Effort Estimation 45

(1)

MisestimationType
(under-/-over estimate)

MisestimationSeverity
(low, med, high)

Cost Drivers
(e.g. functional size, team, ...)

Expert Effort Estimate

Actual Effort
MisestimationMagnititude

(magnitude of error)

Compute	Past	Misestimate
Characteristics

Past
Software Projects

Input	to	Learn	Past	Misestimate	Characteristics

Target
Software Project

Cost Drivers
(e.g. functional size, team, ...)

Engineer

Expert Estimate of
Target

Predict	Future	Misestimate
Characteristics

MisestimationType
(under-/-over estimate)

MisestimationSeverity
(low, med, high)

MisestimationMagnititude
(magnitude of error)

Improved Estimate
Output

(1)

(2)(2)

(2)

(3)

(3)

(3)

Figure 4.1: The Learning From Mistakes Approach (LFM). The numbers on the arrows
correspond to each of the phases described in Section 4.2.

it advocates for techniques that support humans in the necessary task of software

development effort estimation.

In the remainder of the chapter we first explain the details of our LFM approach

for software effort estimation (Section 4.2) and then the empirical study we carried

out to assess its feasibility and effectiveness (Section 4.3). The results of the study

are discussed (Section 4.4) and future studies (Section 4.5).

4.2 LFM for Software Effort Estimation
In this section we explain how LFM can be used in practice, by software companies,

to estimate/predict the effort needed for realising software projects. LFM is useful

in any scenario where the target project for which the effort is unknown but has

been estimated by the expert. The aim of LFM is to support the human expert

in acknowledging possible errors in their estimations and use this information to

improve their estimates. In order to do that, LFM looks at past software projects

and learns the errors that experts had committed when estimating the effort. This is

divided into three phases that are shown in Figure 4.1 and are described in details

below.

Phase 1. Deriving Type, Severity and Magnitude of Past Estimate Errors

This step gathers information about historical software projects realised by the

same company or by different ones (usually referred to as single-company data or

4.2. LFM for Software Effort Estimation 46

cross-company data, respectively). Each of these projects is described by a set of

cost drivers, such as functional size, team experience, programming languages and

the actual effort (e.g. person-hours) required to realise the project, as recorded by

the company employers1. Part of the novelty of LFM is to augment these cost

drivers by adding information about human expert past misestimates. In particular,

LFM computes the type, the severity and the magnitude of past misestimates by

using both the human expert effort estimates and the actual effort.

More formally, given a set of past software projects Π, each project p ∈ Π,

is characterised by the actual effort, ActualEffp, which was required to complete p

and by the estimated effort, EstEffp, which was originally estimated by the expert2.

Based on this, the type of error estimate (MisestimationTypep) of a project p is

given by

MisestimationTypep =

over-estimate, if EstEffp > ActualEffp

under-estimate,if EstEffp < ActualEffp

The severity of the error estimate of a project p (MisestimationSeverityp) is

computed by ranking the past projects with respect to the Magnitude of Relative

Error (MRE) and grouping these MRE calculations into different severity levels

(i.e. low, medium, high), according to given thresholds as follows:

MisestimationSeverityp =


low, if MREp < α

med, if α ≤MREp < β

high, if MREp ≥ β

where MREp measures, for a given project p, the absolute difference between the

actual effort and the estimated effort (i.e. absolute residual error) relative to the

actual effort:

MREp =
|EstEffp−ActualEffp|

ActualEffp

1More details about the cost drivers used in our experiments are provided in Section 4.3.2.
2Such an effort in our study is provided for each project by the software company and it is

measured as person hours.

4.2. LFM for Software Effort Estimation 47

The number of severity levels and the associated thresholds are parameters to our

approach determined by the procedures in place in a given company. In this work

we experimented with three levels of severity (i.e. low, med, high) according to the

following thresholds: the first 33th percentile for the low level (i.e. 33% of projects

with the lowest MRE), the 34th to 66th percentile for the med severity level, and the

remaining projects for the high one (i.e. 33% of projects with highest MRE). Of

course, different settings can be used without altering the formulation of LFM.

The magnitude of the misestimation (MisestimationMagnitude) for a given

project p is computed as the relative error:

MisestimationMagnitudep =
EstEffp−ActualEffp

ActualEffp

These misestimation characteristics, together with company-specific cost

drivers, will be exploited in Phase 2.

Phase 2. Predicting The Characteristics of Future Estimation Errors

The second phase, starts with a software project for which the development

effort is unknown and needs to be estimated (i.e. Target Software Project). LFM

exploits the information gathered in Phase 1, in order to find similarities between

the target project and past projects. It uses this knowledge in order to predict the

characteristic of the estimate error for the target project.

Specifically, from the information gathered in Phase 1 we are able to pre-

dict the type, the severity and the magnitude of the errors that might occur

when predicting the effort of a target project (t p) (i.e. MisestimationTypet p,

MisestimationSeverityt p, MisestimationMagnitudet p).

In order to predict MisestimationTypet p, we can use a two-class (i.e. binary)

classifier since MisestimationType can assume only two values (i.e. under-/over-

estimates), while to predict the severity of the error (i.e. MisestimationSeverityt p),

a multiclass (i.e. multinomial) classifier3 is necessary, given the severity levels de-

3Multiclass classification is the problem of classifying instances into one of the more than two
classes [220]. Classifying instances into one of the two classes is called binary classification. Multi-
class classification should not be confused with multi-label classification, where multiple labels are
to be predicted for each instance.

4.3. Empirical Study Design 48

fined in Phase 1. In order to predict the magnitude of the misestimates for the

target project (i.e. MisestimationMagnitudet p), and given the regression nature of

the problem, any automated estimator ranging from simple regression- or analogy-

based learners [221, 62] to more sophisticated ones such as those based on evolu-

tionary approaches [120, 132] or deep-learning [222] can be applied. Obviously,

different learners may exhibit different performance for different scenarios. Ulti-

mately, the choice of the learner is a parameter of our approach.

Dataset
Misestimation
Type (RQ1.1)

Misestimation
Severity (RQ1.2)

Misestimation
Magnitude (RQ2)

Actual
Effort (RQ3)

Under Over Low Med High Min Max Mean Std. Dev. Min Max Mean Std. Dev
ISBSG-C 63% 37% 33% 33% 34% -0.93 29.49 0.54 4.26 207 46787 6574.22 10641.24
ISBSG-FP 65% 35% 33% 33% 34% -0.96 10.83 -0.02 0.88 207 63732 5827.29 7550.27
KD 41% 59% 34% 31% 35% -0.40 3.59 0.23 0.72 286 113930 5450.00 17723.16
KP 35% 65% 33% 33% 34% -0.65 1.31 0.15 0.35 219 8656 2046.30 1927.96
Medical 52% 48% 32% 34% 34% -0.83 0.07 0.46 1.42 60 10060 1530.00 1785.98
Telecom 59% 41% 35% 30% 35% -0.49 0.61 -0.09 0.26 279 10244 2403.29 2707.80

Table 4.1: Descriptive statistics of the target variables used for each research question.

Phase 3. Exploiting Predicted Misestimations:

The third and final phase of our approach involves exploiting the misestima-

tions predicted for the target project. The early identification of potential under-

/over- estimates and their severity can better guide human experts in understanding

their predictions. On the other hand, the predicted misestimation magnitude can be

used to automatically adjust human expert estimates. In the empirical study pre-

sented in this chapter, we show that we can enhance the effort estimate produced by

a human expert for a target project by adjusting it using the misestimation magni-

tude predicted during Phase 2 (EstE f ft p−MisestimationMagnitudet p).

4.3 Empirical Study Design

In this section we explain the design of the empirical study we carried out to asses

the feasibility and effectiveness of LFM. Our study follows the most recent best

practices for the evaluation of prediction models in software engineering [218, 223,

224, 225, 226].

4.3. Empirical Study Design 49

4.3.1 Research Questions

Our first two research questions investigate the predictability of the error made by

human experts when estimating software project effort. The first research question

tackles this as a classification problem, whereas the second research question treats

it as a regression task. Specifically, RQ1 investigates whether we can classify the

misestimation type and severity (i.e. MisestimationType and MisestimationSeverity

as defined in Section 4.2 Phase 2), while RQ2 investigates whether we can estimate

the magnitude of the error (MisestimationMagnitude as defined in Section 4.2 Phase

2). Our third and final research question focuses on the use of the predicted mises-

timations in order to adjust future human expert estimates as explained in Section

4.2 Phase 3. In the following we describe the way they are addressed.

RQ1. Predicting Type/Severity of Human Expert Misestimations: Can we

predict the type and severity of the errors made by human experts when estimating

software effort?

To address this question, we use four different machine learning techniques,

namely CART, KNN, NB and RF (for more details, see Section 4.3.3) to classify

the type and severity of human expert misestimates. In particular, we answer the

following sub-questions:

RQ1.1 To what extent is the type of human expert misestimation predictable?

RQ1.2 To what extent is the severity of human expert misestimation pre-

dictable?

RQ2. Predicting the Magnitude of Human Expert Misestimations: Can we

predict the magnitude of the misestimations made by human experts?

To answer this question we assess the effectiveness of four machine learners (i.e.

CART, KNN, LP, RF). As a sanity check, we compare them with Random Guessing

(RG).

RQ3. Enhancing Software Effort Estimates via LFM: Can software effort

predictions be improved by learning from previous misestimations?

In order to address this question, we compare the prediction produced by LFM

against human estimations of software development effort. For completeness, we

4.3. Empirical Study Design 50

also compare LFM with estimations obtained using traditional machine learning

approaches alone. As a sanity check, we also compare LFM against RG. Therefore,

we answer the following sub-questions:

RQ3.1: Does LFM provide better effort estimates than RG?

RQ3.2: Does LFM provide better effort estimates than traditional machine

learners?

RQ3.3: Does LFM provide better effort estimates than human experts?

In the following we describe in detail the data (Section 4.3.2), the techniques

(Section 4.3.3), the validation approach (Section 4.3.4), and the evaluation criteria

and statistical tests (Section 4.3.5) used to address the above RQs. We also discuss

possible threats to the validity of our empirical study (Section 4.3.6).

4.3.2 Datasets

To answer the RQs outlined in Section 4.3.1 we carry out an empirical study using

real-world industrial datasets containing a total of 402 software projects developed

by different software companies world-wide and collected up to 2018.

These datasets cover a variety of application domains (ranging from telecom-

munications to medical information systems), exhibit different project characteris-

tics (e.g. technologies, tools and programming languages) and also vary in size (17

to 190 projects, 4 to 17 cost drivers depending on the dataset).

Table 4.2 summarises the descriptive statistics of the features of each of the

datasets. We can observe that five datasets contain cost drivers based on the Func-

tion Point Analysis (FPA) [227] or COSMIC [51] functional size measurement

(FSM) methods4, which are widely used as independent variables to derive effort

estimation models [124]. The Medical dataset instead contains features computed

based on data models (e.g. number of entities), which have been shown to be useful

4FSM methods have obtained world-wide acceptance [20] and allow software size measurement
in terms of the functionality with which users are provided. The first FSM method was FPA [227],
and several variants have since been defined (e.g. MarkII and NESMA) with the aim of improving
size measurement or extending the applicability domain [228]. These are all referred to as the
first generation of FSM methods. COSMIC is instead a second generation FSM method having
distinguishing characteristics, including its applicability to business, real-time, and infrastructure
software (or their hybrids) [51], and possibility to extend its usage to other kinds of software such as
Web and Mobile applications[52, 53, 54, 55, 56, 57].

4.3. Empirical Study Design 51

cost drivers in previous work [57]. Moreover, all datasets contain two more fea-

tures: the hours to complete a software project as estimated by a human expert (i.e.

Expert Estimated Effort) and the number of hours actually required to complete it

as recorded at the end of the project by the company (i.e. Actual Effort). These two

features are used to compute the MisestimationType, MisestimationSeverity and the

MisestimationMagnitude which are used as prediction target (i.e. dependent vari-

able) for RQ1 and RQ2 as explained in Section 4.2, while the Actual Effort is used

as a prediction target for RQ3. In our experiments we use both datasets consisting

of projects that have been estimated by one expert (e.g., Medical) and others where

the effort of different projects has been estimated by different experts (e.g., ISBSG).

Descriptive statistics of the targets of each RQ are provided in Table 4.1.

Further details for each of the datasets are provided below to allow readers to

assess whether the results we have gathered may apply to their own context.

The ISBSG-C and ISBSG-FP are private datasets which have been collected

from the International Software Benchmarking Standards Group (ISBSG) reposi-

tory release June 2018 R2 [59]. This repository contains software projects sub-

mitted by leading IT and metrics companies from around the world and has been

widely used by practitioners as well as researchers for software project effort es-

timation studies [229]. The ISBSG-C dataset contains 49 projects characterised

by four independent variables based on COSMIC [51] (i.e. Cosmic Entry, Cos-

mic Exit, Cosmic Read, Cosmic Write), Expert Estimated Effort and Actual Effort.

While the ISBSG-FP dataset contains 190 projects characterised by six indepen-

dent variables based on FP [227] (i.e. Input Count, Output Count, Enquiry Count,

File Count, Interface Count, Added Count), Expert Estimated Effort and Actual

Effort. We cannot disclose more details about this dataset due to a non-disclosure

agreement (NDA).

The Kitchenham dataset consists of public data from both maintenance and

new development software projects curated by the Computer Sciences Corporation

on behalf of several client organisations [230]. This dataset contains projects span-

ning different products from different sources. All the projects are characterised

4.3. Empirical Study Design 52

by five independent variables based on the Function Point counts (i.e. External

Input, External Output, Logical Internal, External Interface, External Inquiry), the

Expert Estimation and the Actual Effort. The effort estimates were made as part of

the company’s standard estimating process. In our study we considered only those

software projects for which the effort estimate was made solely based on human

experts’ judgement for a total of 69 projects. Since these projects include both per-

fective maintenance and development projects, we analyse them separately, thereby

obtaining two disjoint sets, namely KD and KP which contain 29 and 40 projects,

respectively. More details about this dataset and its raw data can be found elsewhere

[230].

The Medical dataset provides a set of 24 cost drivers (see Table 4.2 for the

the full list) and effort data privately recorded for 77 modules of a single software

system (i.e. a medical records database system built and implemented over a period

of five months) [130]. Each of the modules implements a data entry/edit or reporting

functionality and has associated 24 cost drivers. Since all this data was available

during the module specification phase it can be used as input to a prediction system

[130]. For each of the modules a single project manager’s estimate of the effort, and

the actual effort (both expressed in person-hours) are available.

Telecom is a privately curated dataset which contains 17 software projects

developing typical administrative software, internal software development for a

telecommunication company.

All projects are characterised by four independent variables (i.e. Input Types,

Entities, Output Types, Transactions), each representing an FP basic component

[227], Expert Estimated Effort and Actual Effort. We cannot disclose more details

about this dataset due to an NDA.

4.3. Empirical Study Design 53

Dataset Feature Min Max Mean Std. Dev.

ISBSG-C
(49 projects)

Cosmic Entry 4 447 86.51 107.63
Cosmic Exit 2 594 107.31 130.75
Cosmic Read 0 545 83.88 109.24
Cosmic Write 0 542 55.49 93.62
Expert Estimated Effort 90 53774 7349.02 10641.24
Actual Effort 207 46787 6574.22 9338.89

ISBSG-FP
(190 projects)

Input count 0 2014 128.34 196.70
Output Count 0 2760 77.34 213.85
Enquiry Count 0 2356 105.85 189.40
File Count 0 3196 93.69 254.20
Interface Count 0 261 18.25 38.39
Added Count 0 10571 331.92 815.44
Expert Estimated Effort 80 58800 5082.94 7407.87
Actual Effort 207 63732 5827.29 7550.27

KD
(29 projects)

External Input 0 4701 263 731.69
External Output 6 5265 241.40 812.53
Logical Internal 0 1724 113.90 276.95
External Interface 0 92 6.73 15.51
External Inquiry 0 2925 152.40 454.82
Expert Estimated Effort 337 79870 4586.00 12417.53
Actual Effort 286 113930 5450.00 17723.16

KP
(40 projects)

External Input 0 789 125.82 147.63
External Output 0 360 81.00 95.71
Logical Internal 0 402 61.02 89.45
External Interface 0 614 25.52 89.72
External Inquiry 0 618 80.50 125.81
Expert Estimated Effort 200 8690 2038.70 1736.68
Actual Effort 219 8656 2046.30 1927.96

Medical
(77 projects)

Create Transactions 0 3 0.85 0.74
Read Transactions 0 25 5.19 4.57
Update Transactions 0 16 1.47 2.20
Delete Transactions 0 2 0.26 0.59
Reports Called 0 2 0.23 0.60
Reports Produced 0 2 0.27 0.50
Elements Reported 0 24 3.26 6.46
Fields Calculated 0 14 0.77 2.45
Fields Entered 0 19 5.26 3.82
Screens Called 0 10 0.79 1.89
Screens Displayed 0 6 1.04 0.90
Elements Displayed 0 78 11.64 14.04
Entities 0 22 4.27 3.72
Entities Providing Data 0 14 4.13 3.25
Entities Consuming Data 0 16 1.20 1.90
Attributes 0 19 5.26 3.82
Attributes Updated 0 69 9.42 13.26
Attributes Consumed 0 83.00 19.81 18.69
Links (1.1) 0 2 0.30 0.49
Links (1.m) 0 13 3.09 3.32
Optional Links 0 12 3.13 3.30
Mandatory Links 0 3 0.25 0.54
Entity Provisions 0 25 5.20 4.57
Entity Consumptions 0 16 1.52 2.20
Expert Estimated Effort 228 9450 1120.00 1278.82
Actual Effort 60 10060 1530.00 1785.98

Telecom
(17 projects)

Input types 4 858 201.71 242.15
Entities 15 444 124.53 110.53
Output Types 10 2322 484.88 640.69
Transactions 7 265 51.18 59.54
Expert Estimated Effort 450 9595 1967.29 2284.26
Actual Effort 279 10244 2403.29 2707.80

Table 4.2: Descriptive statistics of the datasets used.

4.3. Empirical Study Design 54

4.3.3 Classification and Regression Techniques

The concept of LFM is not defined by the machine learning approach used to clas-

sify the estimate errors. Therefore any technique can be used to this end and the

choice is left to the practitioner.

In our empirical study, we experiment with five publicly available machine

learners, namely Classification and Regression Trees (CART) [231], k-Nearest

Neighhbours (KNN) [232], Naïve Bayes (NB) [233], Linear Programming (LP)

[234] and Random Forest (RF) [235], all of which are well-known and widely-

used by software engineering researchers and practitioners. Using such approaches

avoids the risk that LFM benefits from some special or sophisticated ML technique.

The results achieved with these traditional techniques can be considered as a lower

bound to any more advanced technique, while their public availability supports and

promotes replicability and extension of our work.

In order to address RQ1 (which involves a classification task), we use four ma-

chine learning approaches, namely CART, KNN, NB, RF, which are able to handle

both binary and multiclass problems [220]. To address RQ2 and RQ3, which in-

volve a regression task, instead, we use LP4EE (as it has been recently proposed

as a robust baseline approach for prediction studies [219]) and three traditional and

widely used estimation methods, namely CART, RF and KNN, which are represen-

tative of regression-based and analogy-based estimators, respectively. Moreover, as

a sanity check we always compare all the approaches to RG for all RQs. For each of

these techniques we use the R tool5 version 3.4.1. For CART, KNN, NB and RF, we

build and tune a model for each LOO training set within each dataset, and use it to

predict the effort of the target observation. We use the function trainControl

available from the R package Caret6 version 6.0.84, which performs a search to

identify machine learning settings that generalise best on the training set7, as rec-

ommended in recent work [238, 225]. In the following we briefly describe each of

5https://www.r-project.org
6http://topepo.github.io/caret/index.html
7Specifically, we used the setting method=repeatedcv, repeats=30 (and

tuneLength = 10 for KNN). Since more advanced tuning techniques can be used [236, 237],
the results provided herein can be considered as a lower bound.

https://www.r-project.org
http://topepo.github.io/caret/index.html

4.3. Empirical Study Design 55

the techniques.

Random Guessing (RG) is a worst case lower bound benchmark suggested to

assess the usefulness of a prediction system [218]. It randomly assigns the y value

of another case to the target case. More formally, it is defined as: predict a y for the

target case t by randomly sampling (with equal probability) over all the remaining

n− 1 cases and take y = r where r is drawn randomly from 1...nr = t [218]. Any

prediction system should outperform RG since an inability to predict better than

random implies that the prediction system is not using any target case information.

Classification and Regression Trees (CART) are machine learning methods

used to build prediction models by recursively partitioning the data and fitting a

simple prediction model within each partition [239]. The partitioning can be repre-

sented graphically with a decision tree. Decision trees where the dependent variable

takes a finite set of values are called classification trees, while those where the de-

pendent variable takes continuous values are called regression trees.

K-Nearest Neighbor (KNN) is an analogy-based approach that, given a target

instance (i.e. a software project characterized by a vector of n features), retrieves

from a case base of past projects, those instances which are relevant to the target

one [240]. These relevant cases are identified by using the Euclidean distance as

a similarity function, which measures the distance between the target case and the

other cases based on the values for the n features of these projects. The average

of the effort values of the k most similar past projects is then used as the effort

predicted for the target project. If there are ties for the k-th nearest vectors, all

candidates are used to compute the average. The choice of k is left to the user, in

this work we experiment with different values of k = 1, ...,10.

Linear Programming for Effort Estimation (LP4EE) is a baseline prediction

model recently proposed to provide a robust yet easy-to-use approach for effort

estimation8[219]. The model takes advantage of the Simplex algorithm, which de-

terministically minimizes an error function on a training set, and applies the learnt

weights on a test set to make predictions [219]. In this work we extend the original

8The source code is available at https://github.com/fedsar/LP4EE

https://github.com/fedsar/LP4EE

4.3. Empirical Study Design 56

formulation of LP4EE [219] to handle negative-values predictions (see Appendix

A). The original version is used in RQ3 (to predict the effort) whereas, the modified

version is used in RQ2 (to predict the MisestimationMagnitude which can take the

form of both positive and negative values).

Naïve Bayes (NB) is a statistical technique that uses the combined probabilities

of the different attributes to predict the target variable, based on the principle of

Maximum A Posteriori [241]. This approach is naturally extensible to the case

of having more than two classes, and was shown to perform well in spite of the

underlying simplifying assumption of conditional independence.

Random Forest (RF) is an ensemble technique which aggregates the predic-

tions made by a collection of decision trees (each with a subset of the original set

of attributes) [242]. Each tree infers a split of the training data based on feature val-

ues to produce a good generalization. RF can naturally handle binary or multiclass

classification problems. The leaf nodes refer to either of the classes concerned.

4.3.4 Validation Approach

For each of the datasets in our study, we perform a Leave-One-Out (LOO) cross-

validation for all RQs. Given a dataset containing n observation, one observation

at a time is used as target and the remaining n− 1 instances are used to train the

model; the process is repeated n times. Thus, for each dataset, we obtained n pairs

of training data and test data, and we report the results obtained on the test data

by using boxplots, summary statistics, and statistical tests as detailed in Section

4.3.5. LOO is a deterministic approach that, unlike other cross validation tech-

niques, does not rely on any random selection to create the training and testing

sets. According to recent work [73], assessment via LOO eliminates conclusion

instability caused by random sampling, making evaluations that use it more easily

reproducible. However, if chronological information about the projects is available

it would be preferable to adopt a time-based validation approach, because LOO

may give more optimistic results than those that might realistically be achieved in

practice [74]. In our study we use LOO because start and completion dates are not

available for all projects.

4.3. Empirical Study Design 57

4.3.5 Evaluation Criteria and Statistical Tests

In order to evaluate the performance of the techniques considered in RQ1 (i.e.

CART, KNN, NB and RF) to classify misestimation types and severity we used

the Area Under the ROC Curve (AUC-ROC) [243], which value ranges between

0 and 1. For a two-class problem (such as classifying error types) an AUC-ROC

value of 1 represents a perfect classifier, while an area of 0.5 represents a Random

(i.e. worthless) one. To evaluate the performance for a multi-class problem (such as

classifying the error severity) we exploited the generalization to n-class classifica-

tion proposed by Hand and Till [244] which extends the AUC definition to the case

of more than two classes by averaging pairwise comparisons. In this case a value

of 1 still represents a perfect classifier, while an area of 1/n represents a Random

classifier, where n is the number of classes considered.

In order to compare the performance of the estimation methods analysed for

RQ2 and RQ3 (i.e. CART, KNN, LP, LFM and Expert), we measured the Abso-

lute Error (i.e. |PredictedValue−RealValue|), where the RealValue is our target

prediction variable. This target prediction variable is equal to MisestimationMag-

nitude for RQ2 and it is equal to ActualEffort for RQ3. Thus, for RQ2 we measure

the Absolute Error between the human expert MisestimationMagnitude and the one

predicted by LFM; while to answer RQ3 we compute the absolute error between

the actual effort and the effort predicted by LFM, human expert, and the considered

ML. We use boxplots to visualise the difference in performance among different

prediction methods and also use significance statistical tests. Both the boxplots and

the statistical tests are based on these distributions.

In order to evaluate whether the differences in performance of the classifiers

used in RQ1 are significant, we use the Friedman Test9 [245]. This is a non-

parametric test which works with the ranks of the techniques rather than their actual

performance values, making it less susceptible to the distribution of the performance

of these parametric values. The null hypothesis that is tested in our work is the fol-

lowing: "There is no significant difference in the AUC-ROC values obtained by the

9The R package stats (version 3.6.1) was used for the Friedman and the Wilcoxon Signed-
Rank tests, the R package PMCMRplus (version 1.4.2) was used for the Nemenyi Test.

4.3. Empirical Study Design 58

approaches compared", at a confidence limit, α , of 0.05. If the null-hypothesis is

rejected, then it can be concluded that at least two of the techniques are significantly

different from each other. When a significant difference is found, the Nemenyi test

[246] is often recommended as a post-hoc test to identify the techniques with a sta-

tistically significant difference9 [247]. The performance of two classifiers is thought

to be significantly different if the corresponding average ranks differ by at least the

critical distance (CD) [247]. The results of this test are presented in a diagram

which is used to compare the performance of multiple techniques by ranking them.

It consists of an axis, on which the average ranks of the methods are plotted and of

the CD bar. The groups of classifiers whose values are significantly different, are

not connected by a line.

To establish if the estimates of one method are statistically significantly better

than the estimates provided by another method (RQ2 and RQ3), we compare the

absolute errors they achieved for each of the datasets. In particular, to check for

statistical significance, we use the Wilcoxon Signed-Rank Test [248]9, which is a

safer test to apply than parametric tests, since it raises the bar for significance, by

making no assumptions about underlying data distributions. In particular, we test

the following Null Hypothesis: "The absolute errors provided by the prediction

model Pi are not significantly lower than those provided by the prediction model

Pj.", set the confidence limit, α , at 0.05 and applied the Bonferroni correction (α/K,

where K is the number of hypotheses) when multiple hypotheses were tested. The

Bonferroni correction is the most conservatively cautious of all corrections and its

usage allows us to avoid the risk of Type I errors (i.e. incorrectly rejecting the

Null Hypothesis and claiming predictability without strong evidence). In order to

investigate the effect size of the Wilcoxon Signed-Rank Test results, we compute the

correlation coefficient r = Z√
N

, where Z is the standard score of the Wilcoxon test

and N is the number of pair observations. Indeed, r is recommended as an effect

size measure for paired non-parametric statistical significance tests [249]. The r

effect is considered small ≥0.10, medium ≥0.30, large ≥ 0.50 and very large ≥

0.70 [250, 251].

4.3. Empirical Study Design 59

4.3.6 Threats to Validity

In this section we discuss the construct, conclusion, and external threats to the va-

lidity of our empirical study.

To satisfy construct validity, a study has “to establish correct operational mea-

sures for the concepts being studied” [252]. This means that the study should rep-

resent to what extent the predictor and response variables precisely measure the

concepts they claim to measure [253]. Thus, the choice of the features and how to

collect them represents a crucial aspect. We tried to mitigate such a threat by using

real-world data previously used to empirically evaluate effort estimation methods.

We mitigate threats arising from unrealistic or incorrect data usage by only con-

sidering software projects for which the cost-drivers were collected and measured

before human experts made the predictions, and were never modified afterwards, so

that they can be correctly used as independent variables in machine learning predic-

tion systems. Moreover, we considered only those projects for which the human-

estimated efforts were made solely based on human expert judgement (i.e. no other

technique was used to support experts in their estimation). Given that our approach

aims to adjust and enhance the expert’s final estimate, we need to use projects where

the expert’s estimation is provided. However, not all projects contain also chrono-

logical information and we had to use the LOO validation, which may lead to more

optimistic results with respect to a time-based validation [74].

With regards to the conclusion validity, we carefully applied the statistical tests,

verifying all the required assumptions and correcting for multiple hypotheses sta-

tistical testing. We also followed recent best practice to assess prediction systems

[218, 254, 219]. Moreover, we used datasets of different sizes to mitigate the threats

related to the number of observations. We also used traditional ML techniques im-

plemented in publicly available tools to allow for replications and comparisons.

To mitigate threats to external validity we used six real-world industrial

datasets containing software projects related to different application domains and

companies, which are thus characterised by various project and human factors such

as development process, developer experience, tools and technologies used, cost

4.4. Empirical Study Results 60

drivers, time and budget constraints [255]. Although we used a set of subjects that

has such a degree of diversity, we cannot claim that our results generalise beyond

the subjects studied. It is worth noting that the formulation of the approach is in-

dependent from the nature of the projects. That is, the approach could potentially

work with any kind of project as long as they can be characterised in terms of the

same (or a subset of) cost drivers used for describing the past projects stored in the

database. In our empirical study we experimented with both new development and

maintenance projects, and we study both the effort of realizing entire projects and

specific software modules, in order to assess the feasibility of LFM for a wide range

of projects type.

4.4 Empirical Study Results
In this section we report and discuss the results we obtained carrying out the empir-

ical study described in Section 4.3.

4.4.1 RQ1. Predicting Type/Severity of Human Expert Misesti-

mations

To address RQ1 we compare the performance of CART, KNN, NB and RF for

predicting the type and the severity of human expert estimate errors. The accuracy

results, measured by the AUC-ROC, are summarised in Table 4.3.

RQ1.1-Predicting human expert misestimation type: From Table 4.3 we

can observe that all techniques outperform the random classifier (i.e. AUC-ROC

> 0.5) in all of the cases studied with an average AUC-ROC across all techniques

and datasets equal to 0.71. Moreover, results show that RF obtains the highest

AUC-ROC values on three out of the six datasets under study (i.e. ISBSG-FP, KP,

Medical) with AUC-ROC values ranging from 0.65 to 0.92. This conclusion is

reinforced by the Friedman Test as it shows statistically significant difference (p-

value < 0.001) between the performance of the techniques studied (CART, KNN,

NB, RF, RG). Nemenyi’s Critical-Difference (shown in Figure 4.2a) also supports

this, ranking RF first and Random last with a statistically significant difference (p-

value < 0.001).

4.4. Empirical Study Results 61

(a) MisestimationType (b) MisestimationSeverity

Figure 4.2: RQ1: Critical Difference (CD) diagram of the post-hoc Nemenyi test with α

= 0.05. The difference between two methods is significant if the gap between
their ranks is larger than the critical distance. There is a line between two
methods if the rank gap between them is smaller than the critical distance.

Target Variable Dataset CART KNN NB RF

MisestimationType
(binary class)

ISBSG-C 0.75 0.63 0.62 0.56
ISBSG-FP 0.61 0.59 0.61 0.65
KD 0.71 0.85 0.62 0.63
KP 0.59 0.68 0.71 0.82
Medical 0.86 0.88 0.91 0.92
Telecom 1.00 0.64 0.57 0.65

MisestimationSeverity
(multi-class)

ISBSG-C 0.95 0.54 0.66 0.65
ISBSG-FP 0.53 0.57 0.53 0.56
KD 0.86 0.69 0.79 0.72
KP 0.64 0.68 0.62 0.60
Medical 0.64 0.65 0.73 0.67
Telecom 1.00 0.93 0.83 0.83

Table 4.3: RQ1: AUC-ROC values obtained by CART, KNN, NB and RF when predicting
the type and the severity of human expert misestimations.

RQ1.2-Predicting human expert misestimation severity: Similar observa-

tions hold when we consider the prediction of MisestimationSeverity. Results show

that all techniques always provide better AUC-ROC values than random classifica-

tion (i.e. AUC-ROC > 0.33), with an average AUC-ROC value of 0.70 of all tech-

niques across all datasets. Results also show that CART obtains the highest AUC-

ROC values on three out of six datasets (ISBSG-C, KD and Telecom), whereas

KNN performs best on two of the remaining datasets (ISBSG-FP and KP) and NB

performs best on the remaining dataset. The Friedman Test also concludes a dif-

ference in the predictors’ performance (p-value <0.001) with Nemenyi’s Critical-

Difference Diagram (shown in Figure 4.2b) ranking CART first and Random last

with a statistically significant difference when comparing the two. On the other

end, KNN, NB and RF rank second, third and fourth, respectively, with the gap

between their ranks and Random not being larger than CD.

Therefore, in answering to RQ1 we can state that:

4.4. Empirical Study Results 62

Answer to RQ1: The type and severity of human expert misestimations are

predictable with an average AUC-ROC value of all techniques (over all datasets)

being equal to 0.71 for type and 0.70 for severity.

4.4.2 RQ2. Predicting the Magnitude of Human Expert Mises-

timations

To answer RQ2, we investigate the capability of traditional regression- and analogy-

based estimation approaches (i.e. CART, KNN, LP and RF) to predict the Misesti-

mationMagnitude of human expert misestimates.

Figure 4.3 shows the boxplots of the distribution of the absolute prediction

errors produced by CART, KNN, LP and RF as well as the sanity check, RG.

We can observe that all techniques are able to predict, with a low absolute error,

the magnitude of the error committed by human experts when estimating software

effort. This can be seen from the boxplots of each dataset where the median of the

best technique does not exceed an absolute error of 0.25 on all datasets. Results

also show that the median absolute error of all ML techniques over all datasets is

also low, with an average equal to 0.28.

Figure 4.3 shows that all techniques outperform RG on four (out of six)

datasets. Whereas, on the remaining two datasets (ISBSG-C and KD), at least

two of the machine learners (namely KNN and LP) achieve better results than RG,

with no technique being worse. The Wilcoxon test results (reported in Table 4.4)

also support this conclusion as they show that all techniques are statistically signif-

icantly better than RG on four out of six datasets (i.e. ISBSG-FP, KP, Medical,

Telecom), with 13% of these cases having a very large effect size, 31% having a

large effect size, 50% having a medium and 6% small effect sizes. Whereas, on the

ISBSG-C dataset KNN and LP significantly outperform RG, and for the other two

techniques, the null hypothesis cannot be rejected as well as for the KD dataset.

These results highlight that the magnitude of misestimations is indeed pre-

dictable for all datasets considered. Moreover, for each of the datasets we can iden-

tify the best performing approach based on its median absolute errors (as shown by

4.4. Empirical Study Results 63

the bar in the boxplots - Figure 4.3) and the number of times it is statistically sig-

nificantly better than the other ones according to the Wilcoxon test and effect size

(Table 4.4). In RQ3 we will refer to this approach as LFM.

●

●

●

●

●

●

●

●

0.0

0.5

1.0

1.5

2.0

2.5

CART
KNN LP RF RG

Ab
so

lu
te

 E
rro

r

(a) ISBSG-C

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●
●●

●

●

●

●

●

●

●

0.0

0.5

1.0

1.5

2.0

2.5

CART
KNN LP RF RG

Ab
so

lu
te

 E
rro

r

(b) ISBSG-FP

●

●●

●

●

●

0.0

0.5

1.0

1.5

2.0

2.5

CART
KNN LP RF RG

Ab
so

lu
te

 E
rro

r

(c) KD

●

● ●●

●

●

●

●

0.0

0.5

1.0

1.5

2.0

2.5

CART
KNN LP RF RG

Ab
so

lu
te

 E
rro

r

(d) KP

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

0

2

4

6

8

CART
KNN LP RF RG

Ab
so

lu
te

 E
rro

r

(e) Medical

●

● ●

●

0.0

0.5

1.0

1.5

2.0

2.5

CART
KNN LP RF RG

Ab
so

lu
te

 E
rro

r
(f) Telecom

Figure 4.3: RQ2. Boxplots of the absolute errors achieved by CART, KNN, LP, RF and
RG when predicting the magnitude of human expert misestimations.

Dataset Technique vs. CART vs. KNN vs. LP vs. RF vs. RG
ISBSG-C CART - 1.000 (0.00) 1.000 (0.00) 0.862 (0.02) 0.905 (0.02)

KNN <0.001 (0.51) - 0.201 (0.18) 0.001 (0.47) 0.001 (0.49)
LP <0.001 (0.73) 0.802 (0.04) - 0.003 (0.43) 0.036 (0.30)
RF 0.140 (0.21) 0.999 (0.00) 0.997 (0.00) - 0.547 (0.09)

ISBSG-FP CART - 0.126 (0.11) 0.996 (0.00) 0.755 (0.02) <0.001 (0.37)
KNN 0.874 (0.01) - 0.964 (0.00) 0.951 (0.00) <0.001 (0.29)
LP 0.004 (0.21) 0.036 (0.15) - 0.382 (0.06) <0.001 (0.39)
RF 0.245 (0.08) 0.049 (0.14) 0.619 (0.04) - <0.001 (0.38)

KD CART - <0.001 (0.74) 0.517 (0.12) 0.007 (0.50) 0.111 (0.30)
KNN 0.999 (0.00) - 0.710 (0.07) 0.088 (0.32) 0.221 (0.23)
LP 0.492 (0.13) 0.297 (0.19) - 0.008 (0.49) 0.078 (0.33)
RF 0.994 (0.00) 0.916 (0.02) 0.992 (0.00) - 0.703 (0.07)

KP CART - 0.999 (0.00) 0.032 (0.34) 0.969 (0.01) 0.005 (0.44)
KNN 0.001 (0.53) - 0.001 (0.54) 0.049 (0.31) <0.001 (0.70)
LP 0.969 (0.01) 0.999 (0.00) - 0.999 (0.00) 0.020 (0.37)
RF 0.032 (0.34) 0.953 (0.01) 0.001 (0.51) - <0.001(0.62)

Medical CART - 0.790 (0.03) 0.320 (0.12) 0.999 (0.00) <0.001 (0.46)
KNN 0.211 (0.15) - 0.461 (0.09) 0.987 (0.00) <0.001 (0.45)
LP 0.682 (0.05) 0.542 (0.07) - 0.987 (0.00) <0.001 (0.47)
RF 0.001 (0.39) 0.014 (0.29) 0.013 (0.29) - <0.001 (0.56)

Telecom CART - 0.663 (0.11) 0.482 (0.17) 0.897 (0.03) 0.010 (0.62)
KNN 0.363 (0.22) - 0.373 (0.22) 0.824 (0.05) 0.010 (0.62)
LP 0.537 (0.15) 0.644 (0.11) - 0.785 (0.07) 0.005 (0.67)
RF 0.112 (0.39) 0.189 (0.32) 0.229 (0.29) - <0.001 (0.96)

Table 4.4: RQ2: Results of the Wilcoxon test (p-value and r effect size) comparing the
absolute errors provided by CART, KNN, LP and RF vs. each other and vs. RG
when predicting the human expert MisestimationMagnitude.

4.4. Empirical Study Results 64

0

5000

10000

15000

20000

25000

LB
M

Exp
ert

CART
KNN LP RF RG

Ab
so

lu
te

 E
rro

r

(a) ISBSG-C

0

5000

10000

15000

20000

LB
M

Exp
ert

CART
KNN LP RF RG

Ab
so

lu
te

 E
rro

r

(b) ISBSG-FP

0

5000

10000

15000

LB
M

Exp
ert

CART
KNN LP RF RG

Ab
so

lu
te

 E
rro

r

(c) KD

0

2000

4000

6000

8000

LB
M

Exp
ert

CART
KNN LP RF RG

Ab
so

lu
te

 E
rro

r

(d) KP

0

2000

4000

6000

8000

LB
M

Exp
ert

CART
KNN LP RF RG

Ab
so

lu
te

 E
rro

r

(e) Medical

0

2500

5000

7500

10000

LB
M

Exp
ert

CART
KNN LP RF RG

Ab
so

lu
te

 E
rro

r

(f) Telecom

Figure 4.4: RQ3. Boxplots of absolute errors obtained by LFM, Human Experts and tra-
ditional automatic estimators (i.e. CART, KNN, LP, RF) when predicting soft-
ware projects’ effort.

Based on the results above we can conclude that:

Answer to RQ2: The misestimate magnitude is highly predictable with an

average value of the median absolute errors (MedAE) obtained by all techniques,

across all datasets, being equal to 0.28.

4.4.3 RQ3. Enhancing Software Effort Estimates via LFM

To address RQ3, we investigate the capability of LFM to improve human expert

estimates. Figure 4.4 shows the boxplots of the distributions of absolute error values

obtained by LFM, human experts and the automated estimators (i.e. CART, KNN,

LP and RF) when predicting the effort of software projects.

RQ3.1 LFM vs. Random Guessing (RG): The improvements achieved by

LFM over RG (as shown in Figure 4.4) are always statistically significant (p <

0.001) with five very large (r ≥ 0.7) effect sizes and a large one (r ≥ 0.5) (see

Table 4.5). Thereby LFM successfully passes our sanity check of beating Random

Guessing.

RQ3.2 LFM vs. Traditional ML Estimators: The analysis of the boxplots of

4.4. Empirical Study Results 65

vs. Expert vs. CART vs. KNN vs. LP vs. RF vs. RG
ISBSG-C 0.002 (0.44) <0.001 (0.66) <0.001 (0.66) <0.001 (0.58) <0.001 (0.62) <0.001 (0.75)
ISBSG-FP 0.011 (0.19) <0.001 (0.65) <0.001 (0.62) <0.001 (0.55) <0.001 (0.61) <0.001 (0.71)
KD 0.449 (0.14) <0.001 (0.72) 0.001 (0.60) 0.002 (0.57) 0.003 (0.55) <0.001 (0.97)
KP 0.035 (0.33) <0.001 (0.82) 0.001 (0.55) 0.005 (0.44) <0.001 (0.65) <0.001 (0.91)
Medical 0.013 (0.29) 0.014 (0.29) 0.963 (0.01) 0.971 (0.00) 0.988 (0.00) <0.001 (0.60)
Telecom 0.132 (0.37) <0.001 (0.96) <0.001 (0.96) 0.002 (0.74) <0.001 (0.96) <0.001 (0.94)

Table 4.5: RQ3: Results of the Wilcoxon test (p-value and r effect size) comparing the
absolute errors obtained by LFM vs. those obtained by human experts and tra-
ditional automatic learners (i.e. CART, KNN, LP, RF) when predicting software
projects’ effort.

the absolute errors (see Figure 4.4) reveals that our proposed algorithm, LFM, not

only outperforms RG, but it also performs better than all the other machine learning

methods against which we compare it, on five (out of the six) datasets. That is, the

absolute error values provided by LFM are lower than those provided by CART,

KNN, LP and RF in 21 out of the 24 cases considered. These observations are con-

firmed by inferential statistical analysis, the results of which are presented in Table

4.5; the improvement of our algorithm over these four techniques is statistically sig-

nificant and the effect size is very large (r ≥ 0.7) in six of these comparisons, large

(r ≥ 0.5) in 13, medium (r ≥ 0.3) in one and small (r ≥ 0.1) in two of them. As for

the remaining dataset (Medical), LFM performs statistically significantly better

than CART (as shown by the statistical test), with effect size equal to 0.29.

Therefore, we can positively answer RQ3.2: The use of LBM allows us to

obtain significantly more accurate estimates than traditional ML techniques in 88%

of the cases.

RQ3.3 LFM vs. Human Expert Judgement: From the boxplots in Figure

4.4 we observe that LFM enhances the original human expert estimates for all the

datasets by providing the lowest absolute errors. Results of the Wilcoxon test (see

Table 4.5) reveal that it achieves statistically significant better estimations (all p-

values being less than 0.035) on four out of the six datasets with two of them having

a medium effect size (r ≥ 0.3) and the other two having a small one (r ≥ 0.1). For

the other two datasets (i.e. KD and Telecom), LFM obtains lower absolute error

values than human expert estimates (see Figure 4.4), however based on the results

of the Wilcoxon tests we cannot reject the null hypothesis. This may be due to the

4.5. Conclusions and Future Work 66

size of these datasets; both KD and Telecom are the two smallest datasets with 29

and 17 instances, respectively. The small number of instances makes it difficult for

ML models to learn the characteristics and trends of the errors committed by human

experts. Finally, we observe that the average relative errors across all datasets ob-

tained by LFM are up to 33% lower than those resulting from the estimations made

by the human expert10.

These results show that LFM is not only better than alternative automated tech-

niques, but that it also has an edge over purely human expertise alone. Therefore,

we can positively answer RQ3.3: The use of LFM allows us to improve human

expert estimates.

Based on the results above, we can conclude that:

Answer to RQ3: LFM improves expert judgement on all datasets with improve-

ments that are statistically significant on four out of the six datasets studied.

4.5 Conclusions and Future Work
In this chapter we showed that we can learn from past misestimations in order to

improve future estimates; the Learning From Mistakes (LFM) approach.

We demonstrated the effectiveness of LFM with an empirical study involv-

ing human expert effort estimates (and related errors) from 402 industrial software

projects developed by several different companies. Our results reveal that it is pos-

sible to predict the type, the severity, and the magnitude of the mistakes made by

human experts when estimating software effort, and that we can successfully exploit

this information to significantly improve future human expert-based estimates.

The LFM approach proposed in this thesis can be applied by following these

three steps:

1. Maintain a database of projects for which both the effort estimated and the

10MMRE should not be used as the only indicator to compare prediction models as it can be
misleading (see e.g. [256, 257]), we use it only to provide a notion of the error with respect to the
actual effort.

4.5. Conclusions and Future Work 67

one actually needed to realise the project have been recorded, together with

the cost drivers characterising the project (e.g. functional size measures);

2. For any target project: use LFM to classify the type and severity of the errors

human experts are likely to make when estimating the effort needed for target

projects based on the information stored in the database (our findings from

RQ1 show that this is possible); use LFM to quantify the estimate error for

target projects based on the magnitude of human expert past misestimations

(our findings from RQ2 show that this is possible);

3. Enhance the human expert effort estimates based on the past errors learned

from Step 2 (our findings from RQ3 show that such an enhancement can be

statistically significant as in the case of the projects we considered herein).

Our LFM approach provides two routes to support human experts. One of

these is the more traditional, and widely-studied route of improved effort estima-

tion, but the other is the less explored one of providing automatic feedback on the

experts’ own judgements, rather than seeking to second-guess them. For example,

one can investigate whether using information gathered from past misestimations as

a cost driver can enhance the accuracy of traditional automated predictive models.

While, following the second route, one could investigate the way in which machine

learners model human expert misestimates (e.g., do bias models exhibit similar bias

trends as those observed in human predictions when estimating effort?) to further

provide useful insights to the experts. It would also be interesting to investigate

whether factors that relate to the team such as the number of developers involved

in producing the system and their level of expertise are good proxies for under-

standing and predicting human expert errors. Another aspect to explore and which

might strengthen the human-machine collaboration and increase the trust of com-

panies in using predictive models would be to provide explanations of the estimates

rather than using them as a black-box models. This can be achieved by applying

Explainable AI (xAI) techniques.

Chapter 5

The Role of Machine Learning

Libraries in Effort Estimation

Studies

In the previous chapter, we presented a novel approach to support practitioners esti-

mating the effort needed to realise a software project by relying on the use of differ-

ent machine learners. While undertaking this study, just like many researchers, we

had to decide on a third party open-source machine learning API to realise our em-

pirical study. The choice was based on the fact that one of the algorithms required

for an approach (namely, LP) was publicly available in R. However, several Ma-

chine Learning libraries have, since then, become freely available, and the choice

of choosing one library over another to implement a study became less obvious.

Given that there might be no preference in the use of one library over another when

designing an empirical study, we became curious to check whether a no preference

of library use would also signify a no difference in results. We questioned whether

the differences stemming from using one library over another have been overlooked,

implicitly assuming that using any of these libraries to run a certain machine learner

would provide the user with the same or at least very similar results. The work pre-

sented in this chapter aims at raising awareness of the differences incurred when

using different Machine Learning libraries for Software Development Effort Esti-

mation, which is one of most widely studied and well-known SE prediction tasks

5.1. Introduction 69

and for which differences in estimations can lead to great losses.

5.1 Introduction

There are several Machine Learning ML libraries that can be used for Software

Effort Estimation studies. If it should turn out that library choice impacts study

outcomes, then that choice would constitute a threat to scientific validity. How-

ever, if researchers follow rigorous reporting, the gravity of such threats might not

pose long term problems. Reporting the library used facilitates replication, thereby

tackling potential propagation of unsound scientific conclusions.

However, in cases where library choice has an impact and yet there is no such

rigorous reporting, there is a potent threat to our body of knowledge. As this chapter

reveals, there is such a fundamental threat in the case of software effort estimation:

Library choice is highly impactful and not only is there a general lack of reporting,

but a worrying declining trend in such reporting.

We first analyse the way in which the ML libraries have been used in previous

SEE work. We conduct a manual examination of the literature, examining 256

articles on ML for SEE, which were included in two previous surveys [5, 152].

We then carry out an empirical study that aims to compare the use of the same

set of ML techniques provided by three popular ML libraries (i.e., SCIKIT-LEARN,

CARET and WEKA) in the most common usage scenarios in SEE, as identified by

our literature review.

The first scenario depicts the use of machine learners out-of-the-box, where

we investigate the extent to which building predictive models using the library API

as-is (i.e., with default settings) would yield different results when using different li-

braries (i.e., out-of-the-box-ml scenario). Whereas the second scenario analyses the

use of machine learners with hyper-parameter tuning (i.e., tuned-ml scenario) when

using different libraries. Finally, we manually analyse the API documentation and

the source code of the three libraries under study in order to unveil further charac-

teristics. Therefore, overall we study the current body of knowledge on software

effort estimation from three complimentary angles: literature analysis, empirical

5.1. Introduction 70

study, and API documentation. Each of these three angles combines to reinforce

the conclusion that there is a replicability problem in the heart of the software effort

estimation literature that can no longer be ignored:

Our literature analysis revealed that more than half of the studies do not report

the ML library used (55%), and among those that do report it, the majority (34%) do

not provide the complete description (i.e., no mention of the version used). Thus,

suggesting that the choice of the ML library has not been regarded as an important

design choice on par with other design choices such as the evaluation measure or

the validation approach, which have been shown to affect the results of a study

[258, 259].

Our empirical study revealed that the estimates provided by a given machine

learner in each of the libraries under study largely differ (i.e., on average we ob-

served differences in 95% of the cases across a total of 105 cases studied). This,

coupled with the fact that most of previously published work do not state the ML

library used in their study presents a worrying barrier to replicability. It also high-

lights the way in which the choice of the ML library may have contributed to the

conclusion instability observed in previous studies [29, 260].

Our analysis of the API documentation and code reveals a lack of consistency

among different libraries, which might not only lead to variance in the accuracy

observed in our empirical study, but it might also induce users to misuse these APIs.

To summarise, the contributions of the work presented in this chapter are:

Ê Raising awareness on the importance of the choice of ML libraries, including

analysing how this problem has been tackled so far.

Ë Carrying out an empirical study comparing four widely used SEE deterministic

machine learners as provided by three popular open-source ML libraries on the five

largest SEE datasets.

Ì Providing an analysis of the APIs of these libraries aiming at investigating possi-

ble reasons for/sources of the large differences in accuracy observed in the empirical

study.

Í Identifying initial suggestions for both developers and users of ML libraries and

5.2. Research Questions 71

highlighting open-challenges to be addressed in future work.

5.2 Research Questions
We first need to establish whether the literature has a reporting problem. If it should

turn out that the ML library used by previous studies is typically well reported, then

at least we could rest assured that replicability is not a problem.

RQ1. Current Literature: How much importance has the current SEE liter-

ature given to the selection and reporting of the ML libraries in their work?

If it should turn out that a significant fraction of the literature fails to report

the ML library used, then there is a potential replicability problem. However, this

problem will only have significant impact, should it also turn out that library choice

is itself impactful. This observation motivates the next three research questions: We

need to assess the degree to which library choice impacts the scientific conclusions

drawn from studies of software effort estimation.

The first step towards identifying whether there are any discrepancies in pre-

diction accuracy performance when using different ML libraries for SEE lies in

recognizing the frequency of its occurrence, which motivates our second research

question:

RQ2. Prediction Accuracy: How often does a given machine learner provide

different SEE results when built with different ML libraries?

If we find that, in fact, the results differ in many cases, then it is important

to verify the way in which the SEE prediction performance of a machine learner

is affected depending on the ML library used. Thus our third research question

assesses:

RQ3. Change in Prediction Performance: How does the SEE performance of a

given machine learner change when built using different ML libraries?

In other words, while RQ2 aims to reveal whether the number of cases showing

inconsistency in results due to the ML library used is high, RQ3 further analyses

these results by looking into the magnitude of these differences to understand if

they are relevant.

5.3. Methodology 72

We aim to shed light on questions like "Would my conclusion have been dif-

ferent had I used SCIKIT-LEARN instead of CARET?", "Would the results of my

proposed approach have been better or worse, compared to others, had another ML

library been used?". As previous studies usually rank machine learners based on

their estimation performance for comparison purposes, our fourth research question

asks:

RQ4. Change in Ranking: How does the ranking of SEE machine learners

change when considering different ML libraries?

If we find that different rankings are provided by different ML libraries, this

would point out possible conclusion instability threats in previous (and future) stud-

ies given that, for example, a technique that would rank first in a study using a given

library, might not have the same rank (i.e., first) when another library is used instead.

Lastly, should it turn out that library choice impacts scientific conclusions (RQs

2–4), then we also wish to understand potential reasons for such differences by

manually analysing their APIs:

RQ5. API Analysis: What can we learn by analysing the API documentation

and code of the ML libraries?

5.3 Methodology
In this section, we describe the methodology followed to answer the research ques-

tions described in the previous section.

5.3.1 Collection of SEE Research Papers

We identified 256 relevant studies through a two step literature search. We elaborate

on each of these phases in the rest of this section.

In order to answer RQ1 and understand the way in which the ML libraries

have been used in previous empirical studies addressing SEE, we collected 159

studies surveyed in two literature reviews on SEE [5, 152], as well as additional

602 papers found by using one level forward snowballing of all papers citing these

two literature reviews up until 2023. We carried out this additional literature search

to augment the initial set of papers gathered from the two surveys as they included

5.3. Methodology 73

work published up until 2017, thus studying the trend of more recent work and

reducing the risk of missing relevant articles.

Wen et al. [5] investigated 84 primary studies of ML techniques in SEE pub-

lished between 1991 and 2010, focusing their analysis on the type of ML technique,

estimation accuracy, model comparison, and estimation context. Ali and Gravino

[152] collected 75 primary studies of ML for SEE published between 1991 to 2017

and investigated the most common ML techniques, datasets and accuracy metrics

used. Any manuscript that is listed in both surveys was removed to avoid any du-

plicates. This resulted in a total of 117 papers to be examined for our study.

The forward snowballing based on Google Scholar search conducted in Au-

gust 2023 resulted in a total of 602 papers. To filter out irrelevant publications

found during our search, we manually examined every publication using the pro-

cess suggested by Martin et al. [261]. This process assesses whether publications

satisfy the inclusion criteria in the following three stages:

1. Title: First, all those publications whose title clearly does not match our

inclusion criteria are excluded;

2. Abstract: Second, the abstract of every remaining publications is checked.

Publications whose abstract does not meet our inclusion criteria are excluded

at this step;

3. Body: Publications that passed the previous two steps are then read in full,

and excluded if their content does neither satisfy the inclusion criteria nor

contribute to this survey.

To ensure that the articles included in this survey are relevant to the context of

machine learning for effort estimation, at each of the steps we applied the following

inclusion criteria:

Inclusion criteria

- The paper presents an approach, study, framework, or tool on the use of ma-

chine learning for software effort estimation.

- The paper carries out an empirical investigation which includes machine

learning approaches applied to software development estimation.

5.3. Methodology 74

Exclusion criteria

• Studies focusing on techniques other than machine learning to address soft-

ware development estimation tasks.

• Articles that are not peer-reviewed (such as articles available only on

arXiv.org) or articles submitted for the fulfilment of graduate or doctoral stud-

ies (i.e., theses).

• Studies whose full text is not available, or is written in any other language

than English.

Based on the above three-stage process and inclusion criteria, we identified a total

of 139 relevant publications among the 602 initially obtained from snowballing, as

detailed below. After verifying the title and information provided in the abstract

of the studies, we discarded 232 papers which did not satisfy the inclusion crite-

ria. This resulted in a total of 370 articles which were deemed relevant for our

work. 32 additional articles were excluded from our study because they were not

peer-reviewed or published work, they were not written in English. We also found

duplicate papers across both literature reviews, and articles that were not accessible

or had been retracted, which accustomed for 12 studies. This resulted in a total of

326 articles which were inspected in full. After further inspection of the body of the

articles, we excluded an additional 187 articles which had passed the first two stages

of the analysis, however their content did not satisfy the inclusion criteria. We, thus,

retained a final number of 139 relevant papers after the snowballing process.

A total of 256 relevant articles (117 from the two previous surveys and 139

from the forward snowballing) were manually examined in order to extract the fol-

lowing information: the year of publication, the venue, the validation approach used

and whether the ML library and version used were reported. The list of papers and

the details on the data extracted can be found in our online repository [262]. Our

findings are discussed in Section 5.4.1.

5.3.2 Empirical Study Design

In order to answer RQs 2–4, we carried out an empirical study to assess the extent

to which using machine learners provided by different ML libraries might yield

5.3. Methodology 75

different results. We describe the design of this study in the following subsections,

while its results are discussed in Sections 5.4.2, 5.4.3, 5.4.4.

5.3.2.1 Machine Learning Libraries

We compare three popular open-source ML libraries written in different languages:

SCIKIT-LEARN [263] in PYTHON, CARET [264] in R, and WEKA [265] in Java.

SCIKIT-LEARN is a Python library, distributed under BSD license, which

includes a wide range of state-of-the-art supervised and unsupervised ML tech-

niques. The aim of SCIKIT-LEARN is to provide efficient and well-established ML

libraries within a programming environment that is accessible to non-ML experts

and reusable in various scientific areas [266].

SCIKIT-LEARN is designed to adhere to a number of engineering principles,

including the use of sensible defaults stating “Whenever an operation requires a

user-defined parameter, an appropriate default value is defined by the library. The

default value should cause the operation to be performed in a sensible way.”

CARET, acronym for Classification and Regression Training, is an R package,

distributed under the GNU General Public Licence, containing functions to stream-

line model training processes for complex regression and classification problems

[264]. It was made publicly available on CRAN in 2007 and it relies on several

other R packages that can be loaded as needed.

The aim of CARET is to provide the user with an easy interface for the ex-

ecution of several classifiers, allowing automatic parameter tuning and reducing

the requirements on the researcher’s knowledge about the tunable parameter values

[267].

WEKA, acronym for Waikato Environment for Knowledge Analysis, is li-

censed under the GNU General Public Licence and was first released in 1997 [265].

WEKA provides implementations of ML techniques that can be easily used through

a simplified and interactive graphical interface by users who cannot or do not need

to write code, or through an API that allows users to access the libraries from their

own Java programs. The online documentation is automatically generated from the

source code and concisely reflects its structure [268]. WEKA provides the main

5.3. Methodology 76

Table 5.1: Machine learners investigated and corresponding class/method name in SCIKIT-
LEARN, CARET and WEKA.

Machine Learner Library Class/Method Name

CART
Caret rpart
SkLearn DecisionTreeRegressor
Weka REPTree

KNN
Caret knn
SkLearn KNeighborsRegressor
Weka IBk

LR
Caret lm
SkLearn LinearRegression
Weka SimpleLinear

SVR
Caret svmRadial
SkLearn SVR
Weka SMOReg

methods for supervised and unsupervised ML techniques, as well as methods for

data pre-processing and visualization.

We used the latest stable version for each library at the time the study was done:

SCIKIT-LEARN 0.23.1, CARET 6.0.85, WEKA 3.8 with Python 3.7.5, R 3.6.3,

and Java 11, respectively.

5.3.2.2 Machine Learners and Settings

In this section we briefly introduce the machine learners we investigated to compare

the performance of the three ML libraries CARET, SCIKIT-LEARN and WEKA. We

focus on a set of deterministic ML techniques to eliminate any randomness that

could arise from the use of other learners of a stochastic nature, and thereby to

analyse differences stemming only from the library usage. These techniques are

Classification and Regression Tree (CART) [239], K-Nearest Neighbours (KNN)

[240], Linear Regression (LR) [269] and Support Vector Regression (SVR) [270].

All of them have been widely used in the SEE literature. In Table 5.1, we list the

machine learners together with their corresponding implementation per ML library.

To investigate the out-of-the-box-ml scenario, we use all the techniques with

the default settings provided by each of the ML libraries, without any further modi-

fications.

To investigate the tuned-ml scenario, we apply Grid Search as a hyper-

5.3. Methodology 77

parameter tuning technique. We chose this technique over others because it is deter-

ministic and thus it eliminates any difference in performance resulting for example

from using techniques having stochastic behaviour (e.g., Search-Based ones). This

allows us to accurately verify whether variances in performance are due in fact to the

choice of ML libraries used, rather than being jeopardised by other design choices

such as using Random Search for hyper-parameter tuning.

We run each library’s corresponding grid search method (i.e., GridSearchCV

in SCIKIT-LEARN, tuneGrid along with trControl in CARET and

GridSearch in WEKA) 30 times using the same inner cross-validation across

all libraries to eliminate any possible stochastic behaviour deriving from the data

splits, and using the same set of values for the hyper-parameters across all three

libraries. In order to maintain a fair comparison, we tune the parameters that are

found in common across all three libraries. The settings used for both the out-of-

the-box-ml and tuned-ml scenarios can be found in our online repository [262].

5.3.2.3 Datasets

To empirically investigate our RQs we used the largest SEE publicly available

datasets (namely, China, Desharnais, Kitchenam, Maxwell, Miyazaki) containing

a diverse sample of industrial software projects developed by a single company

or several software companies [271]. These datasets exhibit a high degree of di-

versity both in terms of number of observations (from 48 to 499), number and

type of features (from 3 to 17), technical characteristics (e.g., software projects

developed in different programming languages and for different application do-

mains), number of companies involved and their geographical locations. Further-

more, all these datasets have been widely used in numerous SEE studies (see e.g.,

[2, 272, 273, 274, 74, 219, 117, 275]). A comprehensive description of these

datasets, together with the actual data is available in our online repository [262].

5.3.2.4 Validation

In order to eliminate any possible variance in performance caused by non-

deterministic influencing factors such as the validation approach employed or the

sampled data used as denoted by Rahman et al. [276], we perform a Leave-One-Out

5.3. Methodology 78

cross-validation (LOO), where, as previously described in Chapter 2, each instance

(i.e., a software project in our case) of a dataset of n observations is considered to

be a fold.

LOO is a deterministic approach that, unlike other cross validation techniques,

does not rely on any random selection to create the training and testing sets. There-

fore, this validation process is fully reproducible and eliminates conclusion insta-

bility caused by random sampling [73, 275].

5.3.2.5 Evaluation Criteria

Several measures have been proposed to evaluate the accuracy of effort estima-

tion prediction models. They are generally based on the absolute error, i.e.,

|ActualEffort− EstimatedEffort|. We use the Mean Absolute Error (MAE) as it

is unbiased towards both over- and under-estimation [218, 277]. Given a set of N

projects and the measured (ActualE f f orti) and estimated (EstimatedE f f orti) ef-

fort for each of the the project i in this set, MAE is defined as follows: MAE =

1
N ∑

N
i=1 |ActualE f f orti−EstimatedE f f orti|.

We also use statistical significance tests to assess differences in the perfor-

mance of the ML libraries (RQ3) and the way they rank machine learners (RQ4).

In order to evaluate whether the differences in MAE values resulting from the use

of various ML libraries are statistically significant (RQ3), we perform the Wilcoxon

Signed-Rank Test [278] at a confidence limit, α , of 0.05, with Bonferroni correction

(α/K, where K is the number of hypotheses) when multiple hypothesis are tested.

Unlike parametric tests, this test does not make any assumptions about underlying

data distributions. The null hypothesis that is tested in our work follows: "There is

no significant difference in the MAE values obtained by the approaches when built

using a different ML library".

We also compute the Vargha and Delaney’s Â12 non-parametric effect size

measure to assess whether any statistically significant difference is worthy of

practical interest [223]. Â12 is computed based on the following formula Â12 =

(R1/m− (m+ 1)/2)/n, where R1 is the rank sum of the first data group we are

comparing, and m and n are the number of observations in the first and second data

5.3. Methodology 79

group, respectively. When the two compared groups are equivalent: Â12 = 0.5. An

Â12 higher than 0.5 denotes that the first data group is more likely to produce better

results. The effect size is considered small when 0.5 < Â12 ≤ 0.66, medium when

0.66 < Â12 ≤ 0.75 and large when Â12 > 0.75, although these thresholds are not

definitive [2].

In order to verify statistical significance in the ranking provided by the SCIKIT-

LEARN, CARET and WEKA APIs (RQ4), we use the Friedman Test [245]. This is

a non-parametric test which works with the ranks of the data groups rather than

their actual performance values, making it less susceptible to the distribution of the

performance of these parametric values. When a significant difference is found, the

Nemenyi test [246] is often recommended as a post-hoc test to identify the data

groups with a statistically significant difference [247]. The performance of two

data groups is thought to be statistically significantly different if the corresponding

average ranks differ by at least the Critical Distance (CD) [247]. The results of

this test are presented in a diagram which is used to compare the performance of

multiple techniques by ranking them based on each ML library. It consists of an

axis, on which the average ranks of the methods are plotted and of the CD bar. The

CD bars of the groups of classifiers whose values are significantly different do not

overlap. The visualisation used herein is a more recent version of the Demsar’s one

[247], aiming at providing an easier interpretation. It can be obtained by using the

Nemenyi function in R.

5.3.3 API Analysis

In order to answer RQ5, two of the authors independently investigated the API

documentation and source code (function body) of CARET1, SCIKIT-LEARN2 and

WEKA3 for each of the techniques listed in Table 5.1 in order to find similarities and

differences in (1) the algorithm reference for each machine learner; (2) the signature

of the main method offered by these libraries to build each machine learner (i.e., the

number and type of input parameters that can be set by the user through the use

1https://topepo.github.io/caret/
2https://scikit-learn.org/stable/modules/classes.html
3https://waikato.github.io/weka-wiki/documentation/

5.4. Results 80

Figure 5.1: The ratio of studies reporting the ML libraries and versions over the years.

of their API) and the naming convention used; (3) the parameters’ default values

and the values that can be assigned for categorical parameters within each library;

(4) the parameters only available in the source code (i.e., hidden parameters). We

discuss our findings in Section 5.4.5.

5.4 Results

5.4.1 RQ1: Current Literature

Our analysis of 256 previous SEE work revealed that more than half of the studies

(i.e., 55%) do not state the ML library used. Among the articles that report informa-

tion about the ML libraries used in their study, we also analysed how many mention

the version of the library, and found that only 35 (31%) articles report it.

We also investigated the ratio of studies reporting the ML libraries as well as the

versions used over the years. As shown in Figure 5.1, the trend of such studies tends

to decline, highlighting the alarming fact that not only is there a worryingly low

level in reporting of the library and version used, but this practice has not become

more popular, on the contrary it seems that it continues to be overlooked over the

years.

5.4. Results 81

Finding 1: Details about an important factor in the empirical design of a study

(i.e., ML libraries) are not provided in 55% of the studies inspected, creating

additional barriers for the advancement of reproducibility in science. This trend

does not seem to improve over the years.

5.4.2 RQ2: Prediction Results

In RQ2 we investigate how often a certain prediction model built using different

ML libraries for SEE provides the same results. To answer this question, we look at

the cases where ML libraries result in different predictions. As described in Section

5.3.2.2, we explore two common scenarios observed in the SEE literature, the use

of out-of-the-box prediction models (i.e., out-of-the-box-ml) and their use when

hyper-parameter tuning is performed (i.e., tuned-ml).

Tables 5.2a and 5.2b show the results for each scenario, respectively. As one

can observe from Table 5.2a (i.e., out-of-the-box-ml scenario), there are only five out

of the 60 cases under study (8%) where two out of the three ML libraries provide

the same predictions. Specifically, LR achieves the same outcome when built using

SCIKIT-LEARN and CARET, whereas WEKA obtains different results. Differences

in prediction are observed for all other techniques when built using any of the three

ML libraries.

As for the second scenario, we explore prediction models which are tune-able

(i.e., they consist of parameters for which hyper-parameter tuning can be applied):

CART, KNN and SVM.4 Table 5.2b shows that there is a difference in prediction in

all of the cases studied (i.e., there is no case where all three libraries agree on the

same prediction).

Finding 2: SCIKIT-LEARN, CARET and WEKA do not output matching results

in 92% of the cases when the machine learners are used out-of-the-box. When

tuning the models, each tool outputs a different result in each case considered.

4We exclude LR as there are no tune-able parameters common to all libraries

5.4. Results 82

Table 5.2: RQ2-RQ3: Differences in MAE values obtained when building prediction mod-
els using SCIKIT-LEARN (Sk), CARET (C) and WEKA (W) in the (a) out-of-the-
box-ml scenario and the (b) tuned-ml scenario. The ↑ indicates that the 1st tool
produces worse predictions than the 2nd , whereas the ↓ indicates that 1st tool
produces better predictions than the 2nd .

CART KNN LR SVM
Sk vs. C Sk vs. W C vs. W Sk vs. C Sk vs. W C vs. W Sk vs. C Sk vs. W C vs. W Sk vs. C Sk vs. W C vs. W

China ↓643 ↓477 ↑166 ↓99 ↑734 ↑833 0 ↑420 ↑420 ↓359 ↓637 ↓278
Desharnais ↓396 ↑172 ↑568 ↑111 ↑972 ↑861 0 ↓226 ↓226 ↓440 ↓577 ↓137
Kitchenham ↓46 ↓227 ↓181 ↓36 ↑125 ↑161 0 ↑ 177 ↑ 178 ↓134 ↓683 ↓550
Maxwell ↓3079 ↓1095 ↑1983 ↑193 ↑2435 ↑2242 0 ↓450 ↓450 ↓1591 ↓1319 ↑272
Miyazaki ↑1652 ↓578 ↓2231 ↑75 ↑518 ↑443 0 ↑1229 ↑1229 ↓714 ↓3188 ↓2474

(a) out-of-the-box-ml scenario.

CART KNN SVM
Sk vs. C Sk vs. W C vs. W Sk vs. C Sk vs. W C vs. W Sk vs. C Sk vs. W C vs. W

China ↓809 ↓560 ↑249 ↑10 ↓6 ↓16 ↓421 ↓598 ↓177
Desharnais ↓1,113 ↓457 ↑656 ↓29 ↑160 ↑189 ↓336 ↓419 ↓83
Kitchenham ↑185 ↑247 ↑62 ↑14 ↓25 ↓39 ↓250 ↓237 ↑14
Maxwell ↓2,515 ↓652 ↑1,864 ↓421 ↑668 ↑1,089 ↓1,044 ↓1,738 ↓694
Miyazaki ↑3,053 ↑1,872 ↓1,181 ↓1,104 ↓401 ↑703 ↓966 ↓2,232 ↓1,266

(b) tuned-ml scenario.

5.4.3 RQ3: Change in Prediction Performance

RQ3 investigates how the performance of a given SEE technique changes when the

prediction model is built using different libraries.

Tables 5.2a and 5.2b show the difference in the MAE results for each tech-

nique obtained by comparing each pair of the ML libraries under study for the two

scenarios analysed. We denote any positive difference by the up arrow, whereas any

negative difference is represented by the down arrow. For each pair of tools, a pos-

itive difference signifies that the ML library listed as first achieves a higher MAE

value (i.e., a less accurate prediction) than the other library. On the other hand,

a negative difference denotes that the first library provides an MAE value lower

than the one provided by the second library (i.e., it provides a better prediction).

For example, when considering CART, specifically comparing its MAE when it is

built using SCIKIT-LEARN and CARET (i.e., denoted as Sk vs. C), the difference in

MAE is ↑ 809 meaning that when CART is built using SCIKIT-LEARN, it achieves

a higher MAE (i.e., worse prediction performance) than that obtained when CART

is built using CARET with a difference of 809 man-hours.

To study the magnitude of the error between the ML libraries, we analyse the

results using three error ranges: a difference of 100, 500 and 1,000 hours. By doing

5.4. Results 83

so we relax our constraint on what we consider the difference to be impactful by

accepting a larger error between the results obtained by the libraries.

Table 5.3 presents the number of times the difference in results falls within

these three ranges. When considering the out-of-the-box-ml prediction scenario, we

can observe that while SCIKIT-LEARN and CARET provide the same MAE for LR

only, they, along with WEKA achieve different results in all other cases (i.e., 51 out

of the 60) with a difference of at least 100 hours.

When analysing the MAEs using a threshold ≥ 100 hours, results show that

SCIKIT-LEARN and CARET are the least discordant pair with still more than half

the cases (55%) having a difference of at least 100 hours. When comparing SCIKIT-

LEARN with WEKA and CARET with WEKA, a difference ≥ 100 is seen in all the

cases considered.

We also found cases with a difference of at least 500 hours. Specifically, be-

tween SCIKIT-LEARN and CARET there is a difference ≥ 500 hours in 25% of the

cases (5 out of 20), whereas between CARET and WEKA it exists in 45% of the

cases and between SCIKIT-LEARN and WEKA, it is in 60% of the cases (12 out of

20).

One would not expect to obtain a difference of such a high magnitude resulting

from the use of one ML library over another, however these cases exist even with a

difference ≥ 1,000 hours. As we can observe from Table 5.3, when comparing the

results obtained by SCIKIT-LEARN with those by CARET, there is a difference of at

least 1,000 hours in 15% of the cases under study. As for the comparison between

the other two pairs of libraries (i.e., SCIKIT-LEARN vs. WEKA and CARET vs.

WEKA), the difference is seen in 25% of the cases.

Finding 3: In the out-of-the-box scenario, on average, across each pair of li-

braries, we observe a difference of at least 100 hours in 85% of the cases, at least

500 hours in 43%, and at least 1,000 hours in 22% cases.

When considering the tuned-ml scenario, we observe that differences occur

more frequently than in the out-of-the-box-ml scenario. We found a difference of at

5.4. Results 84

Table 5.3: RQ3: Number of cases the results provided by a given ML library differ from
another of at least 100 hours, 500 hours and 1,000 hours for the out-of-the-box-
ml scenario and the tuned-ml scenario.

out-of-the-box-ml tuned–ml
Prediction
Difference CART KNN LR SVM Overall CART KNN LR Overall

Sklearn vs. Caret Sklearn vs. Caret
≥ 100 h 4 2 0 5 11 5 2 5 12
≥ 500 h 3 0 0 2 5 4 1 2 7
≥ 1,000 h 2 0 0 1 3 3 1 1 5

Sklearn vs. Weka Sklearn vs. Weka
≥ 100 h 5 5 5 5 20 5 3 5 13
≥ 500 h 2 4 1 5 12 3 1 3 7
≥ 1,000 h 1 1 1 2 5 1 0 2 3

Caret vs. Weka Caret vs. Weka
≥ 100 h 5 5 5 5 20 4 3 3 10
≥ 500 h 3 3 1 2 9 3 2 2 7
≥ 1,000 h 2 1 1 1 5 2 1 1 4

least 100 hours in 80% of the cases (12 out of 15) for SCIKIT-LEARN vs. CARET,

in 87% of the cases (13 out of 15) for SCIKIT-LEARN vs. WEKA and in 67% of

the cases (10 out of 15) for CARET vs. WEKA (Table 5.3). Several differences still

persist when we consider a difference of at least 500 hours: specifically in 47% of

the cases (7 out of 15) when comparing each pair of libraries (i.e., SCIKIT-LEARN

vs. CARET, SCIKIT-LEARN vs. WEKA and CARET vs. WEKA). By considering

any difference less than a 1,000 hours to be negligible, we observe that differences

≥ 1,000 still exist in 33% of the cases for SCIKIT-LEARN vs. CARET, in 20% of

the cases for SCIKIT-LEARN vs. WEKA, and in 27% for CARET vs. WEKA. Such

magnitude in difference would not only have an impact on a project’s feasibility

and completeness but can also change the conclusion of any study proposing or

comparing a new or existing techniques as we further investigate in RQ4.

Finding 4: In the tuned-ml scenario, on average, across each pair of libraries,

we observe a difference of at least 100 hours in 78% of the cases, at least 500

hours in 47%, and at least 1,000 hours in 27% of the cases.

The statistical significance test results show that when comparing SCIKIT-

LEARN and CARET, the differences in MAE values still prove to be statistically

5.4. Results 85

significantly different (p-value < 0.01 and A12 = 0.55) despite the low statistical

power due to the small sample size being tested. The same observation could not be

made when comparing SCIKIT-LEARN and WEKA (p-value = 0.164), and CARET

and WEKA (p-value = 0.310) even though the MAE results reported in Table 5.5

show a large variance between the three ML libraries (for three out of the four tech-

niques investigated). This could be due to the small sample size which can result

in a Type II error, where the test fails to reject the null hypothesis, even though it

should not be the case.

In order to further understand the severity of the error, we also compute the

relative deviation in effort estimation with respect to the median actual effort of

the projects in a given dataset. For example, if the median actual effort spent for

realising projects in a company is 10,000 hours, then a deviation≤ 1,000 hours will

not be as severe as the same deviation when dealing with projects with a median

actual effort of 2,000 hours. We observe that for the out-of-the-box-ml scenario, the

average deviation ranges from 11% to 24% depending on the dataset, with three out

of the five datasets having a deviation above 20% and with the largest differences

between ML libraries ranging between 27% and 59% of projects’ allocated hours

(i.e., almost two thirds of the projects’ actual effort). For example, we can observe

a difference of 3,188 hours in the results achieved by SCIKIT-LEARN and WEKA

on the Miyazaki dataset, which corresponds to a 52% deviation in effort estimation

(i.e., more than half of the project’s actual allocated time) with respect to the median

actual effort of the projects in this dataset. As for the tuned-ml scenario, we observe

that the average deviation ranges between 8% and 23%, with three out of the five

datasets (namely China, Maxwell and Miyazaki) having a deviation greater than

15%. In the worst case the deviation ranges between 16% and 50% with four out of

the five datasets reaching over 30% deviation.

Finding 5: The deviations in effort estimation among ML libraries, with respect

to the actual effort, range on average between 11% and 24% (out-of-the-box-ml

scenario), and between 8% and 23% (tuned-ml scenario). In the worst case it can

5.4. Results 86

Table 5.4: RQ4: Rankings of prediction models based on the MAE results obtained by
each of the ML libraries for each of the five datasets for the (a) out-of-the-box-ml
scenario and the (b) tuned-ml scenario.

China Desharnais Kitchenham Maxwell Miyazaki
SkLearn Caret Weka SkLearn Caret Weka SkLearn Caret Weka SkLearn Caret Weka SkLearn Caret Weka
LR LR SVM KNN LR LR LR LR SVM KNN KNN LR KNN KNN SVM
KNN KNN LR LR KNN SVM KNN KNN LR LR SVM SVM SVM SVM LR
SVM SVM CART SVM SVM CART SVM SVM KNN SVM LR KNN LR LR CART
CART CART KNN CART CART KNN CART CART CART CART CART CART CART CART KNN

(a) out-of-the-box-ml scenario.

China Desharnais Kitchenham Maxwell Miyazaki
SkLearn Caret Weka SkLearn Caret Weka SkLearn Caret Weka SkLearn Caret Weka SkLearn Caret Weka
KNN KNN SVM KNN KNN SVM KNN KNN KNN KNN KNN SVM KNN KNN SVM
SVM SVM KNN SVM CART KNN SVM SVM SVM SVM SVM KNN SVM SVM KNN
CART CART CART CART SVM CART CART CART CART CART CART CART CART CART CART

(b) tuned-ml scenario.

CaretSkLearn Weka

SkLearn Weka Caret

(b) Hyper-parameter tuning scenario.

(a) Out-of-the-box scenario.(a) out-of-the-box-ml scenario

(b) tuned-ml scenario

Figure 5.2: RQ4: Ranking of the ML techniques based on the results of the Nemenyi Test
for the (a) out-of-the-box-ml scenario and the (b) tuned-ml scenario. The worst
performing technique (with the highest MAE) is displayed at the top.

go up to half the time allocated for a project for both scenarios.

5.4.4 RQ4: Change in Ranking

To further understand the magnitude of the difference and to investigate whether

it can have an impact on a study’s conclusion, we analyse the ranking of the tech-

niques, based on the MAE achieved, according to each library separately and assess

the differences.

The results for out-of-the-box-ml scenario, presented in Tables 5.4a and 5.5a,

5.4. Results 87

reveal that there is no case where all three techniques agree on a single ranking. The

rankings obtained when using WEKA are different from those obtained by SCIKIT-

LEARN and CARET for each of the datasets investigated. Whereas, SCIKIT-LEARN

and CARET provide the same ranking for three out of the five (60%) datasets un-

der study (i.e., China, Kitchenham, Miyazaki). As for the tuned-ml scenario, we

can observe that all three tools provide the same ranking on only one dataset (i.e.,

Kitchenham). Whereas for the remaining four, CARET and SCIKIT-LEARN agree

on three datasets (i.e., China, Maxwell, Miyazaki), whereas all three libraries dis-

agree on the fourth (i.e., Desharnais). While SCIKIT-LEARN and CARET seem to

generally agree at least on some of the ranks, WEKA tends to provide completely

different rankings. These observations are confirmed by the statistical significance

test analysis: The Friedman test shows that the difference between the results of

the techniques is statistically significant (p-value < 0.05) for all ML libraries in both

the out-of-the-box-ml and tuned-ml scenarios. The post-hoc Nemenyi Test (see Fig-

ure 5.2) reveals that, for the out-of-the-box-ml scenario, WEKA provides a different

ranking than that obtained by SCIKIT-LEARN and CARET, with a statistical signif-

icant difference between the best and worst performing techniques (i.e., KNN and

CART, respectively) in the case of SCIKIT-LEARN and CARET. While SCIKIT-

LEARN and CARET rank KNN first and SVM third, WEKA ranks KNN in third

place and SVM in the first in the out-of-the-box-ml scenario. As for the tuned-

ml scenario, we can observe that WEKA also provides a different ranking than the

other two ML libraries (i.e., SCIKIT-LEARN and CARET) as it ranks SVM and KNN

first and second, respectively. Whereas SCIKIT-LEARN and CARET both agree on

ranking KNN first and SVM second. All libraries show a statistically significant

difference between the best and worst ranked techniques (i.e., KNN and CART for

SCIKIT-LEARN and CARET and SVM and CART for WEKA). While, in some

cases, SCIKIT-LEARN and CARET agree on the ranking, the results of RQ3 had

revealed that the MAE values achieved by these two ML libraries are statistically

significantly different. This shows that even when they output the same rankings

of ML techniques, the results of the same techniques vary significantly depending

5.4. Results 88

Table 5.5: RQ2-3: MAE results obtained by each of the ML libraries for each of the five
datasets for the (a) out-of-the-box-ml scenario and the (b) tuned-ml scenario.

CART KNN LR SVMDataset SkLearn Caret Weka SkLearn Caret Weka SkLearn Caret Weka SkLearn Caret Weka
China 3,606.42 2,963.80 3,129.69 2,798.93 2,699.45 3,532.56 2,647.40 2,647.56 3,067.63 3,108.56 2,749.33 2,471.66
Desharnais 2,906.33 2,510.66 3,078.18 2,199.65 2,310.67 3,171.84 2,277.26 2,277.23 2,051.05 2,754.36 2,314.77 2,177.32
Kitchenham 2,711.59 2,665.82 2,484.42 2,069.70 2,033.88 2,194.41 1,645.08 1,644.95 1,822.51 2,279.89 2,146.26 1,596.76
Maxwell 7,564.52 4,485.85 6,469.05 3,850.34 4,043.83 6,285.81 4,448.94 4,449.08 3,999.02 5,741.87 4,150.91 4,423.29
Miyazaki 12,058.73 13,710.94 11,480.30 8,644.25 8,718.85 9,162.33 11,700.77 11,700.95 12,930.09 10,346.04 9,632.12 7,158.33

(a) out-of-the-box-ml scenario

Dataset CART KNN SVM
SkLearn Caret Weka SkLearn Caret Weka SkLearn Caret Weka

China 3,681.04 2,872.11 3,120.91 2,587.57 2,597.50 2,581.95 3,117.41 2,696.23 2,519.55
Desharnais 3,535.04 2,422.54 3,078.18 2,249.66 2,220.29 2,409.41 2,760.77 2,424.63 2,342.04
Kitchenham 2,478.44 2,663.92 2,725.83 1,985.66 1,999.46 1,960.95 2,282.58 2,032.15 2,045.81
Maxwell 7,232.53 4,717.38 6,580.89 4,285.81 3,864.54 4,953.90 5,743.15 4,699.31 4,005.16
Miyazaki 10,497.33 13,550.06 12,368.94 9,840.04 8,736.13 9,439.13 10,347.54 9,382.00 8,115.88

(b) tuned-ml scenario

on the library used, and therefore larger estimation errors can be committed when

using one library over another.

Finding 6: When comparing all three libraries together, there is no case where

the rankings of ML techniques match. The statistical test results show a signifi-

cant difference between the results of the techniques.

5.4.5 RQ5: API Analysis

We investigate various aspects of the API documentation and source code of the ML

libraries in order to study the ways in which they are similar or different. Specifi-

cally we analyse (1) the algorithm reference for each machine learner; (2) the sig-

nature of the main method used to build each machine learner and the naming con-

vention used; (3) the parameters’ default values and the set of values that can be

assigned for categorical parameters within each library and (4) the hidden parame-

ters. A summary of the results is reported in Table 5.6, a detailed discussion follows.

Algorithm Reference. We observed that the documentation of these libraries does

not always clearly state a reference algorithm. Specifically, no reference was pro-

vided in seven out of the 12 cases we looked into (with CARET never providing any

reference for any of the algorithms). We also found that, among the cases where

references are given, SCIKIT-LEARN usually provides a general list of references

for a given algorithm. For example, it provides four references for CART (including

5.4. Results 89

Wikipedia), without indicating the one actually being used for the implementation.

Whereas among the cases where WEKA provides a reference, it is a single one.

Finding 7: No reference was provided for the algorithms in more than half of

the cases analysed.

Method Signature. We found that none of the libraries offer the same method sig-

nature to build each of the machine learners investigated herein (i.e., CART, KNN,

LR and SVR). All three libraries provide a different number of parameters which

can be directly manipulated by the user through the API as shown in Table 5.6.

SCIKIT-LEARN provides the user with the highest number of parameters compared

to CARET and WEKA across all techniques. For example, in SCIKIT-LEARN, a user

can build CART by specifying 14 input parameters, while CARET and WEKA only

allow the user to specify nine and six parameters, respectively. Similarly, a user can

build KNN by specifying eight input parameters in SCIKIT-LEARN, while CARET

and WEKA only provide the user with the ability to specify one and five parameters,

respectively.

Among the parameters which are provided in an API but not in another, some

do not directly have an effect on the accuracy of the ML techniques, but they play

a role in the execution process (e.g., n_ jobs in KNN controls the number of par-

allel jobs to run for neighbor search); whereas others control the machine learner

hyper-parameters, therefore their use/setting can directly impact the accuracy of the

models. For example, while CARET only allows the user to set the number of neigh-

bours to be explored for KNN, WEKA permits setting the number of neighbours

and the weight function, and SCIKIT-LEARN provides the user with the freedom to

choose the number of nearest neighbours, the weight function of the neighbours, the

algorithm used to compute the nearest neighbours, and the distance function. On

average, across all four techniques, SCIKIT-LEARN provides the users with the abil-

ity to manipulate almost two times the number of parameters provided by CARET

and three times those made available by WEKA. Overall, we can state that SCIKIT-

5.4. Results 90

LEARN gives the user more control over the parameters and, therefore, the perfor-

mance of these techniques.

We also observe that the number of common parameters that perform the same

functionality across the three libraries is very low. The highest number of common

parameters is only two (i.e., both CART and SVR have two common parameters,

while KNN has only one and LR does not have any in common across the three

libraries). If we consider each pair of libraries, we observe that SCIKIT-LEARN and

WEKA have more parameters in common with respect to CARET, yet the numbers

remain relatively low with the best case being six parameters in common between

SCIKIT-LEARN and WEKA out of the 11 available ones for SVR. Specifically, in

two cases out of 12 there is no common parameters between each pair of libraries.

There is only one parameter in common in three cases, two common parameters in

two cases, three common parameters in three cases. One case has four parameters

in common and the remaining one has six common parameters as described above.

Finding 8: The number of parameters that a user can access through the algo-

rithm’s method signature varies drastically between one ML library and another.

Even in the case where a method signature has a given parameter in common

among these libraries, the parameter name, its default value, or possible categorical

values, might differ across the libraries as further explained below.

Parameter Name. The libraries refer to a given parameter with different names,

except for one case where all three ML libraries use the same name. This makes

it non-trivial for a user to match concepts across different libraries. For example,

the parameter used to specify the distance function for the KNN model is called

metric in SCIKIT-LEARN, while in WEKA it is named -A and in CARET it is not

even provided. Investigating this matter between each pair of libraries, we found

that in only one case, out of a total of 12, two parameters have the same name, five

cases had a single parameter with a common name, while all remaining cases (i.e.,

six cases) did not share any parameters using the same naming convention.

5.4. Results 91

Finding 8: The highest number of matching parameter name for an algorithm

across the libraries does not exceed two parameters.

Parameter Value. We also inspected both the documentation and source code in

order to extract the number of parameters which are set to the same default values in

SCIKIT-LEARN, WEKA and CARET. This investigation revealed that no parameter

has the same default value across all three libraries. We also compared the param-

eters’ default values for each pair of libraries. We found that there were five cases

where only one parameter had the same default value, while all the remaining cases

(i.e., seven cases) did not have any parameters with the same default value. For ex-

ample, SCIKIT-LEARN and WEKA set a different default value in KNN for the num-

ber of nearest neighbours to be explored by the algorithm. SCIKIT-LEARN gives its

n_neighbors parameter a value of five, while WEKA sets its K parameter to one.

Lastly, we observe that even if a given parameter is common among these libraries,

they might provide the users with different value options to set as categorical ones.

For example, when building KNN, WEKA allows the user to weigh neighbours by

the inverse of their distance or by calculating 1− their distance. On the other hand,

SCIKIT-LEARN allows the user to choose the value of this parameter among three

different options: using uniform weights, using the inverse of their distance, or by

creating a user-defined function which allows the user to assign specific weights.

Finding 9: The ML libraries do not have any default parameter value in com-

mon. They also differ on the level of freedom they allow the users in choosing

the value options of the parameters.

Hidden Parameters. A closer look at the implementation of these libraries revealed

that some parameters that are made available to the user through API methods by

one library are instead buried (i.e., hidden) in the source code of another library. By

inspecting the source code, we found that each of WEKA and CARET does not di-

rectly expose to the user a number of parameters (i.e., they have hidden parameters)

5.4. Results 92

that could instead be configured through the API of the other two libraries. Specif-

ically, CARET has one hidden parameter in CART and four hidden ones in SVM,

while WEKA has one in CART. SCIKIT-LEARN is the only library which does not

have any hidden parameters that could have been matched with those made avail-

able by WEKA’s and CARET’s APIs. We also discovered that some of the hidden

parameters in a given library are set to values which are different from the default

values set in the API of another library, and such values cannot be changed unless

one modifies the source code. For example, SCIKIT-LEARN and WEKA provide a

parameter which defines the tolerance for the stopping criterion when building the

SVR model, and both libraries set the default value to 0.001. However, this param-

eter is not provided by CARET’s API, instead it can only be found by investigating

the code, with its value being set to 0.01 in the called function’s body.

Finding 10: Both CARET and WEKA do not expose all the parameters through

the API method and documentation. The values of such hidden parameters often

differ across libraries, and cannot be changed without modifying the source code.

Table 5.6: RQ5. Number of total parameters per ML library and machine learner, and
number of parameters matching the same functionality, name, and default value
across all and each pair of libraries.

CART KNN LR SVM
Total number of parameters

Caret 9 1 1 3
SkLearn 14 8 4 11
Weka 6 5 0 10

Parameters matching functionality across
All libraries 2 1 0 2
SkLearn & Weka 3 3 0 6
SkLearn & Caret 4 1 1 3
Caret & Weka 2 1 0 2

Parameters matching name across
All libraries 0 0 0 1
SkLearn & Weka 0 0 0 1
SkLearn & Caret 1 0 1 2
Caret & Weka 0 1 0 1

Parameters matching default values across
All libraries 0 0 0 0
SkLearn & Weka 0 1 0 1
SkLearn & Caret 1 0 1 1
Caret & Weka 0 0 0 0

5.5. Actionable Conclusions for Software Engineering Researchers 93

5.5 Actionable Conclusions for Software Engineer-

ing Researchers
Essential Reporting: Our findings highlight that the choice of library is just as

critical as the choice of a study’s prediction techniques, benchmarks, validation

procedures and evaluation measures [258], and as such researchers must include a

description of the library used (including the version of the library) in their studies.

In order to facilitate standard replication approaches, and to ensure the scientific

validity of conclusions drawn, it is essential to reverse the declining reporting trend

revealed in our study.

Stronger Conclusion Validity: As our findings reveal, the choice of tool and ver-

sion, although theoretically not influential, can have an influence on a study’s out-

come. Given this potential impact on conclusion instability observed in the SEE

literature, researchers should aim to experiment with multiple libraries when prac-

tical, otherwise report it as a threat. This should become one approach to tackle

potential threats to conclusion validity.

Implications for the Wider Software Engineering Community: Software engi-

neering research has been increasingly relying on artificial intelligence techniques

in the past decade [279]. The impact on conclusion validity revealed by our study

in the case of software effort estimation may well impact other applications of soft-

ware engineering; although we have not studied this, there is nothing in our results

to suggest that this might not be the case. It is therefore important for those working

in other fields of study to conduct similar studies on the impact of library choice on

their software engineering domains. Without this line of work, we can no longer

rely on the conclusion validity of results from any Software Engineering domain

that rests upon a single ML library. Furthermore, if a similar lack of reporting rigor

is revealed, then these other SE domains will also have, not only threats to scientific

conclusions, but also similar replicability problems.

Implications for ML Library Builders: Moreover, our analysis of the API doc-

umentation and code suggests that software engineers building open-source ML li-

braries should follow a more uniform approach by providing a reference to the

5.6. Threats to Validity 94

conceptual technique implemented by a given API; exposing the right number and

type of parameters needed to build a given machine learner, otherwise explain any

differences; testing the implementation of a given conceptual technique which uses

other existing implementations of the same technique as an oracle [167, 166, 280].

5.6 Threats to Validity

Internal validity: To mitigate the threat of missing relevant information in our liter-

ature review (RQ1) as well as API manual analysis (RQ5), two authors examined

all artefacts (i.e., papers, documentation and source code) independently, in order to

ensure reliability and reduce researcher bias. The results were compared at the end

of the process, and any inconsistencies were resolved by a joint analysis and dis-

cussion. Specifically, in order to minimise the probability of excluding a relevant

article, two authors individually inspected a random selection of articles amounting

for 15% of the total excluded papers, and had agreed on the exclusion of all papers

inspected.

Moreover, we provide a detailed description about the methodology we fol-

lowed and additional data in our online repository [262], so that our process can be

reproducible, replicable and extendable.

The experimental setting used to answer RQs2–4 has been mainly dictated by

the goal of soundly analysing the variance in performance solely due to the use

of the different ML libraries investigated. As a result and to assure the validity of

our work, we reverted to designing our own experiments by eliminating random

inducing factors, as opposed to replicating previous work where the aim was not

focused on eliminating these factors. While we acknowledge, that the use of other

experimental settings could improve the overall prediction performance (e.g., us-

ing search-based approaches for hyper-parameter tuning [281, 237]), we explicitly

avoid design choices that could introduce any stochasticity in the results. Nonethe-

less, we designed our empirical study in such a way that portrays comprehensive

and widely used scenarios.

Construct and Conclusion Validity: We follow most recent best practice to

5.7. Conclusions and Future Work 95

evaluate and compare prediction systems [218]. We use the MAE as a measure to

evaluate and compare the predictions. The MAE is unbiased towards both over- and

under-estimation and its use has been recommended [218, 277, 219] as opposed to

other popular measures like MMRE and Pred(25) [282], which have been criticised

for being biased towards underestimations and for behaving very differently when

comparing prediction models [283, 284, 285, 286, 287, 288]. We also carefully

calculated the performance measures and applied statistical tests by verifying all

the required assumptions. We experimented with real-world datasets widely used

to empirically evaluate SEE models, and to ensure a realistic scenario, we did not

use any independent variable that is not known at prediction time and therefore

cannot be used for prediction purposes [219].

External validity: Threats related to the generalizability of our findings may

arise due to the open-source libraries, techniques and datasets we investigated. We

have mitigated these threats by using those that are as representative as possible of

the SEE literature, as well as by making our data and scripts publicly available [262]

so that future studies could reproduce, replicate, and extend our work.

5.7 Conclusions and Future Work

We investigated and compared the use of three open-source ML libraries (CARET,

SCIKIT-LEARN and WEKA) to build SEE prediction models with well-know ma-

chine learners and scenarios most commonly used in the literature.

Our results shed light on the fact that ML library users should consider the

choice of ML library as part of their empirical design, similar to the choice of eval-

uation and validation criteria. We encourage users to justify their use of libraries

which would allow for replicability and would motivate them to seek a deeper un-

derstanding of the ML libraries and algorithms. On the other hand, for this to be

more achievable, the libraries’ documentation should be improved to include more

information about the algorithms implemented and their references. The developers

of these libraries should provide a level of clarity in the documentation that would

be comprehensible by all users regardless of their level of expertise.

5.7. Conclusions and Future Work 96

The deficiencies we highlighted in the current API documentation, provide ini-

tial evidence of the need for further analysis of the existing APIs to derive a set of

standard requirements for ML API documentation and API construction itself, as

done, for example, in previous work for the documentation of Computer Vision

Software [165]. Future studies can investigate the use of refactoring techniques

to automatically recommend to developers suitable variable renaming in order to

increase the consistency across different libraries. We envisage that the use of auto-

mated deep-parameter tuning [289, 290, 291] can aid to automatically improve the

performance of prediction models built using those ML libraries that do not expose

as many parameters in their APIs. Last but not least, future work can assess the

extent to which discordant results arise when using proprietary ML libraries, as well

as the impact of using different libraries for other ML-based software engineering

tasks.

Data Availability
We make the data and the source code of our study publicly available to allow for

replication and extension [262].

Chapter 6

On the Use of Evaluation Measures

for Defect Prediction Studies

In the previous chapter, we assessed how the choice of the machine learning tool

used to build effort prediction models can influence the accuracy of the final es-

timation, and therefore the results of a study. We also wanted to identify other

factors that have been overlooked yet can influence the results of an empirical study

assessing software prediction models. While the current literature in software ef-

fort estimation mostly follow best practices, software defect prediction studies have

faced a few challenges in implementing robust measures. Specifically, the way in

which the performance of prediction models is assessed is still a concern for soft-

ware defect prediction, despite the various warnings have been previously raised.

In this chapter, we further stress on the importance of the choice of appropriate

measures in order to correctly assess strengths and weaknesses of a given defect

prediction model.We also unveil the magnitude of the impact of assessing popular

defect prediction models with several evaluation measures based, for the first time,

on both statistical significance test and effect size analyses.

6.1 Introduction
Software bugs are costly. The most common cost of bugs is poor user experience,

which causes software abandonment. For example, one of the most prominent rea-

sons mobile users delete an application, often after a single use, is due to the app

6.1. Introduction 98

crashing [292]. In the worst-case scenario, their cost can be life-threatening as in

the case of the IT glitch of the UK National Health Service which put 10,000 pa-

tients at risk of being given the wrong medication in 2018 [76]. The earlier a bug is

found and fixed, the less it costs.

Software defect prediction research aims to support engineers in identifying

defective components, early in the development process. An ideal prediction model

is one able to unveil as many defects as possible without raising false alarms (i.e.,

flagging clean components as defective).

However, as shown by Zhang et al. [293], achieving this in practise is chal-

lenging as optimising for one aspect often compromises the other (especially for

problems such as the ones with large negative vs. positive ratios). On the other

hand, defect prediction models with high detect capabilities and high false alarm,

or vice-versa models with low detective capabilities but high precision, can still be

considered effective depending on the business context [294, 295]. For example,

a defect prediction model for safety critical software can be considered effective if

it exhibits a high probability of detecting defects, even if it does so at the cost of

generating a large number of false alarms. Similarly, a model that sacrifices certain

detective capabilities in order to achieve a better precision can be desirable when

there is, for example, a high cost in checking false alarms.

The use of appropriate evaluation measures guides practitioners and re-

searchers to understand whether a given prediction model is fit for their purposes

[23]. However, previous work has raised alarms about the way researchers have em-

ployed these measures to assess the effectiveness of the prediction models proposed

in their work, especially in the presence of imbalanced data [23, 34, 35, 36, 37, 38].

The importance of adopting suitable measures has been often overlooked, thereby

leading to discordant empirical results (i.e., conclusion instability) and hindering

meta-analysis across different studies [296, 297, 298].

In this work we call on the community to reflect better on the selection of

appropriate evaluation measures to support the scientific conclusions that are drawn

on the effectiveness of defect prediction models.

6.1. Introduction 99

To this end, we first analyse how researchers have selected and used these

measures over the last decade by examining 111 defect prediction studies published

between 2010 and 2020. We find that 59% of these studies do not properly motivate

the use of their evaluation measures depending on the business context, and less

than half acknowledge that their findings might change if the results are assessed by

using a different evaluation measure. Furthermore, we find that, despite the warn-

ings raised in previous studies [23, 34, 39], the use of some problematic measures

has become more frequent with time. On the other hand, no growth in the adoption

of more robust measures has been seen.

We also unveil and quantify the impact using different measures might have

in practice by carrying out a comprehensive empirical study. Specifically, we in-

vestigate the use of six of the most widely used evaluation measures in literature

to assess and compare the performance of seven popular defect prediction models

in predicting defects for 15 different real-world software systems (for total of 24

datasets), under three different prediction scenarios.

We find that there is no case where all the measures agree on a same ranking

of prediction models. Moreover, in 118 (83%) and in 122 (85%) out of the 144

cases analysed, the ranking produced by a given evaluation measure varies from the

rankings produced by all the other evaluation measures, according to the Wilcoxon

statistical significance test and the Â12 the effect size measure, respectively. Besides,

we find that assessing model performance based on a given measure would have

changed the rank of a specific technique between 61% and 90% of the time, on

average, depending on the measure used.

Overall, these results highlight the dramatic impact on the ability to draw

meaningful conclusions across studies using different measures often not relevant

or suitable to the business context.

We encourage researchers to select evaluation measures that fit the study’s spe-

cific aim, model and data; as well as to include a more comprehensive and balanced

measure to give an overall view of the performance of the proposed approach. This

enables researchers and practitioners to assess and decide whether proposals made

6.2. Related Work 100

in previous work can be applied for purposes different than the ones they were

originally intended for. The rest of the chapter is organised as follows. We first

provide the reader with some background on previous work discussing the matters

arising from the use of different evaluation measures in defect prediction studies

(Section 6.2), and with a comprehensive overview of the different metrics used in

the literature (Section 6.3). The core contributions of our study are presented in

Sections 6.4 to 6.6. In Section 6.4 we report our findings on the use of evaluation

measures in 111 defect prediction studies published over the last decade. Whereas

in Section 6.5 we describe the design of the empirical study we conducted and dis-

cuss its results in Section 6.6. Section 6.7 discusses possible threats to the validity of

our study. Section 6.8 concludes this chapter and presents some recommendations

for the selection of evaluation measures in future defect prediction studies.

6.2 Related Work

A few studies have highlighted possible differences resulting from the use of dif-

ferent evaluation measures, however no previous study has provided empirical ev-

idence on the magnitude of such differences nor its statistical significance, and the

effect it can potentially have on findings across various studies. In the following,

we discuss these studies and highlight further differences with ours.

In 2008, Jiang et al. [39] provided a review of evaluation measures for defect

prediction commonly used at that time, as well as an initial comparison of their use

on the NASA data. They highlighted possible threats coming from the use of cer-

tain/different measures and suggested that evaluation measures should be carefully

chosen and interpreted based on the specific needs of the project. Twelve years later,

our analysis of the work published between 2010 and 2020 reveals that the threat

has remained un-tackled by the community.

Moreover, our empirical study includes measures proposed more recently, as

well as a more diverse and recent set of data and for the first time, the comparison

is entirely based on statistical significant tests and the effect size measure.

Subsequently, Jingxiu and Shepperd [215] performed a meta-analysis of eight

6.2. Related Work 101

papers on defect prediction in order to understand the differences resulting from the

use of F-measure as opposed to MCC. They illustrated potential biases by using

confusion matrices that portray different scenarios and found that the use of F-

measure is problematic. However they did not quantify the differences resulting

from the comparison, in fact as they state, their study "captures a change in direction

of the effect, it does not, however, capture the magnitude of the effect"[215]). In

our study, we specifically study the magnitude of the effect of using six different

evaluation measures (including F-measure and MCC) based on both statistical and

effect size analyses. This analysis is crucial to provide solid empirical evidence

on whether the use of a measure over another significantly changes the way model

performance is interpreted with respect to the business needs.

Other studies not directly targeting this issue yet highlighting that the problem

exists are those by Arisholm et al. [34], Xuan et al. [299], and Hall et al. [23].

Arisholm et al. [34] investigated and compared the use of different classifiers and

features to predict cross-release defects of an industrial legacy system. To this end,

they used different evaluation measures (including Accuracy, Precision, Recall and

ROC), and observed that what is considered the best model depends on the criteria

that are used to evaluate and compare the models. Following the literature survey

conducted by Hall et al. [23], Bowes et al. [300] proposed DConfusion, an approach

used to re-compute the confusion matrix of studies provided that certain subsets of

evaluation measures are present. While this is quite beneficial for studies to evaluate

previously proposed approaches, we could not apply it in our work for two main

reasons:

- In order to minimise any stochasticity in performance resulting from the use

of different design choices, we opted to produce an empirical study where

are evaluation measures are used in an identical empirical environment (i.e.,

same data, validation approach, data splits, etc.)

- During our investigation of the defect prediction literature between 2010 and

2020, we identified that more than 30% of the studies use only one evaluation

measure, while a total of 71% of studies do not use more than three evaluation

6.3. A Hitchhiker’s Guide to Defect Prediction Evaluation Measures 102

measures, rendering it very difficult to use DConfusion in our case.

Xuan et al. [299] came to a similar conclusion by investigating the perfor-

mance of several classifiers for within-project defect prediction in 10 open-source

software systems, based on a large number of evaluation measures in order to find

the best performing classifier. The comprehensive literature survey by Hall et al.

[23] reviewed defect prediction studies published up to 2010. Despite the fact that

the primary goal of their survey was not to investigate bias resulting from the use

of different evaluation measures, they do observe that this is an issue and provide

some guidelines to prevent it. As this study was published in 2012, one would have

expected subsequent research to adopt/follow these guidelines, however, our analy-

sis of the work published in the last decade shows that this has not been the case as

we further articulate in Section 6.4.

6.3 A Hitchhiker’s Guide to Defect Prediction Eval-

uation Measures
In this section we describe the most common binary classification evaluation mea-

sures, highlighting strengths and weaknesses of their use for defect prediction.

The formulae of these measures are reported in Table 6.1 and they originate

from the confusion matrix (see Table 7.1). This matrix describes four types of

instances: TP, defective modules correctly classified as defective; FP, non-defective

modules wrongly classified as defective; FN, defective modules wrongly classified

as non-defective; TN, non-defective modules correctly classified as non-defective.

The Accuracy measure has been one of the first measures used to assess de-

fect prediction models performance, but it is nowadays widely recognised that this

is a biased measure for defect prediction models and thus should not be used. The

reason is that this measure is very sensitive to class imbalance and defect prediction

data is very often imbalanced [39]. A simple trick to maximize accuracy when data

is imbalanced is to always predict the instances as non-defective.

Subsequently, Precision and Recall and their harmonic mean, the

F-measure (F1), have been adopted in numerous studies. These measures con-

6.3. A Hitchhiker’s Guide to Defect Prediction Evaluation Measures 103

Table 6.1: The definition of the measures.

Evaluation Measure Definition

AUC
Area under the Receiver

Operating Characteristic Curve

Recall (PD) T P
T P+FN

Precision T P
T P+FP

F1 2× Precision×PD
Precision+PD

FPR (a.k.a PF) FP
FP+T N G-measure

2×PD×(1−PF)
PD+(1−PF)

Balance 1−
√

(0−FPR)2+(1−PD)2
√

2

MCC
T P×T N−FP×FN√

(T P+FP)(T P+FN)(T N+FP)(T N+FN)

Accuracy T P+T N
T P+T N+FP+FN

G-mean
√
PD× (1−FPR)

sider the positive (i.e., defective) class as the only class of interest. Similarly, False

Positive Rate (FPR), which is also known as Type I Error Rate, is also a single-focus

measure and, as such, it explains only one aspect of a classifier.

While, this can be acceptable in some domains, like information retrieval,

where the number of irrelevant documents not correctly retrieved is hard to quantify

(i.e., it is essentially unbounded), it would not be acceptable in the medical domain,

for example, where classifying a sick person as healthy is just as important as clas-

sifying a healthy person as sick. The latter can also be the case for defect prediction

since the correct identification of negative classes (non-defective) becomes impor-

tant when the cost of inspecting the components incorrectly classified as defective

Table 6.2: Confusion Matrix for Binary Classification.

Predicted Value
Actual Value Defective Non-Defective

Defective True Positive (TP) False Negative (FN)
Non-Defective False Positive (FP) True Negative (TN)

6.3. A Hitchhiker’s Guide to Defect Prediction Evaluation Measures 104

(i.e., false alarms) is high. These examples suggest that the choice of assessing

a model with Precision, Recall, F1 or (FPR) might vary according to the

business needs.

The knowledge of the business domain can indeed guide in choosing the most

appropriate way to evaluate whether a given prediction model is effective for the

problem at hand. In other words, the relative importance assigned to precision and

recall is an aspect of the problem. Weighted measures can be used to control such

a delicate balance. An example is the Fβ measure, which can be used to control

the balance of precision and recall by setting a β coefficient: Fβ = ((1+ β 2) ∗

Precision ∗Recall)/(β 2 ∗Precision+Recall). However, determining meaningful

weights is not trivial in practice [39].

Using only measures that give importance to only one class, might lead to bi-

ased evaluation when assessing prediction models in presence of highly imbalanced

data [295]. In such a context, a good classifier is expected to produce high accuracy

in detecting the defect class without significantly degrading the accuracy of detect-

ing the non-defect class [38]. In other words, probability of detection (or Recall)

and probability of false alarm (or FPR) are important performance metrics in the

class imbalance context, and it is usually recommended to use balanced measures,

such as G-measure and G-mean2, to properly assess the model’s performance.

These measures give equal importance to the positive and the negative class, i.e.,

they are formulated based taking into account both probability of detection and

probability of false alarm, and thereby are able to show how much balance between

two metrics is achieved overall.

Similarly, the distance to heaven (d2h) measure (a.k.a. Balance =

1 - d2h) computes the distance of FPR and Recall to the ideal (heaven) values

of FPR=0 and Recall=1. Therefore, the smaller d2h (higher Balance), the better

the performance of the classifier. Based on the definition of d2h, it is clear that a

high Recall leads to a lower d2h; whereas a high FPR results in a higher d2h.

Ranking measures have also been used to assess prediction models. The most

6.3. A Hitchhiker’s Guide to Defect Prediction Evaluation Measures 105

popular one is the Area Under the ROC1 Curve (AUC), which can be interpreted

as the probability that a model ranks a random positive observation higher than a

random negative observation. The AUC is a reliable heuristic to evaluate and com-

pare the overall performance of classification models as it is scale-invariant (i.e.,

it measures how well predictions are ranked, rather than their absolute values) and

threshold-invariant (i.e., it measures the quality of the model’s predictions irrespec-

tive of the exact classification threshold chosen). However, it is not applicable in

practice since a deployed classifier must have a particular classification threshold

[301]. Thus, unless a classifier outperforms another for all possible threshold val-

ues, AUC cannot be used to compare and rank classifiers [99, 302].

A different approach based on statistics, is the phi-coefficient (φ) [303], also

known as Matthews Correlation Coefficient (MCC) when applied to classifiers [304].

This approach considers the true class and the predicted class as two (binary) vari-

ables, and computes their correlation coefficient, in a similar way to the computation

of the correlation coefficient between any two variables. The higher the correlation

between true and predicted values, the better the prediction. MCC has the nice prop-

erty of being perfectly symmetric, i.e., no class is more important than the other,

and switching the positive and negative class yields to a same MCC value. Since

MCC takes into account all four values in the confusion matrix, a coefficient close

to 1 means that both the positive and negative classes are predicted accurately, even

when the data is imbalanced.

The use of MCC allows to capture overall model performance, and thus it is

often recommended for evaluating the performance of classification models across

different tasks or in the presence of imbalanced data. Previous studies have argued

that using MCC is more appropriate than using F1, (or AUC), alone for defect predic-

tion studies [305, 215], yet our survey, (described in Section 6.4), shows that MCC

has not been widely adopted yet (see Figure 6.2). A detailed comparison of MCC,

F1 and AUC can be found elsewhere [37, 305, 215, 306].

The above measures are easy to compute, and this has generated the use of a

1The Receiver Operating Characteristic (ROC) is a graph showing model’s performance in terms
of True Positive Rate and False Positive Rate at all classification thresholds.

6.4. Investigating the Use of Evaluation Measures in the Defect Prediction Literature106

variety of different measures over the years, even if they were not always related to

the specific model usage requirements as we further articulate in the next section.

6.4 Investigating the Use of Evaluation Measures in

the Defect Prediction Literature
As discussed in Section 6.2, the use of different evaluation measures has raised a

concern within the defect prediction community that dates back to over 10 years ago

[39], but what has changed since? and how have we handled this crucial aspect in

our studies? In the following we aim at answering these questions by reviewing

prior studies published over the last decade.

6.4.1 Search Methodology

We used Scopus to search for research articles published between 2010 and 2020

(June 2nd) by using the query: ("Defect" || "Fault" || "Bug") & ("Prediction" ||

"Prone"). This search resulted in papers. Among these, we manually filter out

irrelevant publications by following the three step process adopted in previous sur-

veys [261, 307] as described below:

1. Title: First, we exclude all publications whose title clearly does not match

our inclusion criteria;

2. Abstract: Second, we examine the abstract of every remaining publications.

Publications whose abstract does not meet our inclusion criteria are excluded

at this step;

3. Body: We then read, in full, all publications that had passed the previous two

steps. Manuscripts are excluded if their content does not satisfy the inclusion

criteria or contribute to this survey.

To ensure that the publications included in this survey are relevant to the con-

text of binary defect prediction, at each of the above steps we apply the following

inclusion criteria:

- The publication should investigate an experimental study of software defect

prediction models, metrics or data.

6.4. Investigating the Use of Evaluation Measures in the Defect Prediction Literature107

- The publication predicts a dichotomous outcome (i.e., defect or not defect-

prone).

Based on the above three-stage process and inclusion criteria, we iteratively

reduce the amount of publications obtained from the Scopus search, until we end

up with a set of 111 publications investigated herein. We provide the full list of

papers in our online appendix [308].

We then manually examine the 111 papers to extract relevant information. In

particular, in order to identify which evaluation measures were used in each study,

and the rational for them, we analyze the section discussing the evaluation mea-

sure/procedure.

We consider a study to have explained its use of measures when it provides a

clear reasoning for the choice of measures as opposed to others, or when otherwise,

the reason is obvious from the research context.

Finally, we proceed by checking whether the study mentions any challenge

arising from the choice of the evaluation measure(s), and hence whether any miti-

gation was put in place. We consider a study to have acknowledged and mitigated

the importance of choosing proper evaluation measures if it discusses, for exam-

ple, limitations of the used measure, the existence of measures other than the ones

used, the fact that different measures might yield different results, the necessity to

complement the used measures with additional ones, etc.

6.4.2 Results

We report the number of papers that use a specific measure in Table 6.3 as well

as the number of studies that use one or multiple measures in Figure 6.1, and the

frequency of measure use over time in Figure 6.2.

We can observe, from Table 6.3, that more than nine different evaluation mea-

sures have been used to assess defect prediction models over the past 10 years.

The most used measures are AUC and F1 (used in 60% and 59% of papers,

respectively), followed by Recall and Precision (used in 57% and 43% of

papers, respectively). As explained in Section 6.3, measures such as AUC and

F1 do not portray the full confusion-matrix and can lead to biased results when

6.4. Investigating the Use of Evaluation Measures in the Defect Prediction Literature108

Table 6.3: Number of studies using a given measure.

Evaluation Measure No. of Studies (%)
AUC 60 (54%)
F1 59 (53%)
Recall (PD) 57 (51%)
Precision 43 (39%)
FPR (a.k.a. PF) 19 (17%)
G-measure 12 (11%)
Balance 10 (9%)
MCC 13 (12%)
Accuracy 12 (11%)
G-mean 9 (8%)
Others 10 (9%)

used for assessing classifier performance on unbalanced datasets, which is often the

case for defect prediction data. A variety of symmetric and robust measures exist

[99], however we found (see Table 6.3) that they have been adopted by much fewer

studies (e.g., MCC 12%, G-measure 11%, G-mean 8%, Balance 9%).

Moreover, as shown in Figure 6.1, 30% of the papers analysed use only one

measure to evaluate defect prediction models, among which AUC is the most com-

mon (53%), followed by F1 (33%).

Using only one measure might affect the validity of these studies especially if

such measure is among those that have been shown to be problematic (see Section

6.3). This is the case of AUC and F1, which might be biased when imbalanced data

is used, as further explained in Section 6.3.

Figure 6.1: Number of measures used in prior studies.

6.4. Investigating the Use of Evaluation Measures in the Defect Prediction Literature109

The threat might still be present in past studies that use more than one mea-

sure. Indeed, among the 14 studies (13%) which use two measures, four of them

(29%) use AUC and F1 together; and among the 31 papers (28%) using three mea-

sures, 13 of them (42%) use F1 and its constituent components (i.e., Recall and

Precision). Furthermore, when analysing the studies that use four measures,

10 out of 24 (42%) use a set that may still be biased as it includes a subset of

Accuracy, F1, Precision, Recall, and AUC. This is somehow worrying

since these measures are known to be problematic [301, 39, 309, 310], as explained

in Section 6.3. Their use should be complemented with the use of balanced mea-

sures such as G-measure or MCC.

Together, these results highlight that 56 out of the 111 papers examined (51%)

might have drawn different conclusions had they considered a more comprehensive

set of measures.

Further, when observing the use of the evaluation measures over the years,

presented in Figure 6.2, results show that despite the warnings raised in previous

studies about the use of AUC, F1, and its constituents [301, 39, 309, 310], their use

has actually become more frequent with time. On the other hand, we do not observe

as big of a growth in the adoption of more robust measures advocated in previous

work [99]. For example, only one study has used MCC before 2016 and it has then

been used at an average of less than three times per year since. This could have

resulted from the fact that studies usually justify the usage of measures based on

previous studies, and while measures like AUC, F1 were popular in the past, the

trend of following previous study practices creates an increasing trajectory.

Despite the warnings raised in previous work [23, 34, 35, 37], the results of our

literature review reveal that the choice of evaluation measures is still a major con-

cern in the community and that it has only been partially tackled so far. Over half

of the studies (59%) do not justify the use of the measures, based on the aim of the

study, neither the models investigated or the data at hand. 52% of studies also do not

acknowledge that using different measures could lead to different results. Among

those studies which acknowledge the threat (48%), 41 put in place some form of

6.5. Empirical Study Design 110

Figure 6.2: The frequency of measure use for 2010-2020. Blue lines signify an increase in
measure usage while the red lines denote a decrease.

mitigation. However, only 15 out of the 41 studies recommend the use of unbi-

ased measures, while the majority propose mitigation which might be perceived as

unsatisfactory since they recommend, for example, that future work should inves-

tigate the use of other measures, or the use of measures widely seen in previous

work, or the use of threshold independent measures, which has been criticised for

not being applicable in practice since to deploy a classifier one must use a specific

classification threshold [99, 301] as we explain in Section 6.3.

6.5 Empirical Study Design
In this section, we present a large-scale empirical study based on both, statistical

tests and effect size to investigate the extent to which the conclusion of a study

comparing the performance of defect prediction techniques may change based on

the evaluation measure used to make the comparison.

This study investigates two research questions (RQs) and involves the use of

seven classification techniques, 15 publicly available datasets, and six evaluation

measures validated on three different defect prediction scenarios, as detailed in the

6.5. Empirical Study Design 111

following subsections.

6.5.1 Research Questions

We pose two research questions investigating the use of the evaluation measures

most used in prior studies (i.e., AUC, Balance, F1, G-measure, MCC, and FPR

according to the literature 2 to measure the performance of seven different prediction

techniques, described in Section 6.5.5.

Our first research question investigates, precisely, whether each of the six eval-

uation measures would rank the seven techniques in the same order. This is crucial

because if these measures turn out to yield different rankings, then the conclusions

made by previous studies using certain measures would change at a significant level.

Therefore, we first ask:

RQ1. Ranking Disagreement: How often would the ranking of techniques pro-

duced by a given measure differ from the ranking produced by another measure?

To address RQ1, we first produce a ranking of the prediction techniques per

measure according to the Wilcoxon Signed-Rank test and the Vargha and Delaney’s

Â12 non-parametric effect size [311]. Then, based on these rankings, we compute

the ranking disagreement for each measure by counting the number of times it pro-

duces a same ranking with respect to using other measures.

The ranking disagreement tells us the extent to which a measure agrees with

others. If the rank disagreement of a given measure is high, this would suggest that

there is a non-trivial error when using different measures.

Our second research question analyses this error at a finer grain to gather fur-

ther insights on the extent to which these rankings differ:

RQ2. Rank Disruption: What is the percentage of cases in which a rank of

a specific technique, based on a given measure, changes when assessed using the

other measures?

To assess the rank disruption of a ranking provided by a given evaluation mea-

sure, we assess the rank change, i.e., a prediction technique that would be believed

2We do not want to inflate our results, therefore we do not include Accuracy, Recall and
Precision given they would generate opposing rankings due to the way they are defined.

6.5. Empirical Study Design 112

to be better than others when using a given evaluation measure becomes worse when

using a different measure. If the rank disruption proves to be high, some scientific

conclusions drawn in previous studies could be reversed when accounting for the

threat to validity posed by the choice of the evaluation measure.

We explain in details the way we compute the rank disagreement and rank

disruption in Section 6.5.2.

6.5.2 Ranking Disagreement and Rank Disruption

To compute the ranking disagreement and the rank disruption, we run the prediction

models on each dataset and evaluate their performance with each of the six evalua-

tion measures under investigation. Then we apply the Wilcoxon test and the Vargha

and Delaney’s Â12 non-parametric effect size, and rank the prediction models, per

measure, based on the results of these analyses. Once the rankings are obtained we

compute:

• the ranking disagreement of a given measure by analysing the number of

times its ranking varies from the rankings produced by each of the other eval-

uation measures per dataset. The ranking disagreement of a given measure

varies from 0 (all measures agree on the same ranking) to 1 (all measures

disagree, thus each ranking is unique).

• the rank disruption of a given measure by counting the number of times the

rank of a specific technique changes when assessed according to each of the

other measures.

In the following, we explain in detail how we computed the rankings based on

the Wilcoxon test and Â12 effect size.

Given an evaluation measure, we perform the Wilcoxon Signed-Rank test

(α < 0.05) on the results obtained by each pair of techniques by testing the null

hypothesis: “The results achieved by predictionModelx in terms of a given evalu-

ation measure m are worse than those achieved by predictionModely". We, then,

summarise the results of this test by using the following win-tie-loss procedure [10]:

6.5. Empirical Study Design 113

Table 6.4: An example of the procedure used to compute the ranking disagreement and the
rank disruption.

M1 M2 M3
Rank 1 Ta Tc Tc
Rank 2 Tb, Tc Ta Tb
Rank 3 - Tb Ta

We count the number of times a prediction model scored a p–value<0.05 (win),

p–value>0.95 (loss), and 0.05≤ p–value ≥0.95 (tie). Finally, we rank the tech-

niques based on the highest number of wins, where any ties are broken based on

the number of losses. For example, based on the win-tie-loss procedure, Table 6.4

shows that according to measure M1, technique Ta is the best performing one since

it achieves the highest number of wins when compared to techniques Tb and Tc.

Whereas, technique Tc is said to be the best performing one according to measures

M2 and M3 given that this technique obtains the highest number of wins. However,

all three measures (i.e., M1, M2 and M3) disagree on the second and third rank. We

also produce a ranking of the prediction models based on the Vargha and Delaney’s

Â12 non-parametric effect size [311] to validate whether the differences highlighted

by Wilcoxon test are worthy of interest.

Similarly to the procedure described above, we compute the Â12 effect size for

each pair of techniques resulting in a statistically significant difference according to

the Wilcoxon Signed-Rank test (α < 0.05). The Â12 statistic measures the probabil-

ity that an algorithm A yields better values for a given performance measure M than

that of another algorithm B. If the two algorithms are equivalent, then Â12 = 0.5.

Given the first algorithm performing better than the second, Â12 is considered small

for 0.6≤ Â12 < 0.7, medium for 0.7 < Â12 < 0.8, and large for Â12 ≥ 0.8, although

these thresholds are somewhat arbitrary [2]. Based on these thresholds, we count

the number of small, medium and large effect sizes obtained by each prediction

model, and rank the techniques based on the highest number of large effect size,

where ties are broken based on the number of medium and small effect sizes in this

order.

Following the above procedure, for each dataset we obtain a set of six rank-

6.5. Empirical Study Design 114

ings (i.e., one per evaluation measure) based on the Wilcoxon test and a set of six

rankings based on the Â12. For each of these sets, we manually inspect the rankings

produced by each of the measures to compute the ranking disagreement and rank

disruption, as explained above.

6.5.3 Datasets

To answer RQ1, we carry out a large-scale empirical study using a total of 15

datasets available from two public repositories: NASA [102] and Realistic [312].

The former has been made publicly available in the early 2000 and contains soft-

ware defect data about industrial NASA software systems, which have been widely

used by the defect prediction community since. The latter was made publicly avail-

able in 2019 and consists of open-source projects characterised by a wider set of

features than the ones extracted from the NASA data.

All data used herein was curated in previous work by following rigorous pro-

cesses and made publicly available [102, 312]. In particular, we use six NASA

datasets from the work of Petrić et al. [102], who applied rules to clean erroneous

data from the original NASA repository [58], and data about nine open-source soft-

ware systems, collected by Yatish et al. to ensure robust defect counts [312].These

datasets have different nature and size: They vary in application domain, age, total

number of modules (ranging from 94 to 8,847) and features (ranging from 38 to

65), and percentage of defective modules they contain as summarised in Table 7.2.

6.5.4 Validation Scenarios

Our experimental design tries to reflect as much as possible the scenarios where

defect prediction has been applied so far. To this end we consider three common

validation scenarios: Within-Project Defect Prediction, Cross-Version Defect pre-

diction and Cross-Project Defect Prediction.

For the NASA datasets, given that each system consists of a single version, we

investigate the Within-Project scenario applying the Hold-Out validation process

where the data is randomly split into 80% training set and the other 20% which is

used for testing. This procedure is repeated 30 times in order to reduce any possible

6.5. Empirical Study Design 115

bias resulting from the validation splits [311].

For the Realistic datasets, given that each system consists of multiple releases

we investigate both the Cross-Version and Cross-Project scenarios. In the Cross-

Version scenario, for each of the software systems, we train on one release and test

on a different one, i.e., we train on version vx and test on version vy, where x < y

as done in previous work (see e.g., [313]). In the Cross-Project scenario, for each

of the software systems, we consider the version with the higher release number as

the test set and train the model on the union of the versions of the other datasets

with a lower release number. In both scenarios, the versions used as train and test

sets are not subsequent releases nor are they the system’s most recent ones. In

addition, there is always a window of at least five months between these releases.

This reduces the likelihood of the snoring effect or unrealistic labelling as noted in

previous studies [314, 315, 316].

Table 6.5: Datasets used in our empirical study.

Repository Dataset Modules (% defective)

NASA

CM1 296 (12.84%)
KC3 123 (13.00%)
MW1 253 (10.67%)
PC1 661 (7.87%)
PC3 1043 (12.18%)
PC5 94 (19.15%)

Realistic

Activemq_5.3.0 2367 (10.90%)
Activemq_5.8.0 3420 (6.02%)
Camel_2.10.0 7914 (2.91%)
Camel_2.11.0 8846 (2.17%)
Derby_10.3.1.4 2206 (30.33%)
Derby_10.5.1.1 2705 (14.16%)
Groovy_1_6_beta_1 821 (8.53%)
Groovy_1_6_beta_2 884 (8.60%)
Hbase_0.95.0 1669 (22.95%)
Hbase_0.95.2 1834 (26.34%)
Hive_0.10.0 1560 (11.28%)
Hive_0.12.0 2662 (8.00 %)
Jruby_1.5.0 1131 (7.25%)
Jruby_1.7.0 1614 (5.39%)
Lucene_3.0 1337 (11.59%)
Lucene_3.1 2806 (3.81%)
Wicket_1.3.0-beta2 1763 (7.37%)
Wicket_1.5.3 2578 (4.07%)

6.5. Empirical Study Design 116

6.5.5 Techniques

In order to study the magnitude of any discrepancy resulting from the use of differ-

ent evaluation measures, we consider a variety of techniques, namely Dummy, Lo-

gistic Regression (LR), Naïve Bayes (NB), Random Forest (RF) and Support Vector

Machine (SVM) implemented in Scikit-learn 0.20.2 (Python 3.6.8),

belonging to different classifier families. These are widely studied techniques in the

defect prediction literature [23, 317]. Indeed, the chosen classifiers are also repre-

sentative of those employed by the surveyed papers (see Section 6.4), as we found

that LR is used in 67% of the surveyed papers (74/111), NB in 62% (69/111), RF

in 47% (52/111) and SVM in 38% (42/111). We briefly describe them below:

Dummy is a simple baseline which generates predictions uniformly at random. We

use the Scikit-learn’s dummy class.

Naïve Bayes is a statistical classifier that uses the combined probabilities of the

different attributes to predict the target variable, based on the principle of Maximum

a Posteriori [318]. We use the Scikit-learn’s naive_bayes class.

Logistic Regression is a statistical technique, introduced as an extension to linear

regression, which models the probabilities for problems with a dichotomous depen-

dent variable [319]. We use the Scikit-learn’s linear_model class.

Random Forest is a decision tree-based classifier consisting of an ensemble of tree

predictors [320]. It classifies a new instance by aggregating the predictions made

by its decision trees. Each tree is constructed by randomly sampling N cases, with

replacement, from the N sized training set. RF is known to perform well on large

datasets and to be robust to noise. We use the RF classifier from the ensemble

class in Scikit-learn. We also perform hyperparameter tuning, denoted as RFT ,

where we explore different values for the following parameters:

- min_samples_leaf = [1, 20],

- min_samples_split = [2, 20],

- max_leaf_nodes = [default=None, 10, 50],

- n_estimators = [50, 75, 100, 125, 150]

Support Vector Machine is a widely known classification technique [270]. A lin-

6.6. Empirical Study Results 117

ear model of this technique uses a hyperplane in order to separate data points into

two categories. However, in many cases there might be several hyperplanes that

can correctly separate the data. Hence, SVM seeks to find the hyperplane that has

the largest margin, in order to achieve a maximum separation between the two cate-

gories. When the data is not linearly separable, SVM does the mapping from input

space to feature space by using a kernel function instead of an inner product. In this

work, we use Scikit-learn’s svm class. We also perform hyperparameter tuning for

this technique, denoted as SVMT , where we try different values for C and γ with

the Radial Basis Function kernel. Specifically, we explore the following grids:

- C = [0.01, 0.5, 1, 512, 8000, 32000],

- γ = [1/n_features, 0.000001, 0.0001, 0.001, 0.01, 0.1, 1, 2, 4, 8]

6.6 Empirical Study Results
In this section we report and discuss the results we obtained carrying out the empir-

ical study described in Section 6.5.

6.6.1 RQ1. Ranking Disagreement

To address RQ1 we compare the performance of Dummy, LR, NB, RF, RFT , SVM,

SVMT experimenting with the six most widely used evaluation measures in litera-

ture (shown in Table 6.3). The results of this comparison, based on both statistical

significance test and effect size, are summarised in Tables 6.6 (Within-Project sce-

nario) and 6.7 (Cross-Version and Cross-Project scenarios), and discussed in detail

in the rest of the section. Each table reports whether a given measure disagrees

with “All", “More than half, “Less than a half", or “None" of the other measures

considered on a given dataset in our study3.

When looking at the ranking of techniques obtained by each evaluation mea-

sure, based on the Wilcoxon test, our results show that across all scenarios (i.e., out

of the 24 datasets) examined there is no case where the use of each measure leads

to a same ranking of the techniques, i.e., the ranking disagreement is never 0. On

3Note that for the sake of space, we omit the columns “None" and “Less than a half" as our
results show that there are no such cases.

6.6. Empirical Study Results 118

Table 6.6: RQ1. Ranking disagreement results for the Within-Project scenario. For each
dataset, we report whether a given evaluation measure disagrees with more than
a half, or all the other measures, based on statistical significance and effect size
analyses.

>Half All
Wilcoxon Eff. Size Wilcoxon Eff. Size

CM1

F1 X X
G-meas. X X
MCC X X
Balance X X
AUC X X
FPR X X

KC3

F1 X X
G-meas. X X
MCC X X
Balance X X
AUC X X
FPR X X

MW1

F1 X X
G-meas. X X
MCC X X
Balance X X
AUC X X
FPR X X

PC1

F1 X X
G-meas. X X
MCC X X
Balance X X
AUC X X
FPR X X

PC3

F1 X X
G-meas. X X
MCC X X
Balance X X
AUC X X
FPR X X

PC5

F1 X X
G-meas. X X
MCC X X
Balance X X
AUC X X
FPR X X

the other hand, the number of times the ranking disagreement = 1 (i.e., a measure

provides a unique ranking) is quite high as it adds up to a total of 119 out of the 144

cases analysed (83%). In the remaining cases, the ranking disagreement is always

either greater or equal to 0.60.

Similar observations hold when analysing the results based on the Vargha and

Delaney’s Â12 non-parametric effect size measure. These results also show that

6.6. Empirical Study Results 119

there is no case where all the measures produce the same ranking (i.e., ranking

disagreement is never 0). When computing the number of times the ranking dis-

agreement = 1, results show that this happens very frequently, specifically on a

total of 123 out of the 144 cases studied (85%). The ranking disagreement on the

remaining cases is always either equal or greater than 0.6. Below we discuss the

specific results obtained in each of the scenarios.

When looking at the results obtained for the Within-Project scenario based on

the Wilcoxon test, we observe that each of the measures produces a unique ranking

on two out of the six NASA datasets (see Table 6.6). Whereas, four out of six mea-

sures produce a unique ranking on the other four datasets and only two (i.e., Bal-

ance and G-measure) agree with each other on the same ranking. An even stronger

discordance than that shown by the Wilcoxon test is observed when analysing the

results based on the Â12 non-parametric effect size measure for this scenario. We

found an agreement between two measures only (i.e., F1 and G-measure) on only

two datasets out of the six under study. Whereas, each measure produces a unique

ranking in all other cases (i.e., 34 out of 36) considered.

Based on the results for the Cross-Version scenario, shown in Table 6.7, we

observe that, according to the Wilcoxon statistical significance test, each of the

measures produces a unique ranking for four out of out nine datasets, while on the

remaining ones, only two measures agree (G-measure and Balance on three datasets,

F1 and Balance on one, and F1 and MCC on the other one). In the case of the anal-

ysis based on the Â12 effect size measure, each of the evaluation measures studied

produces a unique ranking on five datasets. Similarly to the results observed by the

Wilcoxon test, a maximum of two evaluation measures (the same ones denoted by

the Wilcoxon test) agree on the remaining datasets. Specifically, G-measure and

Balance agree on three of the remaining four datasets while F1 and Balance agree

on another dataset and F1 and MCC on the remaining one.

The results based on the Wilcoxon test, in the Cross-Project scenario (shown

in Table 6.7) are more discordant compared to those observed in the cross-version

scenario. A unique ranking is produced by each measure on six out of the nine

6.6. Empirical Study Results 120

dataset studied. On two out of the remaining three datasets, only two measures

agree on a single ranking (i.e., Balance and G-measure). Whereas on the remaining

dataset, Balance, F1 and G-measure agree on a ranking while the other measures

provide unique ones. In addition, the Â12 effect size, in line with the results based

on the Wilcoxon Test, shows more discordant results compared to the cross-version

scenario. While no measure agrees on any ranking for six of the datasets (i.e., each

of the measures provides a unique ranking), at most two evaluation measures (i.e.,

Balance and G-measure) agree on a ranking for two of the remaining three datasets.

As for the remaining dataset, results show that Balance, F1 and G-measure agree on

the same ranking whereas the other evaluation measures produce unique rankings.

Answer to RQ1: There is no case where all evaluation measures produce

the same ranking. In fact, the evaluation measures produce a unique ranking in

83% and 85% of the cases according to the analysis based on the Wilcoxon test

and Â12 effect size, respectively. There are only very few cases where at most

three (less than 1% according to both statistical and effect size analyses) or two

evaluation measures (8% and 5% according to the Wilcoxon test and effect size,

respectively) provide the same ranking, but even in those cases it is not always

the same set of evaluation measures that agree on a ranking.

6.6.2 RQ2. Rank Disruption

Tables 6.8 and 6.9 report the rank disruption values obtained per measure per dataset

for all scenarios when analysed based on the Wilcoxon Test and Vargha and De-

laney’s Â12 effect size results, respectively.

6.6. Empirical Study Results 121

Table 6.8: RQ2. Percentage of rank disruption per measure based on statistical significance
analysis.

Dataset AUC Balance F1 FPR G-meas. MCC

W
ith

in
-P

ro
je

ct CM1 69% 69% 74% 66% 66% 86%
KC3 80% 71% 86% 71% 86% 91%
MW1 63% 63% 69% 71% 71% 91%
PC1 57% 49% 74% 49% 66% 71%
PC3 77% 66% 91% 66% 83% 80%
PC5 71% 66% 69% 66% 86% 77%
Average 70% 64% 77% 65% 76% 83%

C
ro

ss
-V

er
si

on

ActiveMQ 69% 80% 71% 71% 80% 86%
Camel 83% 69% 80% 71% 80% 86%
Derby 86% 63% 80% 63% 89% 94%
Groovy 94% 71% 77% 71% 91% 80%
Hbase 71% 83% 74% 94% 91% 100%
Hive 60% 66% 60% 60% 71% 100%
JRuby 69% 80% 69% 74% 83% 89%
Lucene 86% 63% 74% 63% 77% 100%
Wicket 80% 80% 69% 80% 74% 86%
Average 77% 73% 73% 72% 82% 91%

C
ro

ss
-P

ro
je

ct

ActiveMQ 86% 71% 77% 80% 89% 100%
Camel 69% 66% 71% 71% 89% 80%
Derby 51% 51% 83% 51% 89% 86%
Groovy 77% 66% 77% 69% 89% 91%
Hbase 71% 66% 69% 66% 97% 100%
Hive 77% 71% 69% 71% 94% 91%
JRuby 57% 83% 60% 66% 66% 86%
Lucene 69% 63% 86% 63% 100% 94%
Wicket 89% 74% 91% 80% 97% 89%
Average 72% 68% 76% 69% 90% 91%

For the Within-Project scenario, the average rank disruption across the NASA

datasets varies between 64% (Balance) and 83% (MCC) on average when basing

the results on the Wilcoxon test and between 70% (Balance) and 86% (MCC) when

the analysis is based on Â12, depending on the evaluation measure used.

Similarly for the Cross-Version scenario the average rank disruption across

the nine Realistic datasets ranges from 72% (FPR) to 91% (MCC) based on the

Wilcoxon test and from 70% (FPR) to 92% (MCC) based on Â12.

The rank disruption is still very high when looking at the Cross-Project sce-

nario, with average results across the nine systems ranging from 68% (Balance)

to 91% (MCC) based on the Wilcoxon test and from 67% (Balance) to 89% (G-

measure and MCC) based on Â12.

6.6. Empirical Study Results 122

Table 6.9: RQ2. Percentage of rank disruption per measure based on effect size analysis.

Dataset AUC Balance F1 FPR G-meas. MCC

W
ith

in
-P

ro
je

ct CM1 94% 83% 74% 74% 80% 80%
KC3 63% 63% 86% 63% 89% 89%
MW1 66% 66% 74% 69% 74% 91%
PC1 77% 77% 80% 71% 77% 91%
PC3 83% 74% 83% 77% 83% 97%
PC5 60% 57% 57% 69% 100% 69%
Average 74% 70% 76% 70% 84% 86%

C
ro

ss
-V

er
si

on
ActiveMQ 69% 86% 71% 71% 77% 83%
Camel 83% 69% 80% 71% 80% 86%
Derby 74% 63% 74% 63% 83% 94%
Groovy 86% 69% 77% 69% 83% 86%
Hbase 71% 83% 74% 94% 91% 100%
Hive 57% 69% 60% 57% 74% 100%
JRuby 66% 89% 66% 77% 83% 89%
Lucene 69% 57% 80% 57% 77% 100%
Wicket 77% 71% 71% 74% 77% 91%
Average 72% 73% 73% 70% 81% 92%

C
ro

ss
-P

ro
je

ct

ActiveMQ 83% 77% 77% 86% 86% 94%
Camel 71% 66% 60% 63% 91% 77%
Derby 49% 49% 77% 49% 89% 89%
Groovy 71% 57% 71% 71% 86% 83%
Hbase 71% 66% 71% 71% 94% 100%
Hive 80% 66% 80% 66% 91% 97%
JRuby 54% 83% 57% 63% 69% 80%
Lucene 69% 63% 86% 63% 100% 94%
Wicket 89% 74% 91% 80% 97% 89%
Average 71% 67% 75% 68% 89% 89%

We can conclude that both analyses (i.e., Wilcoxon test and Â12) provide simi-

lar rank disruption results for all the three scenarios.

We also perform a more fine grained analysis of our results to get a better

understanding of the impact the use of these different evaluation measures can have

on the conclusion validity of a study. We therefore examine the rank disruption

of each evaluation measure when considering the top three ranked techniques, then

considering the top two ranked and then the first ranked technique, for each scenario

investigated. Figure 6.3 shows the average rank disruptions of the measures, across

all datasets, for each scenario based on statistical test and effect measure analyses,

respectively.

Top Three Ranked Techniques: We can observe from Figure 6.3 that the rank disrup-

tion remains very high when considering the top three ranked techniques for each

scenario. Specifically, according to the Wilcoxon test (shown in Figure 6.3a), the

rank disruption ranges from 76% (Balance and G-meas.) to 93% (FPR) when eval-

uating the Within-Project scenario, from 68% (MCC) to 93% (FPR) in the Cross-

6.6. Empirical Study Results 123

(a) Rank disruption of top three ranked tech-
niques based on statistical significance.

(b) Rank disruption of top two ranked tech-
niques based on statistical significance.

(c) Rank disruption of the top ranked tech-
nique based on statistical significance.

(d) Rank disruption of top three ranked tech-
niques based on effect size measure.

(e) Rank disruption of top two ranked tech-
niques based on effect size measure.

(f) Rank disruption of the top ranked tech-
nique based on effect size measure.

Figure 6.3: RQ2. Rank disruption (average across all datasets) of each evaluation measure
for the top three techniques (a,d), top two (b,e) and first ranked technique (c,f)
for each scenario investigated based on statistical significance analysis (a,b,c)
and effect size measure (d,e,f).

6.6. Empirical Study Results 124

Version scenario and from 64% (Balance) to 96% (FPR) in the Cross-Project sce-

nario. Similar observations hold when analysing the rank disruption based on Â12,

with its values ranging between 71% (G-meas.) and 93% (AUC and FPR) for the

Within-Project scenario, between 67% (Balance and MCC) and 93% (FPR) when

evaluating predictions across versions (i.e., Cross-Version scenario) and between

66% (Balance) and 93% (FPR) in the Cross-Project scenario.

Top Two Ranked Techniques: This high level of rank disruption is also consistent

when considering the top two ranked techniques only. Figure 6.3b shows that, based

on the Wilcoxon text, the rank disruption ranges between 75% (Balance and G-

meas.) to 100% (FPR) when evaluating the Within-Project scenario, between 64%

(MCC) and 98% (FPR) in the Cross-Version scenario, and between 64% (Balance

and G-meas.) and 98% (FPR) when evaluating predictions across projects (i.e.,

Cross-Project scenario). The analysis based on Â12 also agrees with that of the

statistical significance test. Figure 6.3e reports that the average rank disruption,

across all datasets, ranges between 63% (Balance and G-meas.) and 92% (AUC

and FPR) in the Within-Project scenario. When considering the Cross-Version and

Cross-Project scenarios, the average rank disruption is a bit higher, with its values

ranging between 66% (MCC) and 99% (FPR) and between 68% (Balance and G-

meas.) and 99% (FPR), respectively.

Top Ranked Technique: High values of rank disruption are also be observed when

only the top ranked technique is considered. The average rank disruption based on

the the Wilcoxon test (see Figure 6.3c) varies between 67% (Balance and G-meas.)

and 100% (FPR) in the Within-Project scenario, between 62% (MCC) and 98%

(FPR) in the Cross-Version scenario, and between 76% (Balance and G-meas.) and

98% (FPR) in the Cross-Project scenario. Similar to previous analyses, the results

based on the effect size measure agree with those based on the Wilcoxon test. As

shown in Figure 6.3f, the rank disruption based on the Â12 ranges between 63%

(Balance and G-meas.) and 100% (FPR) in the Within-Project scenario, between

60% (F1 and MCC) and 98% (FPR) when evaluations are carried out on predictions

of different versions within a same software project (i.e., Cross-Version scenario),

6.7. Threats to Validity 125

and between 76% (Balance and G-meas.) and 98% (FPR) in the Cross-Project

scenario.

Answer to RQ2: The rank disruption for each of the measures investigated

is high on average, ranging from 64% to 92% depending on the measure and

validation scenario. Our results also show that high disruption is also present

when investigating the top ranked techniques only, with an average rank disrup-

tion ranging between 60% and 100% depending on the validation scenario, the

measure and the number of top ranked techniques considered.

6.7 Threats to Validity
We discuss below how we mitigate possible threats to the internal, construct and

external validity of this study.

Internal Validity: To mitigate the threat of missing relevant work or informa-

tion in our literature review, we have specified the query we used for our search,

defined clear inclusion criteria and followed a rigours procedure recommended and

used in previous work to filter out irrelevant articles [261, 321]. Although we cannot

and do not claim that the set of 111 studies we investigates is exhaustive, it is rea-

sonable to believe that it is representative of the current state-of-the-art. As a matter

of fact, we note that two prominent defect prediction literature surveys [23, 99]

published in IEEE TSE in 2012 and 2014, reviewed, respectively, 36 and 42 papers,

while in this study we analyse 111 articles. The gathering and filtering procedure

was performed by both authors, to ensure reliability and reduce researcher bias.

Construct Validity: We carefully calculated the performance measures used in

the study, and applied the statistical tests, verifying all the required assumptions.

External Validity: As happens with most empirical studies, the subjects used in

our study might not be representative of the whole population. However, we have

designed our study aiming at using measures, techniques, datasets, and validation

scenarios, which are as representative as possible of the defect prediction literature.

First of all, we focused on binary evaluation measure as these are the most common

6.8. Conclusions 126

in literature [23] and we strove to consider the measures most used in previous work

(see Section 6.4). To increase the relevance to the defect prediction literature we

also investigated class level defect binary prediction models in three validation sce-

narios (i.e., within-project, cross-release and cross-project) widely investigated in

the literature [322, 297] as opposed, for example, to more recent (and therefore less

studied) ones such as effort-aware models [323, 324, 325, 326] or binary prediction

at line level [327], method level [328] or commit/change level [329, 330, 331, 332].

Similarly, we considered traditional classification techniques widely used in previ-

ous studies [23] as described in Section 6.5.5. Moreover, we used a publicly avail-

able implementation of these techniques provided by the Scikit-learn library,

to reduce possible biases and errors arising from the use of ad-hoc implementations.

We also used publicly available datasets previously investigated in the literature,

which are of different nature and size, and which have been carefully curated in

previous work as explained in Section 6.5.3.

6.8 Conclusions

In this chapter, we investigate the effect of using different evaluation measures for

comparing the performance of software defect prediction models.

Our review of previous work published over the last decade, has revealed that

the majority of the studies do not provide rationale for the measures used with re-

gard to the characteristic of the datasets and/or aim of their study. Moreover, they

often use measures which only partially reflect the performance of defect predic-

tion models, and that the measures used are often the most susceptible ones to data

imbalance. Further, our empirical study reveals that different evaluation measures

provide unique rankings in 82% and 85% of the cases studied according to the

Wilcoxon test and effect size measure, respectively. Moreover, the rank disruption

for each of the measures investigated is high (ranging from 61% to 90% on average

depending on the measure and validation scenario). These results suggest that in

the majority of the cases, a prediction technique that would be believed to be better

than others when using a given evaluation measure becomes worse when using a

6.8. Conclusions 127

different one. Our results also show that the percentage of disruption when only

considering the top ranked techniques is just as significant as when all ranks are

studied, rendering the results even more striking.

We hope that the empirical evidence provided herein on the significant differ-

ences that arise from the use of evaluation measures will encourage the community

to act upon this matter, and carefully select the measures based on factors which are

specific to the problem at hand [23]. These include (1) the class distribution of the

training data; (2) the way in which the model will be used; (3) the way in which the

model has been built. Moreover, we recommend to include in the set of evaluation

measures, at least one able to capture the full picture of the confusion matrix (i.e.,

the correctly and incorrectly classified instances), such as MCC, so that it is possi-

ble to assess whether proposals made in previous work can be applied for purposes

different than the ones they were originally intended for. Besides, we recommend

to report, whenever possible, the raw confusion matrix from which the results were

extracted as this can enable other researchers to compute any measure of interest

and facilitate them to draw meaningful observations across different studies.

6.8. Conclusions 128

Table 6.7: RQ1. Ranking disagreement results for the Cross-Version and Cross-Project sce-
narios. For each dataset, we report whether a given evaluation measure disagrees
with more than a half, or all the other measures, based on statistical significance
and effect size analyses.

Cross-Version Cross-Project
>Half All >Half All

Wilcoxon Eff. Size Wilcoxon Eff. Size Wilcoxon Eff. Size Wilcoxon Eff. Size

ActiveMQ

F1 X X X X
G-meas. X X X X
MCC X X X X
Balance X X X X
AUC X X X X
FPR X X X X

Camel

F1 X X X X
G-meas. X X X X
MCC X X X X
Balance X X X X
AUC X X X X
FPR X X X X

Derby

F1 X X X X
G-meas. X X X X
MCC X X X X
Balance X X X X
AUC X X X X
FPR X X X X

Groovy

F1 X X X X
G-meas. X X X X
MCC X X X X
Balance X X X X
AUC X X X X
FPR X X X X

HBase

F1 X X X X
G-meas. X X X X
MCC X X X X
Balance X X X X
AUC X X X X
FPR X X X X

Jruby

F1 X X X X
G-meas. X X X X
MCC X X X X
Balance X X X X
AUC X X X X
FPR X X X X

Lucene

F1 X X X X
G-meas. X X X X
MCC X X X X
Balance X X X X
AUC X X X X
FPR X X X X

Hive

F1 X X X X
G-meas. X X X X
MCC X X X X
Balance X X X X
AUC X X X X
FPR X X X X

Wicket

F1 X X X X
G-meas. X X X X
MCC X X X X
Balance X X X X
AUC X X X X
FPR X X X X

Chapter 7

MEG: Multi-objective Ensemble

Generation for Software Defect

Prediction

In the previous chapter, we assessed the impact of using different evaluation mea-

sures for defect prediction models. The user’s knowledge of the business domain is

an important factor to choose an appropriate way to evaluate whether a given pre-

diction model is effective for the problem at hand. In this chapter, we introduce a

novel approach that allows the user to automatically build defect prediction ensem-

bles guided by the user’s own choice of evaluation measure based on their business

objective.

7.1 Introduction
A variety of automated approaches, ranging from traditional classification models to

more sophisticated learning approaches, have been explored for the early detection

of software defects. Among these, recent studies have found the use of ensemble

prediction models (i.e., aggregation of multiple base classifiers) to achieve more

accurate results than those that would have been obtained by relying on a single

classifier. However, designing an ensemble requires a non-trivial amount of effort

and expertise with respect to the choice of the set of base classifiers, their hyper-

parameter tuning, and the choice of the strategy used to aggregate the predictions.

7.1. Introduction 130

An inappropriate choice of any of these aspects can lead to over- or under-fitting,

thereby heavily worsening the performance of the ensemble. Examining all possible

combinations is not computationally affordable, as the search space is too large,

and there is a strong interaction among these aspects, which cannot be optimized

separately. Such a large search space makes Search-Based Software Engineering

a suitable solution for the problem of automatically generating effective ensembles

for DP.

In this chapter, we propose a novel use of multi-objective evolutionary algo-

rithms to automatically generate defect prediction ensembles. We dub our proposed

approach Multi-objective Ensemble Generation (MEG).

MEG is novel with respect to the existing proposals in the more general area

of evolutionary generation of ensembles, which are all based on Pareto-ensemble

generation as opposed to the concept of Whole-ensemble generation we introduce

herein. Moreover, our study is the first to investigate the effectiveness of evolution-

ary ensemble for defect prediction.

In order to assess the effectiveness of MEG, we conduct a large-scale empiri-

cal study by benchmarking it against traditional base classifiers (as a sanity check),

against the state-of-the-art multi-objective ensemble approach proposed by Petrić et

al. [202] which, to the best of our knowledge, is the only one to use a diversity mea-

sure in the ensemble Defect Prediction literature, and against DIVACE proposed by

Chandra et al. [207], which is considered a seminal work for ensemble generation

in the Evolutionary Computation literature. These are the work most closely related

to ours [202, 207], which motivated us to compare MEG to them. To assess the

effectiveness of MEG we carried out a large-scale empirical study involving a total

of 24 real-world software versions and 16 cross-version defect prediction scenarios,

assessed according to the latest best practice for the evaluation of defect prediction

and search-based approaches [333, 258, 334].

Our results show that MEG is able to generate ensembles with similar or more

accurate predictions than those achieved by all the other approaches considered in

73% of the cases (with large effect sizes in 80% of them). Not only does MEG yield

7.2. Background 131

good results, but it also relieves the engineer from the error-prone, burdensome,

and time-consuming task of manually designing and experimenting with different

ensemble configurations in order to find an optimal one for the problem at hand.

The main contributions of this chapter are: (1) The proposal of MEG, a novel

multi-objective approach for the automated generation of ensembles based on the

concept of whole-ensemble generation. (2) A large-scale empirical evaluation of

the effectiveness of MEG for defect prediction which involves eight open-source

Java software systems for a total of 24 software versions and 16 cross-version de-

fect prediction scenarios. (3) The comparison of MEG to baseline defect prediction

classifiers, the more recent approach to build ensembles for defect prediction [202],

and a state-of-the-art multi-objective Pareto-ensemble generation (which has never

applied to defect prediction before) [207]. We make the source code of MEG pub-

licly available to facilitate its uptake for both researchers and practitioners [335].

We also share a replication package to allow for reproduction and extension [335].

7.2 Background
Given the multi-disciplinary nature of this work, this section provides some back-

ground on Ensemble Learning, and Multi-Objective Evolutionary Optimisation.

7.2.1 Ensemble Learning

Base models can be used to design more complex models by combining a number

of them according to a given ensemble learning approach. The aim is to achieve a

more robust model able to reduce both (1) the bias error, which arises from erro-

neous assumptions made by a single base learner and which usually causes under-

fitting (i.e., missing relevant relations between features and target outputs); (2) the

variance, which arises from the base learner sensitivity to small fluctuations in the

training set and causes overfitting (i.e., the algorithm models the noise present in

the training data).

Ensemble approaches can be classified into two types, homogeneous ensem-

bles and heterogeneous ones. Homogeneous ensembles consist of members having

a single-type base learning algorithm, whereas heterogeneous ensembles consist of

7.2. Background 132

members having different base learning algorithms. The choice of base learners

and their combination to build an ensemble is extremely important for building a

successful model. To this end, several algorithms have been proposed in the lit-

erature [204]. These include both, simple aggregation strategies, such as majority

voting, weighted majority voting, average voting, and more advanced ones like bag-

ging, boosting, and stacking.

Majority Voting is a simple aggregation strategy that considers the prediction of

each base classifier, for a new instance, as a single vote. It then assigns the class

which obtains the largest number of votes to the new instance.

Weighted Majority Voting is an extension to the Majority Voting strategy, except that

it gives more weight to the best base classifier by counting its prediction twice. It

then follows the same strategy as Majority Voting as it assigns, to the new instance,

the class which obtains the largest number of votes.

Average Voting assigns to the new instance an averaged value of the predictions

of all base classifiers. In binary classification problems, such as defect prediction,

where the output is either “defective” or “non-defective”, this strategy computes the

average of the prediction probabilities yielded by each base classifier. If the final

averaged probability is lower than 0.5, the instance is classified as non-defective,

otherwise it is assigned to the defective class.

Stacking is an ensemble machine learning algorithm which uses a meta-classifier to

learn how to best combine the predictions from two or more base machine learning

algorithms. Stacking can harness the power of a range of well-performing models

on a classification or regression task and can make predictions that achieve better

performance than any single model in the ensemble.

Bagging and Boosting are considered homogeneous learners, while Stacking con-

siders heterogeneous base learners. Besides, Bagging mainly focuses on producing

an ensemble model with less variance than its components whereas Boosting and

Stacking will mainly try to produce strong models less biased than their compo-

nents.

7.3. MEG: Multi-objective Ensemble Generation 133

7.2.2 Multi-Objective Evolutionary Optimisation

Evolutionary Algorithms (EAs) are evolution-based optimisation algorithms used to

find approximation solutions in a feasible amount of time to otherwise hard search

problems [205, 336]. EAs work by iteratively evolving a population of chromo-

somes (solutions), each of which containing a set of genes. These solutions are

encoded in a pre-defined structure, also known as the representation, e.g., an ar-

ray of bits, integers, or floating points. The quality of a solution is assessed by a

fitness function, which measures the extent to which a solution is fit to solve the

problem. At each generation, the solutions of the population (parents) undergo

crossover and random mutations in order to generate new candidate solutions (off-

spring). These operations carry genetic information from the fittest parents to the

offspring and introduce diversity into the population, respectively. At the end of the

generation, the fittest solutions survive and become parents in the subsequent gen-

eration. When a given stopping condition is reached, the fittest solution is returned.

However, in most real-world scenarios (such as in Software Engineering), there

are many conflicting objectives with equal weights that should be considered when

analysing the quality of solutions [205, 337, 338]. They are said to be conflicting

because they often cannot be optimised simultaneously in full, i.e., by improving

one objective, the others are likely to deteriorate. Therefore, Multi-Objective Evo-

lutionary Algorithms (MOEAs) try to find a balance between the many objectives

and eventually output a set of non-dominated solutions using the concept of Pareto

dominance [338, 205] as explained below. Let Z be a set of minimisation objectives

and x and y two different solutions. Solution x is said to dominate solution y (x� y)

if: ∀z ∈ Z : z(x)≤ z(y)and∃z ∈ Z : z(x)< z(y). If these conditions do not hold, then

x and y are said to be non-dominated, i.e., they represent equally feasible solutions

with acceptable trade-offs for the problem at hand.

7.3 MEG: Multi-objective Ensemble Generation

Figure 7.1 depicts an overview of MEG. The main purpose of MEG is to automati-

cally generate ensemble classifiers by choosing a set of base classifiers, tuning them,

7.3. MEG: Multi-objective Ensemble Generation 134

Figure 7.1: An overview of our proposed Multi-objective Ensemble Generation (MEG)
approach.

and then selecting an aggregation strategy to produce the final ensemble. MEG is

based on MOEAs, thus it iteratively evolves a population of ensembles across multi-

ple generations and outputs the ensembles with the best trade-off between diversity

of base classifiers and overall accuracy of predictions (Section 7.3.2 describes the

objectives).

MEG differs from related work [207, 211, 212, 213, 214] in many ways. While

algorithms like DIVACE [207] work as a Pareto-ensemble technique (evolve base

classifiers and aggregate the non-dominated ones), MEG takes a more direct and

intuitive approach where each solution in the population is a whole ensemble. Other

work use a more similar representation as the one adopted by MEG [211, 212,

213, 214]. However, such approaches focus on selecting a set of pre-defined base

classifiers, as opposed to designing, configuring, and building ensembles and the

constituent parts.

MEG differs from related work by selecting base classifiers, optimising their

hyper-parameters, and finally picking an ensemble strategy that best suits the con-

text. The result is not a single ensemble, but rather a set of evolved ensembles

from which the engineer can choose the one that best fits their needs. This allows

for a robust evolution of ensembles with more flexibility in how they are designed

and built. We define our proposed technique, MEG, as whole ensemble generation,

7.3. MEG: Multi-objective Ensemble Generation 135

which is not only novel for the defect prediction literature, but also for the general

ensemble literature.

7.3.1 Representation

The representation of MEG consists of three arrays: i) Classifiers – binary array; ii)

Parameters – double/floating points array; and iii) Ensemble/Aggregation Strategy

– integer array.

The classifier array contains 15 bits, where each index corresponds to a specific

classifier. If the bit in index i is 1, it signifies that the i-th classifier is active and will

be included in the ensemble, otherwise, it will not be included. MEG explores three

different types of classifiers. These are namely, Naive Bayes (NB) at indexes 1..3,

three k-Nearest Neighbors algorithms (k-NN) at indexes 4..6, four Support Vector

Machines (SVM) at indexes 7..10, and five Decision Trees (DT) at indexes 11..15.

We included those models in the representation because the most related work [202]

to ours used the same. This allows a fair comparison in our empirical study, however

future work can extend MEG to incorporate other classifiers.

The parameter array consists of the hyper-parameters of each of the 15 classi-

fiers.

For k-NN, SVM, and DT, the parameters are represented by double values indi-

cating the number of neighbours, cache size, and pruning confidence, respectively.

For NB, we use a categorical value where 0 indicates the normal density distribution

and 1 represents a kernel density estimator. MEG can be extended to handle addi-

tional hyper-parameters for each classifier, however in this work we experimented

with the ones used in the work of Petrić et al. [202].

Finally, the strategy array consists of a single integer value (later converted into

a categorical one) representing the strategy to be used by the ensemble to aggregate

the predictions of all constituent classifiers. Given that we aim at investigating en-

sembles composed by different types of base classifiers, we consider the following

heterogeneous aggregation strategies: i) majority voting; ii) weighted majority vot-

ing; iii) stacking; and iv) average voting.1

1We do not consider Bagging and Boosting as they are both homogeneous ensemble strategies

7.3. MEG: Multi-objective Ensemble Generation 136

The proposed representation allows MEG to simultaneously select classifiers,

optimise their parameters, and select the aggregation strategy. For instance, dif-

ferently from algorithms such as DIVACE [207], the strategy array allows MEG

to optimise for a specific ensemble strategy, as opposed to forcing the engineer to

choose one. Furthermore, allowing the selection of classifiers and their tuning on-

line also reduces the engineering effort, as the engineer is not required to pre-train

the classifiers before the optimisation process, such as in the work of Fletcher et

al. [211].

7.3.2 Fitness Functions

MEG uses two fitness functions to guide the search for ensembles: diversity and

accuracy. The accuracy of an ensemble depicts how well it can predict the labels of

the instances under consideration, which in the context of this work are “defective”

(true) or “non-defective” (false). Naturally, the more accurate the ensemble, the bet-

ter. On the other hand, the diversity measures assess how different the predictions

of the classifiers in the ensemble are. Diversity is an important factor when design-

ing ensembles, since a diverse ensemble is more likely to predict “corner cases”

instances. However, in a classification problem, the more the classifiers disagree

in their predictions, the less accurate the ensemble tends to be. For instance, for

a given instance with the true label “defective”, if two classifiers each predict “de-

fective” and “non-defective” respectively, then we obtain diverse results, but with

50% accuracy. Hence, these two measures are conflicting, but MEG still aims at

optimising both for a good trade-off.

There are many accuracy and diversity measures in the literature [204]. In

this work, we use Mathews Correlation Coefficient (MCC) [99] as the accuracy

objective, and Disagreement [339] as the diversity measure. MCC represents the

correlation coefficient between the actual and predicted classifications. Equation 7.1

shows the formula for the assessment of MCC.

↑ Accuracy = MCC =
TP×TN−FP×FN√

(TP+FP)(TP+FN)(TN +FP)(TN +FN)
(7.1)

which take into account a single type of base classifier.

7.3. MEG: Multi-objective Ensemble Generation 137

where True Positives (TP) are defective modules correctly classified as defective;

False Positives (FP) are non-defective modules falsely classified as defective; False

Negatives (FN) are defective modules falsely classified as non-defective; True Neg-

atives (TN) are non-defective modules correctly classified as non-defective (see Ta-

ble 7.1).

MCC outputs a value between −1 and +1, where a value of +1 indicates a

perfect prediction, a value of 0 signifies that the prediction is no better than random

guessing, and−1 represents a completely miss-classified output. With that in mind,

the greater the MCC, the better the solution. We opted to use MCC to assess and

compare the accuracy of models as this measure has been strongly recommend in

alternative to other previously popular measures, such as F-measure, which have

been shown to be biased [99, 215, 258] when the data is imbalanced (as it is fre-

quently the case in DP). MCC is a more balanced measure which, unlike the other

measures, takes into account all the values of the confusion matrix [99, 258].

The second objective, diversity, is computed based on the disagreement mea-

sure [339], which measures (as the name implies) the prediction disagreement be-

tween groups of classifiers. Previous work has proposed various disagreement mea-

sures in the literature. To better understand whether there is a significant difference

between the performance of these measures, we conducted a preliminary study com-

paring four different diversity measures. These are namely Disagreement, Double

Fault, Q Statistic, and Correlation Coefficient. The results of our preliminary inves-

tigation showed that these measures provide the same or similar diversity values, so

using any of the measures would yield to very similar results. Therefore, we use the

Disagreement measure in order to maintain a fair comparison with the traditional

ensemble defect prediction model proposed by [202] to which we compare MEG.

Table 7.1: Confusion Matrix for Binary Classification.

Actual Value Predicted Value

Defective (1) Non-Defective (0)
Defective (1) TP FN
Non-Defective (0) FP TN

7.3. MEG: Multi-objective Ensemble Generation 138

Equation 7.2 depicts the formula for computing Disagreement:

↑ Diversity = DISi, j =
N10 +N01

N11 +N00 +N10 +N01 (7.2)

where N10 represents the number of instances correctly classified by the ith classi-

fier and incorrectly by the jth classifier of the ensemble. N01, N00 and N11 can be

interpreted similarly. In summary, disagreement measures how many of the base

classifiers’ predictions contradict each other. Disagreement values can be any value

within the range [0,1], where the higher the value, the more different the two clas-

sifiers. To calculate the diversity of the ensemble, we find the average pairwise dis-

agreement between all pairs of its constituent members. An ideal ensemble would

be the one that yields a high MCC and a high disagreement between its constituent

classifiers. However, as mentioned at the beginning of this section, this is hard to

achieve in practice, thus the need of using a MOEA to strike an optimal trade-off

between these two competing goals.

7.3.3 Genetic Operators

Since there are three arrays in the representation (Section 7.3.1), the crossover and

mutation happen in three parts, each of which with the respective operators adapted

for the type of genes.

MEG uses a Single Point Crossover operator with 95% probability for all three

representation arrays. This crossover operator takes two parents and combines their

genes to generate two children. First, it chooses an index from the parents’ genes

array at random. It cuts the parents on that index into two parts, left and right. It

then combines the left part of parent one with the right part of parent two to generate

the first child, and the right genes of parent one with the left genes of parent two to

create the second child.

After crossover, the children undergo mutation with a lower probability. Since

the classifiers array (bit array) and parameters array (double array) have 15 indexes,

the mutation probability is set to 0.07. Thus, it is expected that each child will

have one of its bit/double gene mutated. For the ensemble strategy (int array) with

7.4. Experimental Design 139

one index, the probability is set to 0.25. Hence, it is expected that the ensemble

aggregation strategy is mutated once in every four children. MEG uses a Bit Flip

Mutation operator for the classifier array, and a Simple Random Mutation operator

for the parameter and strategy arrays. The former simply flips the bit by changing

it to 1 if the gene is 0, or to 0 if the gene is 1. The latter generates a random number

for a mutated gene.

We set the population size to 100 and the stopping condition to 10,000 fitness

evaluations. This means that the evolutionary process runs for 100 generations.

In the end, all the non-dominated solutions are returned. In our experiments, the

same algorithm, operators, and configuration are used with DIVACE (Sections 7.4

and 7.5).

7.3.4 Implementation Aspects

MEG was implemented using jMetal 5.10,2 a widely-used framework for realising

MOEAs in Java. jMetal provides multiple MOEAs, and mutation and crossover

operators, which suits well the purpose of MEG. We implement MEG by using the

NSGA-II [340] algorithm. We chose NSGA-II due to its popularity, easily adaptable

nature with jMetal, performance, and because it has shown to be a robust algorithm

in the SBSE literature [341]. For the ML implementation, we use the Weka 3.9

framework.3 Our source-code is publicly available online, along with a replica-

tion package, containing the datasets, the raw results and the scripts we realised to

analyse them [335].

7.4 Experimental Design
In order to validate the effectiveness of MEG, we benchmark it against base clas-

sifiers, the state-of-the-art ensemble stacking for defect prediction as proposed by

Petrić et al. [202], and the state-of-the-art Pareto-ensemble generation approach

DIVACE [207], in the context of Cross-Version Defect Prediction (CVDP). Specif-

ically, we aim at answering three research questions (RQs) as detailed below.

2https://github.com/jMetal/jMetal
3https://www.cs.waikato.ac.nz/ml/weka/

https://github.com/jMetal/jMetal
https://www.cs.waikato.ac.nz/ml/weka/

7.4. Experimental Design 140

7.4.1 Research Questions

ML base classifiers have been widely proposed and considered as benchmarks in

previous defect prediction studies. Therefore, our first research question investi-

gates and compares the performance of MEG with that of traditional ML base clas-

sifiers. We consider this a “sanity check” given that any newly proposed model

that cannot generally outperform base classifiers cannot be considered a scientific

advancement in the state-of-the-art. To this end we ask:

RQ1 – MEG Vs. Base Classifiers: How does MEG compare to traditional

base classifiers?

If MEG passes this sanity check, then we investigate whether our proposed

approach can also outperform the aggregation of multiple ML base classifiers. We

therefore compare the performance of MEG with that of existing ensemble for de-

fect prediction. In order to verify this, we pose our second research question:

RQ2 – MEG Vs. Traditional Ensemble: How does MEG compare to ensem-

ble stacking?

In particular, as nobody has previously proposed the use of MOEAs to generate

ensemble models for defect prediction, we answer the above question by verifying

whether MEG actually performs better than stacking, which has proven to be better

than other ensemble approaches in previous defect prediction work [202].

Since our approach, MEG, is also novel with respect to existing multi-objective

evolutionary approaches designed to generate ensemble for general-purpose classi-

fication problems, we also benchmark it with the state-of-the-art Pareto-ensemble

generation technique DIVACE, thereby motivating our last research question:

RQ3 – MEG Vs. Pareto-ensemble: How does MEG compare to Pareto-

ensemble generation, more specifically DIVACE, the state-of-the-art ensemble gen-

eration technique based on MOEAs?

In the following subsections we describe the techniques and datasets used as

a benchmark to answer RQs 1–3, and the validation and evaluation criteria we em-

ployed to assess the performance of the prediction models we compare.

7.4. Experimental Design 141

7.4.2 Benchmark Techniques

7.4.2.1 Base Classifiers

As a baseline benchmark, we compare the ensemble produced by MEG to the

single based learners, as the purpose to build an ensemble is to achieve predic-

tion performance which are at at least comparable or superior to individual clas-

sifiers [202, 342, 343]. We use the same four base classifiers used by Petrić et

al. [202], namely Naïve Bayes (NB)[318], k-Nearest Neighbour (k-NN), Support

Vector Machine (SVM) [270], and Decision Tree (DT) [344]. To insinuate a fair

comparison with the ensembles, these are the same classifiers used by both MEG

and DIVACE.

Based on the study by Petrić et al. [202], we train the base classifiers with the

following parameters and select the configuration with the best training/validation

MCC, as explained in Section 7.4.4:

i) NB – NB with conventional distribution estimation and NB-K with kernel

density estimator;

ii) DT – pruning confidence values of 0.25, 0.2, 0.15, 0.1, and 0.05;

iii) k-NN – number of neighbours (k) of 3, 5, and 7;

iv) SVM – C of 1, 10, 25, and 50

7.4.2.2 Stacking Ensemble

The Stacking ensemble proposed by Petrić et al. [202] is composed by at most 15

base classifiers, each of which has a pre-defined configuration. The best stacking

composition is the best combination of 2 to 15 base classifiers with the best train-

ing/validation MCC value. Moreover, since the other algorithms and MEG also use

MCC, this was the natural choice for a fair comparison. To find the best Stacking

combination, we followed the procedure proposed by Petrić et al. [202]. We first

train the 15 base classifiers and order them in descending order according to their

MCC. We then build 14 combinations from sizes 2 to 15, incrementally adding the

next best base classifier, and setting the best classifier as the meta-classifier. We then

select the best combination for a given program obtained on the train/validation set

7.4. Experimental Design 142

and use it during the testing phase, as detailed in Section 7.4.

7.4.2.3 Pareto-ensemble Generation: DIVACE

DIVACE is a Multi-objective Genetic Algorithm that uses the Pareto-ensemble ap-

proach to search for optimal ensemble classifiers, i.e., it joins the resulting non-

dominated predictors into one single ensemble. DIVACE had never been assessed

for defect predition in prior studies. It was originally proposed for a regression task

(more specifically for building neural networks), but it has served as a reference

since then for other ensemble generation techniques. It makes use of specialised

continuous operators to generate weights and drive solutions towards specific and

relevant parts of the search space. For more details on the approach we refer the

reader to the original paper by Chandra et al. [207].

DIVACE, as originally proposed, uses the Negative Correlation Learning

(NCL) measure for diversity, and MCC for the accuracy objective. DIVACE evolves

the same four base classifiers as MEG by using NSGA-II, to allow for a fair compar-

ison. Since DIVACE does not automatically select the aggregation strategy during

the evolutionary process, one has to manually experiment with different aggrega-

tion strategies to identify the most suitable for the problem at hand. We therefore

tried different strategies (i.e., Majority Voting, Stacking, and Average Rule) and

found that Majority Voting generally generates the best results for the investigated

datasets.

At the end of the evolution process, DIVACE aggregates all non-dominated

solutions based on NCL and MCC into a single Majority Voting ensemble, thus

producing a single optimal solution.

7.4.3 Datasets

In our empirical study we used the corpus made publicly available by Yatish et

al. [345]. This data has been collected using a realistic approach based on two

main criteria: (i) the use of an Issue Tracking System with the availability of high

numbers of closed or fixed issue reports; and (ii) issue reports collected for each

studied system are traceable back to the code. Following this procedure has resulted

7.4. Experimental Design 143

in obtaining less erroneous defect counts and hence representing a more realistic

scenario of defective module collection.

We experiment with eight software systems considering three releases for each

system, as listed in Table 7.2, which has been shown to be preferable to other types

of validation such as 10-fold cross validation or bootstrapping [346, 313].

7.4.4 Validation Criteria

We validate the effectiveness of the proposed approach using the CVDP scenario.

As previously described in Chapter 2, for each of the software systems, we train on

one release and test on a later version, i.e., we train on version vx and test on version

vy, where x < y, as done in previous work [313].

Training and Validation: For all algorithms included in this study, to prevent

overfitting during the training phase, we apply an internal bootstrapping procedure

with replacement using 80% of the data for training and 20% for validation (as sug-

gested by Tantithamthavorn et al. [347]). We use this bootstrapping procedure to

cater for the randomness of the data as confounding factors for the results. During

the MOEA evolution, each candidate solution’s fitness is the result of the predic-

tions over the unseen 20% validation. We perform the same procedure to train the

Stacking (state-of-the-art ensemble), DIVACE, and all traditional classifiers.

For each of the approaches investigated herein, the best performing solutions,

are selected based on MCC on the validation data, and then used to train the final

model on the whole training data. Such a model is then evaluated on an unseen test

set. Given that MEG generates a set of ensembles (rather than a single solution as

done by the base classifiers and DIVACE), we choose the solution in the Pareto-

front with the highest MCC value on the validation data as MEG’s final solution.

After a preliminary but comprehensive assessment, such a heuristic also showed to

be the best one among other investigated ones such as selecting the most diverse

solution, the one in between, or a random solution. We provide a summary of this

preliminary assessment in our online artefact.

Testing: For each of the systems and prediction techniques considered herein,

we build two prediction models. One by using the first available version in Yatish’s

7.4. Experimental Design 144

corpus [345] as training data, given that recent work has proven that it is effec-

tive to use early defect data for training purposes [316, 348], and one by using

the penultimate available version, as done in most of previous CVDP work. Both

models are then tested on the latest version available in the corpus, which is com-

pletely unseen/untouched during the training process. By following this procedure,

we ensure that the training and choice of best solution in the previous phases re-

flects a real-world scenario where the engineer does not possess information about

the software components for which they are trying to predict defects. Moreover,

the versions we used as train and test sets are not immediately subsequent releases

nor are they the system’s most recent ones. In addition, there is always a window

of at least five months between these releases. This reduces the likelihood of the

snoring effect (i.e., when defects are discovered several releases after their intro-

duction, which can cause a class to be labeled as defect-free while it is not, and is,

therefore referred to as “snoring”) or unrealistic labelling as described in previous

studies [314, 315, 316].

Finally, to mitigate for the variability induced by the use of stochastic algo-

rithms, we run the above procedure 30 times [334, 349]. In order to maintain a

fair comparison among all algorithms, we ensured that the bootstrapping procedure

samples the same data to train each compared approach within a same run by using

a same seed for all, yet different runs use different seeds.

7.4.5 Evaluation Criteria

We use MCC to evaluate the prediction performance of the models given that we do

not target a specific business context [258, 295], and, as explained in Section 7.3.2,

MCC is a comprehensive measure, which provides a full picture of the confusion

matrix by assessing all its aspects equally. It is also not sensitive to highly im-

balanced data and is widely used in the defect prediction and machine learning

literature [258, 99, 215].

In order to show whether there is any statistical significance between the results

obtained by the models, we perform the Mann-Whitney U [350] setting the confi-

dence limit, α , at 0.05 and applying the Bonferroni correction (α/K, where K is

7.4. Experimental Design 145

Table 7.2: Total number of modules and percentage of faulty components for each of the
datasets used in our empirical study. We used the two lowest version numbers
(one at time) for training the prediction models and the highest one for testing
them.

Dataset No. of modules
(faulty %) Dataset No. of modules

(faulty %)
activemq-5.0.0 1884 (15.55%) hive-0.9.0 1560 (11.28%)
activemq-5.3.0 2367 (10.90%) hive-0.10.0 1560 (11.28%)
activemq-5.8.0 3420 (6.02%) hive-0.12.0 2662 (8.00 %)
derby-10.2.1.6 1963 (33.67%) jruby-1.1.0 731 (11.9%)
derby-10.3.1.4 2206 (30.33%) jruby-1.5.0 1131 (7.25%)
derby-10.5.1.1 2705 (14.16%) jruby-1.7.0 1614 (5.39%)
groovy-1.5.7 757 (3.43%) lucene-2.3 805 (24.35%)
groovy-1.6-B1 821 (8.53%) lucene-3.0 1337 (11.59%)
groovy-1.6-B2 884 (8.60%) lucene-3.1 2806 (3.81%)
hbase-0.94.0 1059 (20.59%) wicket-1.3.0-B1 1763 (7.37%)
hbase-0.95.0 1669 (22.95%) wicket-1.3.0-B2 1763 (7.37%)
hbase-0.95.2 1834 (26.34%) wicket-1.5.3 2578 (4.07%)

the number of hypotheses) when multiple hypotheses are tested. Unlike parametric

tests, the Mann-Whitney U raises the bar for significance, by making no assump-

tions about underlying data distributions. Moreover, we used effect size to assess

whether the statistical significance has practical significance effect size [334]. To

this end we use the Vargha and Delaney’s Â12 non-parametric effect size measure,

as it is recommended to use a standardised measure rather than a pooled one like the

Cohen’s d when not all samples are normally distributed [334], as in our case. The

Â12 statistic measures the probability that an algorithm A yields greater values for

a given performance measure M than another algorithm B, based on the following

equation:

Â12 = (R1/m− (m+1)/2)/n (7.3)

where R1 is the rank sum of the first data group we are comparing, and m and

n are the number of observations in the first and second data sample, respec-

tively. Values between (0.44,0.56) represent negligible differences, values between

[0.56,0.64) and (0.36,0.44] represent small differences, values between [0.64,0.71)

and (0.29,0 : 44] represent medium differences, and values between [0.0,0.29] and

[0.71,1.0] represent large differences.

7.4. Experimental Design 146

7.4.6 Threats to Validity

Threats to External Validity: As it is the case for most software engineering empiri-

cal studies, the datasets (i.e., programs) and prediction approaches used in this work

might not be fully representative of the population, which is a threat to the general-

isation of our conclusions. The datasets we use are all based on open-source Java

projects [345], which limits the generalisability of our results to proprietary soft-

ware or projects written in other languages. In order to mitigate this threat, we used

a variety of programs of different sizes and imbalanced nature, and which have been

used in previous work [345]. Another external threat is linked to the choice of tech-

niques which MEG was benchmarked against. We benchmarked MEG against the

most relevant related work in the literature: traditional base ML classifiers, widely

used in defect prediction work [23], the only multi-objective ensemble proposed

thus far for defect prediction [202] and the state-of-the-art evolutionary ensemble

DIVACE. Moreover, we implemented both DIVACE and the Stacker approach with

Weka which is the tool used by Petric et al. [202] to closely reproduce the state-

of-the art multi-objective ensemble DP [202]. This allowed us to share as many

aspects as possible between all approaches and reduce any confounding factors that

could arise from different implementations or configurations [351, 352]. While we

believe that it would be interesting to carry out a large-scale empirical study com-

paring other ensemble approaches which have been proposed in the more general

ML literature but have not been used for defect prediction (including for example

auto-sklearn and AutoFolio [75]), this is out of the scope of our work and it deserves

an investigation on its own right due to both the different aim, scope and technical

challenges involved. For example, in order to compare various ensembles provided

in ML tools other than Weka, such as auto-sklearn or AutoFolio which are currently

available only in Python, it might require one to re-implement all approaches in a

same tool to ensure a fair empirical comparison as using different ML tools might

lead to different results [351, 352].

Threats to Internal Validity: The most prominent threat to internal validity

relates to the correctness of our own implementations of DIVACE and the Stack-

7.5. Results 147

ing build procedure. We followed all the details provided in the reference pa-

pers [207, 202], but it is still possible that some differences were introduced. In

order to mitigate this threat, all authors made sure to rule out any ambiguity by ver-

ifying the code and comparing it to the reference papers. In occasions where we

could not agree on the way to resolve an ambiguity, we opted for design decisions

which allow us to compare all the approaches on a level playing field.

Threats to Construct Validity: DIVACE and MEG are stochastic by nature.

Consequently, the results of these techniques may differ from one run to another,

causing unwanted variations in our experimental analysis. In order to mitigate this

variability, and to provide a robust analysis, both DIVACE and MEG were executed

30 times and the median MCC values were reported (as opposed to means given that

the latter is known to be more susceptible to outliers [333]), as suggested by best

practices for the assessment of randomised optimisation algorithms and prediction

systems [334, 349, 258, 333]. Moreover, we perform bootstrapping during training

by using a same random seed for all techniques used across all our experiments.

This ensures that any variation or difference in results is due to the nature of the

techniques themselves and not due to a different random data sampling. Finally,

we used a robust and unbiased measure, such as MCC, to evaluate the prediction

capabilities of all the approaches investigated herein, and performed statistical tests,

including both hypothesis testing and effect size, by carefully checking all the re-

quired assumption, such that our conclusions could be backed up by scientifically

sound evidence [258].

7.5 Results
In this section, we present and discuss the results of all research questions addressed

in our work.

7.5.1 Answer to RQ1 – MEG vs. Base Classifiers

As a sanity check, we compare the performance of MEG to that of traditional clas-

sifiers (i.e., DT, NB, k-NN and SVM) known to perform well for the task of defect

prediction.

7.5. Results 148

Table 7.3: MCC values obtained on the test set by the base learners (NB, DT, k-NN, SVM),
MEG, DIVACE, over 30 runs.

Version (training data) MEG DIVACE Stacking NB DT k-NN SVM

activemq-5.0.0 0.29 0.20 0.24 0.29 0.15 0.25 0.30
derby-10.2.1.6 0.40 0.25 0.22 0.37 0.24 0.16 -0.05
groovy-1.5.7 0.23 0.31 0.22 0.21 0.31 0.33 0.24
hbase-0.94.0 0.30 0.27 0.25 0.07 0.27 0.25 0.31
hive-0.9.0 0.20 0.19 0.10 0.21 0.19 0.07 0.22
jruby-1.1 0.23 0.28 0.16 0.22 0.30 0.29 0.20
lucene-2.3.0 0.18 0.13 0.12 0.18 0.13 0.11 0.12
wicket-1.3.0-B1 0.08 0.20 0.13 0.18 0.20 0.16 0.15

activemq-5.3.0 0.31 0.27 0.27 0.28 0.24 0.23 0.29
derby-10.3.1.4 0.39 0.31 0.31 0.37 0.30 0.28 0.38
groovy-1.6-B1 0.20 0.26 0.27 0.21 0.26 0.47 0.26
hbase-0.95.0 0.30 0.18 0.19 0.33 0.26 0.20 0.31
hive-0.10.0 0.28 0.27 0.27 0.18 0.26 0.19 0.23
jruby-1.5.0 0.19 0.28 0.10 0.17 0.28 0.27 0.17
lucene-3.0.0 0.06 0.05 0.09 0.19 0.04 0.14 0.00
wicket-1.3.0-B2 0.15 0.00 0.00 0.19 0.10 0.11 0.12

Table 7.3 shows that, out of the four classifiers investigated, NB achieves the

best performance overall. When compared to MEG, results show that MEG per-

forms similarly or better than NB in 69% of the cases with 73% of those cases

being statistically significant and having a large effect size.

Our results also show that MEG is able to generate ensembles that perform

similarly or better than traditional classifiers in 45 (70%) out of the 64 cases investi-

gated. Moreover, MEG strictly outperforms traditional classifiers in 39 out of the 64

(61%) cases considered with the difference in 90% of those cases being statistically

significant.

Answer to RQ1: MEG generates statistically better or at least equivalent en-

sembles to traditional classifiers in 70% of the cases.

7.5.2 Answer to RQ2 – MEG vs. Traditional Ensemble

When compared to the state-of-the-art Stacking ensemble proposed by Petric et al.

[353], results show that MEG is able to generate similarly or enhance the predic-

tions in 14 out of the 16 cases under study (88%) with the difference in 86% of

those cases (12 out of 14) being statistically significant with a large effect size.

To understand the performance of the ensemble, we analyse the non-dominated

7.5. Results 149

Table 7.4: Mann-Withney U pair-wise test results / Vargha-Delaney Â12 effect sizes ob-
tained comparing MEG with DIVACE, Stacking, and base classifiers (NB, DT,
k-NN, SVM). Â12: Large – L; Medium – M; Small – S; Negligible – N.
Cells highlighted in blue (p-value < 0.05 and effect size > 0.5) indicate that
MEG is statistically significantly better than the algorithms in the corresponding
columns. Cells highlighted in orange (p-value < 0.05 and effect sizes < 0.5) in-
dicate that MEG is significantly statistically worse. The last three rows show the
number of times MEG yields better, equivalent, and worse results, respectively.

Version (training data) DIVACE Stacking NB DT k-NN SVM

activemq-5.0.0 <0.01 / 1.0 (L) <0.01 / 1.0 (L) <0.01 / 1.0 (L) <0.01 / 1.0 (L) <0.01 / 1.0 (L) <0.01 / 0.0 (L)
derby-10.2.1.6 <0.01 / 0.8 (L) <0.01 / 0.83 (L) <0.01 / 0.8 (L) <0.01 / 0.83 (L) <0.01 / 0.83 (L) <0.01 / 1.0 (L)
groovy-1.5.7 <0.01 / 0.14 (L) <0.01 / 1.0 (L) <0.01 / 1.0 (L) <0.01 / 0.0 (L) <0.01 / 0.0 (L) <0.01 / 0.03 (L)
hbase-0.94.0 <0.01 / 0.93 (L) <0.01 / 0.93 (L) <0.01 / 1.0 (L) <0.01 / 0.93 (L) <0.01 / 0.93 (L) 0.058 / 0.37 (S)
hive-0.9.0 0.197 / 0.6 (S) <0.01 / 1.0 (L) <0.01 / 0.0 (L) 1.0 / 0.5 (N) <0.01 / 1.0 (L) <0.01 / 0.0 (L)
jruby-1.1 <0.01 / 0.24 (L) 0.638 / 0.53 (N) 0.638 / 0.53 (N) <0.01 / 0.03 (L) <0.01 / 0.03 (L) 0.638 / 0.53 (N)
lucene-2.3.0 <0.01 / 1.0 (L) <0.01 / 1.0 (L) <0.01 / 0.83 (L) <0.01 / 1.0 (L) <0.01 / 1.0 (L) <0.01 / 1.0 (L)
wicket-1.3.0-B1 <0.01 / 0.25 (L) 0.64 / 0.47 (N) 0.345 / 0.43 (N) <0.01 / 0.0 (L) 0.64 / 0.47 (N) 0.64 / 0.47 (N)

activemq-5.3.0 <0.01 / 0.83 (L) <0.01 / 1.0 (L) 0.151 / 0.6 (S) <0.01 / 1.0 (L) <0.01 / 1.0 (L) 0.151 / 0.6 (S)
derby-10.3.1.4 <0.01 / 1.0 (L) <0.01 / 1.0 (L) <0.01 / 0.77 (L) <0.01 / 1.0 (L) <0.01 / 1.0 (L) <0.01 / 0.77 (L)
groovy-1.6-B1 <0.01 / 0.0 (L) <0.01 / 0.0 (L) <0.01 / 0.0 (L) <0.01 / 0.0 (L) <0.01 / 0.0 (L) <0.01 / 0.0 (L)
hbase-0.95.0 <0.01 / 0.96 (L) <0.01 / 1.0 (L) <0.01 / 0.0 (L) <0.01 / 1.0 (L) <0.01 / 1.0 (L) 0.057 / 0.37 (S)
hive-0.10.0 <0.01 / 0.92 (L) <0.01 / 0.9 (L) <0.01 / 1.0 (L) <0.01 / 1.0 (L) <0.01 / 1.0 (L) <0.01 / 1.0 (L)
jruby-1.5.0 <0.01 / 0.12 (L) <0.01 / 1.0 (L) <0.01 / 0.9 (L) <0.01 / 0.0 (L) <0.01 / 0.0 (L) <0.01 / 0.9 (L)
lucene-3.0.0 0.587 / 0.54 (N) <0.01 / 0.07 (L) <0.01 / 0.0 (L) <0.01 / 0.8 (L) <0.01 / 0.0 (L) <0.01 / 1.0 (L)
wicket-1.3.0-B2 <0.01 / 0.99 (L) <0.01 / 1.0 (L) <0.01 / 0.1 (L) <0.01 / 0.93 (L) <0.01 / 0.93 (L) <0.01 / 0.93 (L)

MEG is better 9 12 8 10 10 7
MEG is equivalent 2 2 3 1 1 5
MEG is worse 5 2 5 5 5 4

solutions generated by MEG. We discovered that Stacking, as an aggregation strat-

egy, was selected in only 3% of the cases; the least common type of generated

ensembles. On the other hand, we found that the most selected ensemble strategy

by MEG was Weighted Majority Voting, which simply counts the best classifier’s

vote twice and the other classifiers once. This strategy was selected in 78% of the

non-dominated ensembles.

Answer to RQ2: MEG is able to generate ensembles that perform similarly or

enhance the state-of-the-art Stacking model in 88% of the cases. The difference

in results obtained by MEG is statistically significantly better in 75% of the cases

with a large effect size.

7.5.3 Answer to RQ3 – MEG vs. Pareto-ensemble

We also compare the ensembles generated by MEG to those generated by DIVACE.

Results show that MEG outperforms DIVACE in 11 out of 16 cases studied (69%).

7.5. Results 150

This finding is also supported by the statistical tests showing that, in 82% of these

cases, the difference is statistically significantly better and the effect size is large.

We further investigated the solutions generated by both these approaches and

we found some interesting behavioural differences when it comes to the nature of

the solutions. While MEG produced solutions consisting of a more heterogeneous

set of classifiers with a mean and median number of classifiers equal to 2.41 and

2, respectively, DIVACE’s behaviour was more homogeneous. In most cases, DI-

VACE generated non-dominated solutions that were retained across generations re-

sulting in ensembles comprised of 100 classifiers, out of which ≈98 were entirely

of a homogeneous nature. MEG, on the other hand, generated a smaller set of het-

erogeneous ensembles with the largest number of classifiers being equal to 11. This

shows that an ensemble consisting of a small heterogeneous set of classifiers yields

better results than one comprising of a large set of homogeneous classifiers.

Answer to RQ3: MEG generates ensembles that are similar or statistically

better to those produced by DIVACE in 69% of the cases, with the difference in

82% of them being statistically significant.

7.5.4 Final Remarks

MEG yielded statistically significantly better results than the other algorithms in

most of the cases. To be precise, if we consider all comparisons between MEG

and the other techniques, MEG is able to generate ensembles producing similar or

more accurate predictions than those produced by the other approaches in 73% of

the cases (with favourable large effect sizes in 80% of them). In the minority of

the cases (27%) where MEG does not statistically significantly outperform all other

approaches we observed that the number of faulty modules in the training data is

lower than 10%, or the training data consists of less than 1,000 modules. For these

cases, we also observed that MEG’s ensembles achieve better MCC values than

those produced by traditional ML and Pareto-ensemble in the training phase, thus

suggesting that its ensembles may overfit when the training data is small or contain

few of defective instance.

7.5. Results 151

The positive results obtained by using MEG in the majority of the cases inves-

tigated herein, suggest its use could be convenient for several reasons.

First, MEG removes from the engineer hands the burdensome, error-prone, and

time-consuming task of building, or even selecting, an ensemble/classifier. Since it

is all automated, the engineer can simply use MEG to generate robust ensembles.

Second, MEG can generate ensembles that can yield good predictions for fu-

ture versions of a software. This is shown by the results achieved by the generated

ensembles when trained on the first available software version, and tested on the

latest.

Third, MEG can be extended and adapted to the engineers’ needs. In this

work, we focused on MCC as a measure of performance accuracy given that it

is a comprehensive and balanced measure [258]. However, there might be cases

where it may be more important to minimize one type of classification error. For

example, an engineer might want to reduce the number of false negatives to the very

minimum when predicting defects for mission and safety critical software systems

(e.g., software controlling autopilot, medical devices) in which even a single failure

can have serious adverse effects [258]. In this case, MEG can be extended to be

guided by a fitness function devised for a specific goal.

Regarding the qualitative results, we analysed possible correlations between

the results of the generated ensembles and possible imbalance in the data with re-

spect to the percentages of defective and non-defective classes. However, we did

not find any clear pattern. It seems that the results of the ensembles generated by

MEG are more influenced by the individual predictions of each base classifier. For

instance, when predicting defects for Derby, SVM showed very good results dur-

ing training (training and validation MCC values higher than 0.7), but very poor

performance during testing (negative MCC value). When analysing the ensembles

generated by MEG for this program, we found out that when SVM was added to

the ensemble, the resulting MCC values would drop from around 0.40 to 0.02. The

drop is noticeable and undeniably significant, but luckily it is an exception, not the

rule.

7.6. Conclusions and Future Work 152

In our experiments, each of MEG’s independent runs took from 6–48 hours,

which is greater than the time needed to perform the automated hyper-parameter

tuning of the state-of-the-art algorithms (2–24 hours). While the time taken by the

state-of-the-art is generally lower as it includes only training and possibly tuning,

MEG’s running time is higher because it also encompasses the automatic selection

of classifiers, voting strategies, and tuning of parameters. This procedure is analo-

gous to the experimentation, tuning, and selection of many different algorithms that

are usually done manually by the engineers. If we compare the time and expertise

that would be required by the engineer to perform these tasks, using MEG saves

time and effort overall. This is a common trade-off for automated search based

approaches, as observed in previous work [354].

7.6 Conclusions and Future Work

In this chapter, we proposed MEG, a Multi-objective Ensemble Generation algo-

rithm for defect prediction.

MEG is a novel technique, which, unlike previous MOEA-based ensemble

generation, evolves a population of ensembles (i.e., whole-ensemble generations)

rather than a population of base classifiers (i.e, Pareto-ensemble generation). Fur-

thermore, MEG relies on both accuracy and diversity of ensembles to guide the

search towards robust ensembles, which has not been previously evaluated in the

context of defect prediction.

In our large-scale empirical study involving a total of 24 software versions

from 8 different open-source projects, and both baselines and state-of-the-art bench-

marks, we show that MEG is able to generate ensembles that achieve comparable

or statistically significantly more accurate predictions for 73% of the comparisons,

with large effect sizes in 80% of these cases.

These results show that our novel whole-ensemble generation approach, MEG,

not only advances the state-of-the-art of ensemble in defect prediction (where multi-

objective evolutionary ensemble had never been investigated) but it is also more

effective than Pareto-ensemble generation algorithm. In addition, the benefits of

7.6. Conclusions and Future Work 153

MEG do not only lie on the higher accuracy of the generated ensembles, but also

on the benefits of having an approach that automatically searches for an optimal

design: This spares the engineer from the tedious, time-consuming, and error-prone

activity of manually designing and experimenting.

The proposal of a novel whole-ensemble generation, such as MEG, opens up a

variety of avenues for future work, including but not limited to the following:

- Investigating the characteristics of the optimal ensembles built by MEG fur-

ther, as well as the characteristics of the bugs that are most/least predictable.

- Investigating the effectiveness of alternative solution representations consid-

ering additional learners and aggregation strategies.

- Investigating the effect of using other measures as fitness function to guide the

ensemble evolution, in combination or in alternative to the measures explored

herein. These include the use of other diversity measures, and performance

measures such as the classification stability [355] and the effort required for

source code inspection [356, 357].

- Investigating MOEAs other than NSGA-II (e.g., MOEA/D, IBEA, MOCell,

SPEA2) in order to assess to what extent the effectiveness of MEG varies

depending on the underlying multi-objective algorithm [358].

- Investigating Deep-Learning (DL) in combination with MEG, to assess if this

would further increase the ensemble prediction performance. DL approaches

have recently been proposed to extract from the source code features which

are subsequently used as an input (together or in alternative to traditional

code metrics) to train a base binary classifier [359] for defect prediction. Our

proposed approach, MEG, uses traditional code metrics yet it combines mul-

tiple different binary classifiers automatically searching for the best configu-

ration. These approaches are different in nature: DL augments the training

data, while MEG searches for an optimal configuration of multiple binary

classifiers. It would be interesting in future work to explore such a combined

use.

Chapter 8

Conclusion

The work presented in this thesis contributes to the advancement of the research

in predictive models for software engineering, specifically in the areas of software

development effort estimation and software defect prediction. We have proposed

two novel methods, LFM and MEG, to aid human-machine collaboration towards

achieving accurate effort and defect prediction, respectively, and to facilitate the

adoption of automated models in practice. Moreover, the work in this thesis aimed

at increasing the robustness of empirical studies by investigating crucial factors

that can undermine scientific conclusion stability, namely empirically evaluating

the magnitude of the threat posed by using different evaluation measures to the

scientific conclusions that have been drawn on defect prediction models as well as

revealing a new threat posed by the use of different ML libraries for the replicability

of software estimation studies. We envisage that the contribution made in this thesis

will help ameliorate the gap between humans and machines. In each of the chap-

ters, we outlined specific future work, whereas herein we discuss the most pressing

challenges that lie ahead for applying prediction models in practice.

More work is needed to further incorporate human factors as input features

into automated prediction models. After all, software development is a knowledge-

intensive and social activity [360].

For example, factors that relate to the development team such as the number

of developers involved in producing the system and their level of expertise are good

proxies for understanding and predicting human expert errors. However, during the

155

study on LFM, we have learnt that data about human-factors is seldom available

for effort estimation and gathering the data we used in the study was the most de-

manding task. Further collaborations with industry is needed in order to encompass

a variety of human factors. However these types of features are not easy to access

for researchers and practitioners. In fact, small to medium companies cannot even

afford to collect them in most cases while, big company can collect them but cannot

share them due to high confidentiality.

Future work on prediction models should also aim to be more user-centered,

i.e., the end user should play a more active role in achieving automated predictive

models to be exploited in practice. The threat posed by the use of different ML

libraries for software estimation studies calls for a number of mitigations for differ-

ent stakeholders, e.g. researchers need to report the library and version used in their

study to allow for replicability, and ML library developers need to improve the doc-

umentation as well as the transparency of the source code. Whereas, the empirical

evidence we provided on the magnitude threat posed by using different evaluation

measures encourages the community to reflect on the selection of appropriate evalu-

ation measures that fit the study’s specific aim, model and data, and also to take into

account the given software application domain and business goal. MEG, for exam-

ple, allows the user to specify their own objective function based on their business

needs. We show that it is possible to fully automate the construction of accurate

defect prediction ensemble, and to bridge the gap between the prediction modeler

and the decision maker by using multi-objective evolutionary computation. Such

an approach opens up the possibility of training prediction models optimal with

respect to multiple business goals. In this work we have exposed the tip of the ice-

berg, future work can take into account the inclusions of effort-aware measures to

guide the search for optimal models, as well as, Explainable AI measures to let the

users make a more informed decision about the models to adopt in practice. In fact,

we have been assisting in a recent application of Explainable AI (xAI) in Software

Engineering activities [361], including software effort estimation [362] and defect

prediction [363, 364].

Appendix A

Mathematical Formulation of Linear

Programming

In this appendix we explain the mathematical formulation of the Linear Program-

ming model we used in RQ2 to predict the MisestimationMagnitude.

Linear Programming (LP) [365] aims to achieve the best outcome from a math-

ematical model with a linear objective function subject to linear equality and in-

equality constraints. The feasible region is given by the intersection of the con-

straints and the Simplex (linear programming algorithm) is able to find a point in

the polyhedron where the function has the smallest value (minimisation) in polyno-

mial time.

Here, we generalize the model proposed for the effort estimation by Sarro and

Petrozziello [29].

In the original implementation, the model is subject to an inequality constraint

imposing that the value estimated for each of the observations in the training set has

to fall in R+
0

Here, we remove the inequality constraints allowing the model to use both

positive and negative feature values as well as to optimize for both positive and

negative values, as follows:

minimise
n

∑
i=1
|

m

∑
j=1

ai jx j−ActualValuei|

x jfree, j = 1, ...,m

(A.1)

157

where ai j represents the coefficient of the jth feature for the ith project, x j is the

value of the jth feature, and ActualValuei is the actual effort of the ith project.

Due to the non-linearity of the absolute value function, the above model has

been linearised as follows:

minimise
n

∑
i=1

ti

subject to
n

∑
i=1

m

∑
j=1

ai jx j−ActualValuei− ti ≤ 0

n

∑
i=1

m

∑
j=1

ai jx j−ActualValuei + ti ≥ 0

x j free, j = 1, ...,m

ti free, i = 1, ...,n

(A.2)

Let Xi,∀i be the part of Eq. (A.1) wrapped in the absolute value. ∀i, the slack

variable ti and the following two constraints have been added to the model:

Xi ≤ ti

−Xi ≤ ti

Therefore we can have one of the following cases:

Xi > 0 : The second constraint,−Xi≤ ti, is always fulfilled as−Xi is negative and ti is

implicitly≥ 0. Since ti is minimised by the objective function and 0≤ Xi ≤ ti,

the first constraint, Xi ≤ ti, is satisfied and ti is abs(X).

Xi < 0 : The first constraint, Xi ≤ ti, is always fulfilled as Xi is negative and ti is

implicitly≥ 0. Since ti is minimised by the objective function and 0≤−Xi ≤

ti, the second constraint, −Xi ≤ ti, is satisfied and ti is abs(X).

Xi = 0 : Both constraints are always fulfilled since ti is implicitly ≥ 0. Since ti is

minimised by the objective function, 0 = Xi = ti. So ti is abs(X).

Bibliography

[1] Tim Menzies and Thomas Zimmermann. Software analytics: so what? IEEE

Software, 30(4):31–37, 2013.

[2] Federica Sarro, Alessio Petrozziello, and Mark Harman. Multi-objective

software effort estimation. In Software Engineering (ICSE), 2016 IEEE/ACM

38th International Conference on, pages 619–630. IEEE, 2016.

[3] Ekrem Kocaguneli, Tim Menzies, and Jacky W Keung. On the value of

ensemble effort estimation. IEEE TSE, 38(6):1403–1416, 2011.

[4] Kjetil Moløkken and Magne Jørgensen. A review of surveys on software

effort estimation. 2003.

[5] Jianfeng Wen, Shixian Li, Zhiyong Lin, Yong Hu, and Changqin Huang.

Systematic literature review of machine learning based software development

effort estimation models. Information and Software Technology, 54(1):41–

59, 2012.

[6] Anna Corazza, Sergio Di Martino, Filomena Ferrucci, Carmine Gravino,

Federica Sarro, and Emilia Mendes. Using tabu search to configure sup-

port vector regression for effort estimation. Empirical Software Engineering,

18(3):506–546, 2013.

[7] Filomena Ferrucci, Carmine Gravino, Rocco Oliveto, and Federica Sarro.

Genetic programming for effort estimation: an analysis of the impact of dif-

ferent fitness functions. In 2nd International Symposium on Search Based

Software Engineering, pages 89–98. IEEE, 2010.

Bibliography 159

[8] Federica Sarro, Filomena Ferrucci, and Carmine Gravino. Single and multi

objective genetic programming for software development effort estimation.

In Proceedings of the 27th annual ACM symposium on applied computing,

pages 1221–1226. ACM, 2012.

[9] Xin Xia, Emad Shihab, Yasutaka Kamei, David Lo, and Xinyu Wang. Pre-

dicting crashing releases of mobile applications. In Proceedings of the 10th

ACM/IEEE International Symposium on Empirical Software Engineering

and Measurement, pages 1–10, 2016.

[10] Federica Sarro, Mark Harman, Yue Jia, and Yuanyuan Zhang. Customer

rating reactions can be predicted purely using app features. In Procs. of RE,

pages 76–87. IEEE, 2018.

[11] Qinbao Song, Zihan Jia, Martin Shepperd, Shi Ying, and Jin Liu. A gen-

eral software defect-proneness prediction framework. IEEE transactions on

software engineering, 37(3):356–370, 2010.

[12] Tim Menzies, Zach Milton, Burak Turhan, Bojan Cukic, Yue Jiang, and Ayşe

Bener. Defect prediction from static code features: current results, limita-

tions, new approaches. Automated Software Engineering, 17(4):375–407,

2010.

[13] Song Wang, Taiyue Liu, and Lin Tan. Automatically learning semantic fea-

tures for defect prediction. In 2016 IEEE/ACM 38th International Confer-

ence on Software Engineering (ICSE), pages 297–308. IEEE, 2016.

[14] David Bowes, Tracy Hall, Mark Harman, Yue Jia, Federica Sarro, and Fan

Wu. Mutation-aware fault prediction. In Proceedings of the 25th Interna-

tional Symposium on Software Testing and Analysis, pages 330–341, 2016.

[15] Qinbao Song, Yuchen Guo, and Martin Shepperd. A comprehensive inves-

tigation of the role of imbalanced learning for software defect prediction.

IEEE TSE, 45(12):1253–1269, 2018.

Bibliography 160

[16] Jing Kai Siow, Cuiyun Gao, Lingling Fan, Sen Chen, and Yang Liu. Core:

Automating review recommendation for code changes. In 2020 IEEE 27th

International Conference on Software Analysis, Evolution and Reengineer-

ing (SANER), pages 284–295. IEEE, 2020.

[17] Patanamon Thongtanunam, Chakkrit Tantithamthavorn, Raula Gaikovina

Kula, Norihiro Yoshida, Hajimu Iida, and Ken-ichi Matsumoto. Who should

review my code? a file location-based code-reviewer recommendation ap-

proach for modern code review. In 2015 IEEE 22nd International Confer-

ence on Software Analysis, Evolution, and Reengineering (SANER), pages

141–150. IEEE, 2015.

[18] Mohammad Masudur Rahman, Chanchal K Roy, and Raula G Kula. Predict-

ing usefulness of code review comments using textual features and developer

experience. In 2017 IEEE/ACM 14th International Conference on Mining

Software Repositories (MSR), pages 215–226. IEEE, 2017.

[19] Gaeul Jeong, Sunghun Kim, Thomas Zimmermann, and Kwangkeun Yi.

Improving code review by predicting reviewers and acceptance of patches.

Research on software analysis for error-free computing center Tech-Memo

(ROSAEC MEMO 2009-006), pages 1–18, 2009.

[20] Lionel C Briand and Isabella Wieczorek. Resource estimation in software

engineering. Encyclopedia of software engineering, 2002.

[21] Adam Trendowicz and Ross Jeffery. Software project effort estimation.

Foundations and Best Practice Guidelines for Success, Constructive Cost

Model, COCOMO, pages 277–293, 2014.

[22] Steve McConnell. Software estimation: demystifying the black art. Microsoft

press, 2006.

[23] Tracy Hall, Sarah Beecham, David Bowes, David Gray, and Steve Counsell.

A systematic literature review on fault prediction performance in software

Bibliography 161

engineering. IEEE Transactions on Software Engineering, 38(6):1276–1304,

2011.

[24] Armin Najafi, Peter C Rigby, and Weiyi Shang. Bisecting commits and mod-

eling commit risk during testing. In Proceedings of the 2019 27th ACM Joint

Meeting on European Software Engineering Conference and Symposium on

the Foundations of Software Engineering, pages 279–289, 2019.

[25] Chandra Maddila, Chetan Bansal, and Nachiappan Nagappan. Predicting

pull request completion time: a case study on large scale cloud services.

In Proceedings of the 2019 27th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software En-

gineering, pages 874–882, 2019.

[26] Mateusz Machalica, Alex Samylkin, Meredith Porth, and Satish Chandra.

Predictive test selection. In Proceedings of the 41st International Conference

on Software Engineering: Software Engineering in Practice, pages 91–100.

IEEE Press, 2019.

[27] Tim Menzies and Martin Shepperd. Special issue on repeatable results in

software engineering prediction. EMSE, 17(1):1–17, 2012.

[28] Jacky Keung, Ekrem Kocaguneli, and Tim Menzies. Finding conclusion sta-

bility for selecting the best effort predictor in software effort estimation. Au-

tomated Software Engineering, 20:543–567, 2013.

[29] Federica Sarro and Alessio Petrozziello. Linear programming as a baseline

for software effort estimation. ACM transactions on software engineering

and methodology (TOSEM), 27(3):1–28, 2018.

[30] M. Jørgensen. A review of studies on expert estimation of software develop-

ment effort. Journal of Systems and Software, 70(1-2):37–60, 2004.

[31] Kjetil Molkken and Magne Jörgensen. A review of surveys on software effort

estimation. In Proc. of ISESE’03, pages 223–230, 2003.

Bibliography 162

[32] Tanja M Gruschke and Magne Jørgensen. The role of outcome feedback

in improving the uncertainty assessment of software development effort es-

timates. ACM Transactions on Software Engineering and Methodology

(TOSEM), 17(4):1–35, 2008.

[33] Muhammad Usman, Emilia Mendes, and Jürgen Börstler. Effort estimation

in agile software development: a survey on the state of the practice. In Pro-

ceedings of the 19th international conference on Evaluation and Assessment

in Software Engineering, pages 1–10, 2015.

[34] Erik Arisholm, Lionel C. Briand, and Eivind B. Johannessen. A system-

atic and comprehensive investigation of methods to build and evaluate fault

prediction models. Journal of Systems and Software, 83:2–17, 1 2010.

[35] Mauno Vihinen. How to evaluate performance of prediction methods? mea-

sures and their interpretation in variation effect analysis. In BMC genomics,

volume 13, 2012.

[36] Mohamed Bekkar, Hassiba Kheliouane Djemaa, and Taklit Akrouf Ali-

touche. Evaluation measures for models assessment over imbalanced data

sets. J Inf Eng Appl, 3(10), 2013.

[37] Davide Chicco and Giuseppe Jurman. The advantages of the mcc over

f1 score and accuracy in binary classification evaluation. BMC genomics,

21(1):6, 2020.

[38] Haibo He and Edwardo A. Garcia. Learning from imbalanced data. IEEE

Transactions on Knowledge and Data Engineering, 21(9):1263–1284, 2009.

[39] Yue Jiang, Bojan Cukic, and Yan Ma. Techniques for evaluating fault pre-

diction models. EMSE, 13(5):561–595, 2008.

[40] Fred J Heemstra. Software cost estimation. Information and software tech-

nology, 34(10):627–639, 1992.

Bibliography 163

[41] Lawrence H Putnam and Ware Myers. Measures for excellence: reliable soft-

ware on time, within budget. Prentice Hall Professional Technical Reference,

1991.

[42] Albert L Lederer and Jayesh Prasad. Information systems software cost es-

timating: a current assessment. Journal of information technology, 8(1):22–

33, 1993.

[43] Ning Nan and Donald E Harter. Impact of budget and schedule pressure on

software development cycle time and effort. IEEE Transactions on Software

Engineering, 35(5):624–637, 2009.

[44] T Capers Jones. Estimating software costs. McGraw-Hill, Inc., 1998.

[45] Graham C. Low and D. Ross Jeffery. Function points in the estimation and

evaluation of the software process. IEEE transactions on Software Engineer-

ing, 16(1):64–71, 1990.

[46] Chris F Kemerer. An empirical validation of software cost estimation models.

Communications of the ACM, 30(5):416–429, 1987.

[47] FJ Heemstra and RJ Kusters. Function point analysis: Evaluation of a

software cost estimation model. European Journal of Information Systems,

1(4):229–237, 1991.

[48] Allan J Albrecht. Measuring application development productivity. In Proc.

Joint Share, Guide, and IBM Application Development Symposium, 1979,

1979.

[49] Cigdem Gencel and Onur Demirors. Functional size measurement revisited.

ACM Transactions on Software Engineering and Methodology (TOSEM),

17(3):1–36, 2008.

[50] Iso/iec 14143-1. https://www.iso.org/standard/38931.html.

Accessed: 2020-11-08.

https://www.iso.org/standard/38931.html

Bibliography 164

[51] A. Abran, J. Desharnais, A. Lesterhuis, B. Londeix, R. Meli,

P. Morris, S. Oligny, M. O’Neil, T. Rollo, G. Rule, L. San-

tillo, C. Symons, and H. Toivonen. The COSMIC Functional

Size Measurement Method – Measurement Manual, version 4.0.1 In

http://www.cosmicon.com/portal/public/MMv4.0.1.pdf., 2015.

[52] Harold van Heeringen and Edwin Van Gorp. Measure the functional size

of a mobile app: Using the cosmic functional size measurement method.

In 2014 Joint Conference of the International Workshop on Software Mea-

surement and the International Conference on Software Process and Product

Measurement, pages 11–16. IEEE, 2014.

[53] F. Ferrucci, C. Gravino, P. Salza, and F. Sarro. Investigating functional and

code size measures for mobile applications. In 2015 41st Euromicro Confer-

ence on Software Engineering and Advanced Applications, pages 365–368,

2015.

[54] Filomena Ferrucci, Carmine Gravino, Pasquale Salza, and Federica Sarro.

Investigating functional and code size measures for mobile applications: A

replicated study. In International Conference on Product-Focused Software

Process Improvement, pages 271–287. Springer, 2015.

[55] L. De Marco, F. Ferrucci, C. Gravino, F. Sarro, S.M. Abrahão, and J. Gómez.

Functional versus design measures for model-driven web applications: a case

study in the context of web effort estimation. In Proceedings of the 3rd

International Workshop on Emerging Trends in Software Metric (WETSoM),

pages 21–27, 2012.

[56] Beatriz Marín, Oscar Pastor, and Alain Abran. Towards an accurate func-

tional size measurement procedure for conceptual models in an MDA envi-

ronment. Data Knowl. Eng., 69(5):472–490, 2010.

[57] Silvia Abrahão, Lucia De Marco, Filomena Ferrucci, Jaime Gómez, Carmine

Gravino, and Federica Sarro. Definition and evaluation of a COSMIC mea-

Bibliography 165

surement procedure for sizing web applications in a model-driven devel-

opment environment. Information and Software Technology, 104:144–161,

2018.

[58] J. Sayyad Shirabad and T.J. Menzies. The PROMISE Repository of Software

Engineering Databases., 2005.

[59] ISBSG. The international software benchmarking standards group, 2019.

[60] Emilia Mendes, Ian Watson, Chris Triggs, Nile Mosley, and Steve Counsell.

A comparative study of cost estimation models for web hypermedia applica-

tions. Empirical Software Engineering, 8(2):163–196, 2003.

[61] Martin Auer, Adam Trendowicz, Bernhard Graser, Ernst Haunschmid, and

Stefan Biffl. Optimal project feature weights in analogy-based cost estima-

tion: Improvement and limitations. IEEE Transactions on Software Engi-

neering, 32(2):83–92, 2006.

[62] Ekrem Kocaguneli, Tim Menzies, Ayse Bener, and Jacky W Keung. Ex-

ploiting the essential assumptions of analogy-based effort estimation. IEEE

Transactions on Software Engineering, 38(2):425–438, 2011.

[63] Yan-Fu Li, Min Xie, and Thong Ngee Goh. A study of project selection

and feature weighting for analogy based software cost estimation. Journal of

Systems and Software, 82(2):241–252, 2009.

[64] Lionel C Briand, Khaled El Emam, Dagmar Surmann, Isabella Wieczorek,

and Katrina D Maxwell. An assessment and comparison of common soft-

ware cost estimation modeling techniques. In Proceedings of the 1999 Inter-

national Conference on Software Engineering (IEEE Cat. No. 99CB37002),

pages 313–323. IEEE, 1999.

[65] Lionel C Briand, Tristen Langley, and Isabella Wieczorek. A replicated as-

sessment and comparison of common software cost modeling techniques. In

Bibliography 166

Proceedings of the 22nd international conference on Software engineering,

pages 377–386, 2000.

[66] Ayse Bakir, Ekrem Kocaguneli, Ayse Tosun, Ayse Bener, and Burak Turhan.

Xiruxe: an intelligent fault tracking tool. In 2009 International Conference

on Artificial Intelligence and Pattern Recognition, AIPR 2009, pages 293–

300, 2009.

[67] Burak Turhan, Onur Kutlubay, and Ayse Bener. Evaluation of feature extrac-

tion methods on software cost estimation. In First International Symposium

on Empirical Software Engineering and Measurement (ESEM 2007), pages

497–497. IEEE, 2007.

[68] Jacky Keung and Barbara Kitchenham. Experiments with analogy-x for soft-

ware cost estimation. In 19th Australian Conference on Software Engineer-

ing (aswec 2008), pages 229–238. IEEE, 2008.

[69] Jacky W Keung. Theoretical maximum prediction accuracy for analogy-

based software cost estimation. In 2008 15th Asia-Pacific Software Engi-

neering Conference, pages 495–502. IEEE, 2008.

[70] Ekrem Kocaguneli, Gregory Gay, Tim Menzies, Ye Yang, and Jacky W Ke-

ung. When to use data from other projects for effort estimation. In Pro-

ceedings of the IEEE/ACM international conference on Automated software

engineering, pages 321–324, 2010.

[71] Jingzhou Li and Guenther Ruhe. Analysis of attribute weighting heuristics

for analogy-based software effort estimation method aqua+. Empirical Soft-

ware Engineering, 13(1):63–96, 2008.

[72] Martin Shepperd and Chris Schofield. Estimating software project effort us-

ing analogies. IEEE Transactions on software engineering, 23(11):736–743,

1997.

Bibliography 167

[73] Ekrem Kocaguneli and Tim Menzies. Software effort models should be

assessed via leave-one-out validation. Journal of Systems and Software,

86(7):1879–1890, 2013.

[74] Boyce Sigweni, Martin Shepperd, and Tommaso Turchi. Realistic assess-

ment of software effort estimation models. In Proceedings of the 20th Inter-

national Conference on Evaluation and Assessment in Software Engineering,

pages 1–6, 2016.

[75] Jasper Jolly. Passenger anger as tens of thousands hit by ba systems failure,

2019.

[76] Henry Bodkin, 2019.

[77] Capers Jones. Applied Software Measurement: Global Analysis of Produc-

tivity and Quality. McGraw-Hill Education Group, 3rd edition, 2008.

[78] Barry Boehm and Victor R Basili. Top 10 list [software development]. Com-

puter, 34(1):135–137, 2001.

[79] Fumio Akiyama. An example of software system debugging. In IFIP

Congress (1), volume 71, pages 353–359, 1971.

[80] Thomas J McCabe. A complexity measure. IEEE Transactions on software

Engineering, (4):308–320, 1976.

[81] Maurice Howard Halstead et al. Elements of software science, volume 7.

Elsevier New York, 1977.

[82] Shyam R Chidamber and Chris F Kemerer. A metrics suite for object oriented

design. IEEE Transactions on software engineering, 20(6):476–493, 1994.

[83] Erik Arisholm, Lionel C Briand, and Eivind B Johannessen. A systematic

and comprehensive investigation of methods to build and evaluate fault pre-

diction models. JSS, 83(1):2–17, 2010.

Bibliography 168

[84] Victor R Basili, Lionel C. Briand, and Walcélio L Melo. A validation of

object-oriented design metrics as quality indicators. IEEE Transactions on

software engineering, 22(10):751–761, 1996.

[85] Niclas Ohlsson and Hans Alberg. Predicting fault-prone software mod-

ules in telephone switches. IEEE Transactions on Software Engineering,

22(12):886–894, 1996.

[86] Lionel C. Briand, John W. Daly, and Jurgen K Wust. A unified framework

for coupling measurement in object-oriented systems. IEEE Transactions on

software Engineering, 25(1):91–121, 1999.

[87] Khaled El Emam, Walcelio Melo, and Javam C Machado. The prediction of

faulty classes using object-oriented design metrics. Journal of systems and

software, 56(1):63–75, 2001.

[88] Ramanath Subramanyam and Mayuram S. Krishnan. Empirical analysis of

ck metrics for object-oriented design complexity: Implications for software

defects. IEEE Transactions on software engineering, 29(4):297–310, 2003.

[89] Tibor Gyimothy, Rudolf Ferenc, and Istvan Siket. Empirical validation of

object-oriented metrics on open source software for fault prediction. IEEE

Transactions on Software engineering, 31(10):897–910, 2005.

[90] Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. Mining metrics to

predict component failures. In Proceedings of the 28th international confer-

ence on Software engineering, pages 452–461, 2006.

[91] Raimund Moser, Witold Pedrycz, and Giancarlo Succi. A comparative anal-

ysis of the efficiency of change metrics and static code attributes for defect

prediction. In Proceedings of the 30th international conference on Software

engineering, pages 181–190, 2008.

[92] Raimund Moser, Witold Pedrycz, and Giancarlo Succi. Analysis of the re-

liability of a subset of change metrics for defect prediction. In Proceedings

Bibliography 169

of the Second ACM-IEEE international symposium on Empirical software

engineering and measurement, pages 309–311, 2008.

[93] Garvit Rajesh Choudhary, Sandeep Kumar, Kuldeep Kumar, Alok Mishra,

and Cagatay Catal. Empirical analysis of change metrics for software fault

prediction. Computers & Electrical Engineering, 67:15–24, 2018.

[94] Nachiappan Nagappan and Thomas Ball. Use of relative code churn mea-

sures to predict system defect density. In Proceedings of the 27th interna-

tional conference on Software engineering, pages 284–292, 2005.

[95] Ahmed E Hassan. Predicting faults using the complexity of code changes.

In 2009 IEEE 31st international conference on software engineering, pages

78–88. IEEE, 2009.

[96] Abraham Bernstein, Jayalath Ekanayake, and Martin Pinzger. Improving

defect prediction using temporal features and non linear models. In Ninth

international workshop on Principles of software evolution: in conjunction

with the 6th ESEC/FSE joint meeting, pages 11–18, 2007.

[97] Danijel Radjenović, Marjan Heričko, Richard Torkar, and Aleš Živkovič.

Software fault prediction metrics: A systematic literature review. Informa-

tion and software technology, 55(8):1397–1418, 2013.

[98] Taek Lee, Jaechang Nam, DongGyun Han, Sunghun Kim, and Hoh Peter In.

Micro interaction metrics for defect prediction. In Proceedings of the 19th

ACM SIGSOFT symposium and the 13th European conference on Founda-

tions of software engineering, pages 311–321, 2011.

[99] Martin Shepperd, David Bowes, and Tracy Hall. Researcher bias: The use

of machine learning in software defect prediction. IEEE Transactions on

Software Engineering, 40(6):603–616, 2014.

[100] David Gray, David Bowes, Neil Davey, Yi Sun, and Bruce Christianson. The

misuse of the nasa metrics data program data sets for automated software

Bibliography 170

defect prediction. In 15th annual conference on evaluation & assessment in

software engineering (EASE 2011), pages 96–103. IET, 2011.

[101] Martin Shepperd, Qinbao Song, Zhongbin Sun, and Carolyn Mair. Data qual-

ity: Some comments on the nasa software defect datasets. IEEE Transactions

on Software Engineering, 39(9):1208–1215, 2013.

[102] Jean Petrić, David Bowes, Tracy Hall, Bruce Christianson, and Nathan Bad-

doo. The jinx on the nasa software defect data sets. In Procs. of EASE, pages

1–5, 2016.

[103] Tim Menzies, Bora Caglayan, Ekrem Kocaguneli, Joe Krall, Fayola Peters,

and Burak Turhan. The promise repository of empirical software engineering

data, 2012.

[104] Lan Guo, Yan Ma, Bojan Cukic, and Harshinder Singh. Robust prediction

of fault-proneness by random forests. In Software Reliability Engineering,

2004. ISSRE 2004. 15th International Symposium on, pages 417–428. IEEE,

2004.

[105] Ahmed Iqbal, Shabib Aftab, Umair Ali, Zahid Nawaz, Laraib Sana, Munir

Ahmad, and Arif Husen. Performance analysis of machine learning tech-

niques on software defect prediction using nasa datasets. Int. J. Adv. Comput.

Sci. Appl, 10(5), 2019.

[106] Ömer Faruk Arar and Kürşat Ayan. Software defect prediction using cost-

sensitive neural network. Applied Soft Computing, 33:263–277, 2015.

[107] Ming Tan, Lin Tan, Sashank Dara, and Caleb Mayeux. Online defect pre-

diction for imbalanced data. In 2015 IEEE/ACM 37th IEEE International

Conference on Software Engineering, volume 2, pages 99–108. IEEE, 2015.

[108] Kwabena Ebo Bennin, Koji Toda, Yasutaka Kamei, Jacky Keung, Akito

Monden, and Naoyasu Ubayashi. Empirical evaluation of cross-release

Bibliography 171

effort-aware defect prediction models. In 2016 IEEE International Confer-

ence on Software Quality, Reliability and Security (QRS), pages 214–221.

IEEE, 2016.

[109] Swapnil Shukla, T Radhakrishnan, K Muthukumaran, and Lalita

Bhanu Murthy Neti. Multi-objective cross-version defect prediction. Soft

Computing, 22(6):1959–1980, 2018.

[110] Jie Zhang, Jiajing Wu, Chuan Chen, Zibin Zheng, and Michael R Lyu. Cds:

A cross–version software defect prediction model with data selection. IEEE

Access, 8:110059–110072, 2020.

[111] Zhou Xu, Shuai Li, Yutian Tang, Xiapu Luo, Tao Zhang, Jin Liu, and Jun

Xu. Cross version defect prediction with representative data via sparse subset

selection. In 2018 IEEE/ACM 26th International Conference on Program

Comprehension (ICPC), pages 132–13211. IEEE, 2018.

[112] Zhimin He, Fengdi Shu, Ye Yang, Mingshu Li, and Qing Wang. An in-

vestigation on the feasibility of cross-project defect prediction. Automated

Software Engineering, 19(2):167–199, 2012.

[113] Thomas Zimmermann, Nachiappan Nagappan, Harald Gall, Emanuel Giger,

and Brendan Murphy. Cross-project defect prediction: a large scale experi-

ment on data vs. domain vs. process. In Proceedings of the 7th joint meeting

of the European software engineering conference and the ACM SIGSOFT

symposium on The foundations of software engineering, pages 91–100, 2009.

[114] Foyzur Rahman, Daryl Posnett, and Premkumar Devanbu. Recalling the"

imprecision" of cross-project defect prediction. In Proceedings of the ACM

SIGSOFT 20th International Symposium on the Foundations of Software En-

gineering, pages 1–11, 2012.

[115] Yuming Zhou, Yibiao Yang, Hongmin Lu, Lin Chen, Yanhui Li, Yangyang

Zhao, Junyan Qian, and Baowen Xu. How far we have progressed in the jour-

Bibliography 172

ney? an examination of cross-project defect prediction. ACM Transactions

on Software Engineering and Methodology (TOSEM), 27(1):1–51, 2018.

[116] Lionel C. Briand and Isabella Wieczorek. Software resource estimation. En-

cyclopedia of Software Engineering, pages 1160–1196, 2002.

[117] M. Shepperd and C. Schofield. Estimating software project effort using

analogies. IEEE TSE, 23(11):736–743, 2000.

[118] Jianfeng Wen, Shixian Li, Zhiyong Lin, Yong Hu, and Changqin Huang.

Systematic literature review of machine learning based software development

effort estimation models. Inf. Softw. Technol., 54(1):41–59, 2012.

[119] Ali Idri, Mohamed Hosni, and Alain Abran. Systematic literature review of

ensemble effort estimation. Journal of Systems and Software, 118(C):151–

175, 2016.

[120] Filomena Ferrucci, Mark Harman, and Federica Sarro. Search-Based Soft-

ware Project Management, pages 373–399. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2014.

[121] Cigdem Gencel. How to use cosmic functional size in effort estimation

models? In Software Process and Product Measurement, pages 196–207.

Springer, 2008.

[122] Marcos de Freitas Junior, Marcelo Fantinato, and Violeta Sun. Improvements

to the function point analysis method: A systematic literature review. IEEE

Transactions on Engineering Management, 62(4):495–506, 2015.

[123] Filomena Ferrucci, Carmine Gravino, and Federica Sarro. Conversion from

ifpug fpa to cosmic: within-vs without-company equations. In Proceed-

ings of the 40th EUROMICRO Conference on Software Engineering and Ad-

vanced Applications (SEAA), pages 293–300. IEEE, 2014.

Bibliography 173

[124] S. Di Martino, F. Ferrucci, C. Gravino, and F. Sarro. Web effort estimation:

Function point analysis vs. COSMIC. Information and Software Technology,

72:90–109, 2016.

[125] Sergio Di Martino, Filomena Ferrucci, Carmine Gravino, and Federica Sarro.

Assessing the effectiveness of approximate functional sizing approaches for

effort estimation. Information and Software Technology, 123:106308, 2020.

[126] Emilia Mendes, Marcos Kalinowski, Daves Martins, Filomena Ferrucci, and

Federica Sarro. Cross- vs. within-company cost estimation studies revisited:

an extended systematic review. In 18th International Conference on Eval-

uation and Assessment in Software Engineering, EASE, pages 12:1–12:10,

2014.

[127] Tim Menzies, Andrew Butcher, David Cok, Andrian Marcus, Lucas Layman,

Forrest Shull, Burak Turhan, and Thomas Zimmermann. Local versus global

lessons for defect prediction and effort estimation. IEEE Transactions on

software engineering, 39(6):822–834, 2013.

[128] Ekrem Kocaguneli, Tim Menzies, and Emilia Mendes. Transfer learning in

effort estimation. Empirical Software Engineering, 20(3):813–843, 2015.

[129] Leandro Minku, Federica Sarro, Emilia Mendes, and Filomena Ferrucci.

How to make best use of cross-company data for web effort estima-

tion? In Empirical Software Engineering and Measurement (ESEM), 2015

ACM/IEEE International Symposium on, pages 1–10. IEEE, 2015.

[130] Stephen G. MacDonell and Martin J. Shepperd. Combining techniques to op-

timize effort predictions in software project management. Journal of Systems

and Software, 66(2):91–98, 2003.

[131] Magne Jorgensen. Realism in assessment of effort estimation uncertainty:

It matters how you ask. IEEE Transactions on Software Engineering,

30(4):209–217, 2004.

Bibliography 174

[132] Federica Sarro, Alessio Petrozziello, and Mark Harman. Multi-objective

software effort estimation. In Proc. of the 38th International Conference

on Software Engineering ICSE, pages 619–630, 2016.

[133] M. Jørgensen and D.I.K. Sjöberg. An effort prediction interval approach

based on the empirical distribution of previous estimation accuracy. Infor-

mation and Software Technology, 45(3):123–136, 2003.

[134] Magne Jørgensen and Dag I. K. Sjoeberg. An effort prediction interval ap-

proach based on the empirical distribution of previous estimation accuracy.

Information and software Technology, 45(3):123–136, 2003.

[135] Magne Jørgensen. Looking back on previous estimation error as a method to

improve the uncertainty assessment of benefits and costs of software devel-

opment projects. In 2018 9th International Workshop on Empirical Software

Engineering in Practice (IWESEP), pages 19–24. IEEE, 2018.

[136] Karl Halvor Teigen and Magne JØrgensen. When 90% confidence intervals

are 50% certain: On the credibility of credible intervals. Applied Cogni-

tive Psychology: The Official Journal of the Society for Applied Research in

Memory and Cognition, 19(4):455–475, 2005.

[137] Magne Jørgensen and Kjetil Moløkken. Combination of software develop-

ment effort prediction intervals: Why, when and how? In Proc. of SEKE’02,

pages 425–428, 2002.

[138] Magne Jørgensen, Karl Halvor Teigen, and Kjetil MoløKken. Better sure

than safe? over-confidence in judgement based software development effort

prediction intervals. Journal of Systems and Software, 70(1-2):79–93, 2004.

[139] Magne Jørgensen. The ignorance of confidence levels in minimum-

maximum software development effort intervals. Lecture Notes on Software

Engineering, 2(4):327, 2014.

Bibliography 175

[140] Albert L Lederer and Jayesh Prasad. Causes of inaccurate software develop-

ment cost estimates. Journal of systems and software, 31(2):125–134, 1995.

[141] Terry Connolly and Doug Dean. Decomposed versus holistic estimates of

effort required for software writing tasks. Management Science, 43(7):1029–

1045, 1997.

[142] Andrew R Gray, Stephen G MacDonell, and Martin J Shepperd. Factors sys-

tematically associated with errors in subjective estimates of software devel-

opment effort: the stability of expert judgment. In Proceedings Sixth Inter-

national Software Metrics Symposium (Cat. No. PR00403), pages 216–227.

IEEE, 1999.

[143] Magne Jørgensen. Regression models of software development effort esti-

mation accuracy and bias. Empirical Software Engineering, 9(4):297–314,

2004.

[144] Magne Jorgensen and Stein Grimstad. Software development estimation bi-

ases: The role of interdependence. IEEE Transactions on Software Engineer-

ing, 38(3):677–693, 2012.

[145] Magne Jørgensen. Forecasting of software development work effort: Ev-

idence on expert judgement and formal models. International Journal of

Forecasting, 23(3):449–462, 2007.

[146] Harry Levi Hollingworth. The central tendency of judgment. The Journal of

Philosophy, Psychology and Scientific Methods, 7(17):461–469, 1910.

[147] Daniel Kahneman and Amos Tversky. Intuitive prediction: Biases and cor-

rective procedures. Technical report, Decisions and Designs Inc Mclean Va,

1977.

[148] Michael M Roy and Nicholas JS Christenfeld. Bias in memory predicts bias

in estimation of future task duration. Memory & Cognition, 35(3):557–564,

2007.

Bibliography 176

[149] Michael M Roy, Scott T Mitten, and Nicholas JS Christenfeld. Correcting

memory improves accuracy of predicted task duration. Journal of Experi-

mental Psychology: Applied, 14(3):266, 2008.

[150] Magne Jorgensen and Kjetil Molokken-Ostvold. Reasons for software ef-

fort estimation error: impact of respondent role, information collection ap-

proach, and data analysis method. IEEE Transactions on Software engineer-

ing, 30(12):993–1007, 2004.

[151] Yigit Kultur, Burak Turhan, and Ayse Basar Bener. Enna: software effort

estimation using ensemble of neural networks with associative memory. In

Proceedings of the 16th ACM SIGSOFT International Symposium on Foun-

dations of software engineering, pages 330–338, 2008.

[152] Asad Ali and Carmine Gravino. A systematic literature review of software

effort prediction using machine learning methods. Journal of Software: Evo-

lution and Process, 31(10):e2211, 2019.

[153] Pamela Bhattacharya and Iulian Neamtiu. Bug-fix time prediction models:

Can we do better? In Proceedings of the 8th Working Conference on Mining

Software Repositories, MSR ’11, page 207–210, New York, NY, USA, 2011.

Association for Computing Machinery.

[154] Giang Nguyen, Stefan Dlugolinsky, Martin Bobák, Viet Tran, Álvaro

López García, Ignacio Heredia, Peter Malík, and Ladislav Hluch? Machine

learning and deep learning frameworks and libraries for large-scale data min-

ing: A survey. Artif. Intell. Rev., 52(1):77–124, June 2019.

[155] Sridevi Bonthu and K Hima Bindu. Review of leading data analytics tools.

International Journal of Engineering & Technology, 7(3.31):10–15, 2017.

[156] Shraddha Dwivedi, Paridhi Kasliwal, and Suryakant Soni. Comprehensive

study of data analytics tools (rapidminer, weka, r tool, knime). In 2016

Symposium on Colossal Data Analysis and Networking (CDAN), pages 1–

8. IEEE, 2016.

Bibliography 177

[157] I. Myrtveit, E. Stensrud, and M. Shepperd. Reliability and validity in compar-

ative studies of software prediction models. IEEE Transactions on Software

Engineering, 31(5):380–391, 2005.

[158] Federica Sarro. Predictive analytics for software testing: keynote paper. In

Juan Pablo Galeotti and Alessandra Gorla, editors, Proceedings of the 11th

International Workshop on Search-Based Software Testing, ICSE, page 1.

ACM, 2018.

[159] F. Sarro, R. Moussa, A. Petrozziello, and M. Harman. Learning from mis-

takes: Machine learning enhanced human expert effort estimates. IEEE

Transactions on Software Engineering.

[160] Md Johirul Islam, Hoan Anh Nguyen, Rangeet Pan, and Hridesh Rajan. What

do developers ask about ml libraries? a large-scale study using stack over-

flow. arXiv preprint arXiv:1906.11940, 2019.

[161] Yalda Hashemi, Maleknaz Nayebi, and Giuliano Antoniol. Documentation of

machine learning software. In 2020 IEEE 27th International Conference on

Software Analysis, Evolution and Reengineering (SANER), pages 666–667.

IEEE, 2020.

[162] Andrew Begel and Thomas Zimmermann. Analyze this! 145 questions for

data scientists in software engineering. In Proceedings of the 36th Interna-

tional Conference on Software Engineering, pages 12–23, 2014.

[163] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald

Gall, Ece Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zim-

mermann. Software engineering for machine learning: A case study. In 2019

IEEE/ACM 41st International Conference on Software Engineering: Soft-

ware Engineering in Practice (ICSE-SEIP), pages 291–300. IEEE, 2019.

[164] Tushar Sharma Federica Sarro Ying Zou Stefanos Georgiou, Maria Kecha-

gia. Green AI: Do deep learning frameworks have different costs? In

Bibliography 178

44th IEEE/ACM International Conference on Software Engineering (ICSE).

IEEE/ACM, 2022.

[165] Alex Cummaudo, Rajesh Vasa, John Grundy, and Mohamed Abdelrazek. Re-

quirements of api documentation: A case study into computer vision ser-

vices. IEEE Transactions on Software Engineering, 2020.

[166] Jie M Zhang, Mark Harman, Lei Ma, and Yang Liu. Machine learning test-

ing: Survey, landscapes and horizons. IEEE Transactions on Software Engi-

neering, 2020.

[167] Cynthia C. S. Liem and Annibale Panichella. Oracle issues in machine learn-

ing and where to find them. In Proceedings of the IEEE/ACM 42nd Inter-

national Conference on Software Engineering Workshops, ICSEW’20, page

483–488, New York, NY, USA, 2020. Association for Computing Machin-

ery.

[168] Tenzin Doleck, David John Lemay, Ram B Basnet, and Paul Bazelais. Pre-

dictive analytics in education: a comparison of deep learning frameworks.

Education and Information Technologies, 25(3):1951–1963, 2020.

[169] Hung Viet Pham, Shangshu Qian, Jiannan Wang, Thibaud Lutellier, Jonathan

Rosenthal, Lin Tan, Yaoliang Yu, and Nachiappan Nagappan. Problems and

opportunities in training deep learning software systems: an analysis of vari-

ance. In Proceedings of the 35th IEEE/ACM International Conference on

Automated Software Engineering, pages 771–783, 2020.

[170] Robbert Jongeling, Proshanta Sarkar, Subhajit Datta, and Alexander Sere-

brenik. On negative results when using sentiment analysis tools for software

engineering research. Empirical Softw. Engg., 22(5):2543–2584, October

2017.

[171] Nicole Novielli, Daniela Girardi, and Filippo Lanubile. A benchmark study

on sentiment analysis for software engineering research. In Proceedings of

Bibliography 179

the 15th International Conference on Mining Software Repositories, MSR

’18, page 364–375, New York, NY, USA, 2018. Association for Computing

Machinery.

[172] Nicole Novielli, Fabio Calefato, Filippo Lanubile, and Alexander Serebrenik.

Assessment of off-the-shelf se-specific sentiment analysis tools: An extended

replication study. Empir. Softw. Eng., 26(4):77, 2021.

[173] Jarernsri Mitrpanont, Wudhichart Sawangphol, Thanita Vithantirawat, Sinat-

taya Paengkaew, Prameyuda Suwannasing, Atthapan Daramas, and Yi-

Cheng Chen. A study on using python vs weka on dialysis data analysis.

In 2017 2nd International Conference on Information Technology (INCIT),

pages 1–6. IEEE, 2017.

[174] Satish CR Nandipati, Chew XinYing, and Khaw Khai Wah. Hepatitis c virus

(hcv) prediction by machine learning techniques. Applications of Modelling

and Simulation, 4:89–100, 2020.

[175] Stephen R Piccolo, Terry J Lee, Erica Suh, and Kimball Hill. Shinylearner: A

containerized benchmarking tool for machine-learning classification of tabu-

lar data. GigaScience, 9(4):giaa026, 2020.

[176] Stephen R Piccolo, Avery Mecham, Nathan P Golightly, Jérémie L Johnson,

and Dustin B Miller. Benchmarking 50 classification algorithms on 50 gene-

expression datasets. bioRxiv, 2021.

[177] Cynthia Liem and Annibale Panichella. Run, forest, run? on randomiza-

tion and reproducibility in predictive software engineering. arXiv preprint

arXiv:2012.08387, 2020.

[178] Stefan Lessmann, Bart Baesens, Christophe Mues, and Swantje Pietsch.

Benchmarking classification models for software defect prediction: A pro-

posed framework and novel findings. IEEE Transactions on Software Engi-

neering, 34(4):485–496, 2008.

Bibliography 180

[179] Venkata Udaya B Challagulla, Farokh B Bastani, I-Ling Yen, and Ray-

mond A Paul. Empirical assessment of machine learning based software

defect prediction techniques. International Journal on Artificial Intelligence

Tools, 17(02):389–400, 2008.

[180] Ayşe Tosun, Ayşe Bener, Burak Turhan, and Tim Menzies. Practical consid-

erations in deploying statistical methods for defect prediction: A case study

within the turkish telecommunications industry. Information and Software

Technology, 52(11):1242–1257, 2010.

[181] Seyedrebvar Hosseini, Burak Turhan, and Mika Mäntylä. A benchmark

study on the effectiveness of search-based data selection and feature selection

for cross project defect prediction. Information and Software Technology,

95:296–312, 2018.

[182] Rebecca Moussa and Danielle Azar. A pso-ga approach targeting fault-prone

software modules. Journal of Systems and Software, 132:41–49, 2017.

[183] Kehan Gao, Taghi M Khoshgoftaar, Huanjing Wang, and Naeem Seliya.

Choosing software metrics for defect prediction: an investigation on feature

selection techniques. Software: Practice and Experience, 41(5):579–606,

2011.

[184] Marian Jureczko. Significance of different software metrics in defect predic-

tion. Software Engineering: An International Journal, 1(1):86–95, 2011.

[185] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E Hassan, and Kenichi

Matsumoto. The impact of automated parameter optimization on defect pre-

diction models. IEEE Transactions on Software Engineering, 45(7):683–711,

2018.

[186] Shamsul Huda, Kevin Liu, Mohamed Abdelrazek, Amani Ibrahim, Sultan

Alyahya, Hmood Al-Dossari, and Shafiq Ahmad. An ensemble oversam-

pling model for class imbalance problem in software defect prediction. IEEE

access, 6:24184–24195, 2018.

Bibliography 181

[187] Sousuke Amasaki. Cross-version defect prediction using cross-project de-

fect prediction approaches: Does it work? In Proceedings of the 14th In-

ternational Conference on Predictive Models and Data Analytics in Software

Engineering, pages 32–41, 2018.

[188] Mark Harman, S Afshin Mansouri, and Yuanyuan Zhang. Search-based soft-

ware engineering: Trends, techniques and applications. ACM Computing

Surveys (CSUR), 45(1):1–61, 2012.

[189] Mark Harman, Phil McMinn, Jerffeson Teixeira de Souza, and Shin Yoo.

Search based software engineering: Techniques, taxonomy, tutorial. In

LASER, pages 1–59, 2010.

[190] Federica Sarro. Search-based predictive modelling for software engineer-

ing: How far have we gone? In Shiva Nejati and Gregory Gay, editors,

Proceedings of the 11th International Symposium on Search-Based Software

Engineering (SSBSE), volume 11664 of Lecture Notes in Computer Science,

pages 3–7. Springer, 2019.

[191] Ruchika Malhotra, Megha Khanna, and Rajeev R. Raje. On the application

of search-based techniques for software engineering predictive modeling: A

systematic review and future directions. Swarm and Evolutionary Computa-

tion, 32:85–109, 2017.

[192] Gerardo Canfora, Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto,

Annibale Panichella, and Sebastiano Panichella. Defect prediction as a mul-

tiobjective optimization problem. Software Testing, Verification and Relia-

bility, 25(4):426–459, 2015.

[193] Mark Harman, Syed Islam, Yue Jia, Leandro L. Minku, Federica Sarro, and

Komsan Srivisut. Less is more: Temporal fault predictive performance over

multiple hadoop releases. In Search-Based Software Engineering, pages

240–246, Cham, 2014. Springer International Publishing.

Bibliography 182

[194] Federica Sarro, Sergio Di Martino, Filomena Ferrucci, and Carmine Gravino.

A further analysis on the use of genetic algorithm to configure support vector

machines for inter-release fault prediction. In Proceedings of the 27th Annual

ACM Symposium on Applied Computing, SAC ’12, page 1215–1220, New

York, NY, USA, 2012. ACM.

[195] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E. Hassan, and Kenichi

Matsumoto. The impact of automated parameter optimization on defect pre-

diction models. IEEE Transactions on Software Engineering, 45(7):683–711,

2019.

[196] Faseeha Matloob, Taher M Ghazal, Nasser Taleb, Shabib Aftab, Munir Ah-

mad, Muhammad Adnan Khan, Sagheer Abbas, and Tariq Rahim Soomro.

Software defect prediction using ensemble learning: A systematic literature

review. IEEE Access, 2021.

[197] Xiaoxing Yang, Xin Li, Wushao Wen, and Jianmin Su. An investigation of

ensemble approaches to cross-version defect prediction. pages 437–442, July

2019.

[198] Issam H. Laradji, Mohammad Alshayeb, and Lahouari Ghouti. Software

defect prediction using ensemble learning on selected features. Information

and Software Technology, 58:388–402, 2015.

[199] Santosh Rathore and Sandeep Kumar. An empirical study of ensemble tech-

niques for software fault prediction. Applied Intelligence, 51:1–30, June

2021.

[200] Arsalan Ahmed Ansari, Amaan Iqbal, and Bibhudatta Sahoo. Heterogeneous

defect prediction using ensemble learning technique. In Subhransu Sekhar

Dash, C. Lakshmi, Swagatam Das, and Bijaya Ketan Panigrahi, editors, Ar-

tificial Intelligence and Evolutionary Computations in Engineering Systems,

pages 283–293, Singapore, 2020. Springer Singapore.

Bibliography 183

[201] Hamad Alsawalqah, Neveen Hijazi, Mohammed Eshtay, Hossam Faris,

Ahmed Al Radaideh, Ibrahim Aljarah, and Yazan Alshamaileh. Software

defect prediction using heterogeneous ensemble classification based on seg-

mented patterns. Applied Sciences, 10(5), 2020.

[202] Jean Petrić, David Bowes, Tracy Hall, Bruce Christianson, and Nathan Bad-

doo. Building an ensemble for software defect prediction based on diversity

selection. In Proceedings of the 10th ACM/IEEE International Symposium on

Empirical Software Engineering and Measurement. ACM, September 2016.

[203] Wasif Afzal and Richard Torkar. Review: On the application of genetic pro-

gramming for software engineering predictive modeling: A systematic re-

view. Expert Syst. Appl., 38(9):11984–11997, sep 2011.

[204] Ye Ren, Le Zhang, and P.N. Suganthan. Ensemble classification and

regression-recent developments, applications and future directions [review

article]. IEEE Computational Intelligence Magazine, 11(1):41–53, 2016.

[205] Abdullah Konak, David W. Coit, and Alice E. Smith. Multi-objective op-

timization using genetic algorithms: A tutorial. Reliability Engineering &

System Safety, 91(9):992–1007, September 2006.

[206] Hussein A Abbass. Pareto neuro-evolution: Constructing ensemble of neural

networks using multi-objective optimization. In The 2003 Congress on Evo-

lutionary Computation, 2003. CEC’03., volume 3, pages 2074–2080. IEEE,

2003.

[207] Arjun Chandra and Xin Yao. Ensemble learning using multi-objective evo-

lutionary algorithms. Journal of Mathematical Modelling and Algorithms,

5(4):417–445, March 2006.

[208] Christian Gagné, Michèle Sebag, Marc Schoenauer, and Marco Tomassini.

Ensemble learning for free with evolutionary algorithms? In Proceedings

of the 9th annual conference on Genetic and evolutionary computation -

GECCO '07. ACM Press, 2007.

Bibliography 184

[209] Leandro L. Minku and Xin Yao. An analysis of multi-objective evolution-

ary algorithms for training ensemble models based on different performance

measures in software effort estimation. In Proceedings of the 9th Interna-

tional Conference on Predictive Models in Software Engineering. ACM, Oc-

tober 2013.

[210] Boyuan Chen, Harvey Wu, Warren Mo, Ishanu Chattopadhyay, and Hod

Lipson. Autostacker: A Compositional Evolutionary Learning System.

In Proceedings of the Genetic and Evolutionary Computation Conference,

GECCO’18, pages 402—-409, 2018.

[211] Sam Fletcher, Brijesh Verma, and Mengjie Zhang. A non-specialized ensem-

ble classifier using multi-objective optimization. Neurocomputing, 409:93–

102, October 2020.

[212] Kate Han, Tien Pham, Trung Hieu Vu, Truong Dang, John McCall, and

Tien Thanh Nguyen. VEGAS: A variable length-based genetic algorithm

for ensemble selection in deep ensemble learning. In Intelligent Information

and Database Systems, pages 168–180. Springer International Publishing,

2021.

[213] Shenkai Gu and Yaochu Jin. Generating diverse and accurate classifier

ensembles using multi-objective optimization. In 2014 IEEE Symposium

on Computational Intelligence in Multi-Criteria Decision-Making (MCDM).

IEEE, December 2014.

[214] E.M. Dos Santos, R. Sabourin, and P. Maupin. Single and multi-objective

genetic algorithms for the selection of ensemble of classifiers. In The 2006

IEEE International Joint Conference on Neural Network Proceedings. IEEE,

2006.

[215] Jingxiu Yao and Martin Shepperd. Assessing software defection prediction

performance: why using the matthews correlation coefficient matters. In

Procs. of EASE, pages 120–129. 2020.

Bibliography 185

[216] Xiao Xuan, David Lo, Xin Xia, and Yuan Tian. Evaluating defect prediction

approaches using a massive set of metrics: An empirical study, 2015.

[217] Magne Jørgensen and Torleif Halkjelsvik. Sequence effects in the esti-

mation of software development effort. Journal of Systems and Software,

159:110448, 2020.

[218] Martin J. Shepperd and Steven G. MacDonell. Evaluating prediction sys-

tems in software project estimation. Information and Software Technology,

54(8):820–827, 2012.

[219] Federica Sarro and Alessio Petrozziello. Linear programming as a baseline

for software effort estimation. ACM Transactions on Software Engineering

and Methodology (TOSEM), 27(3):12:1–12:28, 2018.

[220] Mohamed Aly. Survey on multiclass classification methods, 2005.

[221] Fiona Walkerden and Ross Jeffery. An empirical study of analogy-based

software effort estimation. Empirical software engineering, 4(2):135–158,

1999.

[222] M. Choetkiertikul, H. K. Dam, T. Tran, T. T. M. Pham, A. Ghose, and T. Men-

zies. A deep learning model for estimating story points. IEEE Transactions

on Software Engineering, PP(99):1–1, 2018.

[223] A. Arcuri and L. Briand. A hitchhiker’s guide to statistical tests for assessing

randomized algorithms in software engineering. STVR, 24(3):219–250, 2014.

[224] William B. Langdon, José Javier Dolado, Federica Sarro, and Mark Harman.

Exact mean absolute error of baseline predictor, MARP0. Information and

Software Technology, 73:16–18, 2016.

[225] Wei Fu, Tim Menzies, and Xipeng Shen. Tuning for software analytics: Is it

really necessary? Information and Software Technology, 76:135–146, 2016.

Bibliography 186

[226] Chakkrit Tantithamthavorn and Ahmed E Hassan. An experience report on

defect modelling in practice: Pitfalls and challenges. In Proceedings of the

40th International Conference on Software Engineering: Software Engineer-

ing in Practice, pages 286–295, 2018.

[227] A. J. Albrecht and J. E. Gaffney. Software function, source lines of code, and

development effort prediction: A software science validation. IEEE Trans-

actions on Software Engineering, SE-9(6):639–648, 1983.

[228] Çigdem Gencel and Onur Demirörs. Functional size measurement revisited.

ACM Trans. Softw. Eng. Methodol., 17(3), 2008.

[229] Marta Fernández-Diego and Fernando González L. Guevara. Potential and

limitations of the isbsg dataset in enhancing software engineering research:

A mapping review. Information and Software Technology, 56, 2014.

[230] Barbara Kitchenham, Shari Lawrence Pfleeger, Beth McColl, and Suzanne

Eagan. An empirical study of maintenance and development estimation ac-

curacy. Journal of Systems and Software, 64(1):57–77, 2002.

[231] Leo Breiman. Classification and regression trees. Routledge, 2017.

[232] Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE

Transactions on Information Theory, 13(1):21–27, 1967.

[233] Pat Langley, Wayne Iba, Kevin Thompson, et al. An analysis of bayesian

classifiers. In Aaai, volume 90, pages 223–228, 1992.

[234] Abraham Charnes and William W Cooper. Programming with linear frac-

tional functionals. Naval Research logistics quarterly, 9(3-4):181–186, 1962.

[235] Andy Liaw, Matthew Wiener, et al. Classification and regression by random-

forest. R news, 2(3):18–22, 2002.

[236] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto. The

impact of automated parameter optimization on defect prediction models.

IEEE Transactions on Software Engineering, PP(99):1–1, 2018.

Bibliography 187

[237] Anna Corazza, Sergio Di Martino, Filomena Ferrucci, Carmine Gravino,

Federica Sarro, and Emilia Mendes. Using tabu search to configure support

vector regression for effort estimation. EMSE, 18(3):506–546, 2013.

[238] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E. Hassan, and Kenichi

Matsumoto. Automated parameter optimization of classification techniques

for defect prediction models. In Proceedings of the 38th International Con-

ference on Software Engineering, ICSE ’16, pages 321–332. ACM, 2016.

[239] Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification

and Regression Trees. Statistics/Probability Series. Wadsworth Publishing

Company, Belmont, California, U.S.A., 1984.

[240] Brian D Ripley. Pattern recognition and neural networks. Cambridge uni-

versity press, 2007.

[241] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning

Tools and Techniques, Second Edition (Morgan Kaufmann Series in Data

Management Systems). Morgan Kaufmann Publishers Inc., 2005.

[242] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[243] Tom Fawcett. An introduction to ROC analysis. Pattern Recognition Letters,

27(8):861–874, 2006.

[244] David J. Hand and Robert J. Till. A simple generalisation of the area under

the roc curve for multiple class classification problems. Machine Learning,

45(2):171–186, 2001.

[245] Milton Friedman. The use of ranks to avoid the assumption of normality

implicit in the analysis of variance. Journal of the american statistical asso-

ciation, 32(200):675–701, 1937.

[246] PB Nemenyi. Distribution-free multiple comparisons (doctoral disserta-

tion, princeton university, 1963). Dissertation Abstracts International,

25(2):1233, 1963.

Bibliography 188

[247] Janez Demšar. Statistical comparisons of classifiers over multiple data sets.

Journal of Machine learning research, 7(Jan):1–30, 2006.

[248] J. Cohen. Statistical power analysis for the behavioral sciences. Lawrence

Earlbaum Associates, 2nd edition, 1988.

[249] Robert Rosenthal, H Cooper, and L Hedges. Parametric measures of effect

size. The handbook of research synthesis, 621:231–244, 1994.

[250] Jacob Cohen. Statistical power analysis for the behavioral sciences. Aca-

demic press, 2013.

[251] James A Rosenthal. Qualitative descriptors of strength of association and

effect size. Journal of social service Research, 21(4):37–59, 1996.

[252] B. Kitchenham, L. Pickard, and S.L. Pfleeger. Case studies for method and

tool evaluation. IEEE Software, 12(4):52–62, 1995.

[253] E. Mendes, S. Counsell, N. Mosley, C. Triggs, and I. Watson. A comparative

study of cost estimation models for web hypermedia applications. EMSE,

8(23):163–196, 2003.

[254] Peter A. Whigham, Caitlin A. Owen, and Stephen G. Macdonell. A baseline

model for software effort estimation. ACM TOSEM, 24(3):20:1–20:11, 2015.

[255] Lionel C. Briand and Jürgen Wüst. Modeling development effort in object-

oriented systems using design properties. IEEE TSE, 27(11):963–986, 2001.

[256] Tron Foss, Erik Stensrud, Barbara Kitchenham, and Ingunn Myrtveit. A

simulation study of the model evaluation criterion mmre. IEEE Transactions

on Software Engineering, 29(11):985–995, 2003.

[257] Barbara Kitchenham and Emilia Mendes. Why comparative effort prediction

studies may be invalid. In Proceedings of the 5th International Conference

on Predictor Models in Software Engineering, PROMISE, New York, NY,

USA, 2009. ACM.

Bibliography 189

[258] Rebecca Moussa and Federica Sarro. On the use of evaluation measures for

defect prediction studies. In 2022 ACM SIGSOFT International Symposium

on Software Testing and Analysis (ISSTA). Association for Computing Ma-

chinery (ACM), 2022.

[259] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E Hassan, and Kenichi

Matsumoto. An empirical comparison of model validation techniques for

defect prediction models. IEEE Transactions on Software Engineering,

43(1):1–18, 2016.

[260] Tim Menzies and Martin Shepperd. Special issue on repeatable results in

software engineering prediction. Empirical Software Engineering, 17:1–17,

2012.

[261] William Martin, Federica Sarro, Yue Jia, Yuanyuan Zhang, and Mark Har-

man. A survey of app store analysis for software engineering. IEEE TSE,

43(9):817–847, 2016.

[262] Mark Harman Rebecca Moussa and Federica Sarro. The Role of Open Source

Machine Learning Libraries in Effort Estimation Studies, 2022. On-line ap-

pendix, https://figshare.com/s/d8bc05d38f0a32be2d53.

[263] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,

Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron

Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python. the

Journal of machine Learning research, 12:2825–2830, 2011.

[264] Max Kuhn. A short introduction to the caret package. R Found Stat Comput,

1, 2015.

[265] Remco R. Bouckaert, Eibe Frank, Mark A. Hall, Geoffrey Holmes, Bernhard

Pfahringer, Peter Reutemann, and Ian H. Witten. Weka—experiences with

a java open-source project. J. Mach. Learn. Res., 11:2533–2541, December

2010.

https://figshare.com/s/d8bc05d38f0a32be2d53

Bibliography 190

[266] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas

Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gram-

fort, Jaques Grobler, et al. Api design for machine learning software: expe-

riences from the scikit-learn project. arXiv preprint arXiv:1309.0238, 2013.

[267] Max Kuhn et al. Building predictive models in r using the caret package.

Journal of statistical software, 28(5):1–26, 2008.

[268] Ian H Witten. Data mining. 2016.

[269] George AF Seber and Alan J Lee. Linear regression analysis, volume 329.

John Wiley & Sons, 2012.

[270] Christopher JC Burges. A tutorial on support vector machines for pattern

recognition. Data mining and knowledge discovery, 2(2):121–167, 1998.

[271] The seacraft repository of empirical software engineering data, 2017.

[272] Federica Sarro, Sergio Di Martino, Filomena Ferrucci, and Carmine Gravino.

A further analysis on the use of genetic algorithm to configure support vector

machines for inter-release fault prediction. In Proceedings of the 27th annual

ACM symposium on applied computing, pages 1215–1220, 2012.

[273] F. Ferrucci, M. Harman, and F. Sarro. Search-based software project man-

agement. In Software Project Management in a Changing World, pages 373–

399. Springer, 2014.

[274] Ekrem Kocaguneli, Tim Menzies, and Jacky W. Keung. On the value of

ensemble effort estimation. IEEE TSE, 38(6):1403–1416, 2012.

[275] Federica Sarro, Rebecca Moussa, Alessio Petrozziello, and Mark Harman.

Learning from mistakes: Machine learning enhanced human expert effort

estimates. IEEE Transactions on Software Engineering, 2020.

[276] Foyzur Rahman, Daryl Posnett, Israel Herraiz, and Premkumar Devanbu.

Sample size vs. bias in defect prediction. In Proceedings of the 2013 9th

joint meeting on foundations of software engineering, pages 147–157, 2013.

Bibliography 191

[277] William B. Langdon, Javier Dolado, Federica Sarro, and Mark Harman. Ex-

act mean absolute error of baseline predictor, MARP0. Information and Soft-

ware Technology, 73:16–18, 2016.

[278] RF Woolson. Wilcoxon signed-rank test. Wiley encyclopedia of clinical

trials, pages 1–3, 2007.

[279] Mark Harman. The role of artificial intelligence in software engineering.

In 2012 First International Workshop on Realizing AI Synergies in Software

Engineering (RAISE), pages 1–6. IEEE, 2012.

[280] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin

Yoo. The oracle problem in software testing: A survey. IEEE Transactions

on Software Engineering, 41(5):507–525, 2015.

[281] A. Corazza, S. Di Martino, F. Ferrucci, C. Gravino, F. Sarro, and E. Mendes.

How effective is tabu search to configure support vector regression for effort

estimation? In Proc. of PROMISE’10, pages 4:1–4:10, 2010.

[282] D. Conte, H.E. Dunsmore, and V.Y. Shen. Software engineering metrics and

models. Benjamin/Cummings Publishing Company, Inc., 1986.

[283] Tron Foss, Erik Stensrud, Barbara Kitchenham, and Ingunn Myrtveit. A

simulation study of the model evaluation criterion MMRE. IEEE TSE,

29(11):985–995, 2003.

[284] B. Kitchenham, L. M. Pickard, S. G. MacDonell, and M. J. Shepperd. What

accuracy statistics really measure. IEEE Proc. Software, 148(3):81–85, 2001.

[285] Marcel Korte and Dan Port. Confidence in software cost estimation results

based on mmre and pred. In Proc. of PROMISE’08, pages 63–70, 2008.

[286] Dan Port and Marcel Korte. Comparative studies of the model evaluation

criterions mmre and pred in software cost estimation research. In Proc. of

ESEM’08, pages 51–60, 2008.

Bibliography 192

[287] Martin Shepperd, Michelle Cartwright, and Gada Kadoda. On building pre-

diction systems for software engineers. EMSE, 5(3):175–182, 2000.

[288] Erik Stensrud, Tron Foss, Barbara Kitchenham, and Ingunn Myrtveit. A

further empirical investigation of the relationship between MRE and project

size. EMSE, 8(2):139–161, 2003.

[289] Fan Wu, Westley Weimer, Mark Harman, Yue Jia, and Jens Krinke. Deep

parameter optimisation. In Proceedings of the 2015 Annual Conference on

Genetic and Evolutionary Computation, pages 1375–1382, 2015.

[290] Bobby R Bruce, Jonathan M Aitken, and Justyna Petke. Deep parameter

optimisation for face detection using the viola-jones algorithm in opencv.

In International Symposium on Search Based Software Engineering, pages

238–243. Springer, 2016.

[291] Mahmoud A Bokhari, Bobby R Bruce, Brad Alexander, and Markus Wagner.

Deep parameter optimisation on android smartphones for energy minimisa-

tion: a tale of woe and a proof-of-concept. In Proceedings of the Genetic and

Evolutionary Computation Conference Companion, pages 1501–1508, 2017.

[292] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan. What do mobile app

users complain about? IEEE Software, 32(3):70–77, 2015.

[293] Hongyu Zhang and Xiuzhen Zhang. Comments on "data mining static code

attributes to learn defect predictors". IEEE Transactions on Software Engi-

neering, 33(9):635–637, 2007.

[294] Tim Menzies, Jeremy Greenwald, and Art Frank. Data mining static code

attributes to learn defect predictors. IEEE Transactions on Software Engi-

neering, 33(1):2–13, 2007.

[295] Tim Menzies, Alex Dekhtyar, Justin Distefano, and Jeremy Greenwald.

Problems with precision: A response to "comments on ’data mining static

Bibliography 193

code attributes to learn defect predictors’". IEEE Transactions on Software

Engineering, 33(9):637–640, 2007.

[296] David Bowes, Tracy Hall, and David Gray. Comparing the performance of

fault prediction models which report multiple performance measures: recom-

puting the confusion matrix. In Procs. of PROMISE, pages 109–118, 2012.

[297] B. Turhan, T. Zimmermann, F. Shull, L. Layman, A. Marcus, A. Butcher,

D. Cok, and T. Menzies. Local versus global lessons for defect prediction

and effort estimation. IEEE TSE, 39(06):822–834, 2013.

[298] Tim Menzies and Martin J. Shepperd. Special issue on repeatable results in

software engineering prediction. Empirical Software Engineering, 17:1–17,

2011.

[299] Xiao Xuan, David Lo, Xin Xia, and Yuan Tian. Evaluating defect prediction

approaches using a massive set of metrics: An empirical study. In Procs. of

ACM SAC, page 1644–1647, 2015.

[300] David Bowes, Tracy Hall, and David Gray. Dconfusion: a technique to allow

cross study performance evaluation of fault prediction studies. Automated

Software Engineering, 21:287–313, 2014.

[301] David J Hand. Measuring classifier performance: a coherent alternative to

the area under the roc curve. Machine learning, 77(1):103–123, 2009.

[302] Sandro Morasca and Luigi Lavazza. On the assessment of software de-

fect prediction models via roc curves. Empirical Software Engineering,

25(5):3977–4019, 2020.

[303] Harald Cramir. Mathematical methods of statistics. Princeton U. Press,

1946.

[304] Brian W Matthews. Comparison of the predicted and observed secondary

structure of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-

Protein Structure, 405(2):442–451, 1975.

Bibliography 194

[305] Q. Song, Y. Guo, and M. Shepperd. A comprehensive investigation of the role

of imbalanced learning for software defect prediction. IEEE Transactions on

Software Engineering, 45(12):1253–1269, 2019.

[306] George Forman and Martin Scholz. Apples-to-apples in cross-validation

studies: pitfalls in classifier performance measurement. ACM Sigkdd Ex-

plorations Newsletter, 12(1):49–57, 2010.

[307] Max Hort, Maria Kechagia, Federica Sarro, and Mark Harman. A survey of

performance optimization for mobile applications. IEEE TSE, 2021.

[308] Rebecca Moussa and Federica Sarro. On the Use of Evaluation Measures for

Defect Prediction Models, 2022. On-line appendix, https://github.

com/SOLAR-group/dpevalmeasures.

[309] Peter Flach and Meelis Kull. Precision-recall-gain curves: Pr analysis done

right. In Advances in neural information processing systems, pages 838–846,

2015.

[310] David Martin Powers. Evaluation: from precision, recall and f-measure to

roc, informedness, markedness and correlation. 2011.

[311] Andrea Arcuri and Lionel Briand. A hitchhiker’s guide to statistical tests for

assessing randomized algorithms in software engineering. Software Testing,

Verification and Reliability, 24(3):219–250, 2014.

[312] S. Yatish, J. Jiarpakdee, P. Thongtanunam, and C. Tantithamthavorn. Mining

software defects: Should we consider affected releases? volume 2019-May,

pages 654–665, 2019.

[313] Mark Harman, Syed Islam, Yue Jia, Leandro L Minku, Federica Sarro, and

Komsan Srivisut. Less is more: Temporal fault predictive performance over

multiple hadoop releases. In International Symposium on Search Based Soft-

ware Engineering, pages 240–246. Springer, 2014.

https://github.com/SOLAR-group/dpevalmeasures
https://github.com/SOLAR-group/dpevalmeasures

Bibliography 195

[314] Aalok Ahluwalia, Massimiliano Di Penta, and Davide Falessi. On the need

of removing last releases of data when using or validating defect prediction

models. arXiv preprint arXiv:2003.14376, 2020.

[315] Matthieu Jimenez, Renaud Rwemalika, Mike Papadakis, Federica Sarro,

Yves Le Traon, and Mark Harman. The importance of accounting for real-

world labelling when predicting software vulnerabilities. In Proceedings of

the 2019 27th ACM Joint Meeting on European Software Engineering Con-

ference and Symposium on the Foundations of Software Engineering, pages

695–705, 2019.

[316] Abdul Ali Bangash, Hareem Sahar, Abram Hindle, and Karim Ali. On the

time-based conclusion stability of cross-project defect prediction models.

Empirical Software Engineering, 25(6):5047–5083, 2020.

[317] Steffen Herbold, Alexander Trautsch, and Jens Grabowski. A comparative

study to benchmark cross-project defect prediction approaches. IEEE Trans-

actions on Software Engineering, 44(9):811–833, 2017.

[318] Ian H Witten, Eibe Frank, and Mark A Hall. Practical machine learning tools

and techniques. Morgan Kaufmann, page 578, 2005.

[319] David G Kleinbaum, K Dietz, M Gail, Mitchel Klein, and Mitchell Klein.

Logistic regression. Springer, 2002.

[320] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[321] Max Hort, Maria Kechagia, Federica Sarro, and Mark Harman. A survey of

performance optimization for mobile applications. IEEE TSE, 2021.

[322] Y. Kamei and E. Shihab. Defect prediction: Accomplishments and future

challenges. In Procs. of SANER, pages 33–45, 2016.

[323] K. E. Bennin, K. Toda, Y. Kamei, J. Keung, A. Monden, and N. Ubayashi.

Empirical evaluation of cross-release effort-aware defect prediction models.

In Procs. of QRS, pages 214–221, 2016.

Bibliography 196

[324] Mariam El Mezouar, Feng Zhang, and Ying Zou. Local versus global models

for effort-aware defect prediction. In Procs. of CASCON, page 178–187,

2016.

[325] C. Ni, X. Xia, D. Lo, X. Chen, and Q. Gu. Revisiting supervised and un-

supervised methods for effort-aware cross-project defect prediction. IEEE

TSE, 2020.

[326] Meng Yan, Xin Xia, Yuanrui Fan, David Lo, Ahmed E. Hassan, and Xindong

Zhang. Effort-Aware Just-in-Time Defect Identification in Practice: A Case

Study at Alibaba, page 1308–1319. ACM, 2020.

[327] Supatsara Wattanakriengkrai, Patanamon Thongtanunam, Hideaki Tan-

tithamthavorn, Chakkrit Hata, and Kenichi Matsumoto. Predicting defective

lines using a model-agnostic technique. In IEEE IEEE TSE, 2020.

[328] Luca Pascarella, Fabio Palomba, and Alberto Bacchelli. On the performance

of method-level bug prediction: A negative result. Journal of Systems and

Software, 161, 3 2020.

[329] Y. Kamei, T. Fukushima, S. McIntosh, K. Yamashita, N. Ubayashi, and A.E.

Hassan. Studying just-in-time defect prediction using cross-project models.

Empirical Software Engineering, 21(5):2072–2106, 2016.

[330] Luca Pascarella, Fabio Palomba, and Alberto Bacchelli. Fine-grained just-

in-time defect prediction. Journal of Systems and Software, 150:22–36, 4

2019.

[331] M. Yan, X. Xia, Y. Fan, A. E. Hassan, D. Lo, and S. Li. Just-in-time defect

identification and localization: A two-phase framework. IEEE TSE, pages

1–1, 2020.

[332] Takafumi Fukushima, Yasutaka Kamei, Shane McIntosh, Kazuhiro Ya-

mashita, and Naoyasu Ubayashi. An empirical study of just-in-time defect

Bibliography 197

prediction using cross-project models. In Procs. of MSR, page 172–181,

2014.

[333] Martin Shepperd and Steve MacDonell. Evaluating prediction systems

in software project estimation. Information and Software Technology,

54(8):820–827, 2012.

[334] Andrea Arcuri and Lionel Briand. A Hitchhiker’s guide to statistical tests for

assessing randomized algorithms in software engineering. Software Testing,

Verification and Reliability, 24(3):219–250, May 2014.

[335] Rebecca Moussa, Giovani Guizzo, and Federica Sarro. Meg - on-line, 2022.

GitHub Repository, https://github.com/SOLAR-group/MEG.

[336] John H. Holland. Adaptation in Natural and Artificial Systems. MIT Press,

1992.

[337] Eckart Zitzler and Simon Künzli. Indicator-Based Selection in Multiobjec-

tive Search. In International Conference on Parallel Problem Solving from

Nature, pages 832–842, 2004.

[338] Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Comparison of Multiob-

jective Evolutionary Algorithms: Empirical Results. Evolutionary Computa-

tion, 8(2):173–195, June 2000.

[339] Ludmila I Kuncheva and Christopher J Whitaker. Measures of diversity in

classifier ensembles and their relationship with the ensemble accuracy. Ma-

chine learning, 51(2):181–207, 2003.

[340] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A

Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE TEVC,

6(2):182–197, 2002.

[341] Mark Harman, Phil McMinn, Jerffeson Teixeira De Souza, and Shin Yoo.

Search based software engineering: Techniques, taxonomy, tutorial. Lecture

https://github.com/SOLAR-group/MEG

Bibliography 198

Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 7007 LNCS:1–59, 2011.

[342] Gavin Brown, Jeremy Wyatt, Rachel Harris, and Xin Yao. Diversity creation

methods: a survey and categorisation. Information Fusion, 6(1):5–20, March

2005.

[343] Yijun Bian and Huanhuan Chen. When does diversity help generalization in

classification ensembles? IEEE Transactions on Cybernetics, pages 1–17,

2021.

[344] Steven L Salzberg. C4. 5: Programs for machine learning by j. ross quinlan.

morgan kaufmann publishers, inc., 1993, 1994.

[345] Suraj Yatish, Jirayus Jiarpakdee, Patanamon Thongtanunam, and Chakkrit

Tantithamthavorn. Mining software defects: should we consider affected

releases? In 2019 IEEE/ACM 41st International Conference on Software

Engineering (ICSE), pages 654–665. IEEE, 2019.

[346] Davide Falessi, Jacky Huang, Likhita Narayana, Jennifer Fong Thai, and Bu-

rak Turhan. On the need of preserving order of data when validating within-

project defect classifiers. Empirical Software Engineering, pages 1–26, 2020.

[347] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E Hassan, and Kenichi

Matsumoto. An empirical comparison of model validation techniques for

defect prediction models. IEEE Transactions on Software Engineering,

43(1):1–18, 2016.

[348] NC Shrikanth, Suvodeep Majumder, and Tim Menzies. Early life cycle soft-

ware defect prediction. why? how? In 2021 IEEE/ACM 43rd International

Conference on Software Engineering (ICSE), pages 448–459. IEEE, 2021.

[349] Paul Ralph, Nauman bin Ali, Sebastian Baltes, Domenico Bianculli, Jessica

Diaz, Yvonne Dittrich, Neil Ernst, Michael Felderer, Robert Feldt, Antonio

Bibliography 199

Filieri, et al. Empirical standards for software engineering research. arXiv

preprint arXiv:2010.03525, 2020.

[350] Henry B Mann and Donald R Whitney. On a test of whether one of two

random variables is stochastically larger than the other. The annals of math-

ematical statistics, pages 50–60, 1947.

[351] Rebecca Moussa and Federica Sarro. Do not take it for granted: Comparing

open-source libraries for software development effort estimation, 2022.

[352] Cynthia C. S. Liem and Annibale Panichella. Run, forest, run? on random-

ization and reproducibility in predictive software engineering, 2020.

[353] Jean Petrić, David Bowes, Tracy Hall, Bruce Christianson, and Nathan Bad-

doo. Building an ensemble for software defect prediction based on diversity

selection. In Proceedings of the 10th ACM/IEEE International Symposium

on Empirical Software Engineering and Measurement, pages 1–10, 2016.

[354] Giovani Guizzo, Federica Sarro, Jens Krinke, and Silvia Regina Vergilio.

Sentinel: A hyper-heuristic for the generation of mutant reduction strategies.

IEEE Transactions on Software Engineering, pages 1–1, 2020.

[355] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E. Hassan, and Kenichi

Matsumoto. An empirical comparison of model validation techniques for

defect prediction models. IEEE Transactions on Software Engineering,

43(1):1–18, 2017.

[356] Thilo Mende and Rainer Koschke. Effort-aware defect prediction models. In

2010 14th European Conference on Software Maintenance and Reengineer-

ing, pages 107–116, 2010.

[357] Qiao Huang, Xin Xia, and David Lo. Supervised vs unsupervised models:

A holistic look at effort-aware just-in-time defect prediction. In 2017 IEEE

International Conference on Software Maintenance and Evolution (ICSME),

pages 159–170, 2017.

Bibliography 200

[358] Vali Tawosi, Federica Sarro, Alessio Petrozziello, and Mark Harman. Multi-

objective software effort estimation: A replication study. IEEE Transactions

on Software Engineering, pages 1–1, 2021.

[359] Xinli Yang, David Lo, Xin Xia, Yun Zhang, and Jianling Sun. Deep learning

for just-in-time defect prediction. In 2015 IEEE International Conference on

Software Quality, Reliability and Security, pages 17–26. IEEE, 2015.

[360] Claes Wohlin, Darja Šmite, and Nils Brede Moe. A general theory of soft-

ware engineering: Balancing human, social and organizational capitals. Jour-

nal of Systems and Software, 109:229–242, 2015.

[361] Chakkrit Tantithamthavorn, Jürgen Cito, Hadi Hemmati, and Satish Chan-

dra. Explainable ai for se: Challenges and future directions. IEEE Software,

40(3):29–33, 2023.

[362] Michael Fu and Chakkrit Tantithamthavorn. Gpt2sp: A transformer-based

agile story point estimation approach. IEEE Transactions on Software Engi-

neering, 49(2):611–625, 2022.

[363] Jirayus Jiarpakdee, Chakkrit Kla Tantithamthavorn, and John Grundy. Practi-

tioners’ perceptions of the goals and visual explanations of defect prediction

models. In 2021 IEEE/ACM 18th International Conference on Mining Soft-

ware Repositories (MSR), pages 432–443. IEEE, 2021.

[364] Supatsara Wattanakriengkrai, Patanamon Thongtanunam, Chakkrit Tan-

tithamthavorn, Hideaki Hata, and Kenichi Matsumoto. Predicting defective

lines using a model-agnostic technique. IEEE Transactions on Software En-

gineering, 48(5):1480–1496, 2020.

[365] John C Nash. The (dantzig) simplex method for linear programming. Com-

puting in Science and Engineering, 2(1):29–31, 2000.

	Introduction
	Contributions
	Thesis Organisation

	Background
	Software Development Effort Estimation
	Data and Cost Drivers
	Validation Processes

	Software Defect Prediction
	Data and Metrics
	Validation Processes

	Literature Review
	Effort Estimation
	The Role of Humans and Bias in Software Effort Estimations
	The Role of Machine Learning Libraries in Software Effort Estimations

	Defect Prediction
	The Role of Search-Based and Ensemble Models in Defect Prediction
	The Role of Evaluation Measures in Defect Prediction

	Learning From Mistakes: Machine Learning Enhanced Human Expert Effort Estimates
	Introduction
	LFM for Software Effort Estimation
	Empirical Study Design
	Research Questions
	Datasets
	Classification and Regression Techniques
	Validation Approach
	Evaluation Criteria and Statistical Tests
	Threats to Validity

	Empirical Study Results
	RQ1. Predicting Type/Severity of Human Expert Misestimations
	RQ2. Predicting the Magnitude of Human Expert Misestimations
	RQ3. Enhancing Software Effort Estimates via LFM

	Conclusions and Future Work

	The Role of Machine Learning Libraries in Effort Estimation Studies
	Introduction
	Research Questions
	Methodology
	Collection of SEE Research Papers
	Empirical Study Design
	API Analysis

	Results
	RQ1: Current Literature
	RQ2: Prediction Results
	RQ3: Change in Prediction Performance
	RQ4: Change in Ranking
	RQ5: API Analysis

	Actionable Conclusions for Software Engineering Researchers
	Threats to Validity
	Conclusions and Future Work

	On the Use of Evaluation Measures for Defect Prediction Studies
	Introduction
	Related Work
	A Hitchhiker's Guide to Defect Prediction Evaluation Measures
	Investigating the Use of Evaluation Measures in the Defect Prediction Literature
	Search Methodology
	Results

	Empirical Study Design
	Research Questions
	Ranking Disagreement and Rank Disruption
	Datasets
	Validation Scenarios
	Techniques

	Empirical Study Results
	RQ1. Ranking Disagreement
	RQ2. Rank Disruption

	Threats to Validity
	Conclusions

	MEG: Multi-objective Ensemble Generation for Software Defect Prediction
	Introduction
	Background
	Ensemble Learning
	Multi-Objective Evolutionary Optimisation

	MEG: Multi-objective Ensemble Generation
	Representation
	Fitness Functions
	Genetic Operators
	Implementation Aspects

	Experimental Design
	Research Questions
	Benchmark Techniques
	Datasets
	Validation Criteria
	Evaluation Criteria
	Threats to Validity

	Results
	Answer to RQ1 – MEG vs. Base Classifiers
	Answer to RQ2 – MEG vs. Traditional Ensemble
	Answer to RQ3 – MEG vs. Pareto-ensemble
	Final Remarks

	Conclusions and Future Work

	Conclusion
	Appendices
	Mathematical Formulation of Linear Programming
	Bibliography

