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ABSTRACT: This paper discusses a recently-proposed statistical model mapping the 
parameters controlling the dynamic behaviour of inelastic single-degree-of-freedom (SDoF) 
systems (i.e. force-displacement capacity curve, hysteretic behaviour) and the parameters of 
their probabilistic seismic demand model (PSDM, i.e. conditional distribution of an engineering 
demand parameter given a ground-motion intensity measure). This metamodel allows rapidly 
deriving fragility curves of equivalent SDoF systems. The model involves Gaussian Process 
(GP) regressions trained using 10,000 SDoF systems analysed via cloud-based non-linear time-
history analysis (NLTHA) using natural ground motions. A 10-fold cross validation is used to 
test the GP regressions, predicting the PSDM of both the SDoF database and eight realistic 
reinforced concrete (RC) frames, benchmarking the results against NLTHA. Error levels are 
deemed satisfactory for practical applications, especially considering the low required 
modelling effort and analysis time. Two possible applications of the proposed metamodel are 
briefly discussed: direct loss-based seismic design and portfolio risk modelling with dynamic 
representations of exposure and vulnerability modules. 
 
KEYWORDS: Gaussian process regression; metamodeling; direct loss-based seismic design; 
dynamic earthquake risk modelling. 

 
1  INTRODUCTION AND MOTIVATION 
Seismic fragility is defined as the probability of 
reaching or exceeding various damage states (DSs) as 
a function of a hazard intensity measure (IM). DSs are 
usually expressed in terms of engineering demand 
parameter (EDP) thresholds, such as inter-storey drift 
limits. Concerning analytical (or numerical) fragility 
analysis methods, non-linear time-history analysis 
(NLTHA) of refined structural models is the best 
practice when it comes to building-specific analysis 
(Silva et al., 2019). Instead, NLTHA of equivalent 
single degree of freedom (SDoF) systems are 
commonly used to characterise a building 
vulnerability class (Silva et al., 2019), with the results 
being used for building-portfolio earthquake risk 
analysis. This reflects the trade-off between 
simplicity and accuracy that different stakeholders 

generally tolerate on the matter (Gentile and 
Galasso, 2021b). 
The above-mentioned analysis methods, 
respectively targeted at single-building and 
building-portfolio applications mentioned above, 
generally do not pose issues related to 
computational power. Some applications, 
however, may still be computationally 
unaffordable if using the above models. An 
example of such applications related to single 
buildings may be loss-based conceptual seismic 
design. This would require calculating a loss 
metric (e.g. the expected annual loss) for (several) 
tentative structural configurations, considering a 
specific seismic hazard profile: only the 
configurations complying with the target loss level 
will be used to continue the detailed design 
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process. Even considering SDoF-based NLTHA, the 
required analysis time may not be compatible with 
such a preliminary/conceptual design process. 
Considering building portfolios, the design of 
regional policies for seismic risk reduction may be 
computationally unaffordable using SDoF NLTHA. 
In fact, this may require an earthquake risk model 
with many exposure scenarios (which may also be 
time-dependent), allowing selecting the optimal 
policy using one or more loss metrics.  
Metamodeling approaches may be suitable for the 
applications mentioned above. A metamodel is “a 
model of a model”: it defines a (statistical) 
relationship between a given set of inputs and outputs 
(obtained through numerical simulations). In this 
particular case, metamodels mapping the parameters 
controlling the dynamic behaviour of inelastic SDoF 
systems (e.g. force-displacement capacity curve, 
hysteretic behaviour) and their probabilistic seismic 
demand model (PSDM; i.e. conditional probability 
distribution of an EDP given an IM) seems suitable. 
In fact, those can easily lead to building-level loss 
estimations. For the scope of this paper, the most 
relevant literature example of such metamodels is 
SPO2IDA (Vamvatsikos and Cornell, 2006), 
surrogating incremental dynamic analysis (IDA) 
curves of SDoFs from their piecewise static pushover 
(SPO) curve. This parametric model is based on 
regressions, and it is reasonably accurate within the 
range of its training dataset. However, the authors 
highlight its limitations related to the low number of 
ground-motion records (i.e. 30) and the single 
hysteresis model (moderately pinching) adopted for 
the training. The authors provide a methodology to 
extend the training dataset to other periods by using 
their proposed functional forms. Although a similar 
methodology may be applied to extend the range of 
applicability of SPO2IDA to different parameters 
(e.g. considering other hysteresis models), a fixed 
functional form may fail to capture the complex 
interaction between the input parameters and the 
parameters of the resulting PSDMs.  
This paper discusses a recently-proposed 
metamodeling approach (Gentile and Galasso, 2021c) 
to surrogate SDoF PSDMs while addressing the 
above issues. First, it is recognised that most widely 
adopted DS descriptions often cover DS levels up to 
the so-called “near collapse”, which is generally 

located in the neighbourhood of the peak of the 
pushover curve. In this context, characterising 
PSDMs above such deformation levels may be 
avoided by accepting an approximation of the 
results. Restricting the PSDM characterisation to 
pre-peak deformation levels drastically reduces the 
number of SDoFs in the training set. Moreover, a 
cloud-based analysis approach (Jalayer and 
Cornell, 2009) is herein preferred to IDA, to use a 
higher number of seed ground-motion records at a 
lower computational cost. Most importantly, a 
Gaussian Process (GP) regression is adopted since 
it does not require any prior definition of the output 
functional form. Not only this approach would 
ensure high accuracy and flexibility in 
implementation for earthquake engineering 
applications (e.g. Ghosh, Padgett and Dueñas-
Osorio, 2013; Mangalathu, Heo and Jeon, 2018; 
Gentile and Galasso, 2020), but it will also result 
in an infinitely scalable surrogate model.  
After describing the metamodeling strategy 
(Section 2), its predictive power is shown in 
Section 3, considering bot SDoF systems and eight 
reinforced concrete (RC) frame case studies. The 
same Section shows two use cases for the provided 
metamodel: direct loss-based seismic design and 
scenario-based earthquake loss modelling for 
decision making. 

 

2 METAMODELLING STRATEGY 
The adopted metamodeling strategy is composed 
of different steps. A number of input parameters 
directly affecting the PSDM are first selected, 
together with their desired range, and plain Monte 
Carlo sampling is performed to generate a database 
of case study SDoFs (Section 2.1). Each SDoF is 
subjected to 100 ground-motion records, and a 
PSDM is constructed (Section 2.2). GP regressions 
are finally trained to map the input SDoF 
parameters and to each output PSDM ones 
(Section 2.3). The implemented code is freely 
available (github.com/robgen/surrogatedPSDM).  
 

2.1 SDoF database 
The selected input parameters defining each SDoF 
are the considered hysteresis model “ℎ𝑦𝑠𝑡”; the 
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fundamental period 𝑇 ; the yield shear strength, 
normalised to the total weight	𝑓!; the hardening ratio 
ℎ. No within-cycle strength degradation is considered 
since the surrogated PSDMs will not be used for 
predictions exceeding the ductility at the peak 
pushover strength. For the same reason, no explicit 
limit for the ductility (or displacement) at peak 
capacity is considered.  

Five different hysteresis models are adopted for 
the training: Kinematic hardening, KIN; Modified 
Takeda “fat” (Saiidi and Sozen, 1979), MTf; 
Modified Takeda “thin”, MTt; Modified Sina, MS; 
Flag shape, FS. The details of such models, 
including their specific parameters, are given in 
Gentile and Galasso (2021c). 

For each hysteresis model, a plain Monte Carlo 
approach is used to sample 2000 realisation of the 
parameters (𝑇, 𝑓! , ℎ), adopting uniform distributions. 
The parameters of such distributions, that define the 
scope of the final metamodels, are 𝑇~𝑈(0.2𝑠, 1.5𝑠); 
𝑓!~𝑈(0.05,0.6); ℎ~𝑈(0,0.3). 

 
2.2 PSDM derivation 
A cloud analysis is carried out for each SDoF, 
deriving points in the EDP vs IM space. The ductility 
demand 𝜇 is the selected EDP. The selected IM is the 
pseudo-spectral acceleration at the SDoF period, 
normalised to the yield base shear coefficient, 𝑅 =
𝑆𝐴/𝑓!.  

100 natural (i.e. recorded) ground motions are 
selected from the SIMBAD database, “selected input 
motions for displacement-based assessment and 
design” (Smerzini et al., 2014). As per Gentile and 
Galasso (2020), the 3-component 467 records in the 
database are ranked according to their peak ground 
acceleration, PGA, values (by using the geometric 
mean of the two horizontal components) and then 
keeping the horizontal component with the largest 
PGA value. Consistently with a cloud-based 
approach, the first 100 records are arbitrarily selected.  
NLTHAs are conducted scaling the records to ensure 
non-linear response (𝜇 > 1 ) for every case study, 
considering 100 guesses target values of ductility 
demand, equally spaced between 1 and 6. The equal 
displacement rule ( 𝜇 ≈ 𝑅 ) is used to derive 
reasonable guesses of the scale factors (𝑆𝐹 ): 1) a 

record and a guess ductility demand are randomly 
selected (without repetition) from the relevant sets; 
2) the scale factor is calculated assuming that the 
scaled spectral acceleration is equal to 𝑓!𝜇"#$%% , 
and using the spectral acceleration for the unscaled 
record at the SDoF period. It is worth mentioning 
that the adopted scale factors range between 0.20 
and 5.6, keeping the bias introduced in the 
response analyses to acceptable levels (Luco and 
Bazzurro, 2007). The ductility demand of each 
analysis is checked against the guessed value. 
Analysis results leading to a ductility demand 
outside of the target range are excluded from the 
PSDM fit described below, ensuring that at least 
70 records are adopted for each cloud. 
The adopted bi-linear PSDM is defined according 
to Eq. 1. Characterising the behaviour in the elastic 
range follows from the definition of an elastic 
SDoF (𝜇 = 𝑅), not requiring any analysis for its 
calibration. The inelastic range is obtained 
performing a linear regression in the logarithmic 
space, where 𝜎&'	(*+,)|/+,  (henceforth simply 
called 𝜎) is the logarithmic standard deviation of 
the pairs 𝜇 − 1  vs 𝑅 − 1 , and 𝜀  is a standard 
normal variable. Therefore, the median 
relationship is the line 𝜇 = 𝑎(𝑅 − 1) + 1, where 𝑎 
is its slope. Such a model choice implies a 
lognormal distribution of the residuals, which is 
desirable in calculating lognormal fragility curves. 
Such model also implies homoscedasticity for 𝜇 >
1.  

B
𝜇 = 𝑅																																																																																			𝜇 ≤ 1
𝑙𝑛(𝜇 − 1) = 𝑙𝑛(𝑎) + 𝑙𝑛(𝑅 − 1) + 𝜀𝜎01	(*+,)|/+,					𝜇 > 1 1 

Depending on the considered practical 
applications, the SDoF parameters may be affected 
by a degree of variability. Although this is out of 
the scope of this paper, both the provided GP 
regressions and/or the training data can be used to 
appropriately account for the effect of such 
variability on the predicted seismic response (e.g. 
Sevieri et al., 2021). 
 

2.3 (ℎ𝑦𝑠𝑡, 𝑇, 𝑓! , ℎ) – (𝑎, 𝜎) map 

For each SDoF realisation depending on a vector 
of input parameters 𝒙 = Gℎ𝑦𝑠𝑡, 𝑇, 𝑓! , ℎH

2 , the 
methodology in Section 2.2 allows defining two 
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PSDM output parameters (𝑎, 𝜎 ). Two independent 
training datasets (𝑋, 𝒚) are composed by the matrix 𝑋 
collecting the input vectors for all the SDoF 
realisations, and the vector 𝒚  which respectively 
collects the related 𝑎  or 𝜎  outputs. Based on such 
training datasets, a GP regression is fitted for each 
PSDM parameter. This takes a vector of unique inputs 
(𝒙) and produces an output/target 𝑦 = 𝑓(𝒙) using a 
statistical model. Based on a training dataset 
composed of inputs (covariates) and known outputs, 
a GP regression is fitted so that it is possible to make 
predictions for any input vector outside the training 
dataset. 

Although a detailed mathematical description of 
GP regressions (and their fitting) is outside the scope 
of this paper, it is worth providing a general, high-
level perspective on the matter. Rasmussen and 
Williams (Rasmussen and Williams, 2006) provide 
an exhaustive mathematical description/derivation 
of GP regression. A step-by-step mathematical 
description for an earthquake engineering 
application is provided, for example, Gentile and 
Galasso (2020). 

In a GP regression, 𝑓(𝒙) is regarded as a realised 
value of a gaussian process. A GP generalises the 
Gaussian probability distribution model, describing 
the distribution of functions 𝑓(𝒙) rather than scalars 
or vectors. Its mean and covariance functions fully 
specify a GP. According to a Bayesian framework, 
the first step in a GP regression is to set a prior 
distribution for all the possible functions 𝑓(𝒙) , 
reflecting the starting knowledge about the output 
before having any data. This is done by assigning 
some properties of the mean and the covariance 
functions (e.g. smoothness). Then, the prior 
distribution is converted into a posterior distribution 
(over functions) based on the observed data, and 
such a posterior distribution is used for predictions. 
The properties of the output function 𝑓(𝒙) - with 
particular reference to its smoothness - are governed 
by the covariance function, which captures the 
correlation among different input vectors and 
reflects it in the output.  

With regard to the GP regression fitting for this 
particular study, a constant basis function is assumed 
for the posterior distribution of the mean function. In 
addition, a squared exponential covariance function 
with separate length scales is adopted. This is done 

to have a reasonable amount of hyperparameters 
while reflecting the mechanics of the 
phenomenon under investigation. A quasi-
Newton method (Nocedal and Wright, 2006) is 
adopted to optimise the hyperparameters, 
including the noise variance.  

 
2.4 Fragility and loss analysis 
Based on the PSDM parameters evaluated using 
the trained GP regressions, building-level fragility 
curves can be calculated for a set of structure-
specific DSs, identified by the thresholds 𝐸𝐷𝑃34. 
One possibility involves choosing four DSs: slight, 
moderate, extensive and complete damage, as 
defined according to HAZUS (Kircher, Whitman 
and Holmes, 2006).  

According to the properties of the adopted 
PSDM (Eq. 1), lognormal fragility curves for 
each DS, representing the DSs’ exceeding 
probability 𝐹34! = 𝑃N𝜇 ≥ 𝜇34!P𝑅Q , are 
completely specified by their median 𝜂34  and 
logarithmic standard deviation 𝛽 (or dispersion), 
which are specified in Eq. 2 both for the elastic 
and inelastic ranges.  

𝜇34! ≤ 1;	B
𝜂34! = 𝜇34!
𝛽 = 0									 				 

𝜇34! > 1;	U𝜂34! =
𝜇34! − 1

𝑎
+ 1

𝛽 = 𝜎																								
 

2 

 
Loss analysis can be based on a vulnerability 

curve. For a set of fragility functions, this can be 
derived using a building-level consequence 
model relating the repair-to-replacement cost to 
structural and non-structural DSs. Assuming a 
hazard curve, relevant loss metrics can be 
calculated, including the commonly-used 
expected annual loss (EAL). Gentile and Galasso 
(2021c) give the details of such calculations less 
relevant herein. 

3 RESULTS AND DISCUSSION 

3.1    Predictive power of the metamodel 
The PSDM parameters are first predicted for the 
entire SDoF database, measuring the surrogate-vs-
modelled (s-vs-m) normalised root mean squared 
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error, NRMSE V
5$6178(%!+5!)"9

5$61(5!)
W . Figure 1 shows 

that the NRMSE is equal to 2.5% for the slope and 
6.2% for the logarithmic standard deviation of the 
PSDMs.  

 
Figure 1. Surrogated (GP regression) vs modelled (SDoF cloud 
analysis). NRMSE: normalised root mean squared error. Gentile 

and Galasso (2021c) 

To test the predictive power of the GP regressions 
outside the training set, 10-fold cross validation is 
carried out. This first involves randomly dividing the 
training dataset into ten subsets made of 1,000 SDoF 
samples each. Then, ten new GP regressions are 
fitted alternatively, excluding one subset from the 
new training dataset. For each subset, the fitted GP 
regressions are used to make (in-fold) predictions for 
the subset kept out of the training dataset. The in-
fold prediction errors for each of the ten sub-sets are 
used to calculate the in-fold NRMSE, which is 0.1% 
higher than the previously calculated one for both 
PSDM parameters, thus confirming the validity of 
the error estimates. Considering the various sources 
of uncertainty commonly involved in seismic 
performance assessment or risk/loss models, such 
error levels are deemed satisfactory for practical 
applications. 

The surrogated PSDMs for the entire SDoF 
dataset are used to estimate seismic fragility curves. 
Those are derived for two DSs related to ductility 
thresholds, respectively, equal to 3 and 4, 
representing DS3 (extensive damage according to 
HAZUS) and DS4 (complete damage according to 
HAZUS). Elastic damage states are not considered 

since, according to Eq. 1, no error is expected for 
those. The NRMSE for the median of the fragility 
curves is equal to 2.0% and 2.2%, respectively for 
DS3 and DS4. Consistently with the definition of 
the PSDM, a given error in the slope parameter 𝑎 
propagates to higher error levels for the fragility 
median as the ductility threshold increases. It is 
worth mentioning that no further discussion is 
needed for the fragility dispersion since this is 
exactly equal to the PSDM logarithmic standard 
deviation.  

It is worth mentioning that Gentile and 
Galasso (2021c) also propagate such errors to 
both vulnerability curves and EAL. This is not 
shown here for brevity. 

3.2    Application to realistic RC frame structures 
It is crucial to test the predictive power of the 
trained GP regression against realistic MDoF 
structures. The selected case study is the central 
longitudinal frame of a three-storey RC building 
with rectangular plan geometry and structural 
details of beams, columns and joints consistent 
with pre-1976 design according to an older Italian 
building code (Consiglio dei Ministri, 1939). 
Apart from this as-built configuration, consistent 
with gravity-only design and neglecting any 
capacity-design provision, seven retrofitted 
configurations providing incremental seismic 
performance are designed implementing the RC 
jacketing technique (Figure 2.a shows their plastic 
mechanism). Detailed descriptions and 
illustrations of geometry, load analysis and 
structural details of the as-built and retrofitted 
members are provided in (Gentile et al., 2021). 
They are not repeated here for brevity.  

A 2D lumped-plasticity model (bare frame) is 
developed using the finite element software 
Ruaumoko (Carr, 2016) for each configuration. 
The adopted numerical modelling strategy was 
extensively validated against experimental results 
(Magenes and Pampanin, 2004). Floor 
diaphragms are modelled as rigid in their plane, 
and fully fixed boundary conditions are 
considered at the base. P-Delta effects are not 
modelled since they are deemed negligible for 
three-storey frames. A 5% tangent stiffness-
proportional elastic damping is assigned to all 
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frequencies. The capacity of the RC members is 
derived considering flexural capacity, beam flange-
effect due to the concrete slabs, laps splice, shear 
capacity and bar buckling. The remaining details of 
the modelling strategy are given in Gentile and 
Galasso, 2020. Each frame configuration is first 
analysed via displacement-control pushover with a 
linear force profile. This allows quantifying four 
displacement thresholds (Δ34:) compatible with the 
DS definitions in HAZUS (described in Section 2.4, 
to be adopted for fragility derivation.  

The as-built configuration shows a storey-level 
failure mode developing at the first storey (Figure 
2.a), characterised by plastic hinging of the columns 
and shear failure of the exterior beam-column joints. 
The spectral acceleration capacity iof the equivalent 
SDoF system is equal to 0.2g.  

The adopted retrofit strategy is implemented 
“incrementally”, adopting concrete column 
jacketing as the selected retrofit technique. This 

results in seven retrofit solutions, for which 
Figure 2.a shows the plastic mechanism at DS3 
(extensive damage according to HAZUS; 
generally associated with life safety). Only the 
interior columns are jacketed for the solutions I1, 
I2 and I3 (respectively up to the first, second or 
third storey). Similarly, the solutions IE1, IE2 and 
IE3 include column jacketing for both interior 
and exterior columns. Finally, the IE3+ retrofit 
solution improves IE3 by involving enhanced 
jacketing for the first-storey columns to provide 
higher strength for the frame. In addition, it is 
worth mentioning that the beam-column joints 
located between two jacketed columns are 
reinforced with horizontal stirrups having the 
same layout as the jacketed columns, thus 
significantly enhancing their shear capacity (and 
avoiding shear hinging).  

 

 
Figure 2. State-dependent fragility (four-storey frames): a) Beam sway; b) Mixed sway; c) Column sway; d) Mixed sway infilled. 
Note: the line type represents the conditioning damage state (DS#$) while the line colour represents the achieved damage state (DS%$). 
For example, the red dotted line represents DS#$ = 1 and DS%$ = 4. Gentile and Galasso (2021a) 

 
The response of each frame configuration is 

analysed using a cloud-based NLTHA (Jalayer and 
Cornell, 2009) is carried out, measuring the peak 
effective height displacement. The set of 100 records 
described above is adopted without using any scale 
factors. The spectral acceleration at the fundamental 
period, 𝑆𝐴(𝑇,), is finally calculated for each record 
and adopted as an IM. 𝑇, ranges between 0.77s for 

the as built configuration and 0.55s for the IE3+ 
one. 

The conditional mean and standard deviation 
of EDP given IM are derived to obtain PSDMs 
for each frame configuration. The least-square 
method is used to obtain the power-law model 
𝐸𝐷𝑃 = 𝑝,𝐼𝑀;"  (Jalayer and Cornell, 2009), 
where 𝑝,  and 𝑝<  are the parameters of the 
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regression. This allows deriving fragility curves 
compatible with those derived using the GPs, where 

𝜂34: = 𝑒𝑥𝑝 V
&'7

&'(!
)*

9

;"
W  and 𝛽 = =

;"
.  It is worth 

mentioning that some ground motions led to 
collapse, which is herein defined as a global dynamic 
instability (i.e. non convergence) of the numerical 
analysis, likely corresponding to a plastic 
mechanism (i.e. the structure is under-determined) 
or exceeding the nominal threshold of 10% 
maximum inter-storey drift. The information carried 
out in these analyses with non-numerical EDP values 
are included in the definition of the fragility curves 
according to the procedure in (Jalayer et al., 2017), 
which is described in detail in Gentile and Galasso 
(2020). 

The parameters of the fragility curves are finally 
computed using the trained GP regressions, after bi-
linearising the pushover curves (ATC 40, 1996), 
adopting the MTf hysteresis type (deemed 
appropriate for RC frames not developing a soft-
storey mechanism), and using DS ductility 
thresholds consistent with the above-mentioned 
Δ34:.  

Before comparing fragility estimates of a 
surrogated SDoF model and an explicit MDoF 
model, it is worth highlighting the various sources of 
error affecting it. First, the two models involve a 
different functional form of the PSDM, respectively 
suited for SDoF and MDoF models. Moreover, the 
comparison adopts the spectral acceleration at the 
fundamental period as IM, although more sufficient 
and efficient IMs are available (e.g. (Minas and 
Galasso, 2019)). Moreover, although the same set of 
records are used, those are scaled in amplitude in the 
metamodel training, possibly leading to further bias 
(Luco and Bazzurro, 2007).  

As shown in Figure 3, comparing the surrogated 
medians with those calculated via NLTHA shows 
that the NRMSE is equal to 24.0%, 26.0%, 17.7% 
and 19.0% for DS1, DS2, DS3 and DS4, 
respectively. Such error levels are deemed consistent 
with the simplicity of the GP metamodel as opposed 
to the required modelling effort and time involved in 
the MDoF NLTHA.  

 
Figure 3. Surrogated vs modelled fragility median for the 

MDoF case study. Modified after Gentile and Galasso 
(2021c) 

From a qualitative point of view, the GP 
regressions provide a conservative 
underestimation of the medians (with respect to 
the NLTHA), except for the DS4 estimation for 3 
case studies. Consequently, the GP regressions 
would provide conservative overestimations in 
risk/loss analyses. The error levels are higher for 
severe DSs and higher-performing structures 
(higher fragility medians). However, in risk/loss 
estimations, such error levels will likely have a 
low impact given the lower hazard frequency 
related to high intensity. This effect is 
qualitatively valid for any combination of 
building models and sites. 

On the other hand, the GP regressions show a 
lower predictive power in estimating the fragility 
dispersion. Indeed, the fragility dispersion 
predicted with the GP regressions for the non-
linear range lies within 0.35 and 0.4 for all the 
considered frame configurations. Despite a 
NRMSE equal to 29.0%, respectively, the error 
for the single datapoints approximately ranges 
between 9% and 59%, and it is generally an 
underestimation.  

It is worth highlighting that the fragility 
dispersion, in turn depending on the EDP|IM 
standard deviation, is strongly affected by the 
refinement of the model (e.g. a higher dispersion 
is expectable for MDoFs than for SDoFs, for 
example, due to higher-mode effects and lower 
sufficiency of the IMs). Accordingly, the adopted 
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PSDM model for MDoFs allows accounting for the 
EDP|IM uncertainty also in the elastic range, while 
this is not present in the SDoF response. To partially 
compensate for this deficiency, it is suggested to use 
the GP-based fragility dispersion also for the elastic 
DSs (which would have 𝛽 = 0 according to Eq. 2). 
On the other hand, considering collapse cases in the 
MDoF model usually reduces the fragility 
dispersion, especially if the structure develops a 
plastic mechanism for low seismic intensity levels. 
The combination of such effects, not adequately 
captured in the GP regression approach, is case-
dependent, and it is arguably challenging to predict 
a general trend.  

For this reason, although the fragility dispersion 
errors are numerically higher than those of the 
medians, those are still comparable to those obtained 
explicitly modelling an SDoF (arguably the standard 
for portfolio analyses) subjected to cloud-based 
NLTHA.  

3.3    Use cases for the proposed metamodel 
The proposed surrogate model can be used for a  
Direct Loss-Based seismic Design (DLBD), thus 
allowing the design of structures that would achieve, 
rather than be bounded by, a given loss-related 
metric (e.g. EAL) under the relevant site-specific 
seismic hazard. The step-by-step details of the 
procedure are given in Gentile and Galasso (2021c), 
along with a case study application. 

From a high-level perspective, DLBD requires a 
target level of loss (e.g. EAL=0.5% of the total 
reconstruction cost) and returns a set of force-
displacement curves compatible with such loss. This 
is done by first setting basic inputs such as: the 
qualitative definition of damage states, a damage-to-
loss model, a hazard model compatible with the 
selected site, the basic geometry of the selected 
structural system (e.g. according to gravity-load 
design). According to Section 2, the proposed 
surrogate model is used to calculate the selected loss 
metric for an intelligently-selected set of seed SDoF 
systems, producing the mapping shown in Figure 4 
in terms of yield strength and ductility capacity. All 
the SDoF systems meeting the target loss value are 
equally-valid design candidates, and one of those 
can be arbitrarily selected as the final design SDoF, 
possibly according to design requirements not 

related to seismic actions. 
After selecting the design SDoF force-

displacement curve, the principles of 
displacement-based design (specialised for the 
selected structural typology) are finally used to 
detail each member of the structure to comply 
with the design SDoF’s backbone.  

 
Figure 4. Direct loss-based design: Map of the expected 

annual loss for the trial SDoF configurations. Modified after 
Gentile and Galasso (2021c) 

A flexible and reliable surrogate model for the 
PSDM of structures (and hence for the derivation 
of fragility and vulnerability curves) can also 
enable the fast development of a high number of 
earthquake risk models with different scenario 
exposure. A possible example is a dynamic 
earthquake risk model with exposure changing 
over time, representing the implementation of a 
retrofit-based seismic risk reduction policy for a 
region.  

This is shown for a synthetic portfolio of 100 
RC buildings equally spaced in a rectangular grid 
in the vicinity of a case-study strike-slip line fault. 
In the as-built condition (time 𝑡 = 0) , the 
buildings SDoF parameters are simulated based 
on uniform distributions for 𝑇~(0.2𝑠, 1.5𝑠) ,  
𝑓!~(0.1,0.25) , ℎ~(0.01,0.1) , and 
𝜇;$6>~(1.2,3) . All the buildings are 
characterised by the MTf hysteresis model. Each 
householder in the area must retrofit at a time 
𝑡~𝑈(0,15𝑦𝑒𝑎𝑟𝑠) , and they must increase the 
yield strength such that Δ𝑓!~𝑈(0,0.15)  and 
ductility capacity such that Δ𝜇;$6>~𝑈(0.2,1.5). 
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Given the inherent freedom of the householders, the 
implementation of this policy may be regarded as a 
random retrofit process. Using the provided GP 
regressions, simulating such a process to obtain the 
distribution of the evolving portfolio losses becomes 
computationally feasible.  

The step-by-step details of this procedure are 
described in Gentile and Galasso (2021c), while 
Figure 6 shows a single simulation of the retrofit 
process. A 10000-year stochastic catalogue is 
considered; 500 realisations of the relevant ground 
motion fields are considered for each event. The 
portfolio loss curves (mean annual frequency, MAF, 
of loss exceedance vs loss ratio) for the as-built 
portfolio (𝑡 = 0) and after the full simulation of the 
retrofit process (𝑡 = 15𝑦𝑒𝑎𝑟𝑠), show the significant 
reduction of losses. Figure 5 also shows the time 
evolution of the median portfolio loss curve, 
together with the evolution of the portfolio EAL. 

 
Figure 5. Evolution of the median portfolio loss curves during 

the retrofit process (t=0: as-built portfolio; t=15years: completed 
retrofit process). Modified after Gentile and Galasso (2021c) 

4   CONCLUSIONS 
This paper summarised a recently-proposed 
metamodeling approach mapping the parameters 
controlling the dynamic behaviour of SDoF systems 
(i.e. force-displacement capacity curve, hysteretic 
behaviour) and their probabilistic seismic demand 
model (i.e. EDP vs IM distribution).  
The selected approach is the Gaussian Process (GP) 
regression since it does not require any a priori 
definition of the output functional form (a GP is a 
non-parametric model), and therefore, it results in an 

infinitely-scalable surrogate model. The dataset 
used to train the GP regressions is based on a 
Monte Carlo sampling of 10,000 SDoF systems, 
each analysed via a cloud-based NLTHA using 
100 ground-motion records.  
Considering the various sources of uncertainty 
typically involved in the seismic performance or 
risk/loss models, often not captured due to the 
simplified nature of the models themselves, the 
error levels introduced by using the proposed GP 
regressions are deemed satisfactory for practical 
applications, especially considering the low 
modelling effort and time required for the GP-
based predictions.  
Given its convenient trade-off between accuracy 
and computational efficiency, the discussed 
metamodel can enable earthquake-risk 
applications such as direct loss-based design and 
dynamic risk modelling. 
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