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Abstract
The validity of different available contact models is tested against experimental data for contact normal loading of

artificially shaped granite stones. Three elastic models and two plastic models were tested with different combinations of

contact shape (spherical, conical and flat) and roughnesses. It was found that the deviation from the Hertz model increased

with surface roughness with a generally better representation of the data achieved by using models which consider surface

roughness and the fractality of the surface. The validity of all these models seems to be limited to before excessive plastic

deformations start taking place, after which the contact seems to deform under constant stiffness.
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List of symbol
a� Radius of area in contact for rough surfaces

aH Radius of the circle delimiting the contact surface

aL Radius of area in contact in Bahrami et al. [2]

method

aL
0 Non-dimensional contact radius in Bahrami et al.

[2] method

A0 Area of contact at full yielding of asperities

d Separation distance between the two nominal

surfaces in contact

Df Fractal dimension

E� Combined modulus of elasticity of the two sur-

faces in contact

f Normal force

F Force at transition of behaviour from rough con-

tact to Hertz

H Hardness number

k Normal stiffness

KN
H

The Hertz normal stiffness

KN
P&P

Normal stiffness as predicted by Pohrt and Popov

[22]

NH Non-dimensional hardness parameter

NL Non-dimensional load parameter

p0 Maximum contact pressure

P Normal load

p0 Non-dimensional contact pressure by Bahrami

et al. [2] method

p0;H Maximum pressure as predicted by Hertz

R1, R2 Radius of curvature for the two spheres in contact

R Equivalent radius of curvature for the two sur-

faces in contact.

Sq Root mean square of surface height

Z Combined (elastic–plastic) vertical displacement

of bulk and asperities, respectively,

Z* Dimensionless parameter of vertical displacement

with respect to roughness

c(Z*) Contact area fraction function

a Non-dimensional roughness parameter

b Radius of curvature of asperities peaks

d Mutual displacement at center of contact area

j Non-dimensional parameter in Bahrami et al. [2]

method

g Density of asperities per unit area

l Asperities shape parameter

m Poisson’s ratio

r Combined RMS roughness

x(0) Displacement caused from the elastically

deformed bulk at the centre of the contact area
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1 Introduction

It is generally accepted that the reliability of discrete ele-

ment simulations of any granular material is significantly

improved if the shape of the particles and the contact

behaviour between them are properly characterised and

modelled [11]. Several recent experimental studies (e.g.

[5–8, 18]) have been carried out to that end, focusing on the

contact between soil and rock particles under different

modes of normal and tangential monotonic loading as well

as cyclic normal loading. Their results highlighted impor-

tant aspects of the grain scale response, suggesting

parameters for DEM modelling such as contact stiffness

and tangential friction coefficient that are different from

what is typically used in numerical analyses.

Although a number of contact models are available and

have been used in many applications in engineering, such

as the Hertz elastic model [16], it is only in the last two

decades, over which the discrete element method (DEM),

[9], developed rapidly, that contact models applied to soils

have come under scrutiny. The Hertz model, for example,

was developed based on the assumption of contacting

smooth spheres, while soil particles have irregular shapes

and rough surfaces (e.g. [29]). The response at the contact

may also not be fully elastic as assumed in most models

(e.g. [4]). With methods of measurement for inter-particle

contact behaviour and characterisation of particle mor-

phology continuously improving, in parallel with more

sophisticated contact models being developed, it has

become possible to carry out a thorough investigation on

the suitability of existing contact models for geo-materials.

In this study, contact models, selected among the more

appropriate ones available for granular soils, were

reviewed and tested against data from normal loading tests

between two artificially shaped granite particles. The tested

particles were prepared to match the shapes for which the

contact models were derived, i.e. with spherical or cylin-

drical contacting surfaces. By using input parameters

directly measured on the tested material it was possible to

evaluate the models’ ability to capture the material

response at the contact scale. This investigation using

simple contact geometries was part of a large project aimed

at producing an accurate DEM model of railway ballast.

The interpretation of the tests on natural ballast were

hampered by the complexity of the natural geometry at the

contact, which prompted this series of tests on simple and

controlled geometries.

Since the precursor elastic model for contact between

two elastic smooth spheres presented by Hertz [16],

developments have been made by others to account for the

surface roughness of the majority of materials. Some

models (e.g. [13–15]) proposed an extension to the Hertz

model on the assumption that the asperities forming the

surface roughness have spherical tips and deform elasti-

cally, while other models considered plastic deformation of

the asperities (e.g. [2, 32]). The initial modification by

Greenwood and Williamson [14] for contact between two

rough flat surfaces assumed a Gaussian distribution of the

asperities with an estimation of their radius of curvature.

Similar assumptions were made by Greenwood and Tripp

[13] to predict the contact behaviour of two rough spheres,

but their model required the iteration of three integrals

which led to complications in its application. Recognition

that a less complicated model to use was necessary led

Greenwood et al. [15] to apply a simpler statistical method

relating the contact to a non-dimensional parameter rep-

resenting the surface roughness, and which was the basis

for an easy and practical solution proposed afterwards by

Yimsiri and Soga [31] that has since been used in

geotechnical DEM models (e.g. [28]). The limitation

remains however that the body shapes at the contact and

their surface characteristics should be easily quantifiable to

be input directly in the models, as is the case in engineered

materials.

Natural materials such as soils have no pre-defined

geometry. They often have a complicated surface mor-

phology resulting from complex geological history, and

they differ from one type to another. A first step towards

selecting the right contact model will be to simulate geo-

materials of known contact shape and surface roughness: in

this study this was achieved by choosing flat surfaces of the

natural material. Particles were manufactured out of Mount

Sorrel railway ballast which were cut into conical shapes or

cut and milled into spheres before being tested using a

bespoke inter-particle apparatus [27]. The mechanical

properties of the material are known and the surface

roughness of the spheres was measured before and after

testing. As well as evaluating the selected models against

the real contact data obtained from the contact tests, the

nature of the normal force–displacement relationship is

studied, limited to monotonic loading in this paper. The

conclusions from this study should help extend the range of

models typically used in DEM applied to soils, comparing

different approaches and therefore suggesting how contact

models for geo-materials may be further developed. Gen-

erally, the tests were stopped before major contact damage

took place and catastrophic failure was usually avoided.

2 Experiments: material

Particles with defined geometry (spheres of different

diameters, flat surfaces and conical shapes) were machined

from a granodiorite ballast from Mount Sorrel. The min-

eralogy mainly consisted of plagioclase, potassium feldspar
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and quartz [24]. The main mechanical properties of the

Mount Sorrel granite are listed in Table 1 [1]. The Pois-

son’s ratio used in the calculations was 0.25, a typical mean

value for granite [10]. The choice of material was made

based on the material used in a wider project to model the

behaviour of railway ballast using DEM. Three UK uni-

versities (Nottingham University, University College

London, UCL and the University of Southampton) were

involved in this project, with UCL being tasked with pro-

viding the study of contact and micro-mechanical beha-

viour of the material.

The roughness of the spherical stones was controlled by

using a stone polishing tumbler while the flaws in the flat

surfaces were smoothed using polishing paper. A V8 Stereo-

Discovery Microscope was used for surface image acquisi-

tion while analysis of the images was carried out using the

ConfoMap7 software (equivalent to Mountains 7.4).

3 Experiments: apparatus

Data for the force–displacement relationships of surfaces in

contact were obtained using the inter-particle apparatus

designed at UCL and described in [27] (Fig. 1). The

apparatus was developed to investigate the contact beha-

viour of coarse-grained materials, with vertical and hori-

zontal capacities of 1 and 0.5 kN respectively. Two

particles (stones) can be mounted on platens and subjected

to loads along three axes that are concentric with the

contact. In each axis, the load is applied by a linear actuator

and measured with a load cell with a resolution of about

0.01–0.02 N. A non-contact displacement transducer along

each axis is used to monitor the displacements with a

resolution of 10-2 lm. The lower platen is held on a sled,

under which is a three-point bearing system, for which the

friction was calibrated, even if it was barely significant. A

purpose written software that allows control of each axis in

either a force or displacement mode is used to control the

load application and to log the data during the test. To

reduce compliance at the contact with the platen, the stones

were cut flat on the side where they were attached to the

platen by an epoxy resin, using a small thickness of glue to

ensure minimum compliance. Although both normal and

tangential loading can be applied to particles in this

apparatus, the test data presented here are confined to

normal loading to allow focus on the comparison with

normal contact models. The datasets generated during the

current study are available from the corresponding author

on reasonable request.

Tests details are listed in Table 2. In all the tests, initial

contact was made using a slow displacement control mode

(0.1 mm/h) until the normal load reached 10 N, after which

force control was started. This was done to avoid heavy

impact between the two surfaces at first instant of contact

had a force-controlled loading been used.

4 Roughness control and measurement

Geo-material surfaces contain irregularities of various

orders ranging from shape deviations to irregularities of the

order of interatomic distances. Measurement of surface

roughness was done using a Zeiss Stereo-Discovery V8

Fig. 1 Inter-particle loading apparatus during test SS(18–18) of two

spheres with approximately similar diameter

Table 1 Mechanical properties of Mount Sorrel granite used in this

study

Relative density 2.68

Unconfined compressive

strength (MPa)

176.4

Poisson’s ratio, m 0.25

Young’s Modulus (GPa) 60.6

Shore Hardnessa 77 this is equivalent to 639 kg/mm2 in

Vicker’s hardnessb

aShore Hardness is a measure of the resistance a material has to

indentation. A diamond-tipped hammer is manually dropped verti-

cally and freely from a height on to a horizontal, polished test surface
bThe Vickers hardness, also referred to as a micro-hardness test, is

carried out by observing the area of the indentation caused by a di-

amond pyramid indenter under vertical load
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microscope. The roughness values reported in Table 2 are

the root mean squares of surface height (RMS or Sq).

Height measurements on the sample were made from Z-

stack images obtained by the microscope using a magni-

fication of 849. The total area in view at the chosen

magnification was 1.62 mm 9 1.34 mm. Analysis of the

scanned surface was done using the ConfoMap7 software,

in which full analysis of the surface can be made to provide

statistical data of the surface topography, for example by

fractal analysis or peak analysis. The fractal dimension Df,

which gives an indication of the frequency of asperities to

complement the RMS roughness, was calculated by Con-

foMap 7 using the box counting method and is also given

in Table 2. The values of surface roughness given in

Table 2 were obtained after removing the effect of shape

using a polynomial function in the ConfoMap7 software.

Figure S1 in the supplementary documents illustrates the

main procedure to obtain the surface roughness values

followed in this study. When two rough surfaces come in

contact, a combined roughness parameter r is typically

used in modelling calculations, where r ¼ ðS2q1 þ S2q2Þ
1=2

,

Sq1 and Sq2 representing the standard deviation of the

asperity heights over a mean plane for the two surfaces in

contact.

The size of the area considered in the roughness mea-

surements was kept constant for consistent readings as it

has been shown that the value of Sq can vary significantly

depending on the size of the field of view. Roughness

measurements were made before and after testing. Differ-

ent initial surface roughnesses were achieved by means of a

rock tumbler, obtaining roughness values ranging from 1.5

to 6 lm. Care was taken to measure the initial roughness

where the area of contact was expected to take place, such

as the apex in the case of a spherical shape, and to measure

the roughness after applying different loads using the same

field of view. Care was also taken that the area considered

for the roughness measurements was consistent with the

Hertz-predicted area for such contacts. It is the roughness

Table 2 Test details for spherically shaped ballast

Description Measurements Position of stone

Top stone Lower stone

SS(18–18) Smooth sphere–sphere test with approximate

dimeters of 18–18 mm

Radius, mm 8.76 8.63

Equivalent radius = 4.35

Roughnessa, lm 1.56 1.84

Combined roughness = 2.40

Df
b 2.21 2.23

SS(12–18) Smooth sphere–sphere test with approximate

diameters of 12–18 mm

Radius, mm 6.05 8.75

Equivalent radius = 3.58

Roughness, lm 2.83 3.09

Combined roughness = 4.19

Df 2.33 2.25

SF(12) Sphere-flat test with approximate diameter 12 mm Radius, mm 6.05 flat surface

Equivalent radius = 6.05

Roughness, lm 3.61 5.48

Combined roughness = 6.56

Df 2.23 2.32

VS(18–18) Very smooth sphere–sphere test with approximate

diameter of 18–18 mm

Radius, mm 8.27 7.90

Equivalent radius = 4.04

Roughness, lm 0.10 0.11

Combined roughness = 0.15

Df 2.06 2.09

RS(18–18) Rough sphere–sphere test with approximate

dimeters of 18–18 mm

Radius, mm 8.2 8.58

Equivalent radius = 4.19

Roughness, lm 3.30 4.20

Combined roughness = 5.34

Df 2.17 2.23

aRoughness was calculated as the root mean square of the height of the surface
bFractal dimension was calculated using box counting method
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within this area which could affect the contact behaviour.

In this study, a field of view of 0.2 mm 9 0.2 mm was

chosen based on a Hertz prediction of the contact area

between two spheres of 4.4 mm equivalent radius at about

100 N normal load. This calculated area reduces signifi-

cantly with the decrease in the radius of curvature of the

two surfaces in contact, e.g. for the tip of a conically

shaped stone against a flat surface, the Hertz-predicted

contact area radius is less than 0.09 mm at 100 N normal

load.

The local shape of the area in contact should be con-

sidered when an estimation of radius of curvature at the

contact is made. Figure 2 shows three different methods to

estimate the radius of curvature of the cone in test FC5

using images which were obtained from: (1) two digital

cameras, (2) profile images using the microscope and (3)

profile data obtained from the Z-stack of the surface. The

radius of curvature is determined in Fig. 2a, b by mea-

suring the radius of the best fit circle at the tip of the cone

and tangent to the bottom particle, as shown. In each

method two orthogonal directions of the cone tip were

considered. The camera set seems to capture the global

shape and the curvature of the contact surface, yielding a

much larger value of the contact radius R of about 0.62 mm

compared to the other two methods with radii of 0.31 and

0.35 mm, respectively. This indicates the importance of

image scale in estimating the surface properties for model

evaluation and that using the microscope for smaller con-

tact radius estimation is essential.

Fig. 2 Three different methods for radius of surface curvature estimation at the end of a cone tip a using digital camera b using profile images

obtained by the microscope c using the Z-stack data of the surface as obtained by the microscope
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5 Results and discussion: normal loading
of spherically shaped particles

Five settings of tests on granite spheres, with different

equivalent radii of curvature and different combined RMS

roughnesses, were carried out as detailed in Table 2. Fig-

ure 3 shows the force–displacement response of three

sphere–sphere contacts with similar curvature but with

different surface roughnesses: a smooth pair of spheres

SS(18–18), a very smooth sphere–sphere contact VS(18–

18) and a rough pair of spheres RS(18–18), all subjected to

normal loading. The spheres had a radius size in the range

of 7.90–8.76 mm, with a calculated equivalent radius of

4.35 mm, 4.04 and 4.19 mm, respectively. The combined

roughness of the spheres in RS(18–18) was more than

twice the value for SS(18–18), while VS(18–18) was a very

smooth set with a combined roughness value of 0.15 lm
(see Table 2). The normal force–displacement relationships

of these tests were compared with what is predicted by the

Hertz model. The Hertz solution [16] was developed for

normal contact between two smooth spheres treated as

semi-infinite elastic bodies, and predicts that the radius of

the circle delimiting the contact surface, aH, is proportional

to the cube root of the load level P (Eq. 1):

aH ¼ 3PR

4E�

� �1=3

ð1Þ

If the modulus of elasticity and Poisson’s ratio of the

bodies in contact are (E1, m1) and (E2, m2) for the first and

second sphere, respectively, the equivalent and combined

parameters R and E* for the two bodies in contact are:

• equivalent radius R with 1/R = 1/R1 ? 1/R2,

• combined elastic modulus E* with 1/E* = (1 - m1
2)/

E1 ? (1 - m2
2)/E2.

The equations above for the equivalent or combined

parameters were derived from the Hertz model based on

effects of curvature and the elastic properties of the two

surfaces in contact and cannot merely be obtained from the

mean values of the individual parameters. The mutual

displacement, d, at the centre of the contact area, and the

normal contact stiffness, KN
H(= dP/dd), obtained from the

first derivative of load with respect to mutual displacement,

can be calculated as:

dH ¼ a2H
R

¼ 9P2

16RE�2

� �1=3

ð2Þ

KN
H ¼ 6PRE�2� �1=3 ð3Þ

In Fig. 3, the data for both tests SS(18–18) and RS(18–18)

show a much softer response than the Hertz prediction,

with the result for the rough contacting spheres RS(18–18)

diverging the most. Test VS(18–18) which has an extre-

mely low roughness value compared to the other two,

however, shows a good agreement with the Hertz model. It

is interesting that the effect of surface roughness is seen

very clearly when compared with the predicted Hertz

behaviour, even in the relatively smoother spheres of test

SS(18–18), indicating a clear shortcoming of the model to

predict an accurate behaviour for a material that is not

perfectly smooth. This confirms the necessity of consider-

ing contact models that include roughness for a better

representation of the data. In Fig. 3, the differences in

displacements between the tests with various roughnesses

are greater than the combined roughness indicated on the

figure, but it must be recalled that the asperity peaks on the

surfaces will be higher than the combined roughness.

While Eqs. (1)–(3) might be sufficient to predict the

behaviour of almost smooth surfaces with an accept-

able percentage of error, rough surfaces can exhibit sig-

nificantly lower stiffnesses than predicted at low load

levels due to the high error in estimating the real contact

area [3, 15, 21]. For rough surfaces, initial contact takes

place at the crest of the surface asperities over the nominal

contact area, which is usually assumed by models to be

larger than that predicted by Hertz for a smooth contact. It

is important here not to confound the nominal contact area

with the real contact area which is much smaller than this

predicted by Hertz. Greenwood and Tripp [13] assumed

that the asperities forming the surface roughness follow a

Gaussian distribution, with asperity peaks having similar

roundness and each asperity deforming individually

according to the Hertzian law. Their model proved to be

very complicated and required many iterations to reach a

satisfactory result so further improvements and

Fig. 3 Load–displacement response of three tests of sphere–sphere

with similar equivalent radius but with different combined roughness

values compared to Hertz model
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simplifications followed. Greenwood et al. [15] suggested

that the influence of the surface roughness on the accuracy

with which the Hertz theory can predict the nominal con-

tact area between spheres could be summarized in a non-

dimensional roughness parameter a (Eq. 4), avoiding the

need for an explicit statistical distribution of surface

asperities:

a ¼ rR

a2H
ð4Þ

The parameter a gives an indication of the relative mag-

nitudes of the asperities and the mutual displacement of the

particles. The apparent nominal contact area between

rough surfaces, a*, is larger than that for smooth surfaces,

and can be related to the Hertz model radius of contact

area, aH , by a function of the parameter a. It was found that

for values of a less than 0.05, i.e. relatively smooth, Hertz

theory under-estimates the nominal contact area radius by

up to 7% [15], but at higher values of a, i.e. for rougher
surfaces, a non-negligible increase in the apparent nominal

contact area is observed. This is not to be confused with the

real contact area which is likely to be much smaller for

rough surfaces, which consists only of the smaller areas

where the crests of the surface asperities are interacting.

The pressure in these areas (or islands of contact) is

therefore probably significantly higher than the contact

pressure predicted by the Hertz model. This higher pressure

will result in continuous deformation and yield of the

surface asperities with increasing load until complete

contact occurs, typically at high load, when the surface

starts deforming following the Hertz stiffness, i.e. propor-

tional to the load to the power 1/3 [18]. Johnson [17]

estimated that yielding of a single asperity might occur at

normal pressures of about 60% the material’s hardness.

Using experimental data obtained by Greenwood et al.

[15] from normal tests on hard steel spheres against flat

surfaces, Yimsiri and Soga [31] proposed an expression to

relate the ratio a�=aH to the roughness parameter a:

a�

aH
¼ �2:8

aþ 2
þ 2:4 ð5Þ

The experimental data in Greenwood et al. [15] covered a

range of a-values found for the metallic surfaces tested, up

to unity, not reaching the higher values found in natural

geo-materials with rougher surfaces and therefore it is not

clear that Eq. (5) would be representative of the latter.

When using Yimsiri and Soga’s [31] equation, the mutual

displacement is calculated from the Hertz Eq. (2), replac-

ing aH with a�, and the stiffness can be derived from dP=dd
(see the appendix for full equation details). In the following

this model with roughness added will be referred to as the

RMS model.

There are very few comparisons between the normal

contact behaviour of geo-materials with models in the lit-

erature. Full information about the surface morphology and

curvature at the contact point is essential to be able to apply

these models correctly. Yao et al. [30] compared data

obtained from normal compression of a single quarzitic

sand particle (Leighton Buzzard sand) against a hardened

stainless steel platen with predictions by the Hertz model

and by the RMS model. They found that the RMS model

gives a better representation of the data, but that the

behaviour tends to diverge from model predictions at

higher loads, showing an even softer behaviour when

plastic deformation of the bulk shape occurs at the contact,

which in Yao et al.’s study [30] was quantified from

examination of the particle morphology before and after

the test by interferometry.

The RMS model, and Eq. (5) in particular, were tested

against data obtained from experiments SS(18–18) and

RS(18–18), described above, as well as a sphere-to-flat test

SF(12) and a sphere-to-sphere test on two particles of

different radii SS(8–12). This was achieved by back-cal-

culating the rough contact area a* from the test data

assuming a Hertz load–displacement behaviour and plot-

ting the ratio a*/aH against the calculated value of a based

on the combined surface roughness and the Hertz dis-

placement (Eq. 4). Similarly, the rough contact area was

estimated for the quarzitic sand grains tested by [30]. The

back-calculated data for the granite ballast and the quartz

sand are plotted in Fig. 4 with the curve from Eq. (5). A

theoretical solution for the contact of rough spheres had

been developed by Greenwood and Tripp [13] who also

Fig. 4 Comparison of back-calculated tests data for geo-materials

with Yimsiri and Soga [31] relationship (Eq. 5). Data of metal

surfaces in contact as presented by Greenwood et al. [15] and the two

curves of different l values are also shown
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considered the shape and distribution of asperities, cap-

tured in the parameter l:

l ¼ 8

3
rg 2Rbð Þ1=2 ð6Þ

where g is the density of asperities per unit area and b is the

radius of curvature of asperity peaks (assumed to be con-

stant for each surface), and this is also shown in Fig. 4 for

two values of l (l = 4 and l = 17). It is clear that within

the assumption of Hertzian deformation, the predicted

effective contact radius for rough surfaces is significantly

overestimated at larger values of a, although it is difficult

to find a trend relating to the combined RMS roughness of

the tested particles to the rate at which the ratio a*/a de-

creases with decreasing a. This suggests that other factors
not included in the parameter a, such as the shape of

asperities or their density, may also influence the contact

response. The larger a-values represent roughness-domi-

nated behaviour, and at lower load levels the asperity

deformation is predominant. Then as loading progresses

and asperities are fully deformed the particles’ mutual

displacement becomes dominant and the value of a
decreases towards zero, i.e. Hertz model behaviour.

6 The effect of surface self-affinity

Surfaces formed by random processes tend to be self-affine

fractals (e.g. [19]), i.e. they look the same at different

magnifications, but with different vertical and horizontal

scales. Following Persson [20], improved methods to

characterise natural rough surfaces that account for frac-

tality have been proposed, for example by Yang et al. [28]

for sands. These methods avoid the filters typically

embedded in profiling software to separate roughness and

local shape before calculating the root-mean-square

roughness, which may not be suitable for non-engineered

surfaces. Persson [21] proposed that contact occurs over

many asperities, and that roughness does not have a single

scale but changes with magnification. At high magnifica-

tion the contact pressure at the asperities is so large that the

material yields plastically and the size of the real contact

area depends on the yield stress of the material. According

to Persson’s theory [20] the contact area increases linearly

with the normal load as long as the true contact area is

small compared to the apparent contact area.

A study by Pohrt and Popov [22] using the boundary

element method for a finite indenter with a square area led

to the following equation, relating the contact stiffness

between self-affine surfaces to the normal force by an

exponent that depends on the fractal dimension:

KN
P&P ¼ p

ffiffiffiffiffi
A0

p
E�Df

10

P

rE� ffiffiffiffiffi
A0

p
� �0:2567Df

ð7Þ

where Df is the fractal dimension of the surface, and A0 is

the area of contact when all asperities have yielded and full

contact has taken place. In the case of contact between two

rough spheres, this corresponds to the load when the two

surfaces in contact start to deform following the Hertz

model [23]. Pohrt and Popov [23] showed that rough

spheres in contact can be treated as self-affine rough sur-

faces superimposed on smooth spheres. At levels of normal

force too low to cause yielding of the asperities, the contact

stiffness can be estimated using the self-affine rough sur-

face model, i.e. Eq. (7). The Hertz model behaviour

becomes applicable at higher forces. The main issue in

applying this model is to find the load at which the tran-

sition from this model to Hertz occurs, i.e. when all

asperities have yielded and the area A0 can be calculated

from the Hertz equations. This threshold load, and thus the

full contact area A0, can be found by solving the simulta-

neous equations based on the intersection of normal stiff-

ness development with the applied normal load for these

two models. To clarify this in an example, the Pohrt and

Popov stiffness-load relation is plotted in Fig. 5 along with

that from Hertz: the example shows the contact stiffness

between two granite spheres SS(18–18), with equivalent

radius 4.35 mm (for E and m see Table 1), and an equiva-

lent combined roughness of 2.40 lm. The predicted curves

crossover at a normal load around 73 N, at which point the

contact stiffness changes from following the self-affine
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[16] and Pohrt and Popov model [22] for contact of two relatively

rough granite spheres with equivalent radius R = 4.35 mm and

r = 2.40 lm
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rough contact model (Pohrt and Popov) to the Hertz model

stiffness. The threshold force at the crossover between the

rough surface and the Hertz models, F, and the value of A0,

are calculated by:

A0 ¼
3

4
p3=2Rr

20

p3=2Df

� �1=0:2567Df

ð8Þ

F ¼ 4E�

3R

A0

p

� �3=2

ð9Þ

7 Plastic models

All the above mentioned models assumed pure elastic

behaviour at the contact. Other modelling approaches

adopted the idea of having a crust which is behaving

plastically on an elastically deforming bulk. In this paper

we review two of these models: the model presented by

Yip and Venart [32] and the model proposed by Bahrami

et al. [2, 3]. In both models, similar to what Greenwood and

Trip [13] and Greenwood et al. [15] proposed, a Gaussian

distribution of asperities is assumed. The nominal contact

area is also assumed to extend beyond that predicted by the

Hertz model. However, Yip and Venart built their model
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on assuming that the real contact area is actually a fraction

of the total nominal area in the rough contact.

Yip and Venart [32] suggested to treat the displacement

of the elastic bulk and the plastically deforming crust

separately, the asperities causing a separation distance

between the two bulks. This separation distance (d) will

reduce with the increasing contact force and the yielding

process of the asperities until a complete yield of asperities

has taken place, when the surfaces in contact start fol-

lowing a Hertz model behaviour and the normal stiffness

will be equal to that predicted by Hertz model. The pre-

dicted displacement Z in this model is the outcome of the

change in the separation distance d and the displacement

caused from the elastically deformed bulk at the centre of

the contact area x(0) [32]. All distance variables in this

model were made dimensionless by dividing them by the

combined RMS roughness value, r. The dimensionless

separation distance d* (= d/r) is related directly to the

contact area fraction ðZ�Þ, which is the fraction of nominal

contact area really interacting between the two surfaces

which is a function of the dimensionless displacement Z*

(= Z/r), and another two dimensionless variables, the load

number NL and the hardness number NH:

NL ¼ 2P

rE�
ffiffiffiffiffiffiffiffiffi
2Rr

p ; NH ¼ H

E�
ffiffiffiffiffiffiffiffiffiffiffi
r=8R

p ð10Þ

where H is either the Meyer’s or Vicker’s hardness num-

ber. Once the contact area fraction is related to the sepa-

ration distance between the surfaces by the function c (Z*),
the total expected real contact area can be obtained by

integrating the areas of all the contact spots over the entire

plane of contact. The real separation distance at each load

can be found when the following relation is satisfied [32]:

NL ¼ 2pNH

Z 1

0

c Z�ð Þr�dr� ð11Þ

where r* is a dimensionless variable related to the hori-

zontal distance from the centre of the nominal contact area

r, the surface RMS roughness r and the combined radius of

the contacting surfaces R by the equation r� ¼ r=
ffiffiffiffiffiffiffiffiffi
2rR

p
.

Equation (11) can be solved by iteration, choosing a set of

possible separation distances and integrating over the range

for r*. It is noted that in spite of all the simplifications

made to this model compared to the model proposed earlier

by Greenwood and Trip [13], it is still difficult to derive a

simple equation for the normal loading stiffness, as the

above equation will not give a direct solution without going

through the integral function and iteration. Predictions

using Yip and Venart’s [32] model are compared to the

previous ones in Fig. 6.

Bahrami et al. [2, 3] also proposed a model to estimate

the pressure distribution at rough surface contacts, with a

similar assumption to Yip and Venart [32] of a plastic layer

over an elastic body. They introduced the non-dimensional

contact pressure p0 ¼ p0=p0;H , and the non-dimensional

contact radius a0L ¼ aL=aH , where p0 and aL are the max-

imum pressure and radius of nominal contact area as pre-

dicted by Bahrami et al. model, while p0;H and aH are the

maximum pressure on the contact area and the contact area

radius calculated using the Hertz model. The contact area is

delimited by the perimeter where the contact pressure tends

to zero. In their theoretical solution, Greenwood et al.’s

[15] non-dimensional roughness parameter a is used to

estimate the maximum contact pressure p0
0 while the

relationship between p0
0 and the contact radius aL in the

Bahrami et al. model can be written explicitly:

p00 ¼
1

1þ 1:22aj�0:16
ð12Þ

a0L ¼ aL
aH

¼ 1:605
ffiffiffiffiffi
p00

p
0:01� p00 � 0:47

3:51� 2:51p00 0:47� p00 � 1:0

�
ð13Þ

where j is a nondimensional parameter equal to

ðE� ffiffiffiffiffiffiffiffiffi
R=r

p
Þ=H, and the displacement is presented as a

proportion of the displacement predicted by the Hertz

model:

d
dH

¼ 0:5 a0L
� �2þ 8p00a

0
L

p2 4:79� 3:17 p00
� �3:13ih ð14Þ

By substituting the appropriate relation in the above

equation and differentiating the load with respect to the

displacement ðdP=ddÞ; it is possible to obtain a set of two

normal stiffness equations for this model depending on the
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Fig. 7 Unloading data of Test SS(12–18) with three models: Hertz

[16], RMS [31] and Pohrt and Popov [22]

Acta Geotechnica

123



pressure range stated in Eq. (12). Predictions using Bah-

rami et al.’s model [3] are also compared to Hertz and other

rough surface model predictions in Fig. 6.

8 Comparison between experimental data
and predictions

Experimental data for sphere-to-sphere (SS(18–18),

SS(12–18), RS(18,18)) and sphere-to-flat (SF(12)) contacts

are compared with model predictions in Fig. 6 (test details

in Table 2). For all of these tests, the Hertz model shows

significantly stiffer behaviour in the testing load range

(0–100 N). The simulated response is improved by using

an estimated rough contact area in the elastic models, e.g.

in the RMS model or by including fractality, e.g. affecting

the stiffness exponent in the Pohrt and Popov model, but

the good agreement ceases at higher loads ([ 70 N) when

the models predict a stiffer response than that observed for

the real samples. The predictions by the plastic model

proposed by Yip and Venart [32] on the other hand show a

close fit to tests SS(18–18) and SS(12–18), i.e. for contact

between smooth spheres, but too soft a response for test

SF(12). Bahrami et al.’s [3] model does not seem to be

suitable or is not applicable to any of the tested samples

here. The observed behaviour during unloading, shown in

Fig. 7 for SS(12–18), is stiffer so that using the Hertz

model would be possible, as suggested by [25] in their

elasto-plastic model. The predicted curves fit the test data

better in the unloading stage, and for this particular test the

Pohrt and Popov model shows the best agreement. It is

interesting to note that modelling asperities as deforming

elastically or plastically makes little difference to the fit.
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However, no model includes plasticity of the bulk, which

had been observed by [30].

Figure 8 compares the normal loading stiffnesses

obtained from each test with those expected from the dif-

ferent models, plotted against normal load. There is a

power law relation of stiffness with normal load in most

contact models (e.g. [16, 21, 22]): the exponent is equal to

1/3 in the Hertz model, while it is linked to the surface

roughness fractal dimension in the Pohrt and Popov model,

equal to around 0.56 for the fractal dimensions of about

2.17–2.33 as tested here. A change in the combined root-

mean-square roughness in the Pohrt and Popov model

affects the position of the stiffness line by shifting it

upwards or downwards, while the gradient stays the same

(Fig. 9). Figure 9 also shows the change in stiffness with

load of the three tests with similar ranges of equivalent

radius: SS(18–18), RS(18–18) and VS(18–18). The very

smooth set of spheres VS(18–18) exhibit the closest values

among the three tests to the Hertz stiffness after the initial

loading and even before reaching 10 N normal load.

Changes to the shape of the particles at the contact were

monitored using the microscope. Figure 10 shows images

of the top sphere of test RS(18–18) before and after com-

pression, with the profiles plotted in Fig. 10b. No change to

the bulk form was detected for the testing load range, so

that plastic changes were limited to the roughness,

observed at higher magnification in contrast to [30].

9 Normal compression of conically shaped
ballast

Large degrees of curvature (i.e. small radii) can lead to

plastic deformation of the bulk at the contact, in which case

the elastic models do not apply anymore, even with

roughness such as the RMS model [30]. In order to check

the findings from Yao et al. [30], which were obtained from

tests of quarzitic sand grains against a flat stainless steel

surface, for the granite studied here particles were shaped

into cones, i.e. with small radius spherical contacts.

Although these conically shaped granite were sometimes a

bit distorted due to difficulties in machining, the analysis

presented here should not be affected as it is mainly

dependant on the local shape or curvature at the point of

contact which is usually accurately measured using

microscopic images as was previously discussed and

shown in Fig. 2. The cone-shaped particle RFC10, of mean

radius of curvature of the tip of around 0.96 mm and RMS

roughness of 5.04 lm, was subjected to cycles of loading–

unloading to: 20, 40, 80, 150, 300 and 450 N against a flat

surface, as shown in Fig. 11. Each cycle of loading–un-

loading resulted in substantial residual (plastic) deforma-

tions, increasing with load level. An important feature

which can be seen in this test is the increase in stiffness

during the reloading stages to values similar to those during

unloading, exhibiting higher values than the stiffnesses

during virgin loading. Modelling of the load–displacement

curve with the elastic models RMS and Pohrt and Popov

was only possible to loads up to 20 N, as shown clearly in

Fig. 11b, after which no model can fit the obtained data for

higher loads. This can be due to significant plastic defor-

mation taking place for loads more than 20 N. Figure 12

shows the change in stiffness with load level for each stage

of loading during Test RFC10. The first loading

(RFC1–20 N) is well simulated by the Pohrt and Popov

model. As expected from the load–displacement response,

reloading stages exhibit a much higher stiffness up to gross

yield, almost equivalent to the Hertz stiffness, before the

stiffness drops down to an apparently constant value of

around 5000 N/mm. The cumulative plastic deformations

during the test are plotted against the maximum normal

load reached for each stage in Fig. 13. A nearly linear

relationship can be seen with normal load.

Test FC5, a cone-flat contact using a cone with a

diameter of 5 mm (i.e. smaller radius), also consisted of

multiple stages of cyclic loading/unloading to different

normal load levels (Table 3) but the surface deformation

was monitored between stages by removing the sample

from the apparatus for imaging in between stages of

loading. Although care was taken to put the cone back in

position so that the same area of the flat surface was

Fig. 9 Effect of roughness value on the predictions from the Pohrt and

Popov model [22] applied to Tests SS(18–18) and RS(18–18).

Experimental data of Test VS(18–18) and the predictions from the

Hertz model [16] are also shown
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Fig. 10 The surface of the top sphere from Test RS(18–18) before and after compression a height map, b lateral profile section
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reloaded, it was not possible to ensure the exact same point

was used in the successive stage. It is therefore very likely

that each stage started with a new contact point. When

plotting the data in Fig. 14, the displacement of each stage

is shown as starting from zero. The first stage included a

single cycle of normal loading to 20 N followed by

unloading, while the second stage consisted of two cycles

of loading/reloading to 20 and 40 N and the third is carried

out by three cycles of loading/unloading and so on till the

fifth and final stage to 150 N (Fig. 14a–d). Model predic-

tions, limited to the Hertz, RMS and Pohrt and Popov

models, are compared with data from the first and second

stages of loading to 20 N in Fig. 14a. The experimental

data of the first and second stages up to 20 N show high

consistency in response between the different stages. The

Hertz model predicts a much stiffer response than observed

from the data. A good fit with the Pohrt and Popov model is

observed at normal loads less than 7 N, while the RMS

model tends to overestimate the value of deformation at

low levels of loading, as was shown earlier. The test data,

however, diverge from the rough surface models at loads

larger than 7 N, exhibiting a much stiffer behaviour. This

may be due to the initiation of plastic deformation at the

contact which happens in this test at even lower loads than

noted in RFC10 (20 N), indicating that plastic deformation

for this contact with a significantly smaller radius is taking

place at loads as low as 7 N considering that these models

are for an elastic deformation for both the bulk shape of the

contact area and surface deformations. The plastic defor-

mations during the different stages of loading for this test

also compare well with the values noted for test RFC10 in

Fig. 13.

The surface morphology of the cone and the flat surface

(Test FC5) was examined before and after each stage up to

the 150 N loading stage. No significant change of the cone

tip bulk shape was noted with most of the deformation

taking place in the flat surface, similarly to what was found

in test RFC10, and the flat surface suffered most of the

plastic deformation. Test FC5 was taken up to 225 N

normal load, where a catastrophic cone tip failure occurred.

The load–displacement curve then showed multiple failure

points before reloading to reach the maximum load of

300 N (Fig. 14e). All the unloading stages for cone-flat

contacts including this one, showed a stiff behaviour.

The good fit of elastic models that include surface

roughness, such as the RMS and Pohrt and Popov models,

with the experimental data seems to be limited to cases

when there is no or limited deformation of the bulk shape at

the contact, i.e. usually for very low normal loads. This was

also found by Yao et al. [30] for quartz sand subjected to

compression against a flat platen. Models that assume

plastic deformation of the crust, e.g. by Yip and Venart

[32] can only successfully predict the contact behaviour

when the plastic deformation is not significant at the con-

tact. However, as the radius of curvature decreases, i.e. for

smaller contact areas such as at the cone tip, plastic

deformation becomes more pronounced and extends to the

bulk shape of the contact with the consequence that these

models stop being in agreement with the test data. This

supports a need to consider plastic deformations in the

contact behaviour, especially at higher loads. The fact that

most models which adopt elastic solutions yield a power

relation between normal force and normal stiffness

[12, 16, 22] should also be considered. While the Hertz

model with its stiffness power law exponent of 1/3 pro-

duced a higher stiffness than those observed in rough

surfaces at low loads, Goddard [12] suggested a transition
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from a relationship k / f 1=2 at lower loads, where k is the

normal stiffness and f the normal load, to the Hertz rela-

tionship k / f 1=3 at higher loads. This follows a transition

of contact geometry from a sharp contact at lower loads to

a more rounded contact which will follow the Hertz model

at higher loads. The stiffness values produced according to

this method might be very similar to those that can be

produced by the Pohrt and Popov model [22] which con-

siders both the surface roughness and the surface fractality

at the contact, although the concept here is very different to

that adopted by Goddard [12]. The power value for the

Pohrt and Popov model before full contact takes place

between the two surfaces and the transition to the Hertz

model is dependent on the surface fractal number. God-

dard’s [12] hypothesis on the other hand would not be

compatible with the sudden decrease in stiffness upon

yielding, where again a plastic formulation may be more

suitable.

The experimental observations presented in this study

were implemented in a DEM model by Tolomeo and

McDowell [26] who adopted the Pohrt and Popov model

for first loading and Hertz for unloading, thereby giving a

plastic component of displacement. This was applied to the

simulation of small strain stiffness probes on ballast in a

large triaxial cell. Preliminary results of the simulations

showed a significant change in small strain stiffness, that

can be attributed to the different contact normal stiffness

between the rough surface model and the classic Hertz

model.

10 Conclusions

Capturing the right behaviour of geo-materials in DEM

requires accurate modelling of the material mechanical

behaviour in terms of the contact load-deformation and

stiffness during different modes of loading. The irregular

shapes and surfaces of the geo-material makes this even

harder as most available models are built on specific shapes

and known surface finish. Spherical and conical stones with

Table 3 Test details for conically shaped tests

Test RFC10 FC5

Description Cone against flat Cone against flat

Cut ballast surface in multiple cycles of load/unload to 20,

40, 80, 150 and 300 N without removing sample between

cycles

Cut ballast surface in multiple cyclic loading stages with sample

surface morphology monitoring between stages. Five stages were

conducted:

1st: load to 20 N then unload

2nd: load/unload to 20 N then 40 N

3rd: load/unload to 20, 40 and 80 N

4th: load/unload to 20, 40, 80 and 150 N

5th: load/unload to 20,40, 80, 150 and up to failure load

Base

diameter

mm

10.75 5.15

Cone height

mm

10.97 9.90

Tip curvature

radiusa mm

0.96 0.32

Surface

roughnessb

Sq lm

5.04 3.67

Fractal

dimensionc

Df

2.66 2.05

Flat surface:

Sq lm
2.47 1.95

Flat surface:

Df

2.17 2.02

aRadius was obtained from profile images in two orthogonal directions
bRoughness was calculated as the root mean square of the height of the surface
cFractal dimension was calculated using box counting method
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controlled surface roughness which were machined of

ballast were used in this study to examine the behaviour of

the material during normal loading. The normal loading

behaviour was tested against different contact models.

Below are the main points can be drawn from this study:

1. The Hertz model in general was unable to capture the

behaviour of the material for the tested load range apart

from the smoothest surfaces (Test VS(18–18)). The

best fit for spherically shaped ballast was seen with the

elastic model which considers the self-affinity (frac-

tality) of the surface, Pohrt and Popov [22] and the

plastic model proposed by Yip and Venart [32].

2. The stiffness of the contact decreases with the increase

in surface roughness. The effect of surface roughness is

very significant at lower load levels. When the applied

normal load is large enough to cause a complete yield

of the asperities in the crust, the sample stiffness

follows the Hertz model stiffness [18]. This was not

seen here in the presented data except for the very

smooth contact in Test VS(18–18). In fact the signif-

icant plastic deformations, as in the case of smaller

radii of curvature in conical contact tests, resulted in a

constant stiffness deformation region at higher loads.

3. The equation which was proposed by Yimsiri and Soga

[31] to determine the normal contact area of rough

surfaces generally leads to an overestimation of

deformation at lower load levels. This might be

because the effect of surface morphology features such

as the distribution and shape of peaks/asperities have a

more pronounced effect at this load level, which the

equation does not consider.

4. Reloading of contact is associated with higher stiff-

nesses, which drop to the initial virgin loading stiffness

after reaching the maximum load previously reached.

However, when the contact suffers from excessive

plastic deformation which extends to its bulk shape, the

contact starts to deform with constant stiffness.

5. Plastic deformation is noted to take place during

normal loading even at modest loads when the contact

has small radii and high curvature. This plastic

deformation is proportional to the maximum load

reached for the cones studied here.

Appendix

From Hertz theory:

a ¼ 3 1� mð ÞRPN

4G

� 	1=3

where a is the contact area radius, R is the equivalent

radius, PN is the normal load, v is Poisson’s ratio, G is the

shear modulus.

From Greenwood et al. [13], the roughness parameter a
can be calculated from the equation:

a ¼ rR
a2

¼ 2r
2RG2

9 1� mð Þ2P2
N

 !1=3

where r is the combined roughness of the two surfaces in

contact.

Yimsiri and Soga [30] proposed an equation to relate a
with the ratio of contact area radius of rough surfaces a* to

the Hertzian contact area as in the equation below:

a�

a
¼ �2:8

aþ 2
þ 2:4

Substituting a and a equations in the proposed equation:

a� ¼ �2:8

2r 2RG2

9 1�mð Þ2P2
N

� 	1=3
þ2

þ 2:4

0
BBB@

1
CCCA

:
3 1� mð ÞRPN

4G

� 	1=3

d ¼ a�2

R
¼ 1

R

�2:8

2r 2RG2

9 1�mð Þ2P2
N

� 	1=3
þ2

þ 2:4

0
BBB@

1
CCCA

2

:
3 1� mð ÞRPN

4G

� 	2=3

Let M ¼ G2

1�mð Þ2 ¼ E�2; where E� is the equivalent elastic

modulus with 1/E* = (1 - m1
2)/E1 ? (1 - m2

2)/E2

d ¼ 1

R

�2:8

2r 2MR
9P2

N

h i1=3
þ2

þ 2:4

0
B@

1
CA

2

:
9R2P2

N

16M

� 	1=3

We then differentiate d with respect to PN :

To start differentiation: let H ¼ 2MR
9

� �1=3

bFig. 14 Stages of cyclic loading/unloading in Test FC5 a First load/

unload stage to 20 N normal load compared to the second stage

loading to the same normal load with three different contact models,

b Second stage load/unload to 20 and 40 N, c Third stage load/unload

to 20, 40 and 80 N, d Fourth stage load/unload to 20, 40, 80 and

150 N, e The 5th and final stage of test FC5 showing multiple cone tip

failure displacement-load relationship
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d ¼ �2:8

2rHP�2=3
N þ 2

þ 2:4

 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

2

A

:
P
2=3
N

2H|{z}
B

A0 ¼ 2
�2:8

2rHP�2=3
N þ 2

þ 2:4

 !

:
�2:8 � 4

3

� �
rHP�5=3

N

ð2rHP�2=3
N þ 2Þ2

 !

A0 ¼ 1568rHP�5=3
N

75:ð2rHP�2=3
N þ 2Þ3

� 448rHP�5=3
N

25:ð2rHP�2=3
N þ 2Þ2

B ¼ P
2=3
N

2H
;B0 ¼ P

�1=3
N

3H

Now: dd ¼ AB0 þ A0B

dd
dPN

¼ �2:8

2rHP�2=3
N þ 2

þ 2:4

 !2

:
P
�1=3
N

3H

þ P
2=3
N

2H

1568rHP�5=3
N

75:ð2rHP�2=3
N þ 2Þ3

� 448rHP�5=3
N

25:ð2rHP�2=3
N þ 2Þ2

 !

The normal stiffness is therefore:

dPN

dd
¼ �2:8

2rHP�2=3
N þ 2

þ 2:4

 !2

:
P
�1=3
N

3H

2
4

þ P
2=3
N

2H

1568rHP�5=3
N

75:ð2rHP�2=3
N þ 2Þ3

 

� 448rHP�5=3
N

25:ð2rHP�2=3
N þ 2Þ2

!#�1
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