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Abstract 

Thermochronometric data can record the thermal history of rocks as they cool from high 
temperatures at depth to lower temperatures at the surface. This provides a unique perspective 
on the tectonic processes that form topography and the erosional processes that destroy it. 
However, quantitative interpretation of such data is challenging because multiple models can do 
an equally good job at reproducing the data. In this article, we describe how inverse modeling 
can be used to improve quantitative interpretations of noble gas thermochronometric data on a 
variety of scales ranging from mountain belts to individual mineral grains.  

Introduction 

Recent advances in our ability to infer the timings and rates of km-scale topographic changes 
using noble gas thermochronology have improved our understanding of geomorphic and 
tectonic processes. These datasets can quantify cooling associated with erosion in the geologic 
past, but require the use of models to help with the interpretation. Forward numerical models of 
how landscapes erode and rocks exhume have been used to understand the significance of 
thermochronometric data. In this sense, a set of parameters describing landscape evolution and 
tectonics are used to predict thermochronometric data. The focus of this article, in contrast, is to 
review applications of inverse models, which can be applied to noble gas thermochronometric 
data to determine thermal and exhumation histories. The goal is to highlight how these methods 
have been used to provide insight, and also some of their limitations.  

Thermochronology methods are sensitive to the thermal histories of rocks over time intervals 
ranging from thousands of years to hundreds of millions of years, and are therefore useful for 
measuring rates of exhumation, which is the motion of rocks relative to Earth’s surface. The 
well-known decay rates of radioactive nuclides, along with the temperature-dependent diffusion 
of daughter products, provide the basis of radiogenic nuclide thermochronology (Gautheron and 
Zeitler, this issue). For example, at relatively high temperatures (~400-300 ºC), radiogenic 40Ar 
produced by the decay of 40K begins to be retained in micas. 40Ar is retained in a range of 
crystallographic shapes and sizes (or sub-grain domains) that effectively have different 
temperature sensitivities, thereby constraining a continuous thermal history between 400 and 
300 °C (Harrison and Lovera, 2014). At lower temperatures (~70 ºC), radiogenic 4He produced 
along the U and Th decay series begins to be retained in apatite crystals. Since the 



temperatures a rock experiences increases with depth, the temperature and time constraints 
provided by thermochronologic data can be converted to an exhumation rate history.  

In order to resolve exhumation rate histories accurately, additional information is required. For 
example, multiple samples recovered from near to each other but from different elevations can, 
under the assumption of a relatively constant thermal structure of the crust, provide constraints 
on different durations of exhumation from the same depth with respect to sealevel (Wagner, 
Miller and Jager, 1979). This can be visualized by plotting an age-elevation relationship, with the 
slope of the line providing an estimate of the past exhumation rate (Figure 1). Alternatively, 
multiple ages from the same rock sample can be obtained using different thermochronometric 
systems (e.g. different mineral or decay schemes) sensitive to different temperatures, thereby 
constraining exhumation rates from different depths.  

Here we highlight the importance and limitations of different inverse methods designed to 
extract information from thermochronometric data. We begin by describing methods that have 
been used to extract time-temperature information from thermochronometric data with a focus 
on Thermal-History Models. In many cases, however, exhumation rates are required for 
geological interpretations and therefore, we highlight work that has attempted to infer 
exhumation rates across mountain belts from thermochronometric data using Thermokinematic 
Models, and some of the associated complications with these approaches. In the last section, 
we take a closer look at inverse modeling developments applied to data treatment across single 
crystals. In particular, we highlight how combining laser ablation data with diffusion models of 
helium from individual crystals of apatite represents an important advance.  

Thermal-History Models 

A thermochronometric date doesn’t necessarily reflect a single event; instead, it reflects the 
integrated thermal history experienced by the sample. The goal of thermal-history modeling is to 
recover time-temperature information from dates and other thermochronometry data. In many 
cases, recovering time-temperature information from thermochronometric data is a highly non-
linear problem, in that a small change in model parameters can lead to a large change in model 
predictions. For example, consider a case where a rock is exhumed to the surface rapidly at 100 
Ma and is then buried until it is re-exhumed very recently. If the model parameter describing 
temperature during this burial phase is increased from 0 ºC to 30 ºC there will be no significant 
change in the predicted apatite (U-Th)/He age. This is because the apatite (U-Th)/He system is 
not sensitive to these very low temperatures. However, as the temperature during burial 
continues to increase there will, at some stage, be rapid changes in model predicted apatite (U-
Th)/He ages due to the non-linear dependence of He diffusivity on temperature. It is this non-
linear temperature sensitivity that makes thermochronometry possible, but this also leads to 
challenges in data interpretation.  

To extract information from this non-linear problem, non-linear inverse methods are used. 
Typically these are based on generation of many random time-temperature paths. Non-linear 
methods often require solving the forward model many, many times, which can be very 
expensive computationally. In contrast, linear inverse methods are based on computationally 



efficient matrix inversions, but often require making limiting simplifications - we will return to 
these types of methods later. For non-linear methods, random time-temperature paths can be 
used in a range of mathematical models to predict a range of data, such as fission track ages 
and length distributions (Ketcham et al. 2007), or noble gas-based thermochronometric ages 
and diffusion data. The models have the ability to characterize the changing efficiency of noble 
gas diffusion as crystal defects, and in particular radiation damage, accrue and anneal in the 
lattice structure of minerals (Flowers et al. 2009; Gautheron et al., 2009). The models can also 
account for samples comprising a range of crystallographic shapes and sizes (Harrison and 
Lovera, 2014; McDannell and Flowers, this issue). In order to describe a time-temperature path, 
some sort of parameterization is required, and for this discussion we will use a very simple 
parameterization in which a series of time-temperature points are linked by straight lines. The 
locations of the time-temperature points are our model parameters. These parameters are said 
to occupy the “parameter space”; we aim to explore this space, but must avoid getting lost in the 
process.  

Thousands of candidate time-temperature paths are typically generated to find the best 
parameters (time-temperature points) describing time-temperature paths that predict the 
thermochronometric data. If paths are generated purely randomly, there is a good chance that 
the inversion algorithm will spend a large amount of time exploring time-temperature paths that 
do a poor job of predicting the observed thermochronometric data. One technique commonly 
used to speed up the search process is to use some form of prior knowledge, such as 
independent geologic constraints. For example, the formation age of the rock can be used as an 
indication of when to start the time-temperature paths in geological time, such that parameters 
older than this do not need to be tested. Another example is to force paths through a surface 
temperature condition at a time when there is a geologically constrained unconformity, meaning 
that high temperatures don’t need to be tested during this time period.  

A second technique used is to guide the search based on what has previously been successful. 
If a time-temperature path does a very good job at reproducing the data, then a new path can 
be generated that is very similar to this promising path. Part of the parameter space that 
produces a small misfit between the observed and predicted data is referred to as a minimum 
and mapping out these minima is a goal of inversions. However, if all the paths that are 
generated are too similar, the algorithm may become trapped in a local minimum. It is therefore 
important that a search-based algorithm has the ability to explore parameter space to find a 
global minimum, without getting trapped in a local minimum. These techniques–random versus 
guided searches of parameter space–have advantages and disadvantages, however both 
approaches have been shown to provide similar results.  

The two most commonly used pieces of software designed to extract thermal history information 
from single samples using these two different approaches are HeFTy (Ketcham, 2005) and 
QTQt (Gallagher, 2012). HeFTy uses a purely random path generation procedure that can be 
guided by user-defined constraint boxes. This means that a time-temperature path is generated 
that must pass through these areas of parameter space. The ability of the path to predict the 
thermochronometric data is defined by asking whether it passes a statistical hypothesis using a 
goodness-of-fit test based on a “p-value”. The purely random model has the benefit that it 



explores a range of model parameters. QTQt uses a reversible jump Markov Chain Monte Carlo 
algorithm to generate paths that are similar to the best models. By exploring parameter space 
around promising models, the algorithm can converge to a solution more quickly. In addition, 
QTQt’s algorithm provides a means to choose how many time-temperature points are required 
based on the quality of the data. 

As mentioned earlier, in order to gain more robust time-temperature information, additional 
thermochronometric data are required, either from different systems or different elevations. 
QTQt has the capability to model samples from different elevations within a vertical transect. In 
this case a thermal model is required to link the data. The thermal model employed by QTQt is a 
simple geothermal gradient that does not account for heat transport, but does provide the link 
between samples. In Figure 2, we highlight how incorporating additional data helps constrain 
different, but overlapping, portions of the same thermal history. In some cases, however, a more 
sophisticated thermal model is used that accounts for the effects of topography on the thermal 
structure of the crust, or the physics of heat flow. In the next section we describe some of the 
recent developments in approaches to using thermochronometric data to learn about 
geodynamic processes such as exhumation rates.  

Geodynamics from Thermokinematic Models 

Thermokinematic models provide a framework to use thermochronometric data not just to 
extract thermal histories but to directly constrain geodynamics by linking thermal histories to 
physical processes. Thermokinematic models used to interpret thermochronometry data have 
evolved, both as the questions asked of the data have evolved and as weaknesses in existing 
models have been identified. For example, the potential problem of topography leading to 
incorrect interpretations of age-elevation relationships (e.g., Manktlelow and Grasemann,1994) 
has been embraced, and thermochronometry is now used to measure evolving topography 
(e.g., House et al. 1998). Today, thermokinematic models solve the heat transfer equation 
based on user-defined kinematics and account for complex initial conditions, transient advection 
of heat, fluid flow and tectonic and geomorphic processes (Braun et al. 2012). In this way, a 
specific rock in a model can be tracked through time along its user-defined kinematic path to the 
surface. The temperature experienced along that path is recorded, and the resulting time-
temperature path can be used to predict thermochronometric data. These thermokinematic 
models can be coupled to a non-linear inversion algorithm to find a best set of model 
parameters. Unlike in thermal-history models, where the model parameters are typically 
temperature-time points, model parameters in thermokinematic models may define the slip rate 
on a fault, the timings of topographic change or the thermal properties of rocks. The finite 
element code Pecube (Braun et al. 2012) is the most commonly used thermokinematic model. It 
uses state-of-the-art age models to predict thermochronometric data and guide a non-linear 
algorithm.  

A compelling example of thermokinematic modelling using Pecube comes from Michael et al. 
(2018), who investigated the impact of Pleistocene glaciation on exhumation rates across the 
Olympic Mountains (Washington State, USA). Here exhumation is driven by accretionary 
processes as the Juan de Fuca plate subducts beneath the North American plate, resulting in 
predictable kinematics that can be approximated with an elliptical-shaped spatial pattern of 
exhumation rates that decrease from the center of the ellipse outwards. This ellipse is designed 



to approximate the spatial patterns of crustal accretion and rock uplift within a critically tapered 
orogenic wedge (Brandon et al., 1998). In this scenario, exhumation rates would increase 
towards the center of the ellipse. This pattern can be incorporated into a 3D thermo-kinematic 
model (Pecube: Braun et al. 2012) and used to predict the observed apatite (U-Th)/He and 
zircon (U-Th)/He data from the Olympic Mountains. By finding predicted data that match 
observed data, the location and size of the ellipse and the gradient in exhumation rates within 
the ellipse can be determined. In addition, temporal changes in exhumation rate can be 
parameterized and resolved. Michael et al. (2018) found that the data can be explained by an 
ellipse-shaped exhumation pattern which increases from ~0.25 km/Ma at the edge of the ellipse 
to 0.9 km/Ma at its center. In addition, they showed that Pliocene-Pleistocene alpine glaciations 
in the Olympic Mountains likely led to a 50-150% increase in exhumation rates in the past 2-3 
Ma. This study highlights that if the underlying kinematics of exhumation can be inferred and 
parameterized, the parameters defining the ellipse and changes in rates through time can be 
explored. In some cases, however, this is not possible because the underlying kinematics of 
exhumation cannot be parameterized with a simple elliptical geometry. This may be because 
exhumation varies over a large area, it may be overly complex and computationally expensive, 
or the underlying spatial pattern of exhumation is unknown.       

When the underlying exhumation function cannot be parameterized with less than about 20 
model parameters, linear inverse methods are often required (Fox et al., 2014). In this approach 
a simple thermokinematic model is used to estimate the closure isotherm for each age in a 
dataset accounting for transient geotherms, perturbation of isotherms by topography, and 
thermochronometer and cooling-rate dependent closure temperatures (Dodson, 1973). For each 
age in the dataset, the distance to the closure isotherm can be written as the integral of the 
exhumation rate between today and the thermochronometric age. This integral formulation can 
be written as a linear system of equations that can be efficiently rearranged to find the unknown 
exhumation rate parameters. Samples are linked in space so that samples close together share 
the same exhumation rate history, and this linking enables the ages to resolve temporal 
changes in rate. This is because ages are forced to share similar exhumation rate histories with 
different ages constraining overlapping portions of time. One disadvantage of spatially linking 
samples in this way is that spatial and temporal patterns in exhumation rates might be smeared 
out, for example, across faults or other boundaries that have disparate exhumation rate histories 
(Fox et al. 2014; Schildgen et al. 2018)  
 

Thermal-history and thermokinematic models have been used to test all sorts of geodynamic 
and geomorphic hypotheses, but measuring small amounts of recent erosion remains a 
challenge. In turn, key hypotheses, such as whether Pliocene-Pleistocene alpine glaciation can 
lead to enhanced erosion rates (e.g., Herman et al. 2013; Willenbring and Jerolmack, 2016; 
Michael et al., 2018, Schildgen et al. 2018), remain debated. In the next section, we describe 
4He/3He thermochronometry in apatite, how it allows us to constrain this crucial shallow 
exhumation history, and how recent numerical modeling developments allow these grain-scale 
datasets help provide better resolved, quantitative thermal history information.  

Grain-scale Inverse Models 



Inverse models can also use grain-scale data to improve interpretation of themrochronometric 
data. To highlight a recent example where this has been done, we focus on two aspects of 
inverse modeling applied to 4He/3He datasets. In 4He/3He thermochronometry, a crystal is 
sequentially heated and the gas released during each heating step is measured isotopically 
using a noble gas mass spectrometer (Shuster and Farley, 2004). Because the gas is extracted 
by diffusion, during the first degassing steps gas is released primarily from the outermost parts 
of the apatite crystal. The next heating step releases gas from slightly deeper parts of the crystal 
and so on, until all the gas is released. To improve the quality of the data and obtain sample-
specific diffusion data, two isotopes of helium are measured: 4He, the naturally-occurring 
daughter product of radioactive decay, and 3He, which is produced via nuclear reactions caused 
by proton irradiation of the sample prior to analysis. The 4He signal contains information about 
the thermal history of the sample that must be extracted using inverse methods, but also the 
spatial distribution of the parent isotopes. The 3He signal is spatially uniform and contains 
information about diffusion kinetics.  

4He/3He data can be visualized on a ratio evolution diagram, where the cumulative fraction of 
3He released (SF3He) is plotted on the x-axis, and the 4He/3He ratio of each step normalized by 
the bulk 4He/3He ratio (Rstep/Rbulk) is plotted on the y-axis. We can predict what 4He/3He values 
are permissible in a ratio evolution diagram based on what we know about the spatial 
distribution of 4He in an ‘ideal’ apatite crystal (i.e., close to spherical and with an uniform 
composition) for any given thermal history. However, we sometimes observe values that are 
outside of this permissible range (e.g., Figure 4a). The cause of unexpected results may be due 
to several factors: the analyzed crystals may be poorly approximated as spheres; the spatial 
distribution of 4He may be strongly influenced by variations in parent isotope concentration 
within the crystal (e.g. chemical zoning); intra-crystal radiation damage may lead to spatial 
variations in the diffusion kinetics within the analyzed crystal (Ault and Flowers, 2012). This last 
factor would lead to zones throughout the crystal, that are more retentive of helium due to 
radiation damage, holding on to their helium until the final degassing steps.  

Fox et al. (2014) explored different sources of unexpected diffusion behaviour using a very 
unusual result from the Appalachian Mountains. In this geologic setting, the exhumation rates 
have been slow for the last 200 million years, allowing radiation damage to accumulate. The 
importance of chemical zonation on the (U-Th)/He system had been previously established for 
these samples by looking at the effect of abrading the crystals (McKeon et al. 2014). Abrading 
effectively removed the outer portion of the crystal that had a different uranium and thorium 
concentration (or effective uranium, [eU] = [U]+0.24[Th], which accounts for the relative alpha 
particle productivity of U and Th; Gastil et al., 1967; Flowers et al., 2009) to the central part of 
the crystal. The ages obtained from these abraded crystals were used to extract a thermal 
history, whereas the ages from the un-abraded crystals remained unexplainable. By using 
4He/3He thermochronometry, the 4He being released from different parts of the crystal can be 
observed directly without the need for abrasion (Fox et al. 2014). During the first steps, the ratio 
of 4He to 3He is much lower than the bulk ratio (Figure 4). These low values persist until almost 
half the total amount of 3He is released telling us that almost half of the crystal had released its 
gas. Then the ratio of 4He to 3He dramatically increases to almost three times the bulk ratio. 



This indicates that almost all of the 4He is coming from a relatively small, central portion of the 
crystal.  

The next step was to quantify the spatial distribution of the 4He-producing uranium and thorium 
using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). In this method, 
a laser spot with a diameter of about 20 microns is fired at a polished section of the apatite 
crystal, which ablates small volumes of the crystal into a mass spectrometer (Farley et al. 2011). 
This highlighted that there was indeed a zone within the central part of the crystal with a higher 
[eU]. Therefore, a 3D model of the crystal was built accounting for spatial variability in 4He 
production and intra-crystal radiation damage. Fox et al. (2014) found that both of these factors 
are required to explain the observed 4He/3He data (Figure 4). These data have prompted the 
development of efficient 3D crystal models and corresponding inverse methods, which are now 
suitable to tackle other geological problems and help resolve recent cooling of a sample to low-
temperatures. 

In a related study, Fox et al. (2017) found that even with the LA-ICPMS maps and 3D crystal 
models, 4He/3He datasets of apatites from Yosemite Valley were impossible to explain using 
thermal history modeling that accounted for these complexities. This is because the crystals 
were releasing too much 4He during the initial degassing steps suggesting that zonation effects 
were important. It was only when the resolution of the elemental maps used to quantify zonation 
were improved, that thermal-history models were able to predict the data. It was possible to 
improve the resolution of these elemental maps using linear inverse methods by exploiting the 
fact that laser ablation spots overlap and thus the same spatial location on a crystal section will 
be sampled by multiple spots. In this scenario, multiple spots that measure the same part of the 
crystal may have different concentration values, smoothing zonation information (Ganguly et al., 
1988). Deconvolving this information and finding an elemental map that has single values at 
each location and still gives the average values measured by the spots, increases the resolution 
of the map. In fact, the resolution depends on the degree to which the spots overlap, not their 
size (Figure 4B). Here, overlapping spots with diameters of 20 microns have been used to 
resolve concentrations over a narrow zone only ~5 microns wide. In turn, this inverse method is 
able to resolve finer-scale differences in parent isotope concentrations than is possible by 
simply interpolating between the measured values at the centers of the spots (e.g., Farley et al., 
2011) and does not require the use of analytical instruments that are capable of operating with 
smaller spot sizes. Some degree of smoothing and blurring does occur, as shown by the 
comparison with the true zonation imposed to produce the synthetic data (Figure 4B), but this 
can be further minimized by collecting more overlapping spots. This is an example of where 
inverse methods have been applied to extract more information from a single crystal that can 
then be incorporated into thermal-history and thermokinematic models to infer geodynmic 
processes across entire mountain ranges.   

Summary  

Analytical and numerical modeling methods in noble gas thermochronology have complemented 
one another, enabling geoscientists to tackle geological problems from fresh perspectives. On 
the one hand, new analytical methods have been developed, and numerical methods have had 



to catch up to interpret these new datasets. On the other hand, numerical methods have opened 
up possibilities that have led to new types of datasets being developed. These exciting new 
developments will continue to push our understanding of Earth’s dynamic surface. 
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Figure Captions 

Figure 1. A) Cartoon showing the thermal structure below topography and the paths that rocks 
take from the depth. Topography perturbs the thermal structure of the crust, and the samples 
from the deepest parts of the valley may be sensitive to the evolution of topography. In this 
cartoon, the exhumation is controlled by surface processes and spatially variable rock uplift 
rates reflecting regional tilting and normal faulting on the left of the scene. B) The cooling 
histories of two samples from close together, but different elevations, are almost parallel (black 
curves). As a first order approximation, apatite fission track (AFT) and and apatite (U-Th)/He 
(AHe) ages record the time since a rock cooled below ~110oC and 70oC respectively. Because 
elevation differences can be related to temperature differences, different samples constrain 
cooling over slightly different time intervals. C) The simplest model used to link ages in terms of 
exhumation rate is a linear age-elevation relationship (AER). This model assumes that the 
closure isotherms are flat and stationary, and the model parameters are exhumation rate and 
closure depth that correspond, respectively, to the slope of the AER and the intercept. This 
model requires that samples are linked in space, and choices about how to link samples 
influence the inferred exhumation rate(s). In reality, the relationship between age and elevation 
may be non-linear due to the advection of heat, perturbation of isotherms by topography, 
topographic change, changes in exhumation rate, and many other factors.  

Figure 2. Demonstration of how incorporating more data improves inverse model resolution. In 
A) and B), two ages are interpreted with a simple model that randomly generates time-
temperature paths that fit the data, as shown by the red lines. All the paths go through a point 
constrained by the closure temperature and age. However, the red lines are not necessarily 
similar to the true cooling history shown by the black line. Here we imagine that panel A) is an 
apatite (U-Th)/He (AHe) age and B) is an apatite fission track (AFT) age. Combining the two 
ages requires making the assumption that the analyzed crystals share the same thermal history, 
and leads to increased resolution (C). Incorporating a low elevation sample constrains part of 
the same history, but this sample has traveled a shorter distance from the closure depth and the 
age is consequently younger (D). If a thermal model, even a simple thermal model of a uniform 
geothermal gradient, is used to link the samples, the younger age from the low-elevation sample 
helps constrain the recent cooling of the higher-elevation sample (E). In particular, paths are 



forced to cool earlier so that the lower-elevation sample cools below its closure temperature. In 
order to link more samples and further improve resolution, a thermokinematic model is required 
that accounts for more complexities (F).  

Figure 3. A) Topographic map of the Olympic Peninsula (Washington State, USA) highlighting 
the major river valleys (Elwha, Hoh, Queets, Quinault) that drain the mountains. The extent of 
the Cordilleran Ice Sheet and the moraines of major glaciers are shown in pink and the 
Hurricane Ridge fault is shown as the black dashed line. The changing geomorphic processes 
between glacial and interglacial periods led to temporal changes in exhumation rate, but the 
overall tectonics associated with accretion are assumed to be uniform. B) The exhumation 
pattern used for the study can be parameterized by changing the shape of the ellipse or the 
magnitude of the exhumation rate in the center of the ellipse. This approximates accretionary 
processes and the exhumation paths of rocks within the accretionary wedge (after Michael et 
al., 2018). 
 
Figure 4. A) In order to explain complex apatite 4He/3He data from a sample in the Appalachian 
Mountains, a model was developed that accounted for measured effective uranium 
concentrations by LA-ICPMS (Fox et al. 2014). It was only by accounting for spatial variations in 
radiation damage (Flowers et al. 2009) and 4He that the overall shape of the 4He/3He data could 
be predicted. This model used the time-temperature path recovered by McKeon et al. (2014). B) 
Example LA-ICPMS map of effective uranium (eU), constructed using a linear inverse method 
(Fox et al. 2017). The synthetic data were made using a zoned model with the ‘true’ widths of 
the zones shown on the left. The data are plotted as very small dots and are coloured based on 
the measured values. The measured areas are shown by the large overlapping spots. For 
example, the large white spot is the average of multiple zones, but the large black spot is 
completely within the green zone. The overlapping laser ablation spots povide redundant 
information that can be exploited to infer sub-spot size spatial resolution. Some smearing is 
expected but this can be reduced by collecting more data (Fox et al. 2017). This improved 
resolution is required to interpret some apatite 4He/3He data.  
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