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Epigenome-wide association study of peripheral immune cell
populations in Parkinson’s disease
Maren Stolp Andersen1,2, Ingvild Sørum Leikfoss1, Ina Skaara Brorson 1, Chiara Cappelletti1, Conceicao Bettencourt 3,
Mathias Toft1,2 and Lasse Pihlstrøm 1✉

Understanding the contribution of immune mechanisms to Parkinson’s disease pathogenesis is an important challenge, potentially
of major therapeutic implications. To further elucidate the involvement of peripheral immune cells, we studied epigenome-wide
DNA methylation in isolated populations of CD14+ monocytes, CD19+ B cells, CD4+ T cells, and CD8+ T cells from Parkinson’s
disease patients and healthy control participants. We included 25 patients with a maximum five years of disease duration and 25
controls, and isolated four immune cell populations from each fresh blood sample. Epigenome-wide DNA methylation profiles were
generated from 186 samples using the Illumina MethylationEpic array and association with disease status was tested using linear
regression models. We identified six differentially methylated CpGs in CD14+ monocytes and one in CD8+ T cells. Four
differentially methylated regions were identified in monocytes, including a region upstream of RAB32, a gene that has been linked
to LRRK2. Methylation upstream of RAB32 correlated negatively with mRNA expression, and RAB32 expression was upregulated in
Parkinson’s disease both in our samples and in summary statistics from a previous study. Our epigenome-wide association study of
early Parkinson’s disease provides evidence for methylation changes across different peripheral immune cell types, highlighting
monocytes and the RAB32 locus. The findings were predominantly cell-type-specific, demonstrating the value of isolating purified
cell populations for genomic studies.
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INTRODUCTION
Parkinson’s disease (PD) is a progressive neurodegenerative
disorder, for which there is currently no effective disease-
modifying therapy. Over the last decades, a growing body of
evidence has demonstrated the important role of the immune
system in PD pathogenesis, yet the specific mechanisms involved
and the interrelations between microglial and peripheral immune
processes are incompletely understood1,2. The prospect of
immunomodulation is currently one of the most promising
strategies for disease modification in PD3, and an improved
understanding of the contribution of different classes of
leukocytes may be pivotal for further progress.
Highlighting the relevance of the adaptive immune system,

T cells have been shown to infiltrate the substantia nigra4,5 and
recognize peptides of the neuropathological hallmark protein α-
synuclein presented by human leukocyte antigen (HLA) class II
proteins6. Levels of α-synuclein autoantibodies have also been
studied with mixed results7, and genome-wide association studies
(GWAS) have consistently reported a significant PD risk signal in
the HLA region on chromosome 68,9. However, studies integrating
genetic association statistics with cell-specific data have primarily
linked genetic PD risk to innate immunity and the myeloid
lineage10–13, a finding that is also mirrored in Alzheimer’s disease
(AD)14. In line with these observations, a recent transcriptomic
study of CD14+ monocytes reported widespread alterations in
PD15.
Epigenetics influence complex disease by mechanisms of gene

regulation that are partially dynamic over time, cell-type-specific,
and shaped by both genetic and environmental factors16. A
growing body of evidence implicates epigenetic mechanisms in
neurodegeneration and PD pathogenesis17–19. DNA methylation

at CpG dinucleotides is the most studied epigenetic modification
in the context of complex disease. Hypothesis-free epigenome-
wide association studies (EWAS) have been performed in a small
series of post-mortem human brain tissue comparing PD to
control brains20–22 and a larger study of bulk cortical tissue from
our group investigated Lewy body pathology as outcome,
including donors with both PD and dementia with Lewy bodies23.
Two PD EWAS have studied isolated cortical neurons using either
flow cytometry24 or magnetic-activated cell separation25. A
number of PD studies have investigated differential methylation
in whole blood26–30. Sample sizes of whole blood PD EWAS have
been gradually increasing, and the largest study to date included
more than 2000 participants and reported a hypermethylated CpG
site in PD near SLC7A11, a gene involved in glutamate signaling30.
Methylation analyses in blood may be particularly interesting as a
tool to characterize immune mechanisms in PD, and a recent
EWAS study highlighted immune dysregulation both in PD
generally and specifically in patients with depression29. These
are promising findings, yet the use of whole blood for differential
methylation analyses entails major caveats. Whole-blood EWAS
typically applies an algorithm to adjust for estimated cell-type
composition, but essentially measures the noisy, joint effect of
methylation across all cell types in the sample, limiting both the
power to detect cell-type-specific signals and the interpretation of
positive findings. Furthermore, most studies have included
patients many years from PD diagnosis, when downstream effects
of the disease and its treatment may have a major impact on
methylation.
To further elucidate the contribution of different classes of

immune cells and identify cell-type-specific alterations in gene
regulation, we performed epigenome-wide DNA methylation
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profiling of purified cell populations representing major peripheral
cell types of the innate and adaptive immune system, namely
CD14+ monocytes, CD19+ B cells, CD4+ T helper cells and CD8+

cytotoxic T cells in 25 patients with early PD and 25 healthy
controls. We nominate differentially methylated CpGs and regions,
with monocytes showing the highest number of significant
findings.

RESULTS
Patients were diagnosed based on Movement Disorders Society
criteria31 and had a maximum disease duration of five years from
motor onset at the time of blood draw. Eight out of 25 PD patients
were included at the time of diagnosis and had not used any
medication for PD. Mean disease duration from the time of PD
diagnosis was 1.2 years and mean age at diagnosis was 55.
Controls had no immunological nor neurological disease and no
parkinsonism in first-degree family members. Demographics are
presented in Table 1.

Visualizing overall methylation patterns across cell types
After quality control and filtering (see “Methods” and Supplemen-
tary Fig. 1), the final normalized methylation dataset included
482,470 probes and 186 samples. As expected, a multidimensional
scaling plot demonstrates that the overall methylation pattern
separates the CD14+ monocytes from the three classes of
lymphocytes (Fig. 1). Within the lymphocyte group, CD4+, and
CD8+ T cells cluster closer to each other than to CD19+ B cells.

Power analyses and distribution of P values
Power analyses using pwrEWAS32 indicated that for a study with
25 patients and 25 controls, the difference in methylation level
would need to be 0.1 SD in order for statistical power to be 80% at
a false discovery rate 0.05. This corresponds to a larger effect size
than many differential methylation signals reported in complex
disease EWAS. We therefore expected statistical power to be
marginal, although the use of purified cell populations could limit
the variance and improve power substantially compared to whole-
blood EWAS of similar sample size.
Following association testing in each cell type by linear

regression, including sex, age, and the first surrogate variable as
covariates (see “Methods”), we assessed the distribution of
P values by quantile–quantile plots and P value histograms33

(Supplementary Figs. 2 and 3). Assuming an adequate model and
true association with disease for a subset of probes, we would
expect a test-statistic inflation parameter λ close to 1 and a
uniform distribution of P values with an enrichment in the lower
end representing the true signals. This pattern was seen most
clearly in CD14+ monocytes (λ= 1.03), with a slight over-
abundance of low P values also in CD8+ T cells.
In particular CD4+ T cells showed skewed P value distributions

which could indicate poor modeling of data33. Previous EWAS
studies in both PD25 and Alzheimer’s disease34 have reported
striking sex differences, arguing for sex-stratified analysis of
methylation data rather than merely inclusion of sex as a covariate
in linear regression. We considered our sample size too small to
attempt the identification of specific differentially methylated
CpGs in sex-stratified analyses, yet we performed linear regression
split by sex to evaluate P value distributions. Interestingly, sex-
stratified regression improved the pattern of P value distributions
for both CD8+ T cells and CD19+ B cells, but not for CD14+
monocytes or CD4+ T cells. This may indicate that sex-stratified
analysis is warranted for specific cell types and should be explored
in future larger studies.

Differentially methylated CpGs
Association testing in linear regression models including sex, age,
and the first surrogate variable as covariates (see “Methods”)
identified a total of seven signals passing a Bonferroni-corrected

Table 1. Sample demographics.

PD patients,
N= 25

Healthy controls,
N= 25

P value

Sex
Female:male

12:13 15:10 0.57

Age
Mean (SD)

57 (10) 58 (12) 1

Body mass index
Mean (SD)

25.2 (3.5) 24.3 (2.4) 0.30

Regular smoker
Never:ever

24:1 23:2 1

Age at diagnosis
Mean (SD)

55 (11) – –

PD duration from
diagnosis
Mean (SD)

1.2 (1.1) – –

MDS-UPDRS III
Median (interquartile
range)

11 (9–16) – –

Hoehn & Yahr stage
Median (interquartile
range)

2 (1–2) – –

Levodopa-equivalent
daily dose
Median (Interquartile
range)

300 (0–500) – –

PD Parkinson’s disease, SD standard deviation, MDS-UPDRS Movement
Disorders Society Unified Parkinson’s Disease Rating Scale III.
The table summarizes the demographics of the study participants. P values
for significant differences between the PD and control group were
obtained by chi-square test for sex and smoking and T test for age and
body mass index.

Fig. 1 Multidimensional scaling plot. The plot visualizes the overall
similarities in methylation profiles across CD14+ monocytes, CD19+

B cells, CD4+ T cells and CD8+ T cells. It was generated based on the
100,000 most variable probes using the plotting function imple-
mented in the minfi package.
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significance threshold of P < 2.25 × 10-8 (Table 2), including six
signals from four different genomic loci in CD14+ monocytes and
one signal in CD8+ T cells. No significant signals were detected in
CD4+ T cells or CD19+ B cells. Manhattan plots for the cell types
with significant findings are shown in Fig. 2.
To further assess whether these association signals were cell-

type-specific or shared, we extracted summary statistics from the
seven significant probes for all cell types (Supplementary Table 1).
A nominal association (P < 0.05) was seen in at least one other cell
type for four out of the seven probes, but no probe showed
association at P < 0.05 across all cell types. Associations in

additional cell types were generally much weaker than the top
cell type, and only one passed a Bonferroni-corrected threshold
for a total of 21 candidate tests (cg11473614, genome-wide
significant in monocytes, P= 0.0021 in CD19+ B cells). Figure 3
illustrates the methylation patterns of a highly monocyte-specific
probe versus a probe showing a similar trend across cell types.
Violin plots of uncorrected beta values for the remaining
significant probes are shown in Supplementary Fig. 4. We noted
an unusual distribution of methylation levels for two of the
probes, cg18523915 and cg14704780, showing particularly high
variability in healthy controls. This might indicate that some

Table 2. Differentially methylated probes.

Cell type Probe Chr Position Annotated or closest* gene Context Coefficient (SE) P value

CD14 cg13640690 chr9 92277007 LINC03062 Intronic −0.68 (0.10) 2.33E-11

CD14 cg12134806 chr9 92276903 LINC03062 Intronic −0.68 (0.10) 1.86E-10

CD14 cg11473614 chr10 118381374 PNLIPRP2 Intronic 0.44 (0.07) 3.61E-10

CD14 cg07047360 chr9 92277266 LINC03062 Intronic −1.03 (0.16) 2.00E-09

CD14 cg18523915 chr2 85728591 MAT2A* Enhancer 37.5 kb upstream −1.98 (0.32) 2.19E-09

CD14 cg14704780 chr6 32305106 TSBP1 Intronic 0.72 (0.12) 5.83E-09

CD8 cg03887787 chr11 65647532 CTSW Intronic −1.03 (0.17) 4.95E-09

Chr chromosome, SE standard error.
The table shows probes passing a Bonferroni-corrected significance threshold in linear regression models contrasting Parkinson’s disease patients and controls
in each cell type separately. RefSeq gene names are used, alternative names include UNQ6494 for LINC03062 and C6orf10 for TSBP1.
*The probe cg18523915 is not annotated to any gene, the closest gene being MAT2A.

Fig. 2 Manhattan plots. The figure shows Manhattan plots from linear regression for CD14+ monocytes and CD8+ T cells. Loci with one or
more significant probes are annotated with the name of the gene closest to the top associated probe.
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unknown external factor is having a major impact on methylation
at these CpGs, potentially confounding our association results.
Cg18523915 has been reported to be significantly associated with
outcome of COVID-19 in two recent EWAS studies of whole
blood35 and peripheral blood mononuclear cells (PBMCs)36, yet
blood sampling in our study was performed prior to the COVID-19
pandemic.
We compared our results to the two largest whole-blood EWAS

published in refs. 30 and Henderson-Smith et al. (Supplementary
Table 2). The two significant probes reported by Vallerga et al.
showed no evidence of association in any cell type in our data.
Conversely, we looked up the seven significant probes from the
present study in whole-blood summary statistics and found that

three are present in the Vallerga et al. data, yet none showed
evidence of association with PD in whole-blood data. Out of the
seven probes reported as significantly associated with PD in whole
blood by Henderson-Smith et al., the two top probes showed
associations at P < 0.05 with one cell type each (cg06889422 in
CD4+ T cells, P= 0.042, and cg16133681 in CD14+ monocytes,
P value= 0.042), both with direction of effect consistent with the
whole-blood study (Supplementary Table 2). None of the
previously reported probes showed association in any of the four
immune cell types when adjusting for 36 independent lookups.
We further compared the genomic location of the seven

significant probes to the top signals reported in the largest PD
GWAS to date9. One CpG probe, cg14704780 annotated to TSBP1,
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Fig. 3 Violin plots of cg12134806 and cg11473614 methylation. The figure shows unadjusted methylation beta values across groups for
probes cg12134806 and cg11473614, illustrating the contrast between a cell-type-specific and shared pattern of differential methylation.
Cg12134806 shows minimal variation for all other cell types except CD14+ monocytes. Cg11473614 reached genome-wide significance in
CD14+ monocytes, yet with similar directions of effect for CD19+ B cells (P= 0.0021) and CD18+ T cells (P= 0.020). White bars represent group
means. Single asterisk (*) denotes P value < 0.05 and double asterisks (**) denotes P value < 2.25 × 10–8 in linear regression analysis, including
sex, age, and one surrogate variable as covariates.
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is located less than 300 kb from the top GWAS SNP of the HLA
locus, rs112485576. No other CpG probe fell within a 1-Mb
window of any GWAS top SNP. We assessed methylation
quantitative trait loci (mQTL) associated with cg14704780,
cg20636526 or rs112485576 in whole blood using the ARIES
mQTL database37, but found no data to support a significant
association between the GWAS SNP and differential methylation
at these particular CpGs.

Differentially methylated regions and gene ontology
enrichment in CD14+ monocytes
P value histograms and individual CpG association results clearly
suggested that our experiment had the best potential to detect
true signals in CD14+ monocytes, and we prioritized this cell type
for analysis of differentially methylated regions. The DMRcate
package estimates a smoothed test statistic across probes within a
given window and compares this to the expected statistic, using
the Benjamini–Hochberg false discovery rate method for calling
individually associated probes. A more liberal significance thresh-
old for this initial step than the Bonferroni correction used in the
individual CpG association analysis has been recommended38, as
the method requires multiple associated probes in the same
region, which is also more likely to be biologically relevant than
single associated probes. The method identified four differentially
methylated regions at P < 0.05 based on Fisher’s multiple
comparison statistic, all in CD14+ monocytes (Table 3). Among
the significant individual CpGs in monocytes were three
hypomethylated probes located near LINC03062 on chromosome
9 and 1 hypermethylated probe annotated to TSBP1. These were
also represented in the two most significant regions (chr9:
92,276,541–92,277,266 and chr6: 32,305,106–32,305,145) identi-
fied by DMRcate. The next region at chr6:
146,863,357–146,863,680 is located upstream of RAB32 and
includes three hypomethylated probes that did not reach
individual significance at the Bonferroni-corrected threshold.
Gene ontology pathway analysis using gometh (see “Methods”)
did not identify any significantly enriched GO or KEGG pathways,
which was not unexpected given the limited number of significant
probes identified for each cell type.

Comparison with monocyte gene expression and qPCR
analysis of RAB32
A predominance of significant findings in monocytes is in line with
previous research implicating the myeloid lineage in PD. A recent
study investigated monocyte gene expression in 135 PD patients
and 95 controls and identified 300 differentially expressed
genes15. Comparison with our results is not straightforward, as
differential methylation analysis identifies regulatory genomic loci
rather than genes. Mindful of this caveat, we performed a lookup
of the closest gene to each of the differentially methylated probes
and regions in monocytes (ten different genes in total) in the
summary statistics from differential gene expression provided by

Navarro et al. Applying Bonferroni correction for ten independent
tests, RAB32 was the only differentially expressed gene
(P value= 0.0012), upregulated in PD. We also compared the
genes proximal to differentially methylated loci in monocytes to
29 genes previously highlighted in a transcriptome-wide associa-
tion study (TWAS) using gene expression models from peripheral
monocytes but found no overlap with our ten monocyte signals39.
To further assess whether differential methylation near RAB32

was also reflected on the mRNA level in our monocyte samples,
we performed qPCR (see “Methods”). In line with the results from
Navarro et al., we found that RAB32 was upregulated in PD
compared to controls (P value= 0.0020, effect size of disease
status on expression Z score (SD)= 0.93 (0.28)). We further
observed a strong negative correlation between methylation and
RAB32 expression (Pearson’s r2=−0.43, P value= 0.0045) (Fig. 4)
Taken together, these results indicate that PD patients show
hypomethylation upstream of RAB32 combined with increased
RAB32 expression in monocytes.

Exploring the association between differentially methylated
probes and dopaminergic treatment
DNA methylation may be altered by medical treatment, and
previous work has indicated that this may be relevant in PD40.
Aiming to explore the likelihood that observed differences in
methylation may be driven by treatment effects, we assessed the
association between all differentially methylated loci and dopa-
minergic medication as a binary (treatment-naïve versus on PD
medication) variable. No association passed adjustment for
multiple testing, but we observed P value < 0.05 for the probe in
the TSBP1 locus of hypomethylation with dopaminergic treatment
(coefficient = −0.60 (0.20), P value= 0.0062 for association
between cg14704780 and treatment). Interestingly, this indicates
that methylation levels differed more from controls in treatment-
naïve patients than in patients receiving medication, a pattern also
reported previously for SNCA promoter methylation in whole
blood40. We note however, that the level of motor symptoms as
assessed by the Unified Parkinson’s Disease Rating Scale (UPDRS)
III was significantly higher in the patients who had not yet started
PD treatment (Wilcoxon rank sum test P value= 0.02). The
association between 14704780 and dopaminergic treatment was
weakened by including UPDRS III in the model, but not eliminated
(P value= 0.014).

DISCUSSION
There is an urgent need to elucidate the immune mechanisms
that contribute to PD pathogenesis. We performed a hypothesis-

Table 3. Differentially methylated regions in CD14+ monocytes.

Region (b37) N CpGs P value
(Fisher)

Closest gene

chr9: 92,276,541–92,277,266 4 2.14e-10 LINC03062

chr6: 32,305,106–32,305,145 2 1.94e-5 TSBP1

chr6: 146,863,357–146,863,680 3 0.015 RAB32

chr10: 105,428,385–105,428,818 5 0.032 SH3PXD2A

Differentially methylated regions were analyzed using the DMRcate R
package with default parameters. P values correspond to Fisher’s multiple
comparison statistic, as recommended in the DMRcate documentation.
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Fig. 4 Scatterplot of cg05420134 and RAB32 expression. The plot
illustrates the correlation between cg05420134 methylation beta
values and RAB32 mRNA expression assessed by quantitative PCR.
PD patient data points are shown as triangles (red) and control data
points as circles (green). Expression values are calculated as relative
to the mean. The regression line indicates the coefficient (SD)=
− 1.30 (0.43).
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free methylome-wide association study of purified immune cell
populations in early PD, identifying differential methylation across
ten different genomic loci in CD14+ monocytes, and one in CD8+

T cells. Our findings indicate dysregulation of immune cells in PD,
showing cell-type-specific changes that would not be readily
detectable by whole-blood methylation analyses. We included PD
patients with less than five years disease duration from diagnosis,
1.2 years on average, indicating that these methylation changes
are present early in the disease course. Of the four different
immune cell types studied, CD14+ monocytes showed by far the
strongest evidence of differential methylation, both as individually
significant probes and differentially methylated regions identified
by DMRcate. An overrepresentation of low P values at the tail of an
otherwise uniform distribution was seen only in CD14+ mono-
cytes, which might potentially reflect more true disease-associated
methylation changes in this cell type. These observations are in
line with an increasing body of evidence implicating the myeloid
lineage in neurodegeneration generally10,11, as well as in PD
specifically13,15,39.
A differentially methylated region with three individually

significant probes was identified in monocyte data near the long
noncoding RNA LINC03062, alternative name UNQ6494, on
chromosome 9. This transcript has been linked to immune
infiltration in endometrial carcinoma41 and survival in lung
adenocarcinoma42, but potential roles in neuroinflammation are
unknown. The region is located ~50 kb downstream of its closest
coding gene, GADD45G, which has functions related to DNA
damage response and cellular stress signaling43.
We also identified a hypomethylated region in monocytes

upstream of RAB32 and found by qPCR that RAB32 monocyte
expression both correlated negatively with methylation in this
region and was increased in PD patients relative to controls.
Independent evidence supporting a role for this gene was found
in summary statistics from a recently published transcriptomic
study, also indicating increased expression in PD monocytes15.
Interestingly, RAB32 encodes a small Rab GTPase that has been
demonstrated to directly interact with and regulate leucine-rich
repeat kinase 2, LRRK244–46. Coding mutations in LRRK2 cause
autosomal dominant PD47,48 and noncoding common variants in
the same locus are associated with sporadic PD in GWAS9. Several
lines of evidence link the pathogenic mechanisms of LRRK2 to cells
of the myeloid lineage, potentially involving both microglia49,50

and monocytes15,51. Our findings thus provide further support for
RAB32 as implicated in PD pathogenesis through interaction with
LRRK2 in myeloid cells.
Comparing the methylation patterns of significant probes

across all cell types revealed that the differential methylation
was largely cell-type-specific. Furthermore, we observed very
limited overlap between our own findings and results from recent
PD EWAS of whole blood28,30. It is well established that PD
patients have increased levels of granulocytes and decreased
levels of lymphocytes compared to healthy controls52,53, and
although algorithms for cell-type deconvolution are used, there is
always the risk that cell composition may be affecting the results.
Even if the adjustment for cell composition is accurate, the
methylation measured in whole blood will be a mixture reflecting
all cell types, quantitatively dominated by granulocytes. Our
findings indicate that isolation of homogenous cell populations is
essential to identify disease-relevant methylation changes in less
abundant cell types. Fluorescence-activated cell sorting (FACS) is
an alternative to isolation with magnetic beads used here, and we
acknowledge that processing a subset of samples with both
methods would have allowed for further methodological valida-
tion of this step. Of note, RNA sequencing is increasingly being
applied at single-cell resolution, yet this methodology is generally
not yet available for DNA methylation analysis.
Our study has several limitations. Most importantly, there is a

lack of independent replication of the results. The findings must

therefore be interpreted with caution until they can be
corroborated by similar methylation analyses from other cohorts.
In our attempt to find independent support for 11 genes
nominated in monocytes by comparison with summary statistics
from a monocyte differential expression analysis reported in a
recent PD study15, RAB32 was the only gene passing an adjusted
significance threshold. This strengthens our report of hypomethy-
lation upstream of RAB32 yet limits the interpretability of other
signals. It is worth noting however, that simple one-to-one
relationships between methylation and gene expression are not
the rule in analyses incorporating both types of data54.
DNA methylation studies cannot differentiate between disease

causes and downstream effects, the latter being less relevant for
translational research aiming toward novel disease-modifying
therapies. We included patients in an early phase of the disease,
including nearly one-third de novo patients who had not started
medication for PD. Nevertheless, we cannot exclude that
treatment effects or other disease-related effects without causal
relevance may have contributed to the observed methylation
changes. We observed a trend towards association with medica-
tion for probes annotated to TSBP1, which were also located close
to the established PD GWAS signal in the HLA region, but where
treatment seemed to associate with a normalization of methyla-
tion values.
Importantly, a wide range of lifestyle and environmental factors

may differ across groups of PD patients and healthy controls,
potentially influencing DNA methylation. Such exposure-driven
methylation differences may be mediators of PD risk, but could
also be by-products of risk-associated exposures with no causal
role or downstream effects of living with PD. Our study did not
include the rich exposure data that would be required to dissect
these complex relationships. This limitation is a major general
caveat for most current complex disease EWAS, however. As
highlighted in a recent review, improved integration of exposure
variables is highly warranted in future epigenetic studies of PD55.
The included number of participants (25 patients and 25

controls) was modest, although we analyzed a total of 186
methylomes across four cell types. Power analysis indicated that
our design was underpowered for smaller effect sizes, which we
recognize as a major limitation of our study. P value histograms
suggested that the data would have been better modeled in sex-
stratified analysis for CD8+ T cells and CD19+ B cells, yet our study
was too small to identify significant signals using this design.
Power was also limited for pathway analyses, and larger studies
are needed to further characterize methylation changes across the
studied cell types. Furthermore, this study was performed in an
ethnically homogeneous European population. This is a strength
with respect to the marginal statistical power, yet do not know to
what degree disease-associated methylation changes tend to be
population-specific. As with genetic association studies, we
acknowledge that more research in underrepresented populations
is urgently needed.
In conclusion, we performed a methylome-wide association

study of purified CD14+ monocyte, CD19+ B cell, CD4+ T-cell and
CD8+ T-cell populations in PD, identifying differential methylation
predominantly in CD14+ monocytes, highlighting the RAB32 locus
in particular. Our findings shed further light on immune
mechanisms in PD and warrant further studies of these cell types
in order to clarify their role in pathogenesis and identify potential
targets of immune-modifying therapy.

METHODS
Subjects
The project was approved by the Regional Committee for Medical
and Health Research Ethics, Norway. Participants were recruited at
the Department of Neurology, Oslo University Hospital and gave
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written informed consent. A diagnosis of PD was made based on
the Movement Disorder Society criteria31, yet levodopa response
was not required for inclusion of treatment-naïve patients.
Subjects with immunological disorders were excluded, and a
clinical blood screen was performed to confirm no gross
abnormalities in leukocyte counts at the time of blood draw.

Isolation of immune cell types
Peripheral blood mononuclear cells (PBMC) were isolated from
whole blood immediately after venipuncture by Lymphoprep
(Stemcell Technologies, Vancouver, Canada) and density gradient
centrifugation. Next, CD8+, CD14+ and CD19+ cells were isolated
by positive selection with EasySepTM Human CD8/CD14/CD19
Positive Selection Kit II (Stemcell Technologies, Vancouver,
Canada). CD4+ cells were isolated by negative selection with
EasySepTM Human CD4 Isolation Kit (Stemcell Technologies,
Vancouver, Canada). All procedures followed the standard
protocol from the kit manufacturer. Flow cytometry was
performed as a quality control the next day to ensure a purity
of >90% for each isolated cell population.

Power analysis
We estimated power using the online tool pwrEWAS32. The
number of CpGs tested was set to 500,000, target CpGs to 50 and
false discovery rate to 0.05. Based on these parameters, a study of
25 patients and 25 controls was estimated to have 80% power to
detect a differential methylation corresponding to 0.1 SD.
Assuming a replication scenario where 10 candidate CpGs are
tested, out of which 5 are truly associated, the required effect size
for 80% power was 0.028 SD.

DNA methylation analyses, quality control, and data
normalization
DNA from the four cell types was isolated with QiAamp DNA Mini
Kit (Qiagen, Hilden, Germany) using the standard protocol from
the manufacturer. DNA isolation yield varied across samples. From
a total of 50 participants, a sufficient amount of DNA was available
for 49 CD14+ samples, 50 CD19+ samples, 49 CD8+ samples, and
38 CD4+ samples. Insufficient DNA yield occurred primarily for
CD4+ T cells, at a similar rate in patients (5/25) and controls (7/25).
500ng DNA from each sample was bisulfite treated and assessed
using the Illumina Infinium MethylationEPIC BeadChip (Illumina,
San Diego, CA). Samples of different disease status and cell type
were deliberately intermixed on plates and arrays in a balanced
design. From four of the samples, we included an identical
technical DNA replicate in the experiment for quality check
purposes. The MethylationEPIC array targets ~850,000 CpGs across
the regulatory human genome, including both promoter regions
and distal enhancers.
Data processing was performed using R 4.0.3. Raw signal intensity

data were imported into R before applying a series of quality checks
and filtering steps implemented in the minfi56 and wateRmelon57 R
packages. Quality control, normalization and evaluation of potential
batch effects were performed jointly on the full experiment dataset
including all cell types. One sample where >1% of sites had a
detection P value greater than 0.05 was filtered out using the pfilter
function in the wateRmelon package. CpG sites with a beadcount <3
in 5% of samples or detection P value > 0.05 in 1% of samples were
also filtered out. Sex chromosome CpGs were used to estimate
sample sex and one sample failing sex check was removed. All
remaining data were of high quality as evaluated by inspection of
bisulfite conversion and other control probe metrics, outlier
detection by the wateRmelon outlyx function and assessment of
median signal intensities as evaluated by the minfi getQC function.
From a broad range of available normalization methods, we chose
functional normalization (funnorm) implemented in the minfi

package, as this method is recommended when large differences
in methylation patterns are expected, including data from different
cell types58. We note that although assessment of differential
methylation within each cell type was the main aim of the study,
appropriate evaluation of potential batch effects required reliable
comparison also across the different cell types.
The normalized MethylSet data object was mapped to the

genome and probes on sex-chromosomes, probe sequences
overlapping with known SNPs in the MethylationEPIC annotation
and previously reported cross-reactive probes59 were filtered out.
Taking advantage of the technical replicates we used the
CpGFilter package to compute the intra-class correlation coeffi-
cient (ICC), which characterizes the relative contribution of the
biological variability to the total variability for each probe60.
Probes with low ICC have large measurement errors, making them
unsuitable for statistical association testing in complex disorders,
and a considerable proportion of probes may thus be filtered out,
reducing the multiple testing burden. We filtered out probes with
ICC < 0.2. Furthermore, we filtered out constitutively methylated or
unmethylated probes with mean beta values < 0.025 or >0.975.
The wateRmelon pwod function was used separately on data from
each cell type to filter out outlier values lying more than four times
the interquartile range from the mean, assumed to result from rare
SNP artifacts.

RAB32 expression analysis with quantitative PCR
RNA was extracted from CD14+ monocytes using the RNeasy Mini
Kit (Qiagen, Hilden, Germany), with adequate yield for 23 PD and
20 control samples, followed by cDNA synthesis using SuperScript
IV VILO Master Mix with ezDNase (Invitrogen, Waltham, MA).
Quantitative PCR (qPCR) was performed using TaqMan gene
expression assays on a ViiA7 instrument (Applied Biosystems,
Waltham, MA) with standard settings as recommended by the
manufacturer. Based on previous literature61,62, we evaluated
ACTB, RPL37A and B2M as reference genes and selected RPL37A
and B2M as the most suitable based on a strong pairwise
correlation (Pearson’s R2= 0.77, P value= 1.06e-9) compatible
with stable expression. The geometric mean of the cycle threshold
(CT) value for these genes was used as normalization factor to
estimate the relative expression of RAB32 using the comparative
CT method63.

Statistical analyses
Methylation array experiments are prone to technical batch
effects. We evaluated experiment plate and chip position as
potential covariates but found that these showed no association
with top five principal components. To adjust for potentially
unknown batch effects, we estimated surrogate variables (SVs)
using the sva package64. We applied the “Leek” method to
determine the number of SVs to include in the model65, which
identified 1 SV as appropriate. Methylation beta values were logit
transformed into M values. To identify differentially methylated
sites (CpGs), linear regression was performed using the limma
package66, using the makeContrasts function to define the
contrast of interest between PD and control samples of each cell
type. We included sex, age, and the first SV as covariates in the
model: M ~ disease status + age + sex + SV1. We used the
Bonferroni-corrected significance threshold recommended by
Mansell et al.67 (P < 9 × 10–8) divided by four cell types
(P < 2.25 × 10–8) to adjust for multiple testing. To assess differen-
tially methylated regions, we used the contrast matrix generated
for linear regression as input for the R package DMRcate with
default parameters68. Finally, we assessed gene ontology enrich-
ment of significant CpGs using the gometh function implemented
in the missMethyl R package69. In CD14+ monocytes we tested
both Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and
Genomes (KEGG) pathways for CpGs passing significance
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thresholds of P value < 10–7, as well as a more liberal threshold of
P value < 10–4. We explored the association between significant
probes and dopaminergic treatment using linear regression,
comparing treated (N= 17) to untreated (N= 8) patients with
sex, age and one the first surrogate variable as covariates.
The correlation between RAB32 expression and adjacent CpGs

was investigated using Pearson’s product-moment correlation.
Linear regression with sex and age as covariates was used to
assess the association between RAB32 expression and disease
status. After the identification of differentially methylated CpGs
and regions, we assessed the potential association of these probes
with PD medication and clinical outcomes using linear or logistic
regression models as appropriate, with sex and age as covariates.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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