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Abstract

Inferring the tumour’s evolutionary history is crucial for unravelling the intricate
landscape of intratumour heterogeneity underlying cancer progression.
Several bioinformatics tools have been designed for deciphering the subclonal
population of the heterogeneous tumour mass. However, most of them rely on
single-omics analysis and methods for integrating multi-omics data in the

context of tumour evolutionary trees are still lacking.

In this thesis, the development of MAPping SubClonal Events (MAPSCE), a
new tool for mapping of subclonal events on tumour evolutionary trees, is
described. This method allows for integration of multi-omics data in multi-
sample cancer evolutionary studies. In essence, MAPSCE implements a
branch test where quadratic programming is applied to every branch of a
patient tumour tree to find the best mapping branch (including the root). Each
solution translates into a Bayesian Information Criterion value, and Bayes

factors for model selection. MAPSCE has been released as an R package.

Multiple datasets with different types of copy number events and varying
degrees of noise up to +30% were simulated to assess the reliability of the
tool. For losses of haploid genes, MAPSCE was benchmarked against a tool
of similar functionality, LOHHLA, showing both an increase in specificity and
sensitivity. This comparison was not possible for other types of copy number
events as MAPSCE is the only tool to date with the ability to map these.

Lastly, MAPSCE’s potential applications were demonstrated in several
analyses of multi-region, multi-omics datasets. Subclonal biallelic inactivation
of tumour suppressor genes on subclonal level was identified in lung cancer
patients. Subclonal changes of gene expression were further compared
against subclonal copy number events to infer cases of copy number

dependent or independent allele specific expression.

This work provides an innovative way to integrate multi-omics data in multi-
sample cancer studies, refining the study of evolutionary processes underlying

intratumour heterogeneity.



Impact Statement

Cancer is the second leading cause of mortality around the world, with lung
cancer being one of the most common types of cancer among men and
women. Intratumour heterogeneity, the diversity of cells within a single tumour
mass, is one of the main issues preventing development of effective cancer
therapeutics, as it leads to failure to validate cancer biomarkers, decreases
drug efficacy, exacerbates patient prognoses and increases therapy costs.

Many methods have been developed for studying the diversity within each
individual tumour, however most of them only focus on one type of alteration
at a time. This single-lens approach disregards the broader perspective of how
multiple changes contribute to tumour evolution. Furthermore, many of the
cancer studies have focused on inferring the tumour evolution based on a
single biopsy, where two samples from different sites of a tumour could provide
vastly different pictures of the tumour’s entire evolutionary process. While the
rapid generation of new cancer datasets provides more avenues for studying
tumour evolution, tools for integration of the various types of cancer data based

on multiple biopsies in an evolutionary context are still lacking.

This thesis presents the development, and testing of a novel methodology,
MAPping Subclonal Events, for studying intratumour heterogeneity. This
integrative tool allows for combining the different layers of information across
multiple tumour samples as well as tracking of the diverse changes, to provide
a more comprehensive understanding of the hidden processes underlying
tumour evolution. The analysis of cancer datasets demonstrates the
evolutionary questions that could be addressed with the tool presented in this
thesis. Exploring the opportunities opened up by this research could identify
novel drivers of cancer that could be targeted to predict therapy response.

Ultimately, the research presented in this thesis provides a novel, integrative
approach to studying tumour evolution, paving the way for more effective
cancer diagnostics and therapeutics tailored to individual patients.
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Chapter 1 Introduction

11 Tumour evolution

Tumours comprise individual cancer cells with distinct genetic alterations. The
evolution of a tumour is based on these individual cancer cells acquiring
genetic changes over time, some of which confer a growth advantage. These
so-called driver events lead to clonal expansion, where cells proliferate and
can, in turn, establish new subpopulations of cells with unique genotypes. One
key manifestation of tumour evolution is the presence of intratumour
heterogeneity (ITH), whereby even within the boundaries of a single tumour,
there is considerable genetic diversity among the various subpopulations of
cells (Mullighan et al. 2008; Navin et al. 2011; Gerlinger et al. 2012; Shah et
al. 2012). This phenomenon highlights the complex and dynamic nature of

tumour evolution.

Intratumour heterogeneity poses a significant and unmet challenge in the
treatment of cancer, as it results in increased therapy costs, reduced drug
efficacy, failure to validate cancer biomarkers and poorer prognoses for cancer
patients (Figure 1-1). Jamal-Hanjani et al. (2017) demonstrated the negative
impact of subclonal copy number alterations on patient outcomes. In another
study, only one out of 28 tested biomarkers effectively predicted patient
survival, with others failing primarily due to ITH (Gulati et al. 2014). Biswas et
al. (2019) highlighted the negative impact of the tumour sampling bias resulting
from ITH on the efficacy of cancer biomarkers and presented their prognostic
signature in lung cancer. Another study suggested the role of genetic and
transcriptomic diversity as the origin of chemotherapy resistance in pancreatic
cancer (Seth et al. 2019). Finally, Marusyk, Janiszewska, and Polyak (2020)
further discussed the increasing therapy costs associated with the necessary
routine ITH assessment for patient prognostication. Taken together,
understanding the complex molecular landscape of cancer necessitates the
development of novel and tailored approaches to correctly consider ITH.
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Figure 1-1 Intratumour heterogeneity leads to failure to validate cancer
biomarkers, decreasing drug efficacy, poor prognosis of cancer patients

and increasing therapy costs

1.2 Models of tumour evolution

One important discussion regarding tumour evolution revolves around whether
cancers develop under the clonal expansion (positive selection) or the
stochastic model (neutral selection) (Turajlic et al. 2019) .

1.2.1 Clonal expansion model

In 1859 Charles Darwin introduced the theory of branching evolution, in which
diverse populations originated from a common ancestor through the process
of natural selection. Analogically, Peter Nowell in 1976 hypothesised that
cancer follows the Darwinian selection process, in which genetic variability is
at the core of tumour evolution and different tumour cell populations compete
for dominance by acquiring selective growth advantages over others (Nowell
1976). The clonal evolution of cancer (Figure 1-2) follows a Darwinian

selection process, where the majority of the cancer cell population can share
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one or two progenitors, however different tumour clones acquire varying
mutations, forming divergent tumour cell populations over time (Polyak, Haviv,
and Campbell 2009). Events that give a selective advantage (driver events)
lead to further development of the dominant subclones, while disadvantageous
mutations and healthy cells slowly become evolutionary dead-ends (Marusyk
and Polyak 2010). This results in a highly heterogeneous tumour, which
requires a multi-faceted approach specifically tailored to kill every individual
dominant subclone. Surviving clones could proliferate and expand, initiating
another clonal expansion of resistant cells (Greaves and Maley 2012). The
continuous clonal selection theory has been evidenced by the low ITH of the
clonal driver events (Gao et al. 2016; Notta et al. 2016).

Time
Figure 1-2 Clonal expansion model, in which one cell initiates tumour
progression that is driven by the emergence of new subclonal

populations in cancer.
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1.2.2 Stochastic model

Conversely, the stochastic evolution model suggests that tumours evolve by
acquiring mutations via genetic drift due to the random changes in allele
frequencies with no single dominant subclone. According to this model,
multiple cell populations with different genetic alterations coexist.
Consequently, it is suggested that ITH is driven by the diverse random genetic
and epigenetic alterations acquired under neutral evolution in subclonal
populations that ultimately do not lead to a clonal sweep (Yates et al. 2015;
Gerstung et al. 2020).

1.3 Types of events driving tumour evolution

There are different types of alterations which can drive tumour progression and
contribute to intratumour heterogeneity. These include genetic alterations such
as point mutations, insertions, deletions and copy number alterations (CNA),
and epigenetic alterations, such as modifications to the chromatin structure,
gene expression, and methylation changes without altering the DNA sequence
(Takeshima and Ushijima 2019). Point mutations are the changes in the DNA
sequence which substitute, insert or delete a single nucleotide. Copy number
alterations encompass changes to the number of copies, either gains or
losses, of specific segments of the DNA. The gene expression changes refer
to the alterations affecting the production of RNA, leading to a modified
expression level of a particular gene. Methylation changes are the alterations
in the methylation patterns of the DNA, involving the addition or subtraction of
a methyl group. Both the genetic and epigenetic alterations can drive tumour
progression when they confer a growth advantage, either by activating,
duplicating or upregulating oncogenes such as KRAS, or inactivating, losing
or downregulating tumour suppressor genes such as TP53 (Hanahan and
Weinberg 2000; 2011; Jamal-Hanjani et al. 2017; Juul et al. 2021; Frankell et
al. 2023). While there are numerous other types of alterations which can
contribute to tumour progression, this thesis will primarily centre on the major

classes of alterations mentioned above.
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All the aforementioned events can be further categorised as clonal or
subclonal events. Clonal events are alterations present in all cells within a
tumour sample, while subclonal events are alterations that occur only in a
subset of cells within a particular tumour lineage (Black and McGranahan
2021). Knowing the clonality of the events is crucial for determining the timing
and order of the alterations. This allows us to explore the evolutionary
processes including parallel evolution, co-occurrence and mutual exclusivity.
Co-occurring driver events collaborate to activate oncogenic pathways,
probably providing an additional selective advantage. In contrast, mutual
exclusivity reveals the intricate interactions between specific drivers and can
potentially offer targets for cancer treatments (Tekle et al. 2021). Turajlic et al.
(2018) demonstrated the parallel evolution of single nucleotide variants
(SNVs) affecting SETD2, BAP1 and PTEN driver genes. Deciphering these
evolutionary processes and constraints uncovers the epistatic relationships
between various driver events underlying branched tumour evolution (Landau
et al. 2013; McGranahan et al. 2015; Cheng et al. 2022).

14 Brief history of sequencing techniques

The continuous development of new sequencing technologies has played a
pivotal role in generating large amounts of data, and in turn, improving our

understanding of the complex nature of tumour heterogeneity.

1.4.1 First-generation sequencing

The first-generation sequencing, Sanger sequencing, became the gold
standard of sequencing technologies for years after its introduction in the
1970s and was later utilised for the ambitious Human Genome Project (HGP),
which aimed to sequence the entire human genetic sequence (Sanger,
Nicklen, and Coulson 1977; Olson 1993; Collins and Fink 1995). However,
Sanger sequencing was a complex, labour-intensive process which involved

multiple steps, including DNA extraction, purification, amplification,
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sequencing, gel electrophoresis, and manual data analysis (Crossley et al.
2020). Scaling the technique to large genomes required the preparation of
BAC libraries which was also a multi-step process (Osoegawa et al. 2001).
Consequently, Sanger sequencing was ill-suited for large-scale sequencing of

complex tumour genomes.

1.4.2 Second-generation sequencing

The emergence of second-generation sequencing, also known as Next-
Generation Sequencing (NGS), dominated by Solexa/lllumina, allowed for
massively parallel sequencing, providing increased sequencing output at a
reduced cost and time (Voelkerding, Dames, and Durtschi 2009). The NGS
platform has been vastly improved since its inception by further reducing cost,
increasing output, read length and depth of sequencing (Muir et al. 2016).
These improvements to the NGS technology enabled sequencing of the

genome of an individual or a tumour in a short time and at an affordable price.

1.4.3 Third-generation sequencing

Lastly, third-generation sequencing introduced single-molecule sequencing
(SMS) (van Dijk et al. 2014) and nanopore sequencing (Clarke et al. 2009;
Eisenstein 2012), both of which allowed for sequencing longer reads
compared to NGS, while eliminating the need for DNA amplification (Xiao and
Zhou 2020).

1.5 Large-scale cancer datasets

While the development of Sanger sequencing launched the HGP, other
projects emerged over time to collect pan-cancer data and perform sequencing
of the cancer genomes. The Sanger Institute’s Cancer Genome Project
primarily utilised whole genome sequencing data to catalogue the cancer

genes and patterns of clonal evolution in human tumours (Pleasance et al.
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2010). The Cancer Genome Atlas (TCGA) aimed to assess the entire
spectrum of genomic changes in human cancer (Tomczak, Czerwinska, and
Wiznerowicz 2015). TCGA provides a public database on over 20,000 primary
cancer and matched normal samples from 33 different cancer types. The
International Cancer Genome Consortium (ICGC) was a global initiative to
coordinate large-scale cancer genome studies and characterise the genomic
landscape of over 50 different cancer types (Hudson et al. 2010). Lastly, the
Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium was launched
to identify common patterns of mutation in more than 2,600 cancer whole
genomes, building on the work from ICGC and TCGA (Aaltonen et al. 2020).

1.6 Multi-sample sequencing

Importantly, the advancement of NGS techniques accelerated the sequencing
progress at a lower cost, revolutionising cancer research. The main issue with
inferring tumour evolutionary history from a single sample at one time point is
intratumour heterogeneity. ITH makes it challenging to distinguish between the
different subclonal populations within a heterogeneous tumour mass (Black
and McGranahan 2021).

Longitudinal studies have emerged where samples from the same patient were
collected at different time points including metastases to provide an overview
of the changes occurring within the tumour over time. Cindy Yang et al. (2021)
examined solid tumours of 73 patients across 30 different cancer types before
and after pembrolizumab therapy. The study revealed that BRCA2 mutations,
increased mutation burden and elevated expression of immune signatures
were associated with pembrolizumab sensitivity. In contrast, an abundance of
CNA and loss of heterozygosity of B2M corresponded with drug resistance.
Jiang et al. (2016) identified prognostic biomarkers by inferring tumour
phylogeny from breast cancer patient xenografts and their subsequent
propagation of metastatic xenografts. Boyle et al. (2021) examined samples
from multiple time points of patients with smouldering multiple myeloma. The

findings revealed an increased mutational load and elevated intratumour
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heterogeneity in patients who progressed from smouldering multiple myeloma

to multiple myeloma.

Another approach involves sampling multiple regions of the same tumour at
the same time. Gerlinger et al. (2012; 2014) have demonstrated how multi-
region whole-exome sequencing (WES) on patients with renal cell carcinoma
revealed branched tumour evolution within the heterogenous tumour mass
with 63 — 69% of all somatic mutations not being detectable across every
tumour region, thus being missed in the single-sample analysis. Other studies
have since investigated intratumour heterogeneity using a multi-region
sequencing approach. Yates et al. (2015) identified subclonal diversification of
common breast cancer genes, including PIK3CA, TP53, PTEN, BRCAZ2 and
MYC in breast cancer patients. In another study of 11 localised lung
adenocarcinoma patients, Zhang et al. (2014) found that all three relapsed
patients had significantly larger fractions of subclonal mutations in their primary
tumours, compared to non-relapsed patients. Additionally, de Bruin et al.
(2014) demonstrated how mutations associated with APOBEC-mediated
mutagenesis (apolipoprotein B mRNA editing enzyme catalytic polypeptide-
like) were mostly subclonal in four out of five lung adenocarcinoma (LUAD)

patients.

1.6.1 TRAcking Cancer Evolution through therapy
(TRACERX)

Recently, the TRAcking Cancer Evolution through therapy (TRACERX)
showed novel insights into the study of intratumour heterogeneity of multiple
cancers (Jamal-Hanjani et al. 2014). TRACERX is an ambitious translational
research study which aims to elucidate the intricate evolutionary processes
underlying cancer progression, and directly translate the findings to improved
patient outcomes. Their work encompasses multiple cancer types, such as
non-small cell lung cancer (NSCLC) (Jamal-Hanjani et al. 2017; Frankell et al.
2023), melanoma (Menger et al. 2016) and renal cancer (Mitchell et al. 2018;
Turajlic et al. 2018). Their multi-sample research aims to track the tumour
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evolution through time and space to accurately identify clonal and subclonal
drivers. The NSCLC TRACERXx 100 study has demonstrated the significance
of multi-region whole-exome sequencing. The study revealed that if only
single-sample analysis had been used, 76% of subclonal mutations would
have been misidentified as clonal (Jamal-Hanjani et al. 2017). Furthermore,
significantly more mutations were identified with multi-region WES compared
to single-sample analysis or with the use of a single NSCLC sampled from
TCGA (Jamal-Hanjani et al. 2017).

This thesis will predominantly focus on the NSCLC TRACERXx 100 dataset
and one patient from the NSCLC TRACERx 421 dataset (Jamal-Hanjani et
al. 2017; Frankell et al. 2023; Martinez-Ruiz et al. 2023).

1.7 Studying intratumour heterogeneity

Advanced cancer genomics allows for studying the extent of heterogeneity of
the tumour and the effects of the clonality of mutations (Schmitt, Prindle, and
Loeb 2012; Dan et al. 2015). There is no standardised and universal workflow
for studying intratumour heterogeneity as it entails the analysis of different
types of events, both genetic and epigenetic. However, the research presented
in this thesis will focus predominantly on the integration of subclonal CNA in
the context of a tumour tree built on SNVs. This section will focus on the

workflow for that analysis.

1.7.1 Existing methods for studying ITH and their

limitations

One of the first steps in the workflow is the detection of the SNVs and CNAs
(Figure 1-3). The former includes variant calling, which is the identification and
classification of the somatic point mutations. There are several tools available
for the detection of SNVs, such as VarScan and VarScan2 (Koboldt et al. 2009;
2012), Strelka (Saunders et al. 2012) and MuTect (Cibulskis et al. 2013). Other
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tools focus on processing copy number data (Koboldt et al. 2012; Rimmer et
al. 2014) and estimating the absolute copy number, enabling the detection of
gain, loss, copy number neutral and loss of heterozygosity (LOH) events.
Carter et al. (2012) developed ABSOLUTE, a method for absolute
quantification of copy number, while jointly estimating tumour purity and ploidy.
Van Loo et al. (2010) presented ASCAT, an allele-specific copy number
estimation tool for solid tumours, which also estimates tumour ploidy and
purity. Oesper, Mahmoody, and Raphael (2013) also described THetA, which
identifies subclonal copy number alterations.

One way of studying ITH involves subclonal deconvolution, which is the
process of disentangling the bulk sequencing data of a tumour to identify
distinct features of subclonal populations (Barrett et al. 2017; Yang et al. 2019)
(Figure 1-3). Subclonal deconvolution includes estimating the mutational
cancer cell fraction (CCF), which involves calculating the proportion of cancer
cells within a tumour sample carrying a specific mutation and clustering those
mutations. Tools can temporally order the somatic point mutations to
determine their clonality. Roth et al. (2014) developed PyClone, a Bayesian
clustering method, which clusters somatic mutations to estimate subclonal
frequencies while accounting for copy number changes and purity. Similarly,
Miller et al. (2014) introduced SciClone, which also clusters somatic mutations
into several subclones with estimated frequency, using a variational Bayesian
mixture model. SciClone’s variational Bayesian mixture model includes a
computational termination condition, which is less computationally intensive
than PyClone’s Markov chain Monte Carlo (MCMC) convergence. However,
SciClone’s method is heuristic and can result in sub-optimal solutions
compared to PyClone’s stochastic MCMC. Ha et al. (2014) and Shen and
Seshan (2016) both recognised the lack of tools for studying copy number
heterogeneity in subclonal populations and developed TITAN and FACETS,
respectively, to focus on inferring the copy number architecture. Fischer et al.
(2014) presented cloneHD, a method that combines the use of copy number

and somatic point mutations to infer the clonal population structure.
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Subclones successfully deconvoluted can be used for phylogenetic
reconstruction, which involves establishing evolutionary relationships between
the clusters, ordering those clusters and rebuilding the tumour evolutionary
trees (Niknafs et al. 2015) (Figure 1-3). Jiao et al. (2014) developed PhyloSub
to infer relationships between the tumour clones using MCMC sampling.
Similarly, Malikic et al. (2015) presented CITUP, a method for inferring
phylogenies from multiple samples of the same patient. Both PhyloSub and
CITUP reconstruct phylogenies based on somatic single nucleotide variants.
Schwarz et al. (2014) and Zaccaria et al. (2017) also presented tools for
deconvolution and phylogeny reconstruction based on copy number
aberrations, MEDICC and CNT-MD, respectively. Deshwar et al. (2015)
proposed PhyloWGS, a method very similar to cloneHD in that it combines
both copy number and somatic point mutations, while also providing phylogeny

reconstruction.

Determining SREAT ) ) .
copy number cancer cell Cluste.nng Ordering of Reconstructing
and purity fraction (CCF) mutations clusters phylogenies
for mutations
ASCAT, Van Loo et al. 2010; PyClone, Rothetal. 2014  PyClone, Roth et al. 2014;  cloneHD, Fischer et al. CITUP, Malikic et al. 2015;
ABSOLUTE, Carter et al. 2012 SciClone, Miller et al. 2014 2014; PhyloWGS, Deshwar  PhyloSub, Jiao et al. 2014

etal. 2015

Mapping subclonal HLA losses
(LOHHLA, McGranahan et al. 2017;
Zhang et al. 2018)

@Ox &
i

Figure 1-3 Main steps involved in the workflow for studying ITH in the
context of tumour evolutionary trees based on point mutations with

example tools used for each analysis.
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1.8 Challenges of studying intratumour
heterogeneity

1.8.1 Tumour sampling bias

Sampling the tumour mass is the first step of analysing the intratumour
heterogeneity underlying tumour evolution. The sampling process should
involve careful consideration to ensure the inclusion of diverse subclonal
populations and allow for a comprehensive assessment of the tumour's
genetic and phenotypic heterogeneity. Notably, tumours consist of diverse
subclonal populations of cells with distinct genetic make-up. In the past, bulk
sequencing has been the common approach for many cancer studies (Nik-
Zainal et al. 2012; Gerstung et al. 2020). A single sample of a tumour, obtained
from bulk sequencing data, provides a limited perspective as it offers only a
glimpse into the entire tumour’s evolutionary history. It is important to
acknowledge that certain alterations can be strictly subclonal and may not be
present in the specific part of the tumour that was initially sampled. As such,
these alterations may be missed when relying on a single sample for analysis.
Furthermore, an alteration may be present in every cell of the tumour sample,
while not being present in the other parts of the tumour that were not sampled,
thus being misclassified as clonal while being subclonal.

To mitigate these issues, recent studies have demonstrated how spatial
sampling of multiple regions allows for the detection of a larger number of
events, as well as more accurate clonality determination. Aforementioned
NSCLC TRACERx 100 study provided compelling evidence that 76% of
subclonal mutations would have appeared clonal through single-sample
analysis (Jamal-Hanjani et al. 2017). Additionally, significantly more mutations
were identified with multi-region WES compared to single-sample analysis.
Conversely, longitudinal studies offer another approach to the tumour
sampling bias by considering multiple samples from the same patient taken at
different time points (Jiang et al. 2016; Chen et al. 2020; Boyle et al. 2020;
2021; Cindy Yang et al. 2021). Taking different tumour samples over time
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helps in identifying emerging subclonal populations and pinpointing clonal

sweeps.

1.8.2 Variant calling and purity estimation

Another challenge in studying ITH is precise estimation of the mutational
cancer cell fraction. Accurate determination of CCF requires correct
differentiation between the inherited (germline) variants and variants acquired
during tumour development (somatic) for accurate variant calling. The
appropriate distinction between the two requires matched tumour and normal
samples (Koboldt et al. 2012; Cibulskis et al. 2013). Conversely, absolute copy
number estimation is hindered by the intricacies of purity estimation.
Estimating the proportion of tumour cells within a sample and identifying the
contamination from normal cells, requires matched normal samples and robust
computational tools for accurate copy number analysis (Van Loo et al. 2010;
Mermel et al. 2011; Carter et al. 2012).

1.8.3 Subclonal deconvolution

As outlined before, spatial multi-region and temporal multi-sample sequencing
alleviate some of the sampling issues hindering inference of accurate tumour
evolutionary history. However, studies performing bulk sequencing still require
robust computational methods for dissecting the heterogeneity within the
tumours to accurately depict the distinct subclonal populations within a
heterogeneous tumour mass. Accurate subclonal deconvolution requires
sequencing data of good quality and depth. With low coverage, alterations of
low variant allele frequency (VAF) remain undetected, while low quality leads
to misclassification of alterations into wrong subclonal populations.
Furthermore, validation of the results remains challenging. Available
approaches involve benchmarking on simulated data or independent
validation using single-cell sequencing (sc-seq) or fluorescence in situ

hybridization (FISH). Tools for subclonal deconvolution commonly rely on the
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assumption of the infinite sites model, in which each mutation can only occur
assumption has some inherent limitations, as it does not account for the
possible occurrence of revertant mutations, recurrent mutations and deletions
of loci harbouring mutations (Roth et al. 2014; Miller et al. 2014). Furthermore,
the infinite sites model assumes that tumour evolution occurs under neutral
evolution, disregarding how certain alterations confer a growth advantage and

act as a selective pressure for other events to occur.

1.8.4 Phylogenetic inference

Phylogenetic reconstruction is a key step in backtracking the tumour’s
evolutionary history. It involves determining the evolutionary relationships
between different clones. Phylogenetic reconstruction often relies on two
simple rules: the pigeonhole rule and the crossing rule. The pigeonhole rule
states that two mutational clusters whose prevalence together exceeds 100%
cannot be placed on independent branches of an evolutionary tree. The
crossing rule forces the descendent clones to carry a lower cellular prevalence
than their ancestors in every tumour region (Malikic et al. 2015). These two

rules ensure higher accuracy of tree reconstruction.

Some of the main challenges of phylogenetic reconstruction include data
quality, tree complexity, homoplasy and viability of multiple trees. Firstly,
phylogenetic reconstruction assumes a perfectly accurate subclonal
deconvolution where each cluster’s CCF is correctly estimated and mutations
are clustered correctly. However, due to the presence of noise in the data,
achieving perfect accuracy in subclonal deconvolution is an exceedingly
difficult task. Small errors can be amplified in phylogenetic reconstruction,
especially when homoplasy, independently developed shared alterations, is
present. Secondly, trees with a higher number of subclones are more complex
and require more computational resources when applying both the pigeonhole
and the crossing rules. Coupled with inaccurate subclonal deconvolution, the
resources required for accurate reconstruction of all potential phylogenies can
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be very computationally intensive. Lastly, phylogenetic reconstruction based
on tumour clones can often present multiple alternative and equally viable
trees as potential solutions, while independent approaches for tree validation

are still lacking.

1.8.5 Integration of multimodal data

Many cancer studies continue to rely on independent analysis of single types
of events or, at most, the analysis of single-omics data. Nik-Zainal et al. (2012)
identified the mutational processes in 21 breast cancers based on single-
sample genomic data. Navin et al. (2011) used single-cell (sc) RNA
sequencing to elucidate expression heterogeneity and identify subclonal
populations of breast cancers. Landau et al. (2014) studied the transcriptomic
heterogeneity of DNA methylation-based on genome-scale bisulfite
sequencing in chronic lymphocytic leukaemias (CLL). All of the
aforementioned studies focused on the analysis of subclonal events for
studying intratumour heterogeneity. However, each utilised exclusively one
type of data. Boyle et al. (2021) used longitudinal smouldering multiple
myeloma patient data to examine the changes of subclonal CNA and
mutations on phylogenetic trees between samples of the same tumour
collected at different times. Recently, Martinez-Ruiz et al. (2023) attempted to
integrate the genomic and transcriptomic data by studying the allele-specific
expression (ASE) in NSCLC TRACERx 421 and classifying them based on
whether they were copy number-dependent or copy number-independent.
While this study performed phylogenetic reconstruction and attempted to map
the ASE on a tumour branch, it should be noted that the results were still based
on regional data, rather than truly deconvolving the regional data and

identifying the subclonal events.
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1.9 Tracking of subclonal events on tumour

evolutionary trees

Integration of multi-omics data is crucial for providing a more comprehensive
analysis of the subclonal population and evolutionary constraints underlying
tumour progression. McGranahan et al. (2017) presented Loss of
Heterozygosity in Human Leukocyte Antigen (LOHHLA), which integrated the
copy number and the SNV data by tracking subclonal CNA of HLA on SNV-
based trees. The focus of this research remained solely confined to genomics
data. However, it served as a proof-of-concept study for mapping subclonal
events on tumour evolutionary trees, thereby allowing for the tracking of
evolutionary changes and the potential integration of multimodal data. Zhang
et al. (2018) later utilised the LOHHLA tool to perform a similar mapping of
subclonal HLA LOH events to study the tumour-infiltrating lymphocytes (TILs)
in high-grade serous ovarian cancer (HGSC). Recently, Miura et al. (2022)
presented PhyloSignare for tracking the somatic mutational processes on
tumour evolutionary trees. This framework brought the study of mutational
signatures to the subclonal level, potentially paving the way for integrating

multi-omics data.

Existing tools for the integration of multi-omics data allow for a combination
analysis of multimodal data. These tools combine the data at the sequencing
level, relying on complex models to identify novel evolutionary patterns
(Silverbush et al. 2019; Chatsirisupachai et al. 2021; Menyhart and Gyd&rffy
2021). However, interpreting the results of these complex models can be
challenging without existing reference datasets for comparison and validation.
Combining the multi-omics data at the sequencing level further requires
additional single-omics analysis to provide the biological context needed for
the appropriate interpretation of the results.

There is still an unmet need for tools for tracking subclonal events on tumour

evolutionary trees that can integrate different types of multi-omics data using
the output from state-of-the-art tools.
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Studies have shown the need for methods utilising the results of subclonal
deconvolution and phylogenetic reconstruction (Jamal-Hanjani et al. 2017;
McGranahan et al. 2017; Zhang et al. 2018; Boyle et al. 2021; Frankell et al.
2023; Martinez-Ruiz et al. 2023). Studying the timing of subclonal events
provides opportunities to identify novel evolutionary principles underlying
tumour evolution. Accurate ordering of the different clusters enables the
detection of new subclonal drivers driving tumour progression and therapy
resistance. Furthermore, the ability to map mutational signatures and compare
different types of events on tumour evolutionary trees would aid in identifying

parallel evolution and mutual exclusivity of events on a subclonal level.

1.10 Aims and outline of the thesis

This introductory chapter has presented an overview of the literature on tumour
evolution, clonal expansion, the data and existing methods for studying
intratumour heterogeneity. Furthermore, it has highlighted the main challenges
hindering the accurate reconstruction of cancer’s evolutionary history.
Additionally, this chapter has revealed that, while a few tools have been
developed to study subclonal events along the tumour trees, these were
designed to re-interpret the data and more generic approaches utilising the
output of the state-of-the-art tools are still lacking. To address the existing gap
in the research and to provide the research community with the ability to
accurately track and integrate various types of subclonal events, this thesis

aims to:

1) Develop a robust, automated, integrative method to accurately track
various types of subclonal events on tumour evolutionary trees, and
which provides a measure of goodness of fit of its results.

2) Provide extensive testing with benchmarking on simulated datasets,
comparing the developed tool against an existing methodology of a
similar function. This analysis will aim to demonstrate the superior
performance of the developed tool, highlighting its benefits and

acknowledging its limitations.
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3) Validate the tool’s functionality and potential capabilities by mapping
and integrating different types of subclonal events on real datasets.

The structure of this thesis will follow the outlined aims. Chapter 2 will present
the data and the methods used for analysis throughout this thesis. Chapter 3
will describe the development of the tool, encompassing a detailed discussion
of the process employed for testing and evaluating different methods and
strategies with the overarching aim of providing the tool with a measure of
goodness of fit for the results. Chapter 4 will focus on the simulation of the
different copy number events and benchmarking the developed methodology
against another method of similar functionality. Chapter 5 will showcase the
tool’s integrative functionalities on real datasets, mainly the NSCLC TRACERx
100 dataset, by providing some insights into tumour’s evolutionary dynamics.
Finally, Chapter 6 will summarise the novel findings presented in this thesis,
as well as discuss the limitations of this research and explore future

opportunities that have emerged as a result of the developed method.

This work aims to provide the research community with a novel methodology
for the integration of the multi-omics dataset to track the subclonal changes on
the tumour evolutionary trees, deepening the understanding of evolutionary

principles underlying intratumour heterogeneity.
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Chapter 2 Data and Methods

2.1 Introduction

This chapter provides an overview of the data, bioinformatics, and
experimental methods employed in this thesis. This project extensively utilised
externally pre-processed data from previous studies (Jamal-Hanjani et al.
2017; McGranahan et al. 2017). This chapter describes data acquisition and
processing, various methods and statistical tools utilised in the thesis, and

outlines the experimental methods and their significance.

2.2 Data used in this thesis

2.2.1 NSCLC TRACERXx 100 multi-region data

The collection and processing of the data, including subclonal deconvolution
with mutation clustering, phylogeny reconstruction and estimation of
segmented allele-specific copy numbers, were performed externally (Jamal-
Hanjani et al. 2017). The resulting data comprised mutational CCF, cluster

CCF, the tumour evolutionary tree and the copy number data for each patient.

Tumour samples from at least two regions, separated by 0.3 cm to 1 cm, were
collected from 100 adult patients with non-small cell lung cancer (NSCLC)
between stages 1A and 3A (with one patient classified as 3B) (Jamal-Hanjani
et al. 2017). In this cohort, there were 38 women and 62 men, classified
according to the tumour stage, type of cancer and smoking history. Most of the
patients (n = 62) were sampled at earlier stages: stage 1A and stage 1B. 61
patients were diagnosed with lung adenocarcinoma, 31 with lung squamous
cell carcinoma (LUSC) and another 7 patients with other subtypes of non-small

cell lung cancer.
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2211 Whole exome sequencing

Patient samples were randomized, and whole exome sequencing was
performed on an lllumina HiSeq machine. 327 tumour regions (323 primary
and 4 lymph-node metastases) were sequenced in total, matched by 100
germline samples drawn from the whole blood of the patients (with a median
sequencing depth of 426x). The data was aligned to the reference human

genome (hg19).

Picard tools v1.107 (http://broadinstitute.github.io/picard) was utilised to clean,

sort and merge files from the same patient region and to remove duplicate
reads. Picard tools v1.107, GATK v2.8.1 (Van der Auwera and O’Connor 2020)
and FastQC v0.10.1(https://bicinformatics.babraham.ac.uk/projects/fastqc/)

were combined for quality control metrics. SAMtools mpileup v0.1.19 (H. Li et
al. 2009) was used to locate non-reference positions in tumour and germline
samples (Jamal-Hanjani et al. 2017). Somatic mutations were called using
MuTect v1.1.4 (Cibulskis et al. 2013) and VarScan2 (Koboldt et al. 2009) in
the multi-region sequencing data. Additional filtering was performed to improve
the accuracy of variant calling and decrease the rate of false positives.
Variants were considered true positive only when VAF was greater than 2%
and the mutation was called by both VarScan2 and MuTect. For mutations that
were called in one or more regions but not ubiquitously across all of them, VAF
restrictions were reduced to VAF being equal to or greater than 1%, allowing
for the identification of low-frequency variants that would otherwise have been
missed. The annotation of the variants was done with Annovar (Wang, Li, and
Hakonarson 2010) and COSMIC v75 (Forbes et al. 2015).

2.2.1.2 Subclonal deconstruction and

phylogeny reconstruction
PyClone, a Bayesian clustering method (Roth et al. 2014), was used to cluster

the mutations to determine their clonality and estimate their cluster CCF. The
mutation CCF is the cancer cell fraction, or the frequency, of the mutations.
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Under the infinite sites model assumptions, each cluster represents a
monophyletic group, and the cluster CCF represents the proportion of cells
harbouring that particular set of mutations, i.e. the proportion of cells in the
lineage defined by these mutations. Cluster CCFs were estimated from the

frequency or the CCF of the mutations corrected by purity and copy number.

Tree sizes measured by number of nodes
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Figure 2-1 Frequency of different tree sizes measured by the number of

nodes.

To provide higher accuracy of tree reconstruction, mutational clusters were
first filtered based on the “pigeonhole rule” and “crossing rule”. The pigeonhole
rule ensures that two mutational clusters whose prevalence together exceeds
100% cannot be considered independent and be placed on separate branches
of an evolutionary tree, while the crossing rule states that a descendent clone
must exhibit a lower cellular prevalence than its ancestor in every tumour
region (Beerenwinkel et al. 2015). Only clusters with at least 5 mutations were
included. CITUP was then employed for tree inference based on cluster CCFs,
defining the relationships between different lineages (Malikic et al. 2015). In
certain cases, CITUP identified several evolutionary trees as equally likely. For
six patients, trees were constructed manually due to either number of clusters
exceeding the maximum allowed in CITUP or erroneous copy number
correction leading to trees and CCF values that were evolutionary nonsensical.
Of note, tree sizes varied greatly between patients (Figure 2-1). Cluster CCFs
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were also used to estimate clone CCF — the proportion of cells with the same
genotype, unique for that particular clone (Figure 2-2).

Cluster CCF
Region 1 Region 2 Region 3 Region 4
2 80 90 95 85
3 40 20 35 40
4 30 50 30 15
Clone CCF
Region 1 Region 2 Region 3 Region 4
1
2 10 20 30 30
3 40 20 35 40
4 30 50 30 15

Figure 2-2 The difference between cluster and clone CCF on an
exemplary tree. The coloured area is cluster CCF and the coloured
circles is the clone CCF. Cluster CCF includes the clone CCF with its
descendants’ CCF, while clone CCF is the proportion of cells with the
genotype unique for that particular clone. Tables show the example
Cluster CCF and Clone CCF for this particular tree.

2.21.3 Copy number analysis

The exome copy number data was processed with VarScan2 (Koboldt et al.
2012). The minimum coverage required was 8 reads. Homozygous and
heterozygous single nucleotide polymorphisms (SNPs) were called in the
germline using Platypus v0.8.1 (Rimmer et al. 2014) and then used to
genotype the tumour regions. SNPs with coverage lower than 20x were filtered
out. Log-ratio (LogR) and B-allele frequency (BAF) values were processed with
ASCAT v2.3 (Van Loo et al. 2010) to provide the segmented allele-specific
copy number data as well as the purity and ploidy estimates for all samples
(Jamal-Hanjani et al. 2017). The ASCAT-inferred allele-specific copy number
was corrected for purity.
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2.2.2 HLA NSCLC TRACERx 100

Allele-specific HLA copy number data and HLA LOH events, classified based
on their clonality in the NSCLC TRACERx 100 cohort, were obtained from
McGranahan et al. (2017).

Firstly, the tumour and germline reads were extracted and mapped to the HLA
locus using the SAMtools view. All unpaired reads were removed. The HLA
typing was performed with POLYSOLVER (Shukla et al. 2015). SAMtools
mpileup was used to calculate the coverage of the matched tumour and
germline HLA alleles. Considering the polymorphic nature of HLA alleles, the
HLA allele abundance was estimated by re-aligning candidate reads onto the
HLA alleles inferred for each patient. The reads that mapped univocally on
either allele in the tumour samples were counted and normalised against the
coverage in the normal sample, determined with the R Biostrings package.
HLA-specific coverage was determined at mismatch positions for pairs of
homologous alleles ensuring accurate read counting. For reads that spanned
more than one mismatch position, each read was counted only once to avoid

duplication.

The LogR across each HLA gene was obtained by binning coverage across
homologous alleles at intervals of 150 base pairs for both tumour and normal.
Each bin was normalized by a multiplication factor M, corresponding to
uniquely mapped reads for the germline, divided by uniquely mapped reads
for the tumour. BAF was calculated as the coverage of one HLA allele divided
by the sum of both HLA alleles. Finally, the HLA haplotype-specific copy
number was determined utilising the LogR and BAF using the following

equations:
p —1+4 BAF X 2L09R x (2(1—p) +p X ¢
CNattete 1 = (1
p
p—1—2(BAF — D" x 2(1—p)+p x P
CNattete 2 = (2)

p
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Where p was tumour purity and i was tumour ploidy input at the beginning.
The BAF of the polymorphic site and the LogR value found in the

corresponding bin were used.

For each bin, the median Allele 1 and Allele 2 copy numbers were calculated

as the median value across bins.

2.2.3 CRUKO0640 from NSCLC TRACERXx 421

The mutational data, copy number data, RNA reads, the phylogenetic tree, as
well as the cluster CCF of patient CRUK0640, were obtained from the recently
published NSCLC TRACERXx 421 cohort (Frankell et al. 2023; Martinez-Ruiz
et al. 2023).

For the RNA library preparation, FASTQ files were analysed using
ARCHERDx  analysis pipeline  (v6.2.3) with  default settings
(https://archerdx.com/technology-platform/analysis/). The somatic mutation

calling, copy number analysis and subclonal deconvolution methods were
similar to the methodology previously described in the section for NSCLC
TRACERXx 100 with updated versions of the tools: SAMtools mpileup v1.10,
VarScan2 v2.4.4, MuTect v1.1.7, GATK bundle v2.8, COSMIC v75, ASCAT
v2.3, Platypus v0.8.1 and PyClone v0.13.1. The main changes involved using
bam-readcount v0.8.0 for extraction of read information from the original
alignment file for variant calling and using Sequenza v2.1.2 and ASCAT v2.3
for processing of the LogR data to provide somatic copy number aberration
(SCNA) profiles (Van Loo et al. 2010; Favero et al. 2015). Lastly, the
phylogenetic reconstruction was performed with a newly released method,
CONIPHER (Grigoriadis et al. 2023), rather than CITUP. CONIPHER
reconstructs phylogenies using the same filtering process as described in the
section for NSCLC TRACERXx 100 dataset. Clusters with their respective CCFs
were used to reconstruct phylogenetic trees using the crossing and pigeonhole
rules. CONIPHER removed spurious clusters, which were defined as clusters
resulting from artefactual mutations or errors in SCNA calling. The errors of
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SCNA were identified based on mutations co-localized in the genome. Then
the tool attempted to reconstruct the phylogenetic tree following the two
aforementioned rules while preserving the greatest number of mutations

possible and removing clusters accordingly.

2.3 Methods

2.3.1 Simulations of CNA data with noise

Five distinct datasets, featuring different types of copy number alterations,
were simulated to assess the performance of the different methods. These
copy number alterations include loss of heterozygosity (CN 1>0), amplification
(CN 2>3), duplication (CN 2>4), homozygous loss (CN 2>0) and heterozygous
loss events (CN 2>1).

We used the patients’ trees, mutation CCFs and cluster CCFs from NSCLC
TRACERXx 100 (Jamal-Hanjani et al. 2017) for the simulations. Patients lacking
a tree, mutation CCF, and cluster CCF were excluded from the simulations,
leaving 87 eligible patients. An event was simulated on every branch (including
the root) of every patient, leading to 510 simulated events on 423 available
branches and 87 roots across all 87 patient trees. Each simulation was
performed by fitting a copy number value to the cluster CCF and patient tree
across all regions. The equations for copy number fitting depended on the type

of the event being simulated:

a) LOH events

CNsim =1- E
100
(3)
b) Duplication events
CNgim = cek X < - —CCF) X 2
100 100
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c) Amplification events

CNsimZ—X3+ —m

CCF CCF 5
100 ( ) %

c) Homozygous loss events

CCF
CNsim = <1 —m) X 2

c) Heterozygous loss events
CCF CCF
e (1-55) 2

CNsim = 750+ \1 ~ 700

with constraints:
CNg;,, = 0,CCF €[0,100]
(8)

where CNg;,was the simulated copy number and CCF was the clone’s cluster

cancer cell fraction for a particular region.

Simulated noise was added to the fitted copy numbers. The noise around copy

numbers was simulated using the following equation:

noise noise
) Sstm

N € unif (max (0, €N ~ - * 100

(9)

where CN,,;;. was the fitted copy number with simulated noise, unif (x) was
sampling from a uniform distribution, and noise was the maximum noise range.
The simulated control datasets included all noise ranges from 0 to 30 by

increments of 5.
To assess the tools’ performance on the simulated dataset, three different
criteria were considered. Both tools were required to determine the correct

clonality, the branch, and the copy number value for each simulated event to
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be considered correct. These criteria were nested within each other, as
specified. The tool had to determine the correct clonality first to identify the
correct branch. Likewise, for the correct copy number to be determined, both
the correct branch and clonality had to be determined. One caveat is that
MAPping SubClonal Events (MAPSCE) can provide more than one good
solution. In such cases, the tool consolidates the solutions by calculating a
consensus copy number state. For scoring purposes, a branch was considered
correctly mapped if it was among the ones returned by MAPSCE. For the tool
to accurately map the type of CNA of the simulated event, the difference
between the inferred copy number by a tool and the simulated copy number
had to be lower than 0.3 for every clone of the tree.

2.3.2 Gene annotation

Segmented copy number data was annotated using the Ensembl (release 104)
gene annotation (Cunningham et al. 2022) accessed with biomaRt (Durinck et
al. 2005; 2009). The driver gene datasets were obtained from the Molecular
Signatures Database (Subramanian et al. 2005; Liberzon et al. 2011; 2015)
and IntOGen (Martinez-Jiménez et al. 2020).

2.3.3 Gene sets testing

We tested gene lists for overrepresentation by comparing them against gene
sets from Gene Ontology (GO) database (Young et al. 2010) and pathways
from Kyoto Encyclopaedia of Genes and Genomes (KEGG) Database
(Kanehisa et al. 2016). Both the GO gene set and KEGG pathway analyses
were performed using the goana and kegga functions with default parameters
from the limma R package (Law et al. 2014; Ritchie et al. 2015; Phipson et al.
2016).
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2.3.4 Mutational Signature analysis

We estimated the relative contribution of mutational signatures on the
subclonal level using the deconstructSigs R package (Rosenthal et al. 2016).
The mutational signature analysis was performed only for the three patients of
NSCLC TRACERx 100 in particular (CRUK0011, CRUK0068, CRUK0083).
Five out of six tested lineages had at least 100 mutations, with the remaining
one comprising 54 mutations. We analysed the samples only for the presence
of mutational signature SBS3, which is associated with BRCA1 and BRCAZ2
mutations and whose proposed aetiology is the defective homologous
recombination-based DNA damage repair. We used the default settings of
deconstructSigs, which include the 27 reference mutational signatures from
Alexandrov et al. (2013) and COSMIC v3 (Forbes et al. 2015).

2.3.5 dN/dS analysis

to quantify the selection for specific subclones of the NSCLC TRACERx 100
patients. The dN/dS values used in the analysis were the global maximum
likelihood estimation (MLE) of the dN/dS (w all), representing the variation of

the mutation rate across genes (Martincorena et al. 2017).

2.3.6 Antigen presentation and processing genes

The antigen presentation and processing gene dataset was extracted from
Gene Ontology (Ashburner et al. 2000; Aleksander et al. 2023). We mapped
homozygous losses of the genes involved in the antigen presentation
machinery (APM) to the trees of NSCLC TRACERXx 100 patients. This allowed
us to compare them against the HLA LOH events also mapped by MAPSCE.
To further show the specific role of genes considered to be lost, the genes

were tested for overrepresentation in the KEGG antigen presentation and
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processing pathway and visualized using R package, pathview (Luo and
Brouwer 2013).

2.3.7 Statistical analysis

All statistical analyses were conducted in R (v4.0.0). Unless otherwise
specified, all statistical tests were two-sided. For the association between the
two groups, we used either Fisher’'s exact test or Pearson’s chi-square test.
Comparisons of distributions were performed using t-test.
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Chapter 3 Mapping Subclonal Events

development

3.1 Introduction

3.1.1 Intratumour heterogeneity at the core of

tumour evolution

The introduction of driver mutations, which confer a selective advantage, gives
rise to new subclones that form the core of the intratumour heterogeneity. ITH
is an important cancer immune escape mechanism and a predictor of a
patient’s response to therapy (Hiley et al. 2014; Jiang et al. 2016; Li,
Seehawer, and Polyak 2022)

Capturing the extent of ITH is not without challenges. Indeed, single-sample
analysis provides an incomplete picture of the tumour’s entire evolutionary
history. Gerlinger et al. (2012) showed that 63 to 69% of all somatic mutations
were not detectable across every tumour region in renal carcinomas. Jamal-
Hanjani et al. (2017) stated that 86% of all tumour regions had region-specific
subclones, and 65% of all subclones would have been identified as clonal in
NSCLC, both of which emphasise the limitations of a single-sample analysis
in accurately portraying the heterogeneity within a tumour mass.

Multi-region sequencing studies provide a more accurate picture of the
subclonal populations driving ITH (Gerlinger et al. 2012; 2014; Jamal-Hanjani
et al. 2017; Frankell et al. 2023). Timing of mutations and copy number
alterations can reveal novel evolutionary mechanisms underlying tumour
progression. In NSCLC, phylogenetic reconstruction allowed to identify
potential parallel evolution of driver amplifications, including RHOH, PHOX2B,
BCL11A and CDK4 (Jamal-Hanjani et al. 2017). Determining the clonality of
certain events allows for the classification of certain drivers based on their role

in either tumour initiation, progression or maintenance. Alterations in EGFR,
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MET, BRAF, and TERT for adenocarcinomas, in NOTCH1, FGFR1 for
squamous-cell carcinomas, and in TP53 for both lung cancer types, always
appeared to be early clonal events occurring before genome duplication,
suggesting a role in tumour initiation. Mutations of KMT2C and COL5AZ2 in
adenocarcinomas, and PIK3CA in squamous-cell carcinomas were
predominantly clonal, but occurred after genome duplication, suggesting their

role in tumour progression or maintenance (Jamal-Hanjani et al. 2017).

State-of-the-art methodologies focus on subclonal deconvolution and
phylogenetic reconstruction (Roth et al. 2014; Miller et al. 2014; Malikic et al.
2015; Deshwar et al. 2015). However, most cancer studies have primarily
focused on the analysis of a single type of alteration, or at most using single-
omics data on tumour evolution (Nik-Zainal, Van Loo, et al. 2012; Gerlinger et
al. 2012; de Bruin et al. 2014; Jamal-Hanjani et al. 2017), missing the bigger
picture of how multiple alterations drive tumour evolution. Studying single-
omics datasets helps in understanding the mechanisms driving clonal
expansion. Single-omics data has allowed for the study of mutational
signatures along the tree (Miura et al. 2022), classification of the clonality, the
timing and thus the role of the drivers in tumour evolution (Boyle et al. 2021),
identification of evolutionary dynamics such as parallel evolution (Jamal-
Hanjani et al. 2017), and identification of novel mechanisms of immune escape
(McGranahan et al. 2017).

However, there has been little to no effort to integrate the multi-omics data at
the subclonal level, including copy number, gene expression and methylation

changes on the tumour evolutionary trees.

McGranahan et al. (2017) presented LOHHLA, a tool for the estimation of
allele-specific HLA loss from sequencing data. This study revealed the effects
of HLA LOH on early-stage NSCLC. Loss of heterozygosity of HLA locus
occurred in 40% of lung cancer patients. Furthermore, subclonal cases of HLA
LOH could be related to a higher non-synonymous mutation rate and
neoantigen burden (McGranahan et al. 2017). LOHHLA used quadratic
programming, an optimisation method, in a branch test to map the subclonal
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copy number changes on a particular branch of the tumour evolutionary tree
(McGranahan et al. 2017). LOHHLA was the first tool that allowed the
integration of mutation and copy number data through mapping subclonal

events on SNV-derived tumour trees.

Since then, Zhang et al. (2018) used a similar approach to study tumour
evolution in ovarian cancer, where they showed that subclonal HLA LOH was
linked to higher CD8+ TIL levels. They developed their own methodology to
map subclonal HLA LOH events on SNV-based tumour evolutionary trees.
This approach involved the use of Bayesian Inference and MCMC (Zhang et
al. 2018). These methods for mapping subclonal HLA LOH could be extended
to include other types of copy number alterations and to integrate multi-omics
data in general.

3.1.2 Methodology in LOHHLA

LOHHLA allows for the detection of HLA allele losses, as well as direct
mapping of the subclonal cases on the corresponding SNV-based patient
evolutionary tree (McGranahan et al. 2017). LOHHLA improves the CN
detection of the highly variable HLA loci by identifying the HLA alleles for a
particular patient and remapping the sequencing reads on these alleles to
quantify their CN states. LOHHLA determines the clonality of the event based
on the inferred CN states and in cases of a subclonal LOH event, it uses

quadratic programming (QP) to map this event on the patient tumour trees.

3.1.2.1 Clonality determination

For clonality determination, LOHHLA uses the observed copy number values,
where these are inferred CN states of the HLA alleles. In cases where the
observed copy number values across all samples are lower than 0.5, LOHHLA
considered the allele to be clonally lost. If the observed copy number values

across all the regions are all higher than 0.5, LOHHLA would determine that
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there was no LOH at all. Lastly, for cases where observed copy numbers were
varied, with some lower and some higher than 0.5, LOHHLA would determine
the allele to be subclonally lost. Only after this filtering step, LOHHLA performs

a branch test to map the LOH subclonal event.

3.1.2.2 Branch test

LOHHLA transforms the cluster CCF, the proportion of cancer cells in a
particular lineage, onto the clone CCF, the proportion of cancer cells with the
same genotype unique for that particular clone. Assuming that there has been
one and only one subclonal copy number event, LOHHLA performs a branch
test, splitting the tree at any particular branch to estimate the copy number
state before (CNpef,re) @and copy number state after (CNgs,) the branch. The
proportion of mutations in both parts of the tree can be estimated by summing
the clone CCFs in the lineage after the branch or in the rest of the tree. This
problem can be written as a system of n equations with two unknowns, where
n is the number of regions and each equation represents the relationship
between the observed, empirical copy number values for that particular region
and the linear combination of the clone CCFs multiplied by the CNgf., or
CNyesore depending on whether the clone appears within the lineage defined
by the branch or not. The expectation is that a subclonal, allele-specific copy
number loss would be detected as CNyefore =1 and CNggrer =0 when

considering the branch where the loss occurred.

The branch test aims to identify which branch best explains the observed data

as a LOH event.

3.1.2.3 Quadratic Programming
The branch test in LOHHLA utilises quadratic programming to solve the

aforementioned system of equations. Quadratic programming in LOHHLA's
branch test was used to find the best matching copy number states before and
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after each branch of the tree under certain constraints, in this case, both
solutions must be non-negative. In LOHHLA'’s branch test, the copy number
state before the event was constrained to be larger than 0.5. The solution to
the system of equations can be presented as a quadratic programming
equation (Equation 10):

1
min <—dTb +§bTDb) (10)

under constraints:
ATh > b,

where d and b are n-vectors, D is a 2n symmetric positive definite matrix, A is
an n x m matrix and bo is an m-vector (Goldfarb and Idnani 1982; 1983).

QP can naturally limit the solutions to non-negatives and is therefore ideally
suited for resolving this kind of problem since negative CN values are non-
sensical. Since the branch test in LOHHLA was designed specifically to map
subclonal LOH events of the HLA allele, it also constrained the inferred copy

number value to be at least 0.5 at the root of the tree.

In this thesis, LOHHLA’s mapping approach (LOHHLA/QP) refers to these last
two parts of the method, namely the clonality determination step and the
branch test, involving the mapping of subclonal events on the tumour

evolutionary trees.

The branch with the lowest sum of squares of residuals (RSS) is the best-fitting
model (Equation 11). However, the main problem of this methodology is the
lack of uncertainty quantification.

2
RSS = Z(CNobserved - CNpredicted) (11)

Other methods that could provide uncertainty measurement for the results of

the branch test were also explored in this thesis.
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3.1.3 Limitations of LOHHLA

One of the major limitations of LOHHLA’s mapping approach was the lack of
uncertainty quantification and the lack of measurement of goodness of fit for
the results beyond the RSS. More precisely LOHHLA/QP does not have any
indication on whether the best result was good enough or whether the second
or third results were qualitatively just as good as the first one. In addition, the
threshold approach to determining clonality did not allow for accurate
measurement of the clonality determination itself. Indeed, LOHHLA’s mapping
approach did not contrast the results with the possibility of not having any
subclonal event (i.e. null hypothesis). Lastly, the parameters for QP in
LOHHLA'’s mapping approach were specifically selected for subclonal LOH
events and thus used rigid constraints that limit the approach to only copy
number losses. A more flexible approach would allow for the mapping of copy
number gains or other data types like expression values, for instance.

3.1.4 Mapping other subclonal copy number events

and integration of multi-omics data

This study provided the opportunity to extend this approach to map different
types of subclonal copy number, gene expression and methylation changes
on the tumour evolutionary trees, beyond HLA allele losses only. Such an
approach would have to be able to provide an estimate of the uncertainty in
the results to help with their interpretation. This project focuses on the
development of a methodology specifically for mapping subclonal events,
initially for both copy number gains and losses, but that can be extended to

map other data types.

The majority of this PhD project were committed to exploring different potential
approaches to mapping subclonal events on the tumour evolutionary trees,
and the development of the methodology, including simulating noise around
the CCF for assessing the soundness of these approaches. This chapter
describes the work and reasoning behind the features included in the release
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of the tool on GitHub (v1.0.0), and the utilisation and validation of the different

functionalities.

3.2 Results

This section provides insight into how the tool was developed and why certain
features were included in the release of the tool on GitHub (v1.0.0).

3.2.1 Non-negative least squares

Non-negative least squares (nnis) is a form of least squares where coefficients
are constrained to be non-negative. Least squares is an optimisation approach
where the solution minimizes the sum of the squares of the residuals.
Residuals are the differences between the observed values and the values
fitted by the model (Figure 3-1). Note that squaring the differences leads to a
bias towards larger outliers.

Figure 3-1 Least squares approach. Black points are data points, the blue

line shows the fitted model, while the red dashed line indicates the
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difference between two observed values and two values fitted by the
model.

We explored non-negative least squares optimisation for the branch test. The
approach was implemented using the nnis R Package (Stokkum 2012). In all
cases, the results of running the branch test with non-negative least squares
and quadratic programming were identical. Both tools identified HLA LOH
events on the same branches with the same error for patient CRUK0098
(Figure 3-2).

CRUKO0098
QP nnls

Figure 3-2 Comparison of the quadratic programming (QP, on the left)
and non-negative least squares (nnls, on the right) used for branch
testing on patient CRUK0098. The dashed line indicates the branch
where HLA LOH was detected.

Non-negative least squares is an equivalent of the quadratic programming
approach currently used in the branch test. This is because non-negative least

squares minimisation:
arg min, ||Ax — y||2 (12)

under constraints:
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where A is an n x m matrix, x is an n-vector and y is an m-vector (Bro and Jong

1997), can be presented as a form of quadratic programming minimisation:

arg min(ixTQx + ¢Tx) (13)
under constraints:
x=0
where:
Q=ATAandc = —-A"x (14)

Thus, non-negative least squares was equivalent to QP and therefore provided
no advantage.

3.2.2 Deriving CCF from observed copy number

values

We also explored deriving cancer cell fractions from observed copy number
values for the purpose of mapping events on the tumour evolutionary trees.
The CCF values can be derived from copy number for each region and
mapped on the cancer evolution tree by re-clustering the somatic mutations
with copy number CCF into cluster CCFs. This could provide explicit
information regarding copy number alterations in the clustering step and
present an additional validation of quadratic programming and mutation
clustering. The conversion of the observed copy number to CCF was
performed using two different strategies, in an attempt to integrate the
observed CN values for the HLA alleles into the initial clustering of the SNV
CCFs.

The first approach focused on HLA LOH cases detected by LOHHLA where
the observed copy number was 1 in one region and lower than 1 in another. In
these cases, an assumption was made that a loss happened between the

ancestral state (CNp.rore = 1) and the descendant state (CNs¢r = 0). Thus,
the CCF derived from CN would be the CCF of the loss denoted by the
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percentage of copy number lost between the two regions. This can be
represented by the equation:

CCF.y = 1— CNy (15)
where:
CNp; =1
0< CNg, <1
thus:
CCFpy =0

CCFRZ = 1 - CNRZ

where CCF.y denotes the CCF derived from CN,,s, CNy is the regional copy
number, CNg; is copy number for one region and C Ny, is copy number for the
other region. CCF.y ranges from 0% when the CNg, is 1 to 100% when the
CNg, is 0.

This approach provided straightforward solutions in these simple cases.
Visually, one can display the CCF. onto the scatterplot with all mutation CCFs
between two regions such that the CCF.y will always cluster with the mutation
CCFs defining the clone where HLA LOH event was detected (Figure S3-1,
Figure 3-3). However, this method is only applicable to cases where the
CNpefore @and CNyyeer are known, hence it was not possible to generalise this
procedure to all types of copy number events without having an orthogonal
method to infer both the ancestral and derived states.

The second approach to deriving CCF from CN utilised the copy numbers
estimated by quadratic programming. For consistent conversion of CN to CCF

values, the following equation was used:

|CNobs - CNQP.before'
|CNQP.after - CNQP.before'

CCFoy = (16)

under constraints:
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CNQP.after * CNQP.before

where CCF.y is the cancer cell fraction for the copy number event, CN,,, is the
observed copy number value in a given region, and CNgp pefore aNd CNop o5ter
are the quadratic programming-inferred copy number states before and after
the branch, respectively.

The resulting CCF-y was then mapped onto a 2-dimensional scatter plot of all
mutation CCFs between two regions. In most cases, the CCF.y was located
close to the cluster of mutations that denoted the branch where the LOH event

occurred.

Utilising copy number estimated by quadratic programming for conversion of
CN,,s into CCF.-y (Equation 16) made it possible to extrapolate the results for
all patients regardless of the ancestral state. However, this approach required

the use of QP to infer CNyp pesore @Nd CNgpqfier and therefore was not

sufficient on its own. In one example case, the CCF.y for patient CRUK0039
pointed exactly towards the cluster, where HLA LOH was detected from branch
testing with quadratic programming (Figure 3-3, panels A-B). This result
occurred for most cases except in a few exceptions. For instance, in patient
CRUKO0O005 the CCF.y was placed visibly away from the target cluster in R3
(Figure 3-3, panels C-D). This could have happened in instances where the
noise levels in the data were too high. The example case of patient CRUK0005
demonstrate there was no cluster with a high CCF in R1, R2 but low in R3.
Cluster 3 seems to be the best approximation for the subclonal HLA LOH
event, considering the placement of the derived CCFcn close to the cluster 3,
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Figure 3-3 Mutation CCFs, HLA LOH cluster and CCF.y. Region 1 (R1) vs
region 2 (R2) (A) and R1 vs region 3 (R3) (B) for patient CRUK0039,
respectively. R1 vs R2 (C) and R1 vs R3 (D) for patient CRUK0005,
respectively. Mutations were coloured by their assigned cluster during
subclonal deconvolution using PyClone, labelled as Pyclone Cluster in
the legend. The cluster where HLA LOH was detected is highlighted by a
thicker outline of the cluster. The black cross indicates the derived CCF
from copy number (CCF.y). The placement of the black cross close to a
particular cluster denotes denotes a potential mapping of the CCFcn on
that cluster.

3.2.3 Statistical support for the branch test

In addition to assessing alternatives to quadratic programming, several
methods to provide additional statistical support to the results were explored.

3.2.3.1 Simulating noise in an artificial dataset

An artificial dataset was simulated for testing the different approaches for

uncertainty measurement. As a simple approach to simulate the noise in real

57



data, a random number was picked from a uniform distribution for different
noise ranges, from +1% to +10%, in increments of 1%. The noise was then
added to each of the cluster CCFs. 10,000 simulations were performed for
each noise level. An LOH event was simulated in four different branches from
the tree depicted in Figure 3-4 (branches 3, 4, 5 and 6) and the CN,pserved

values for each region were derived.

Cluster CCF Clone CCF

Figure 3-4 Cluster and clone CCF and tumour tree made for the artificial

dataset, coloured by clone.

As expected, the percentage of correct solutions degraded with the increase
in noise (Figure 3-5). For each tested branch, adding noise of up to £10% led
to the lowest percentage of correct answers, while with noise up to +2 all

results were still correct.
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Figure 3-5 Percentage of correct results for different maximum noise
ranges. Each bar represents 10,000 simulations. Different colours

indicate the branch where the LOH event was simulated.

Interestingly, the noise increase did not have the same consequence in all 4
branches. Results for branch 3 were the most affected by noise, with the
percentage of correct results declining to less than 50% for the highest level
of tested noise. Conversely, simulated events on branches 6 and 4 seemed
more robust to noise, with the percentages of correct answers always over
90% for branch 6 and staying at 100% for branch 4. The explanation for this
lies in the size of the lineages. While clusters 3 and 5 never represented more
than 30% of any region, clusters 4 and 6 reached at least 50% in one of the
regions (Figure 3-4), resulting in a higher signal-to-noise ratio, even in the

presence of higher noise levels.

3.2.3.2 Maximum Likelihood Estimation and

Approximate Bayesian Computation

Approximate Bayesian Computation (ABC) (Sunnaker et al. 2013) is a
computational approach for estimating posterior distributions of model
parameters using Bayesian statistics. In this case, ABC can be used to

compare the posterior probability for each branch.
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In an attempt to employ ABC, we utilised an artificial dataset with simulated
noise around CCF (Figure 3-4). The best-fitting CN states before and after
each branch of a tree using QP were calculated to provide an RSS for each
possible solution. The cluster CCFs were re-built by incorporating simulated
noise ranging from 5 to 10%. The noise was sampled from a uniform
distribution. The CCF values were truncated to fit in the range between 0 —
100% CCF. Approximate Bayesian Computation was then used to estimate
the posterior probabilities and the goodness of fit of each model (branch of the
tree). This was done on simulated data for 10,000 simulations, which resulted
in a pseudo-ABC approach that resembled maximum likelihood estimation.
Implementation of pseudo-ABC vyielded posterior distributions for different
models, which corresponded with the percentage of correct answers obtained
by running the branch test with quadratic programming. However, this
approach was very computationally intensive and other options were
considered.

3.2.3.3 Exploring bootstrapping

Bootstrapping is a test which relies on sampling with a replacement that
permits estimating the stability of a particular solution. Therefore, it provides a
measure of the uncertainty in the result. In this case, the aim was to recalculate
the cluster CCFs by sampling from the mutations in each cluster. After each
sampling, QP was used to infer the best matching branch, CNy.f... and
CNgyter, and obtain the corresponding RSS. Because of the resampling, the
bootstrapped RSS values were an average and therefore more robust than the
RSS inferred from a single branch test. Unlike pseudo-ABC or ABC,

bootstrapping was more efficient and required fewer computational resources.

Bootstrapped RSS values could be used to calculate a Bayesian Information
Criterion (BIC) and Bayes Factors (BF) for model selection.
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3.2.3.4 Filtering of results

In the initial stages of the methodology development, the QP-based branch
test identified multiple potential results for every allele. These results
underwent a filtering process to remove spurious subclonal events. Using
quadratic programming-based branch test with bootstrapping, 2056 putative
CN changes were found for the NSCLC TRACERx 100 HLA dataset
(McGranahan et al. 2017; Jamal-Hanjani et al. 2017) (Figure 3-6). These CN
changes included cases, where the branch test identified a couple of potential
events per HLA allele.

5 . , o e patient
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Figure 3-6 All 2056 putative HLA copy number events for all alleles in
every patient. X-axis shows inferred copy number before the event, and
Y-axis shows inferred copy number after. Each point denotes a branch,
coloured by the patient. The diagonal (dashed line) corresponds to
CNbefore = CNafter.

For each branch test, an RSS was obtained, which was then converted to BIC
for model selection. By bootstrapping the cluster CCFs 100 times, we
generated 100 BIC values to be averaged for every putative CN change. The
first filter involved selecting branches with a significant difference between the
BIC means of the branches. This statistical test was performed using a one-
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way analysis of variance (ANOVA) to check for significant differences between
the BIC means of all the branches for each HLA allele. Additionally, only results
with at least strong evidence for the most fitting BIC, compared to the next best
one, were considered (within a difference of 6 Bayes Factors after conversion
from BIC, as described in the later section of this chapter). Lastly, only
branches, for which at least 95% of their bootstrapped BIC values were better
than the BIC of the null hypothesis were included, resulting in 720 detected

subclonal HLA allele CN changes over 57 patients (Figure 3-7).
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Figure 3-7 720 HLA CN changes (CNbefore VS CNaster) after applying the
statistical filters. X-axis shows inferred copy number before the event,
and Y-axis shows inferred copy number after. Each point denotes a
branch, coloured by the patient. The diagonal (dashed line) corresponds
to CNboefore = CNafter.

Finally, for detection of HLA LOH events, branches were filtered to only include
solutions where CNbefore is larger than CNater by at least 0.5 for smaller CNpefore
(at most 1), and by at least 1 for larger CNbyefore (at least 2). This yielded only
68 cases of subclonal HLA LOH events in 33 patients (Figure 3-8).
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Figure 3-8 CN cases of subclonal HLA losses in 33 patients. X-axis shows
inferred copy number before the event, and Y-axis shows inferred copy
number after. Each point denotes a branch, coloured by the patient. The

diagonal (dashed line) corresponds to CNyefore = CNagter-

3.3 MAPping SubClonal Events method

3.3.1 Overview of the tool

MAPping SubClonal Events (MAPSCE) is a computational approach designed
to map subclonal events on tumour evolutionary trees. It simultaneously infers
the clonality of an event and, in the case of a subclonal event, maps it on the
tree while providing robust measurements of goodness of fit. It leverages multi-
region sequencing data. MAPSCE clusters the mutations based on their
cancer cell fraction to calculate the cluster CCF. Using the cluster CCF, the
mutational CCF, the tumour evolutionary tree and the observed data (Figure
3-9), MAPSCE performs a branch test using quadratic programming on every
branch of the tree in turn, by solving the system of equations (Figure 3-10).
The method assumes that, for a particular gene or locus, at most one subclonal
event can take place. This assumption allows for more straightforward analysis
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with higher computational efficiency. However, this assumption reduces the
complexity of the biological data, which sometimes may involve repeated
alterations affecting a particular gene or locus. The tool resamples the cluster
CCF and runs the branch test 100 times, from which it derives an average
bootstrapped RSS value for each branch, and the null hypothesis (the root), to
assess how well a clonal event matches the observed CN values. The
bootstrapped RSS values can then be converted into Bayesian Information
Criterion for comparison of the distributions of the BIC for different branches
and the null hypothesis (the trunk), and the BIC values can be, in turn,
converted into Bayes Factors. MAPSCE uses the Bayes Factors for model
selection (where each branch is a model) by assessing the strength of the
evidence for each branch against the top-scoring one. In cases where more
than one good solution is found, MAPSCE provides a consensus average copy
number state for the clones where the solutions agree with each other. Lastly,
where only two regions are available, the tool can automatically run without
bootstrapping to avoid adding more noise to the data. Each feature of the tool

is described in detail in the following sections.
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Figure 3-9 The tool relies on the use of multiregion sequencing data, i.e.
mutational and cluster CCF, as well as the tumour evolutionary tree.

3.3.2 Quadratic Programming
As previously described, the tool utilises quadratic programming for its branch
test to find the optimal solution for every branch of the tree and finally choose

the most likely branch or branches where the event might have happened
(Figure 3-10). Unlike LOHHLA/QP, where the copy number states are
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constrained to CNy.f,, being at least 0.5, and the CN, .., being non-negative,
the default settings in MAPSCE constrain CNyefore @Nd CNgseer to be non-

negative. However, the tool has been designed to allow the user to set custom

constraints on CNpef,re @and CNyg,, for cases where the type of CN event or

any other event has been pre-determined in the dataset.

CNafter

Copy number
R1 R2 R3 R4
04 0.3 0.5 0.8

R1:04 = + 50CNafter
R2:0.3 = + 70CNafter
R3:0.5= + 60CNafter
R4:0.8 = + 20CNafter
— =0.73 & CNarer =0

C N before

Figure 3-10 MAPSCE’s branch test uses the observed data, i.e. patient
tree, the absolute copy numbers, and the cluster CCFs, and can be
represented as a system of equations with two unknowns. The value
CNyeporerepresents the CN state before the tree and CN 4., represents
the CN state after the tree. The coloured circles represent the clones of
the tree (the colours of the circles are arbitrary), while the coloured areas
denote the CN states before (orange) and after (green) the chosen
branch.

Quadratic programming is used to solve the system of equations, where each
line of equations represents a different region of the dataset. The left side of
the equation represents the observed data, copy number in the example
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provided, while the right side of the equation estimates the proportion of
mutations of two parts of the tree, the cluster CCF of the lineage before
(ancestral state) and after (derived state) the branch where the event happens.
This is a system of n equations (where n is the number of regions) with two
unknowns, the copy number value before the branch (CNys,,.) and the copy
number state after the branch (CNg ¢ ):

Ry: CNops,=CCFpefore, X CNpefore + CCFgpter, X CNygrer

Ry: CNops,=CCFperore, X CNpepore + CCFyafter, X CNggrer

Rn: CNobsn=CCFbeforen X CNbefore + CCFaftern X CNafter (17)

CN,ps is the observed copy number, CCF., is the cluster CCF of the lineage
after the branch and CCF,.5,,. refers to the rest of the tree, in this case 1 —
CCFqfter, Which can be calculated by subtracting CCFp.ror from 100 or
subtracting 100 from CCFj.f,,. in cases where the CCFs erroneously add up

to more than 100%.

For every QP solution, an RSS is calculated (Equation 11) where a lower RSS
represents a better fit. However, MAPSCE converts the RSS into BIC first and

then into Bayes Factors for scoring the branches.

3.3.3 Bootstrapping

As previously described, bootstrapping is a resampling technique where
sampling is performed with replacement, and it can be used to provide a
measure of accuracy to a particular estimate. In MAPSCE, bootstrapping is
performed by resampling mutations from each cluster independently. In each
case, the cluster CCF is recalculated as the average CCF of the sampled
mutations. This allows MAPSCE to explore the uncertainty in the cluster CCFs
and how that affects the mapping of the subclonal events. By default, 100
bootstraps are performed per branch and an RSS for every bootstrap is
available, summarised as a mean RSS for each branch (Figure 3-11).
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Figure 3-11 Cluster CCF is bootstrapped 100 times from the mutation

100 bootstraps

CCF through sampling with replacement.

3.3.4 Bayesian Information Criterion
The bootstrapped RSS values are converted into Bayesian information
criterion for each sample and then used for model comparison (Schwarz
1978). BIC is well suited for this application as it is used for model selection
under a finite set of models, which consider both the maximised likelihood
function and the number of parameters of each model. This results in selecting
a model that is the most fitting from the ones compared while punishing
overfitting by weighting the number of parameters of the model (Equation 18).

BIC =In(n) k —21In(L) (18)

where: k is the number of parameters, L is the maximized likelihood function
and n is the number of data points.
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In this context, each branch is a possible model. This includes a distinct model
for the trunk, corresponding to the null hypothesis, as it models the special
case where no subclonal event can be detected (Figure 3-12). All subclonal

models have two parameters (CNperore @aNd CNgyseer) While the null has only

one (since CNperore = CNgfter)-

Figure 3-12 MAPSCE includes null hypothesis directly during its model

selection.

In this case, the maximized likelihood function is equivalent to RSS. When
comparing models, the lowest BIC denotes the most fitting model. This
approach provides an objective criterion when choosing the most fitting
branch. Because of the bootstrapping, comparing BIC in MAPSCE involves
comparing the distributions of BIC for the different branches. It is worth noting
that bootstrapping does not apply to the tree trunk as the CCF for the whole
tree is, by definition, 100 (Figure 3-13). Since the model for the trunk
represents the null hypothesis, we only consider the branches for which at
least 95% of the bootstrapped BICs are lower than the null. If no branch fulfils
these criteria, the null hypothesis is not rejected and MAPSCE concludes that

no subclonal event can be inferred.
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Figure 3-13 Bootstrapped BIC distributions are compared to each other,

and to the null hypothesis BIC.

3.3.5 Bayes factor comparison

After considering the distribution of the bootstrapped BICs, the mean of the

BICs was converted into Bayes Factors:

BF = e(w)

(19)
where BF is the Bayes factor for the chosen branch, BIC, is the BIC value of
the next best branch and BI(; is the BIC value of the top branch. Bayes factors
of every branch of a particular allele were then compared to the BF of the top
branch to determine the strength of evidence for the most fitting one according

to this grading (Kass and Raftery 1995):

Table 3-1 Grading strength of BF difference between the lowest and the

second-lowest model (Kass and Raftery 1995).

Evidence for most fitting model ABF to the top branch's BF
positive 0-6
strong 6-10
very strong >10

69



For a secondary model to be considered a good result, the difference between
the model’s BF and the best model's BF had to be lower than 6 ABF. MAPSCE
considers both models to be sufficiently good. Lastly, if the top subclonal
model's BF is not sufficiently better than the null (ABF > 6) then the null
hypothesis is not rejected. This conservative approach ensures that a
subclonal event is only called if there is sufficient evidence to reject the null
hypothesis. Importantly, the grading for assessing the strength of the evidence
for model comparison using BFs was derived in a mathematical model without
the biological context provided in this analysis. Other phylogenetic tools have
previously used BFs for model comparison with a high evidence for the strong
support of the model of 20 ABF (Drummond and Rambaut 2007). Thus, we
decided to only employ a very conservative approach for considering the
proximity between two models of 6 ABF rather than 10 — 20 ABF.

When considering copy number events, rejecting the null can be interpreted
as either a clonal CN event or a lack of CN. The interpretation is left to the user
as it is dependent on the type of data. For instance, the expectation will be
different depending on whether allele-specific or global CN is considered.

3.3.6 Post-mapping filtering

In addition to the statistical filters, MAPSCE also considers the biological
relevance of the result. For CN events, MAPSCE considers the difference
between CNprore @and CNgseer. It requires this difference to be at least 0.4 for
a result to be considered subclonal. However, this threshold can be adjusted
to cater for different types of data. For copy number specifically, especially
allele-specific copy number events, 0.4 has been identified as the most fitting
threshold for the event to be considered subclonal. We examined the
distribution of the absolute differences between the CNp.fore and CNgsier
inferred by MAPSCE for simulated subclonal CN events with 0% noise
(described later in Chapter 4) based on trees and mutational CCFs from the
NSCLC TRACERx 100 data (Jamal-Hanjani et al. 2017). The 0.4 value was
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chosen to prevent overcalling subclonal events while still providing a high
detection rate (Figure 3-14).
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Figure 3-14 Absolute difference between CNy.s,.. and CNs,, for the
simulated subclonal CN events inferred by MAPSCE.

3.3.7 Consensus mapping

In some cases, there is more than one good result that is statistically
significant and significantly better than the null hypothesis, meaning 95% of
bootstrapped BICs are lower than the null hypothesis’ BIC, the Bayes Factor
is within 6 ABF to the top model’s BF, the BF exceeds null hypothesis’ BF by
6 ABF, and the difference between CNp,¢,r. and CNyy.,, is at least 0.4 (in

default settings for subclonal copy number events).
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Figure 3-15 Consensus mapping. Dashed lines denote branches which
branch test identified as the best answers. On the left side the simulated
event, in the middle the two good results and on the right side the

consensus mapping for the tree.

In these cases, each model produces an inferred copy number state for each
clone (Figure 3-15). MAPSCE consolidates the results by calculating the
average of the inferred copy number states for each clone. This is done for all
clones where the different models agree. In practical terms, MAPSCE
calculates the mean of the inferred CN states for each clone and calculates
the difference between individual inferred CN states and the mean. If for a
particular clone, any of these differences are larger than a set threshold (by
default 0.1), the clone is left without a consensus CN state. If, following
consensus mapping, fewer than two clones have a consensus state, the top-
scoring solution is selected instead. The equations for consensus mapping

testing as well as calculations for an example case were:

Resulty: CNpgsore = 0.84 & CNfrer = 0.06
Resulty: CNpgsore = 0.86 & CNgfper = 0.01

CN, + CN,
Consensus testyefore: eforel - eforez _ CNpefore1
< consensus threshold
CN, + CN,
Consensus testyefore2: eforel - eforez _ CNpefore.2

< consensus threshold

CNafter.l + CNafter.Z
n

< consensus threshol

Consensus test,grer 1: — CNgftera
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CN + CN,
Consensus testyfier o: after1 " afterz _ CNgfier2
< consensus threshold
0.84 + 0.86
Consensus testyefore.1: — - O.84| <0.1
0.84 + 0.86
Consensus testyefore.2: — - O.86| <0.1
0.06 + 0.01
Consensus testggier 1: — - 0.06| <0.1
0.06 + 0.01
Consensus testgfier o: — - 0.01| <0.1
) 0.84 + 0.86
Consensus mappingpesore: CNpefore = — = 0.85
) 0.06 + 0.01
Consensus mappingasrer: CNogrer = — = 0.035 (20)

3.3.8 Possible modifications to the default

algorithm

3.3.8.1 Mapsce2r

Following testing with the simulated data (described later in Chapter 4), we
identified the number of regions as a limitation of the tool’s performance.
Specifically, for cases, where only two regions are available, MAPSCE
automatically performs all of the aforementioned calculations without
bootstrapping. Thus, rather than comparing the bootstrapped BICs, only single
BIC values for one branch test per branch are compared. This feature,
mapsce2r, allows for improved mapping accuracy for cases with two regions
only, since no additional noise from the bootstrapping is added to the data. For
more than two regions, bootstrapping proved to be a feature that considerably
improved the mapping accuracy. These results will be covered in Chapter 4.

Furthermore, testing the tool on simulated data also showed that in all cases,

but especially the ones with two regions, setting specific constraints on the
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CNpefore @nd CNgyfer for the data based on the expected type of events

showed great improvement to the mapping accuracy (Chapter 4).

3.3.8.2 Comparing cluster CCF and clone CCF

As described previously, cluster CCF represents the proportion of cells
harbouring a particular set of mutations. This is the proportion of cells in a
particular lineage. In the initial LOHHLA mapping approach, cluster CCF was
converted into clone CCF which was then used for the quadratic programming-
based branch test (McGranahan et al. 2017). Clone CCF is the proportion of
cells with the same genotype, unique for that particular clone. Figure 3-16
shows the example tree, copy number data, cluster, and clone CCF with the
example calculations of the CN states before and after the branch. In an ideal
scenario, the calculations using cluster CCF and clone CCF should be
identical. However, converting cluster CCFs to clone CCFs is fallible due to
the estimated clone CCFs oftentimes not adding up to 100%. This makes using
cluster CCF the safer option. Additionally, there is circularity in converting
cluster CCFs to clone CCFs only to then add up the clone CCFs for clones
before and after the tested branch.
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Figure 3-16 Example tree, copy number data and cluster CCF, and clone
CCF with their respective calculations of the CNpefore and CNater.

Instead of converting cluster CCFs to clone CCFs, cluster CCF can be directly
used in quadratic programming. Assuming that the trunk always denotes 100%
CCF, the branch tested in the branch test splits the tree towards the cluster
CCF of the lineage after the branch, and the cluster CCF of the lineage before
the branch. Thus, conversion to individual clone CCFs of every clone is
avoided. Consequently, branch testing with just cluster CCF lead to the more
efficient calculation.

These two approaches were tested against each other on the HLA LOH events
in the TRACERx 100 NSCLC dataset. The accuracy of the two approaches
was dependent on the RSS between the inferred CN before and after the
branch using quadratic programming and the closest integer. Equation 21
describes the RSS calculation for this test. As established before, the better
the result was denoted by the lower RSS. Let [x] mean the integer closest to

x (rounding up for half — integer values):
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RSS = |CNbefore - [CNbefore”Z + |CNafter - [CNafter”Z (21)

where RSS is the sum of squares of residuals, CNyrore is the copy number

state before the branch and CN, .., is the copy number state after the branch.

The RSS for cluster CCFs was slightly lower than the RSS for clone CCFs
(39.97 for cluster CCFs and 40.92 for clone CCFs) when looking at the CN
states before and after for all the branches of every patient of TRACERx 100
(Jamal-Hanjani et al. 2017). When comparing the good branches only, the
RSS for cluster CCFs was still slightly lower than the RSS for clone CCFs
(0.0210 for cluster CCFs and 0.0215 for clone CCFs). Thus, while the tool
allows the user to choose between using the cluster CCFs or clone CCFs in
quadratic programming, the cluster CCF is the default option.

3.3.9 Using MAPSCE

3.3.9.1 Inputs

MAPSCE requires multi-sample sequencing data. As input, four types of
information need to be provided, which include:

- Observed data (i.e. regional copy number value)
- Mutation CCF (required for bootstrapping specifically)
- Cluster CCF

- Tumour evolutionary tree
The tool provides two different example inputs, including copy number data,

mutation CCF, cluster CCF, and tree for a case with two regions only and for

another case with more than two regions.
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3.3.9.1.1 Observed data

Observed data need to be provided as a numerical vector containing values
for each region (minimum two regions). For example, for copy number, each
respective value in the numerical vector would be the observed copy number

value for a particular region.

3.3.9.1.2 Mutation CCF

Mutation CCF needs to be provided as a data frame, where each row
represents a particular mutation, while the columns denote the corresponding
CCF of that mutation in each region. The CCF values in the mutation CCF
should be in decimals, rather than a percentage. Two additional columns
named “PycloneCluster” and “CleanCluster” need to be provided. These
columns are included in the output of the upstream analysis of the NSCLC
TRACERXx 100 methodology (Jamal-Hanjani et al. 2017) involving PyClone
(Roth et al. 2014). “PycloneCluster” is the assigned cluster of the mutation,
while the “CleanCluster” denotes whether the cluster passes through two
filters. The first filter checks the size of the cluster and whether it has at least
5 mutations. The second filter tests whether the cluster is copy number driven,
i.e. whether the cluster is absent because of a copy number loss rather than
the fact the mutations were never present. “CleanCluster” values need to be
either 1 or 0, where 1 shows that the cluster has passed the aforementioned
filters to be considered for the analysis, while 0 suggests the cluster and the
mutations should be disregarded. This format is based on the output of
PyClone (Roth et al. 2014) and reflects the results produced in NSCLC
TRACERX 100 project (Jamal-Hanjani et al. 2017).

3.3.9.1.3 Cluster CCF

While this information can be derived from the mutation CCFs, these are only

required for bootstrapping. When no bootstrapping is used, MASPCE uses the
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cluster CCFs instead of the mutation CCFs. Cluster CCF needs to be a matrix,
where each column represents the different regions and the rows represent
the different clones. The naming of the rows in the cluster CCF should
correspond to the “PycloneCluster”, specifically the ones marked as suitable
for the analysis (“CleanCluster” = 1), while the regions in the cluster CCF
should be identical to the regions in the mutation CCF data frame. Each
respective CCF value in cluster CCF should be a percentage between 0 and
100.

3.3.914 Tumour evolutionary tree

Finally, MAPSCE requires a tumour evolutionary tree, in the form of a matrix
with two columns. In this matrix, the first column denotes the ancestral clone
(parent), while the second column denotes the descendant one (child). Thus,
every row of this matrix denotes a branch. By definition, the clone present in
the first column only is the root node, while all the clones in the second column
only are the leaves (tips) of the tree. Every value of the matrix should be a

character vector.

3.3.9.2 Other parameters

The tool allows the user to change other parameters, which include:
- the number of bootstraps (by default 100 bootstraps),
- the option to run bootstrapping (by default bootstrapping is used, unless
there are only 2 regions in the data),
- the option to use clone CCF for quadratic programming (by default the
tool uses cluster CCF for QP),
- the option to set the constraints in the quadratic programming on the
before and after states (both by default 0).
Furthermore, the tool can print the raw matrix of results and the mapping

duration.
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3.3.9.3 Interpretation function

The tool includes a wrapper function for interpretation of the raw results of
MAPSCE, called interpret_mapsce(). This function provides the interpretation
of the mapping results of MAPSCE, integrating the consensus mapping as well
as automatically determining the clonality for the user. The input for this
function requires the output of MAPSCE and the patient tree used for the
output of MAPSCE. Furthermore, this function allows the user to change the
minimum difference between the before and after states for the event to be
considered subclonal (by default 0.4), the consensus threshold (by default 0.1)
and the format of the output (by default a data frame).

3.3.9.4 Outputs

There are two outputs to the tool. The first output is the output of the
MAPSCE() function, which is the raw mapping result for a particular gene. This
output includes
- the branch identifiers denoted by the clone which the branch precedes,
i.e. branch is the branch directly before clone 5,
- null hypothesis identifier,
- QP-inferred before and after states,
- number of regions and clones,
- statistics for model selection with a summary of whether the result
passes all the statistical filters, including:
o RSS
o number of bootstrapped BICs better than the null BIC,
o the mean BIC,
o filter for whether the Bayes Factors are within 6 ABF to the top
one.
The results are sorted by the good solutions at the top, and then by ascending
BIC.
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The second output is the result of the interpret_mapsce() function, which is the
interpretation function for the raw mapping results of MAPSCE. This output
includes:
- the branch identifier,
- the consensus mapping, containing the consensus states for clones of
the tree, where the agreement was found,
- the clonality of the event mapped (subclonal or null/clonal) inferred by
MAPSCE,
- the consistency filter, containing information on whether there were at

least two good solutions in agreement.

3.4 Discussion

The increased generation of multi-region sequencing data improved the
understanding of tumour evolution dynamics (Yan et al. 2019; Gerlinger et al.
2012; Jamal-Hanjani et al. 2017). Increasingly new methods have been
developed to analyse the generated data (Van Loo et al. 2010; Roth et al.
2014; Deshwar et al. 2015; Niknafs et al. 2015). However, the majority of the
work has focused on single-omics data, and there has been an increasing

need for tools designed specifically for the Integration of multi-omics data.

McGranahan et al. (2017) were the first group to present a method to integrate
subclonal copy number losses with SNV events in the context of phylogenetic
tumour evolution. Their method, LOHHLA, helped identify losses of HLA as
distinct events occurring on separate branches of four patients’ tumour
phylogenetic trees, indicative of parallel evolution. The same HLA alleles were
subject to loss on those distinct branches, suggesting that the losses of those
HLA alleles were required for subclonal expansion (McGranahan et al. 2017).
LOHHLA was a proof of concept study of mapping of subclonal LOH events

on a tumour evolutionary tree.

One important distinction between MAPSCE and LOHHLA is their clonality
determination (Figure 3-17). As mentioned previously, LOHHLA relies on a
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heuristic approach based on the observed copy number states in the regional
data to determine clonality of the events. LOHHLA then maps the pre-
determined subclonal events on a tumour evolutionary tree. Conversely,
MAPSCE uses quadratic programming to simultaneously determine the
clonality of the events and map them on tumour evolutionary trees (Figure 3-
17).
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Figure 3-17 Comparison of the clonality determination between MAPSCE
and LOHHLA/QP.

This chapter introduced MAPSCE, a tool for mapping subclonal events on
SNV-based tumour trees. MAPSCE was specifically designed to handle
various types of copy number losses or gains but can accommodate different
types of data as well. This chapter detailed the exploration of various methods
and algorithms considered during the development of the tool.

3.4.1 Limitations and future work

Deriving CCF from observed copy numbers showed great potential for branch
testing, as well as improving the process of clustering of the mutations.

Deriving CCF for patients where CN,pserveq 1S 1 in @ region and a fraction
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(partial loss) in another yielded similar results compared to running quadratic
programming, based on the cases where this approach was tested. However,
extending this method for handling more complex CN events required
estimating the ancestral and derived CN states. This further required the use
of quadratic programming. This approach was mainly conceived to provide
additional validation for the results obtained with quadratic programming.
However, it was deemed inappropriate because of its circularity: QP used
CNypservea 10 infer the best fitting branch, and CNperore and CNgysier; these

values were then used to derive the CCF.y, necessarily resulting in CCF values
close to the ones for the mutations defining the best fitting branch. Further
extension of this approach could be useful if those derived CCFs could be used
to re-cluster the mutations, leading to more accurate cluster CCFs and trees
that already contain information about certain subclonal events. However, this
would still require defining original clusters without the CCF.y beforehand to
then derive the CCFy and re-cluster all the CCFs. One drawback of such a
method is that the CCF;y would be skewed towards the original mutational
CCFs.

The results of the initial noise simulations were intuitive with smaller clusters
being more susceptible to noise. All things considered, one of the confounding
factors was identified for further tool development; events simulated on smaller
clusters yielded less reliable results. These initial noise simulations were
extended to simulate other kinds of CNA for testing the methodology (Chapter
4).

The attempt at using ABC for the branch test was done on simulated data for
10,000 simulations, which resulted in a pseudo-ABC approach that resembled
maximum likelihood estimation. Ideally, using ABC in its original formulation
would require sampling from the possible solutions for CNbefore and CNatter,
which would effectively require a larger number of simulations to sample both
these values as well as the different branches. The issue with the full
implementation of ABC was how computationally expensive it would be.
Ideally, each ABC simulation would include re-clustering of all mutations,
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however, this would require a very high number of simulations to obtain stable
results. Even a simpler sampling approach would require considerable
computational resources to run ABC on each patient and every gene in a time-

efficient manner.

The filtering process of the results after mapping with a QP-based branch test
allowed for accurate detection of the clonality of the events. While the filtering
approach limited the number of potential results of MAPSCE, they needed to
be refined, as they still were not sufficient to pinpoint the exact branch where
the event occurred in certain cases. Despite the filters, the results still included
too many potential branches where the LOH event was likely to map without a
robust criterion of distinguishing between the solutions. Furthermore, the
filtering needed to be extended to also allow for mapping of different copy
number changes and other types of events, rather than just CN LOH events.
Thus, the statistical filters were further refined as described and then included
in the release of the tool on GitHub (v1.0.0). Together with consensus
mapping, the filtering approaches allowed for a more accurate determination
of clonality and mapping of events.

While both MAPSCE and LOHHLA/QP rely on quadratic programming in their
branch test, MAPSCE includes additional statistical features to provide a more
robust model selection and a measurement of the goodness of fit of the results.
Finally, adding null hypothesis testing directly to the branch test and allowing
for either more generic or ad hoc constraints in the quadratic programming
compared to LOHHLA allows for the mapping of different data types compared
to just HLA LOH events.

The tool, MAPping SubClonal Events, for mapping subclonal events on the
tumour evolutionary trees was developed as an R package, available for
download on GitHub (https://github.com/MarkTranHS/MAPSCE). In the future,
a release for CRAN is also planned. However, that requires additional work to

test the software on various operating systems.
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In summary, these results present the development and initial testing of the
various features included in MAPSCE. The next chapter will describe the
testing on simulated datasets to assess the performance of the tool.
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Chapter 4 Tool validation using simulated copy

number events

4.1 Introduction

The timing of mutational events in cancer provides an insight into tumour
evolution, with direct implications for improving patient diagnosis and
treatment. Studies have shown how phylogenetic reconstruction of cancers
allows for the identification of new subclonal driver events as well as the
labelling of previous drivers based on their role in tumour initiation, progression
or maintenance (Gerlinger et al. 2012; 2014; Boyle et al. 2021). Nik-Zainal et
al. (2012) identified a dominant subclonal lineage comprising more than 50%
of tumour cells in every tumour of 21 breast cancer patients using phylogenetic
reconstruction. Jamal-Hanjani et al. (2017) have shown that the late subclonal
mutations in tumour-suppressor genes occurring after genome doubling
predominantly affected only one allele, suggesting that late subclonal events
of tumour suppressor genes (TSGs) were often passenger genes, rather than
driver events. Miura et al. (2022) have demonstrated how, in lung cancer
patients, the influence of smoking-related mutational signatures decreases,
while the influence of APOBEC mutational signatures increases during later

stages of tumour evolution.

Mapping multiregion copy number data on tumour evolutionary trees improved
the understanding of mechanisms underlying tumour evolution in NSCLC
(McGranahan et al. 2017) and ovarian cancer (Zhang et al. 2018). In three out
of four high-grade serous ovarian cancer patients, samples with subclonal HLA
LOH also had the highest epithelial CD8+ TIL densities (Zhang et al. 2018).
Subclonal HLA LOH was also linked to subclonal neoantigen depletion in
HGSC. McGranahan et al. (2017) further suggested that subclonal HLA LOH
is an immune escape mechanism which occurs late in the cancer evolution
and facilitates subsequent subclonal expansion. While LOHHLA presented a
novel framework for tracking tumour evolution, it lacked a measure of

goodness of fit of the results, and its mapping was limited to subclonal HLA
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LOH events. Tools for the integration of different types of events extending
beyond subclonal LOH in tumour evolutionary context on phylogenetic trees
are still lacking. Different approaches were explored and finally, MAPSCE was

developed as a new tool to tackle this problem (Chapter 3).

Simulating datasets has always proved to be an useful tool in testing new
methodologies in all fields including cancer research (Miller et al. 2014; Roth
et al. 2014; Deshwar et al. 2015), allowing for a controlled environment to
explore different parameters and optimise the performance of a new algorithm.
This chapter presents the testing of MAPSCE on different simulated datasets
as well as a comparison of the mapping accuracy of the tool with other existing
methodologies. We have utilised the simulated datasets to optimise the
performance of various features of the tool, such as bootstrapping and the
incorporation of constraints for patients with two regions and more than two
regions sequenced. The simulated datasets also allowed us to explore the
noise present in the trees provided in the NSCLC TRACERx 100 dataset
(Jamal-Hanjani et al. 2017).

In this chapter, the simulated events for patients with two regions sequenced
are henceforth referred to as “events with two regions”. Analogically, simulated
events for patients with more than two regions sequenced are henceforth
referred to as “events with more than two regions”. As stated in the previous
chapter, we identified the number of regions as one of the factors affecting the
accuracy of the results. Having only two regions sequenced leads to an issue
of overfitting, as we provide quadratic programming with a system of two
equations with two unknowns. As a result, when evaluating the performance
of the tools, we categorised the results based on clonality and number of

regions.

Additionally, we measured the performance of the tools based on their recall,
the percentage of simulated events that were correctly identified, and their
precision, the percentage of the identified results that were correct. The recall
and precision can be measured at different levels. In this chapter, we
examined either “perfect performance” (or “perfect recall” and “perfect
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precision”), where the clonality, branch and CN states have been correctly
inferred, or the performance for less stringent criteria as well. These criteria
were nested within each other. The “clonality level” involved correctly
determining an event as clonal or subclonal, as appropriate. The “branch level”
for subclonal events referred to correctly identifying the branch where the
subclonal event occurred or the mapping of the event on the trunk for clonal
events. The “CN level” denoted correctly predicting the clonality, the branch
and the CN states (within a tolerance of 0.3). The majority of the results in this
chapter were tested for perfect performance (recall or precision) unless
otherwise specified. Finally, the simulated events in this chapter included the
addition of noise. For each event, the noise value denoted the maximum level
of noise that could have been added to a particular simulated CN event. As
such, a 15% noise “range” or “level” henceforth referred to +15% noise, i.e. up
to 15% added or subtracted to the CN (a CN range of 0.85 - 1.15 CN in 15%

noise range for CN = 1).

4.2 Results

4.2.1 Testing bootstrapping and constraints

MAPSCE allows the user to choose whether to use bootstrapping and whether
to set custom constraints on the inferred results. We examined the effects of
the constraints and bootstrapping on MAPSCE's recall to determine suitable
default values for these parameters (Figure 4-1). When using bootstrapping,
MAPSCE was run with 100 bootstrap samples. When using constraints, these
were CNperore higher or equal to 0.5 and CNarer higher or equal to 0. Otherwise,

both CNbpefore and CNarer were forced to be non-negative.
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Figure 4-1 Testing of MAPSCE’s features (boot_off — without
bootstrapping, boot_on - with bootstrapping, constraint - with
constraints, no constraints if not specified), and their respective effects
on recall in the simulated LOH events dataset with different noise ranges
(0 — 30%). Top: clonal; bottom: subclonal; left: two regions; right: more

than two regions.

The recall generally decreased with increasing noise levels, with subclonal

events having a more pronounced decrease than clonal events.

For clonal events, MAPSCE maintained a high recall above 75% for every
noise range, regardless of the number of regions or the different combinations
of parameters. MAPSCE with bootstrapping in events with two regions
performed the worst, with its recall dropping below 90% in 20% and 30% noise

levels.

It was more challenging for MAPSCE to correctly map subclonal events with
two regions sequenced. In those cases, the addition of a constraint improved
the recall by ca. 25 — 40%. Without these constraints, quadratic programming
employed in MAPSCE could easily generate mathematically valid, albeit
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biologically non-sensical results where the inferred event is a gain from CN=0
to CN=1 on the sister lineage rather than a loss on the correct lineage. This
was especially prone to happen in cases with two regions where the cluster
CCF of the root node was small in all regions (Figure 4-2). The interpretation
function in MAPSCE already filters out these non-sensical results. However,
providing quadratic programming with appropriate constraints results in a
higher number of results appropriate for the biological context of the dataset.

OO ® @ @

7

1 (%)

Figure 4-2 Example of common error by MAPSCE when no constraint

was provided. Instead of inferring the correct LOH event (A), MAPSCE
inferred a loss in the sister branch when up to 10% noise is added (D). B
and C show the clone CCF in the two regions for this patient (CRUK0010).
In this case, the clone CCF for the root node was small in both regions
(3% and 15%) which prevented the precise mapping of the event despite
the result being correct for all but the root node. Figure produced by

Javier Herrero.

The advantage of using bootstrap for events with two regions was less clear.
Bootstrapping improved the clonality determination, however it also decreased
the likelihood of identifying the correct branch (Figure 4-3). However, this
affected mainly the smaller clusters (0 — 40%). For lineages with a CCF larger
than 60%, the mapping recall was noticeably better than on smaller lineages
(Figure 4-3).
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Figure 4-3 Insight into various outcomes of MAPSCE with constraints for
events with two regions with (bootstrap) and without (no boot.)
bootstrapping in different noise ranges (0 — 30%). The cluster sizes (0 —
100%) relate to subclonal events, while the right category shows clonal

events. Bootstrapping improved clonality determination, however led to
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a lower likelihood of identifying the correct branch. Figure produced by

Javier Herrero.

For subclonal events with more than two regions, MAPSCE'’s recall declined
considerably with increasing noise range (ca. 5-10% decline for every 5%
noise increase). However, the tool still maintained above 50% mapping
accuracy across all noise ranges (Figure 4-2). For subclonal events with more
than two regions, the addition of bootstrapping improved the recall by ca. 10-
15% in every noise level. The inclusion of constraints still generally improved
the results in simulated subclonal events with more than two regions, but the
improvement was less pronounced (ca. 5-10%) compared to the addition of

constraints in subclonal events with two regions.

These results suggest that including constraints to restrict the solution space
was the largest contributor to MAPSCE's improved performance for subclonal
events with two regions. In these cases, bootstrapping improved the clonality
determination, while reducing the likelihood of correctly identifying the correct
branch. Conversely, for subclonal events with more than two regions, the
addition of bootstrapping was the largest contributor to MAPSCE’s improved
recall. The advantages of including constraints were less prominent in this
case, however including both the bootstrapping and the constraints led to the
largest improvement in the performance for subclonal events with more than

two regions.

4.2.2 Comparing MAPSCE to LOHHLA/QP on a
dataset with simulated loss of heterozygosity

events

We compared MAPSCE to LOHHLA/QP using the simulated loss of
heterozygosity events, as LOHHLA’s mapping approach was specifically
designed to address these types of events. We ran quadratic programming in
MAPSCE with the same constraint as in LOHHLA, namely the inferred

ancestral copy number state (CNpefore) had to be at least 0.5. We employed the
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default parameters of MAPSCE for bootstrapping. These included
bootstrapping for events with more than two regions but none for events with
two regions. In this analysis, we looked at the aforementioned different levels

of correctness, the clonality, the branch and the CN state.
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Figure 4-4 Recall of LOHHLA/QP and MAPSCE on simulated LOH events
with different noise levels (0 — 30%). Top: clonal results; bottom:
subclonal results; left: cases with two regions only; and right: cases with
more than two regions. Different intensity levels show the various criteria
of correctness considered. Clonality: correctly identified as a clonal or
subclonal event; branch: for subclonal events, correctly identified the
branch where the subclonal event occurred; CN: correctly predicted the
clonality, the branch and the CN states (within a tolerance of 0.3).

Both tools maintained high recall above 95% in identifying all clonal events
regardless of the number of regions (Figure 4-4). Only MAPSCE’s
performance degraded in clonal events with two regions to ca. 95% when the
noise ranges reached 25% — 30%.

MAPSCE consistently outperformed LOHHLA/QP in terms of recall for

subclonal events, across all noise ranges. The advantage of MAPSCE’s

mapping accuracy was more evident in subclonal events with more than two
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regions (difference of ca. 3 — 15% depending on noise) compared to subclonal
events with two regions (difference of ca. 8 — 23% depending on noise).
MAPSCE maintained a recall of over 75% with noise levels up to 20% in
subclonal events with more than two regions. However, as the noise levels
increased, MAPSCE'’s improved recall over LOHHLA/QP decreased,
suggesting MAPSCE’s lower tolerance for higher noise levels (25 — 30%).

MAPSCE was considerably better than LOHHLA/QP at correctly identifying
subclonal events, regardless of the number of regions (Figure 4-4). Even in
the presence of large noise, MAPSCE still remained capable of correctly
discriminating clonal from subclonal events, although the noise affected its

ability to correctly identify the branch affected by the LOH event.

As previously mentioned, increasing noise levels led to a higher decrease in
MAPSCE'’s performance compared to LOHHLA/QP’s. The increasing noise
levels mainly affected the smaller, rather than the larger branches.
Consequently, we hypothesised that LOHHLA/QP was a more conservative
tool, which did not consider smaller clones and mainly mapped events on the
larger clusters. Conversely, bootstrapping in MAPSCE led to increased
sensitivity for subclonal events simulated on smaller clusters, at the cost of

lower tolerance of increasing noise levels.

We tested this hypothesis by comparing the recall and precision of both tools
in different cluster sizes. For this analysis, we considered the maximum size
of a cluster among all regions as the cluster size, i.e. the size of the cluster in

the region where it is the largest.
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Figure 4-5 Recall (A) and precision (B) of LOHHLA/QP and MAPSCE in
different cluster sizes and clonality on simulated LOH events with
different noise levels (0 — 30%). Top: LOHHLA/QP; bottom: MAPSCE; left:
two regions only; right: more than two regions. Yellow: high recall or
precision; red: low recall or precision. The cluster sizes (0 — 100%) relate
to subclonal events, while the top category shows clonal events.

In general, LOH events simulated on small (0 — 40%) and medium clusters (40
—60%) were more challenging to map correctly due to a lower signal compared
to the large clusters (60 — 100%). As a result, both tools struggled with clusters

of smaller size (Figure 4-5).

LOHHLA/QP was especially prone to mistakes when mapping events
simulated on smaller cluster sizes (recall of ca. 0 — 5%) (Figure 4-5A).
Additionally, LOHHLA/QP'’s precision in the smaller clusters showed missing
data since LOHHLA/QP mostly did not map events on the small clusters
(Figure 4-5B). LOHHLA/QP maintained a high recall regardless of the number
of regions for large clusters (ca. 50 — 94%) and for clonal events (100%).
However, LOHHLA/QP’s precision for clonal events was considerably lower
(ca. 54 — 59% for two regions, and ca. 39 — 41% for more than two regions).
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As mentioned previously, MAPSCE's recall and precision declined more with
increasing noise levels, especially above 20% noise. MAPSCE generally
outperformed LOHHLA/QP in terms of their recall and precision for subclonal
events regardless of the cluster size. The advantage of MAPSCE’s
performance over LOHHLA/QP’s was particularly noticeable in small and
medium clusters, especially in their precision. MAPSCE's precision (up to 20%
noise: precision of ca. 20 — 100% for 2 regions, and ca. 37 — 100% for more
than 2 regions) was higher than its recall (up to 20% noise: recall of ca. 6 —
40% for 2 regions, and ca. 20 — 70% for more than 2 regions) in small clusters.
Importantly, MAPSCE's precision was consistently higher than LOHHLA/QP’s

precision in clonal events regardless of the number of regions and noise levels.

These results suggest that LOHHLA/QP mapped events conservatively,
overcalling clonal events and mostly mapping subclonal events on the medium
or large branches. For LOHHLA/QP to map events on small clusters, it
required the observed CN value to be less than 0.5 in at least one of the
regions. The few cases where LOHHLA/QP did map an event on a small
cluster could be attributed to the effect of the added noise, such that the
observed CN in a particular region dipped below 0.5 even for a small cluster.
This led to an increased recall in large clusters and clonal events, at the cost
of a decreased recall in small and medium clusters, and a decreased precision
overall. These results also explain LOHHLA/QP’s high tolerance to increasing
noise levels, as the tool ignored the smaller events that were mainly affected
by the added noise. Conversely, MAPSCE was more sensitive in detecting
small and medium clusters, at the cost of lower tolerance to increasing noise
levels (above 10% noise for two regions and above 20% for more than two

regions).

4.2.3 MAPSCE’s performance beyond LOH events

We tested MAPSCE on other types of simulated copy number events,

including amplifications (two to three copies), duplications (two to four copies),
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homozygous losses (two to zero copies) and heterozygous losses (two copies
to one copy). We used two different sets of constraints for running MAPSCE
on these datasets. These constraints were chosen depending on the type of
simulated copy number events. For both heterozygous and homozygous loss
events, we used CNp.f,r. = 1.5, while for the amplifications and duplications,

we used CNyjfer = 2.5.
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Figure 4-6 Recall of MAPSCE on the dataset with other types of copy
number events simulated with different noise levels (0 — 30%). Top:
clonal results; bottom: subclonal results; left: cases with two regions

only; and right: cases with more than two regions.

The tool maintained a high recall of over 75% for clonal results up to 25% noise
for events with two regions specifically (Figure 4-6). For clonal events with
more than two regions, MAPSCE maintained over 75% recall in all four
datasets only up to 15% noise.

Interestingly, MAPSCE noted a higher mapping accuracy for clonal
homozygous losses compared to the other clonal copy number events for two

regions. This could be attributed to the fact that homozygous losses were
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easier to distinguish even in the presence of noise due to the larger drop from
CNyefore = 2 down to CNgseer = 0 compared to heterozygous losses and
amplifications. The difference between the tool's performance between
homozygous losses and duplications could be explained by more appropriate
constraints on CNp.r,r. applied when running MAPSCE for the loss events.
MAPSCE achieved over 95% recall for clonal loss events with more than two
regions recall regardless of noise levels. The tool’s recall of clonal gain events

with more than two regions declined considerably with increasing noise levels.

The tool's performance for subclonal events was worse than for clonal events.
MAPSCE performed better when mapping subclonal events with more than
two regions compared to subclonal events with two regions. The tool
maintained high recall when mapping subclonal events regardless of the
number of regions. As observed when examining the LOH dataset, MAPSCE’s
performance declined as the noise levels increased, regardless of the number
of regions, across all four datasets.

Additionally, we examined MAPSCE'’s recall and precision in different cluster
sizes in all four simulated datasets. As previously stated, in this analysis, we
considered the maximum size of a cluster among all regions as the cluster

size, i.e. the size of the cluster in the region where it is the largest.
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Figure 4-7 Recall (A) and precision (B) of MAPSCE on datasets with
different types of copy number events simulated (from top to bottom:
amplification, duplication, heterozygous loss, homozygous loss), with
different noise levels (0 — 30%). Left: two regions only; right: more than
two regions. Yellow: high recall or precision; red: low recall or precision.
The cluster sizes (0 — 100%) relate to subclonal events, while the top

category shows clonal events.

In general, MAPSCE'’s performance in other types of CN events was similar
across all four simulated types of CN events. The tool’s performance did not
differ significantly from its performance on simulated LOH events (Figure 4-7).
For subclonal events with more than two regions, the tool consistently
maintained a high recall and precision regardless of the cluster size of up to
20% noise.

As observed previously, MAPSCE's recall was lower in small and medium
clusters compared to the tool's performance in large clusters (Figure 4-7A).
This difference in the tool’s recall was more evident in events with two regions
compared to events with more than two regions. The tool’s recall for cases
with more than two regions was higher for CN gains than CN losses in smaller
clusters, which could be due to the nature of the CNA and the constraints. A

gain of CN in the smaller cluster provides a higher signal to be detected.
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Additionally, the constraints for copy number gains being CNf.., = 2.5 made

it less challenging to detect the lineage that was affected by the CNA. When it
came to CN losses, the constraints were CNperore = 1.5 and CNygrer = 0. In

these cases, the detection of a loss in a small branch was more challenging,
since the small clusters already provided a small signal to be detected.

Similarly, MAPSCE'’s precision was higher in large clusters compared to the
small and medium clusters (Figure 4-7B). This difference was again more
pronounced in subclonal events with two regions compared to subclonal
events with more than two regions. MAPSCE did not map any events in the
heterozygous losses dataset for cases with two regions at 0 — 20% CCF and

25% noise, resulting in missing data.

Additionally, we quantified the number of times MAPSCE used consensus
mapping to consolidate results. Consensus mapping was utilised in
approximately 7 — 10% of cases at 0% noise. This usage steadily increased
with increasing noise levels for all four simulated types of CN events, peaking
at around 32% for amplifications at 30% noise. This indicates that higher noise
levels led to MAPSCE being less precise and classifying more results as
mathematically valid. These good results were then merged using consensus

mapping.

Taken together, MAPSCE maintained similarly high recall and precision across
all four simulated datasets with different types of CNA. The tool performed best
when provided with data from patients with more than two regions sequenced.
MAPSCE maintained high mapping accuracy up to 20% noise, irrespective of
the type of the CNA. This demonstrated that the tool can withstand a lot of
noise in the data, even when mapping subclonal copy number gains.
MAPSCE's ability to map subclonal copy number gains on SNV-based tumour
trees sets it apart from other existing tools.
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4.3 Conclusions

4.3.1 Summary of findings

In this chapter, we compared MAPSCE to another approach of a similar
purpose, LOHHLA/QP, using simulated LOH events. Additionally, we
assessed MAPSCE’s performance on other types of simulated copy number
alterations, namely amplifications, duplications, heterozygous losses, and
homozygous losses. These simulations allowed us to explore MAPSCE'’s
novel ability to map subclonal copy number gains on SNV-based trees, as no
directly comparable approach is available to our knowledge. Furthermore,
testing the tool on the simulated datasets helped in optimising MAPSCE’s
default settings. Over the years of the tool's development, the simulations
provided a means to evaluate the advantages of the various features included
in the tool.

We examined the effects of including constraints and bootstrapping using
MAPSCE on simulated LOH events. The tool's performance declined
considerably for subclonal events with two regions only. This could be
explained by the quadratic programming overfitting results due to being
provided with a system of two equations with two unknowns. Additionally,
having two regions sequenced only, provided an insufficient amount of data
for the tool's optimal performance. The inclusion of constraints considerably
improved MAPSCE's recall for subclonal events with two regions. The addition
of bootstrapping improved the clonality determination, however decreased the
likelihood of mapping the event on the correct lineage.

Conversely, bootstrapping was the largest contributor to MAPSCE’s improved
recall in subclonal events with more than two regions. While including
constraints still led to an increased recall of MAPSCE in subclonal events with
more than two regions, this effect was less pronounced than in subclonal

events with two regions. Furthermore, incorporating both constraints and
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bootstrapping for events with more than two regions showed the largest
increase in MAPSCE's recall.

Taken together, the default settings in MAPSCE were set to include
bootstrapping for data with more than two regions, but not for data with two
regions only. The addition of appropriate constraints was always
recommended for best performance.

By incorporating various noise ranges from 0 to 30% in the simulated datasets,
we aimed to replicate the levels of noise found in real data and gain insight
into the resilience of the two approaches to noise. The results indicated that
MAPSCE exhibited a more significant decline with increasing noise levels,
particularly in events with two regions, compared to LOHHLA/QP. As
previously described, LOHHLA/QP was designed to be conservative and
ignored events affecting small and medium lineages. The increasing noise
levels mainly affected the smaller clusters. As a result, LOHHLA/QP had a
higher tolerance to increasing noise levels, at the cost of overcalling clonal
events and a lower performance for small and medium clusters. Furthermore,
LOHHLA/QP overcalled clonal events, which resulted in a decreased
performance when mapping subclonal events. Conversely, MAPSCE’s higher
recall and precision in the smaller clusters suggest the tool’s higher sensitivity
to events affecting smaller lineages, at the cost of higher sensitivity to

increasing noise levels.

MAPSCE'’s performance on simulated datasets with other types of copy
number alterations was similar to the tool’s performance in the simulated LOH
dataset. MAPSCE'’s consistently high recall and precision demonstrated its
ability to integrate the copy number data in the context of SNV-based tumour
evolutionary trees. As mentioned previously, the tool is prone to mistakes at
noise levels above 20%, due to its high sensitivity to mapping events on
smaller clusters. Importantly, MAPSCE’s ability to accurately map copy
number gains is a novel feature, which to our knowledge, has not been

attempted by any other existing methodology.
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Taken together, the simulated datasets allowed for comparing the
performance of MAPSCE with LOHHLA/QP in mapping LOH events. We also
assessed MAPSCE'’s recall and precision on other simulated copy number
events. MAPSCE consistently outperformed LOHHLA/QP when mapping
simulated subclonal LOH events. The tool also maintained high recall and
precision when mapping other simulated copy number events, regardless of
clonality. Having assessed the performance of the tool on the simulated data,
the next chapter will describe the integration of real multi-omics data using
MAPSCE.

4.3.2 Future work

The simulated copy number datasets in this chapter included noise simulations
from 0 to 30% noise ranges with uniform distribution. These noise ranges were
chosen in the simulated datasets to provide a wide range of potential noise
that could be anticipated in real data. However, further work is needed for
measuring the noise in the real genomics data. Assessing the extent of noise
that is present in the data would provide insight into how distorted the signal in
the genomic data is. Additionally, this would allow us to determine how resilient
the developed bioinformatics tools need to be to withstand the background

noise and still provide accurate results.

The results in this chapter demonstrated MAPSCE'’s improved recall when
provided with appropriate constraints. These constraints could be refined to
better provide the tool with the biological context of the dataset. Furthermore,
MAPSCE could be improved by including an option for the tool to automatically
detect the type of event being mapped. Based on whether the tool identified a
CN gain or CN loss, it could also automatically apply the corresponding
constraints to quadratic programming. While MAPSCE was primarily tested on
simulated copy number events, the tool was designed to be able to integrate
any type of data such as gene expression or methylation. The next chapter will

provide some results on mapping gene expression changes on the tumour
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trees along the copy number events. However, further testing of the tool on
simulated gene expression changes and methylation events is required.
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Chapter 5 Integration of multi-omics data

5.1 Introduction

The rapid advancement in next-generation sequencing techniques has
created novel computational challenges in effectively tackling these large-
scale NGS data. One major issue of the massive development of NGS data is
the increasing scale of the genomic data, which requires improved data
integration and interpretation. While tools have been developed to analyse the
increasingly complex NGS data, most of them are still single-omics
approaches, which do not fully connect the different layers of data (Nik-Zainal,
Alexandrov, et al. 2012).

Integrative multi-omics approaches have been crucial for analysing the
combined mutational data at different levels to provide a comprehensive
understanding of tumour evolution (Silverbush et al. 2019; Schulte-Sasse et
al. 2021; Sammut et al. 2022). Silverbush et al. (2019) presented ModulOmics
to integrate protein-protein interactions, mutual exclusivity of mutations and
CNAs, transcriptional coregulation and RNA co-expression into a single
probabilistic model to identify novel cancer driver pathways in breast cancer.
Schulte-Sasse et al. (2021) utilised a machine learning approach to combine
mutational, CN, DNA methylation, gene expression data and protein-protein
interaction networks to predict novel cancer genes. Sammut et al. (2022) also
employed machine learning models to provide an integrative, multi-omics
approach to predicting therapy response in breast cancer patients. These
examples demonstrate how the integration of multi-omics data can provide a
more holistic interpretation of the results to identify novel driver genes and
cancer pathways for instance.

At its core, MAPSCE allows for the integration of multi-omics analysis into a
single framework to provide users with a broader perspective on the data.
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What distinguishes MAPSCE from other multi-omics approaches is its ability
to integrate data at the tumour clone level. MAPSCE can integrate different
types of multi-omics data by using the output from state-of-the-art tools rather

than re-interpreting the data.

The previous chapters described the development of the MAPSCE
methodology and the testing of the tool's performance on simulated datasets.
This chapter will illustrate the potential applications of MAPSCE in integrating

multi-region, multi-omics data.

5.2 Results

5.2.1 NSCLC TRACERx 100 HLA LOH

The HLA genes are responsible for presenting the intra-cellular antigens
derived from tumour cells to T cell receptors for recognition. There are three
main genes (HLA-A, HLA-B, HLA-C) encoding the HLA class | alleles. The
HLA locus is highly polymorphic, with thousands of HLA alleles identified for
each HLA gene. The polymorphic nature of the HLA region makes accurate
copy number analysis of the HLA genes problematic. McGranahan et al.
(2017) presented LOHHLA, a tool for determining HLA allele-specific copy
numbers from sequencing data. LOHHLA identifies losses of heterozygosity
of HLA alleles, determines their clonality and maps the subclonal HLA LOH

events on tumour evolutionary trees.

This section aims to validate MAPSCE by testing the tool in the NSCLC
TRACERXx 100 dataset and comparing it against a previous analysis using
LOHHLA (McGranahan et al. 2017). The two methods were compared based
on their clonality determination, by classifying each HLA allele as having either
no LOH, clonal LOH or subclonal LOH.
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5.2.1.1 Overview of the dataset

We first reviewed the NSCLC TRACERXx 100 dataset before running both tools

to provide a general overview of the dataset (Figure 5-1).

The cluster CCF varied across different sampled regions (Figure 5-1A). For
this analysis, the term ‘minimum CCF’ (min CCF) refers to the CCF in the
region with the lowest CCF for this cluster, while the ‘maximum CCF’ (max
CCF) is the CCF in the region, where the CCF is the largest. Lastly, the
‘average CCF’ (mean CCF) is the average of the CCFs across all regions. As
expected, the min and max CCF of the root clusters were ca. 100%, with some
outliers of maximum CCF being 95%, due to the noise in the data. The mean
CCF for the root clusters was between 94.8% and 100%, with the majority of
the mean CCFs falling between 98% and 100% (59 out of 90 root clusters).
The CCF of the clusters on the internal branches mostly ranged from 50% to
80% CCF for both minimum and maximum. As expected, the mean CCF of the
clusters for the tips of the tree was significantly lower, ranging between 2%
and 68.5%. This disparity can be attributed to the vast majority of the tips of
the trees being region-specific (254 out of 261 tips). Interestingly, when
disregarding the absent regions for the region-specific clusters in the tips of
the tree, the average min CCF was comparable to the average max CCF
(mean min CCF 57.7%, median min CCF 57%, mean max CCF 60.3%, median
max CCF 62%). These results suggest that the tips of the trees comprised
mostly region-specific, medium-sized clusters (40-60%), rather than solely
small clusters (0-40%). The larger-than-expected size of the region-specific
tips of the trees represents the high number of subclonal mutations in the later

stages of cancer evolution.

There were between two and four regions sequenced for most patients (77 out
of 90, 85.6%) with the mean being 3.2 and the median being 3.0 (Figure 5-
1B). As shown in Chapter 4, MAPSCE performed worse in patients with only
two regions sequenced, unless additional constraints were provided. In this

dataset, 35 out of 90 patients had two regions sequenced (38.9%).
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The trees of the patients in this cohort consisted of between 3 to 8 clones on
average (72 out of 90 patients, 80%) with a mean of 5.8 and median of 5.0
(Figure 5-1B). The most common patients’ trees had 3 to 5 clones (3: 18

patients, 4: 13 patients, 5: 13 patients).

The majority of the patients had clonal whole genome doubling (67 out of 90,
which corresponds to 74.4%), with only a few cases being subclonal (3 out of
90, which is 3.3%) and the rest of the patients not having any genome doubling
event (20 out of 90, 22.2%) (Figure 5-1C).

T
R il

Not GD Clonal GD Subclonal GD
Genome Duplication Patients

Figure 5-1 Overview of the NSCLC TRACERx 100 dataset. A) CCF
distribution for clusters located in different parts of the tree. B) Number

of regions and number of clones for each patient of the cohort. C)
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Number of patients with different types of whole-genome doubling. D)

Purity of the sampled regions for each patient.

Each patient’s tumour was sampled in at least two regions, resulting in varying
purity for each observed copy number; for each patient, a minimum and a
maximum purity can be estimated from all sampled regions (Figure 5-1D). On
average, the minimum purity was 25.3%, with a median of 22.0%. The
minimum ranged from 10.0% recorded for patients CRUKO0004 and
CRUKO0081, to 84.0% for patient CRUKO0084. The maximum purity was 37.0%
on average with a median of 42.0%. Values ranged from 15.0% for patient
CRUKO0064 to 86.0% for patient CRUK0016.

5.21.2 Comparison of MAPSCE and
LOHHLA/QP in mapping HLA LOH events

In this analysis, out of 100 patients, only 60 patients were considered due to
missing patient trees or incomplete copy number data. Among those 60
patients, 288 HLA alleles were analysed, since not every patient was
heterozygous for every HLA allele.

The two tools had a 90.3% agreement when classifying HLA alleles as having
either no LOH, clonal LOH or subclonal LOH across all 288 alleles (Table 5-
1). MAPSCE identified a higher percentage (17.01%) of subclonal HLA LOH
events in the dataset compared to LOHHLA/QP (13.89%). For alleles that both
tools deemed subclonally lost, the two tools mapped the event on the same
branch in 6 out of the 27 cases (22.2%). In total, there were 28 cases where
both tools disagreed. In most cases (21 cases), they disagreed on the
presence of a LOH event, while in another 7 cases, they disagreed on the
clonality of the LOH event (clonal vs subclonal).
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Table 5-1 Comparison of MAPSCE and LOHHLA/QP’s mapping approach
when mapping HLA LOH events in the TRACERx 100 dataset. Numbers
denote the number of alleles in each category. “No LOH” indicates alleles
where the tool identified no loss of heterozygosity of HLA, “clonal” refers
to alleles identified as clonally lost, and “subclonal” are alleles
subclonally lost. The bolded numbers in the diagonal show the matching
alleles between the two tools.

LOHHLA/QP
288 alleles
No LOH)| Clonal | Subclonal
" No LOH 205 2 9
O
2 Clonal 0 28 4
<
= | subclonal 10 3 27

When calling subclonal events, MAPSCE’s good results, those that satisfied
the tool’s statistical filters, showed a mean RSS of 0.315, and a median of
0.034. Conversely, when looking at the top result for the subclonal events
mapped by LOHHLA/QP, the mean RSS was 2.253, and the median was
0.4148. On the one hand, MAPSCE finds solutions with a lower RSS,
suggesting that they are a better fit for the experimental data. On the other
hand, the difference between the mean and median RSS for mapping
subclonal events between both tools showed that MAPSCE’s mapping
algorithm provides enhanced consistency and reliability. This is supported by
the mean value being closer to the median, suggesting more robust and stable
results. Certain HLA alleles determined by LOHHLA/QP as subclonally lost
had a significantly higher residual sum of squares above 2, compared to the
median of 0.04148. Manual inspection of these cases showed that MAPSCE
considered them to lack sufficient statistical support, the null branch was not

rejected and therefore no subclonal event was called.

Interestingly, alleles identified as clonal LOH by MAPSCE were always
determined to have a LOH event by LOHHLA/QP, albeit in four cases LOHHLA

considered the event subclonal. Furthermore, most disagreements between
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the tools arose when one tool classified an event as subclonal and the other
determined it to have no LOH. This discrepancy occurred 10 times for
MAPSCE and 9 times for LOHHLA/QP. These 9 cases classified as subclonal
by LOHHLA were labelled as no LOH in MAPSCE due to the lack of statistical
support. This included 3 cases where the best branch’s BICs were all higher
than the null’s BIC and 6 cases where the Bayes Factors comparison showed
that all results were equally good, leading to the null not being rejected.

Chapter 4 demonstrated that the tool performed best in patients with more than
two regions sequenced. In this analysis, we ran MAPSCE with default settings
(i.e. without any specific constraint, with bootstrapping for cases with more
than two regions and no bootstrapping for two regions). We assessed whether
disagreements between LOHHLA/QP and MAPSCE were enriched in cases
with two regions only. Among all discrepancies, only two alleles deemed
subclonally lost according to MAPSCE and unaffected according to
LOHHLA/QP had two regions sequenced. All other cases corresponded to

patients with more than two regions sequenced.

We divided the alleles into two groups based on the clonality determination
using both tools: matching alleles, indicating the same clonality (e.g. subclonal
LOH for both MAPSCE and LOHHLA), and mismatching alleles, indicating
different clonality (e.g. subclonal LOH for MAPSCE and clonal LOH for
LOHHLA. These groups were then tested for confounding factors using a t-
test. While the matching alleles corresponded to samples with a higher purity,
the difference was not significant (p-value of 0.060). There was also no
significant difference in the number of clones (p-value of 0.920) or the number
of regions (p-value of 0.121) between the two groups. There was no significant
difference in the proportion of genome duplication categories between patients
with matching alleles and those with mismatching alleles (Fisher’s exact test;
p-value of 0.317).

These results demonstrated that MAPSCE’s automated detection of subclonal
events exhibited comparable performance to the heuristic approach employed
by LOHHLA/QP in the TRACERX 100 dataset. While it is possible to argue in
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favour of either methodology in cases of disagreement, it is noteworthy that
both tools agreed on the vast majority of alleles in terms of clonality
determination. Importantly, MAPSCE provided additional statistical support for
the results and more detail for the user to interpret and understand the
mapping. All things considered, MAPSCE’s clonality determination proved to
be a more robust approach due to its automatic nature, as well as its lower

and closely aligned mean and median RSS values.

5.2.2 Biallelic inactivation of tumour suppressor

genes

Tumour suppressor genes play the crucial role of guarding the genome against
replication errors underlying the tumour’s ability to proliferate (Hanahan and
Weinberg 2000; 2011). The loss of function of tumour suppressor genes is
pivotal in cancer initiation and underlies other fundamental hallmarks of
cancer, including the evasion of apoptosis and the unlimited replicative
potential of cancer (Hanahan and Weinberg 2000; 2011). Knudson (1971)
demonstrated the two-hit theory, in which each copy of the TSG needed to be
affected independently for initiation of retinoblastoma. Cavenee et al. (1985)
further identified that mutations involving the RB7 tumour suppressor gene on
chromosome 13 were responsible for the development of retinoblastoma. The
biallelic epigenetic inactivation of RASSF1 TSG was also linked to the
development of medulloblastoma (Lusher et al. 2002). While biallelic
inactivation of tumour suppressor genes has been identified as a driving
mechanism in multiple cancer types, there is still a lack of this analysis at the
subclonal level (Hamano et al. 2002; Thanendrarajan et al. 2017).

We used MAPSCE's functionality to explore subclonal biallelic inactivation of

tumour suppressor genes in the NSCLC TRACERx 100 dataset. In this

analysis, only somatic mutations and copy number events were considered.
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Figure 5-2 The difference between events on the same lineage and
independent events.

We used the catalogue of driver genes from IntOGen (2020.02.01 release) to
identify a list of 584 tumour suppressor genes (Martinez-Jiménez et al. 2020)
(Table S5-1). All losses of TSGs, along with all mutations, were mapped on
the tumour trees built using the SNVs. In total, we found 624 cases of biallelic
inactivation of TSGs at the regional level. However, subclonal analysis
revealed that 147 cases (23.6%) were independent events, where both events
affected the same patient but in two different lineages (Figure 5-2). 340 cases
were “double clonal”, which we defined as having both clonal SNV and clonal
loss of a TSG. Since MAPSCE was designed to map subclonal events
specifically, we focused on the events with subclonal loss of TSGs mapped
using our tool. In total, there were 151 cases of biallelic inactivation of TSGs
with a subclonal loss. We classified these 151 cases into same-lineage events
(16 cases) (Table S5-2), where both events happened in the same lineage,
thus leading to the true subclonal biallelic inactivation of a TSG, and
independent events (135 cases) (Figure 5-2). The rare occurrence of same-
lineage events including a subclonal loss of a TSG can be explained by the
fact that the majority of the events affecting TSGs conferred a growth
advantage and became clonal after a clonal sweep.
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We tested if the same-lineage events were associated with any particular
cancer subtype compared to the independent events using the histological
classification of the patient. However, there was no relationship between
same-lineage or independent events in both lung adenocarcinoma and lung
squamous carcinoma (Fisher’s exact test; p-value of 0.775). We used the
MGSA R package to test for the gene set association for the LUAD and LUSC
drivers. The independent events were more associated with the LUSC rather
than LUAD drivers (0.1396 and 0.0790 posterior probabilities, respectively),
although both posterior probabilities were still lower than 0.5. The same-
lineage events showed no association (0 posterior probability) for either LUAD
or LUSC drivers.

We reasoned that if the biallelic inactivation of TSGs provides a growth
advantage, it could in turn lead to an acceleration in the evolution of the tumour
and an increase in mutational burden. To test this hypothesis, we compared
the nonsynonymous to synonymous mutation ratio of the lineage after
subclonal biallelic inactivation of a TSG (affected lineage or clone) to its sister
lineage sharing a common ancestor (sister lineage or clone) using the dNdS
R package (Martincorena et al. 2017) (Figure 5-3). This comparison aimed to
ascertain whether there was an evident increase in clones affected by the
biallelic inactivation of a TSG compared to the unaffected sister clones.
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Same-lineage events
Figure 5-3 An example of a same-lineage event with defined: unaffected

(purple), sister (green) and affected (orange) clones.

Clones affected by the same-lineage events generally had a lower dN/dS
(1.079) than sister clones (1.161), however, there was no significant difference
between the two sets (p-value of 0.682). That said, we observed five cases,
where there was an increase of dN/dS in the affected lineage (mean dN/dS of
1.48 for these five cases) compared to their respective sister lineage (mean
dN/dS of 0.98 for these five cases). The increased dN/dS of the affected clones
in these cases suggest that these affected clones were likely to be in the
process of outcompeting their sister clones.

Additionally, to examine the potential increase in the mutational burden
following a biallelic inactivation of a TSG we compared the number of
mutations per clone of the lineage after subclonal biallelic inactivation of a TSG
(affected lineage or clone) to its sister lineage sharing a common ancestor
(sister lineage or clone) (Figure 5-3). We hypothesised that starting from the
same genomic origin, there would be an increase in the number of mutations

after the biallelic inactivation of a TSG. This was determined by counting the
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ratio of the average number of mutations of each clone in the lineage and
normalised against the whole tree. The clones in the affected lineage generally
included a higher average number of mutations (0.125) than clones in their
sister lineage (0.062). However, no significant difference was observed
between the two datasets (p-value of 0.108).

The clones affected by the subclonal biallelic inactivation of a TSG exhibited
generally lower dN/dS and a considerably higher number of mutations.
However, no significant difference was found in the analysis. These findings
suggest that a subclonal inactivation of a TSG leads to an increase in the
mutational burden measured as the number of mutations per clone. However,
the dN/dS analysis on the same-lineage events also showed that the subclonal
biallelic inactivation of a TSG is not generally a cause for positive selection.

Given the low sample size of the patients with subclonal same-lineage biallelic
inactivation of tumour suppressor genes, it was important to look into specific
examples of how MAPSCE could be utilised to investigate a particular tumour’s
evolution. Thus, we analysed three examples of biallelic inactivation of the
BRCAZ2 gene in the cohort. BRCAZ2 plays a crucial role in DNA damage repair
(Cheng et al. 2016; Yoshida and Miki 2004), and the inactivation of the BRCA2
and BRCA1 genes has been strongly associated with the mutational signature
SBS3 (Alexandrov et al. 2013). The biallelic inactivation of the BRCAZ2 gene
was mapped on the tumour evolutionary trees to compare the dN/dS, the
number of mutations and ultimately, the rise of the mutational signature SBS3
between clones affected and unaffected by the biallelic inactivation of BRCA2
(Figure 5-4).
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Figure 5-4 Copy number and mutational changes for the three patients
with subclonal biallelic inactivation of BRCA2 of the NSCLC TRACERXx
100 dataset. Panels A-C show different patient trees, A — CRUK0011, B —
CRUKO0068, and C — CRUK0083.

We compared the effects of the biallelic inactivation of BRCA2 on the dN/dS
in affected clones and their respective sister lineages. Patients CRUK0011 and
CRUKO0068 recorded a decreased dN/dS in the lineages affected by the
biallelic inactivation of BRCAZ2 compared to their sister lineages (0.90 vs 1.10,
and 1.11 vs 1.15, respectively). Conversely, there was a large increase of
dN/dS in affected (1.58) compared to sister clones (1.06) in patient
CRUKO0083. Looking at the tumour burden, all three patients showed an
increased number of mutations in the affected clones compared to sister
clones (CRUKO0011: 0.155 vs 0.0249; CRUKO068: 0.0628 vs 0.0520; and
CRUKO0083: 0.840 and 0.155 respectively).

We mapped the mutational signatures on the subclonal level using the
deconstructSigs R package (Rosenthal et al. 2016). We performed this
analysis by comparing the affected clones (Figure 5-3) to both all unaffected
clones, i.e. sister and parental clones combined (Figure 5-3) as background.
We expected the mutational signature SBS3 to not be present in the rest of
the tree and only appear after the subclonal biallelic inactivation of BRCAZ2. In
two out of three patients (CRUKO0011 and CRUKO0068), the mutational
signature SBS3 could be specifically identified after the biallelic inactivation of
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the BRCAZ2 gene (Figure 5-4A, 5-4B). Patient CRUK0068 had a clonal LOH of
BRCAZ followed by a subclonal mutation of the gene, while patient CRUK0011
had both the loss of BRCA2 and mutation of the gene occurring on the same
subclonal branch (Figure 5-4A, 5-4B). For patient CRUKO0083, the mutational
signature SBS3 was detected in the root of the tree already and disappeared
after the second hit on the BRCAZ2, which was a loss (Figure 5-4C). In this
patient, the mutation of BRCAZ2 was a clonal event occurring on the root of the
tree, while the loss of the gene was a subclonal event. These results suggest
that the mutational signature SBS3 is more dependent on the mutation of the
BRCAZ2 gene rather than the CNA or the biallelic inactivation of the gene.

The dN/dS results did not show a clear example of positive selection for the
biallelic inactivation of the BRCAZ2 gene. However, the consistent increase in
the number of mutations in affected clones compared to their sister lineages
suggests that BRCAZ2 potentially leads to an increased tumour burden
(Zamborszky et al. 2017). Nevertheless, these results illustrate the efficacy of
MAPSCE and how it allows for an in-depth analysis of the different causes

driving the evolution of a tumour.

5.2.3 Mutual exclusivity of antigen-presentation

machinery

HLA LOH has been identified as an immune escape mechanism (McGranahan
et al. 2017) which inhibits neoantigen presentation. During the development of
MAPSCE'’s framework, a question was raised regarding the presence and
timing of the subclonal homozygous loss of the other genes involved in antigen
presentation (AP). Specifically, we were interested in whether these losses
occurred on sister branches opposite to the subclonal loss of heterozygosity
of HLA or within the same lineage as the HLA LOH event. A consistent pattern
of either co-occurrence or mutual exclusivity of certain AP genes involved in
antigen presentation machinery could help identify novel evolutionary
constraints of NSCLC development. To test this hypothesis, MAPSCE was
used to map the subclonal losses of antigen presentation genes from Gene
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Ontology (GO:0019882) on the tumour trees of the NSCLC TRACERx 100
dataset.

In this section, unless explicitly stated otherwise, “MAPSCE” refers to
MAPSCE (v.0.5.0).

MAPSCE identified a total of 12 genes, whose subclonal loss always occurred
on a sister branch to the subclonal HLA LOH event (Figure 5-5). We examined
these genes for their involvement in the antigen processing and presentation
pathway based on the KEGG dataset (Figure 5-6). Among the identified genes,
only three (TAP1, TAP2 and TAPBP) were found to be associated with the
transport of antigenic peptides across the endoplasmic reticulum, as
previously reported (Maeurer et al. 1996). The consistent occurrence of these
subclonal events on a sister branch is indicative of mutual exclusivity.
Interestingly, these three genes all corresponded to the major
histocompatibility complex (MHC) class |, akin to the examined HLA genes.
This mutual exclusivity could be explained by further events affecting MHC
class | not conferring additional growth advantage.
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Figure 5-5 Subclonal LOH of antigen presentation genes on a sister
branch (left) and in the same lineage (right) relative to subclonal HLA
LOH.

MAPSCE also identified 65 other antigen presentation genes whose subclonal
losses always occurred within the same lineage following a subclonal HLA
LOH event (Figure 5-5). These genes included but were not limited to, ERAP2,
CD74, CD8A, PCNX and PSMAG6. Importantly, CD8A is normally active in the
CD8+ T-cells as it plays a crucial role in facilitating antigen recognition and
binding. The losses of CD8A in our results could have been a spurious result
or passenger losses and were not relevant to the tumour cells. To explore their
functional relevance, these genes were also examined for their involvement in
the antigen processing and presentation pathway based on the KEGG dataset
(Figure 5-6). Notably, all of these losses were consistently subclonal and
occurred after an HLA LOH event. Interestingly, these co-occurring events
affected genes primarily corresponding to the major histocompatibility complex
(MHC) class II. This finding suggests that additional events affecting the MHC-
Il in addition to the HLA LOH (MHC-I) could be necessary for an improved

immune escape mechanism.
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Figure 5-6 Genes with homozygous losses identified by MAPSCE and
their association with the antigen processing and presentation pathway
based on the KEGG dataset. Red labels show proteins coded by genes
that were always lost on a sister branch to HLA LOH (mutually exclusive).
Yellow labels show proteins coded by genes that were always lost within
the same lineage to HLA LOH (co-occurring). The figure was made using
R Package pathview.

In summary, MAPSCE facilitated the mapping of subclonal losses in antigen
presentation genes to compare their timing with that of subclonal HLA LOH
events. These results highlight the potential of mapping subclonal copy
number events on the SNV-based tumour evolutionary trees to identify
examples of parallel evolution and uncover novel selective forces shaping

branched tumour evolution.
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5.2.4 Allele-specific expression in NSCLC TRACERXx

Transcriptomic variation is another major contributor to intratumour
heterogeneity which influences tumour progression, therapy, and patient
outcomes. Studies have shown the altered expression of specific cancer driver
genes in metastatic melanoma (Tirosh et al. 2016; Rambow et al. 2018),
glioblastoma (Neftel et al. 2019) and lung cancer (Biswas et al. 2019).

A recently published TRACERXx study demonstrated a comprehensive multi-
region analysis of the transcriptomic diversity in the 421 TRACERx NSCLC
dataset (Martinez-Ruiz et al. 2023; Frankell et al. 2023). The study described
the transcriptomic landscape of the TRACERx 421 cohort, distinguishing
between the CN-dependent allele-specific expression (ASE) caused by
genomic alterations, and CN-independent ASE linked to epigenomic variation.
Specifically, patient CRUK0640 showcased the expression change of one of
the two alleles of the FATT gene in two different regions, where a CN event
explained the downregulation in one region (CN-dependent ASE). However,
no CN event was found in the other region, suggesting an epigenetic
modification drove the downregulation of the allele in that case (CN-
independent ASE). The phylogenetic analysis demonstrated the independent
evolution of the two regions leading to the same phenotype of a loss of the
FAT1 gene through different mechanisms.

We compared the subclonal allele-specific gene expression changes with the
subclonal genomic alterations using MAPSCE. This analysis aimed to identify
both CN-independent and CN-dependent expression changes. The work
presented in this section was performed with MAPSCE in its developmental
stage (v0.5.0).

MAPSCE revealed a subclonal CN loss of the FAT1 gene on branch 3 for allele
Ain patient CRUK0640 (Figure 5-7). Subsequently, we analysed the subclonal
allele-specific expression changes based on changes in the RNA read counts.
We observed allele-specific expression changes of allele A on branch 4 (best
result, subclonal), branch 3 (second-best result, subclonal), branch 7 (third-
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best result, subclonal) and branch 1 (fourth-best result, clonal). Notably, the
second-best result of MAPSCE’s mapping of expression changes aligned with
its mapping of copy number alterations, illustrating an example of CN-
dependent ASE. Additionally, MAPSCE showed a subclonal ASE change on
branch 4 which was not followed by a subclonal CNA, demonstrating an
example of CN-independent ASE. Nominally, MAPSCE assumes that only one
event has happened. However, in this case, there are possibly more than one

event.

MAPSCE (v0.5.0) allowed for more than one good result without consolidating
the result with consensus mapping. Thus, all four of the best results for
mapping expression changes of the allele A were deemed sufficiently good at
the time of analysis to be considered a potential solution.

These results are consistent with previously reported parallel evolution in
patient CRUKO0640, in which CN-dependent and CN-independent ASE were
found on two different regions, with convergence upon the loss of different
alleles of FAT1 through genomic and transcriptomic means (Martinez-Ruiz et
al. 2023).

@

2 12
1st best result: 3rd best result:
B Allele A - RNA downregulation Allele A - RNA upregulation
8

2nd best result:
Allele A - RNA downregulation

Allele A - DNA loss 4th best result: Allele A - no change

Alllele B - RNA clonal downregulation
Allele B - DNA clonal loss
Figure 5-7 Mapped copy number changes (blue) and ASE changes (red)

of the FAT1 gene on the tumour tree of the patient CRUK0640.

We analysed all pairs of alleles of 152 genes that exhibited CN-dependent
ASE only, following the methodology outlined by Martinez-Ruiz et al. (2023).
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This analysis aimed to determine if these genes displayed co-occurrence of
CN and ASE changes on the same branch of a tumour tree. MAPSCE was
utilised to map the CN events (using the DNA reads) and the ASE changes
(using the RNA reads) separately for each gene. In addition to checking the
co-occurrence of the subclonal events, the directionality of the events was
interrogated. This involved examining whether a loss corresponded with
downregulation and a gain with upregulation. We repeated this analysis using

various approaches, including:

- mapping allele-specific RNA reads compared to CN changes (as in the
aforementioned FAT1 analysis),

- mapping purity-adjusted allele-specific RNA reads compared to CN
changes,

- non-directional mapping the BAF of the purity-adjusted RNA reads

compared to CN changes

1004
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good results

top results

Percentage of matching alleles
N n
o =]

RNA reads purity-adjusted BAF of purity-
RNA reads adjusted RNA
reads

Mapping approach
Figure 5-8 Percentage of matching alleles for different approaches to
mapping CN changes and ASE changes in genes with CN-dependent
ASE. The good results indicate all potential good results of MAPSCE,

while the top results denote only the best branch selected for every

mapping.
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The results were split for all good results and only the best results (top results)
of MAPSCE. For all good results of both CN and ASE mapping, an allele was
considered a match between the CN and ASE change mappings if the
alterations were mapped within one of the potential good results for either
mapping. In most cases, the top result matched the CN change, but an
additional 10% agreement could be found when using all good results (Figure
5-8). Looking into top results specifically aimed to assess the precision of
MAPSCE'’s mapping at the time.

There was minimal difference between the percentage of matching CN and
ASE changes between the purity-adjusted RNA reads and raw RNA reads.
Correcting the expression data for sample purity had little effect when mapping
ASE changes as RNA reads (55.7% for raw RNA reads to 57.7% for purity-
adjusted RNA reads).

Lastly, when using non-directional BAF of the purity-adjusted reads instead of
RNA reads, the transcriptomic and genomic data matched most of the time
(86.9% matched with good results of MAPSCE considered and 76.2% with
only the top results). MAPSCE consistently mapped both genomic and
transcriptomic events on the same branch of the tumour tree for CN-dependent
ASE.

The results of mapping the losses and ASE changes of FAT1 suggest potential
parallel evolution between the sister lineages of the patient CRUK0640 tree
leading to the loss of FAT1 through genomic and transcriptomic changes,
consistent with the findings of Martinez-Ruiz et al. (2023). However, MAPSCE
assumes there is at most one subclonal event for each gene for a particular
tree. In this case, the different solutions of MAPSCE suggest the potential
presence of more than one subclonal event. Additionally, this analysis
demonstrated MAPSCE’s ability to validate the CN-dependent ASE by
mapping the genomic and transcriptomic changes separately on a tumour
evolutionary tree. In summary, these results show how MAPSCE can be
utilised to integrate genomic and transcriptomic data to identify examples of

parallel evolution.
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5.3 Conclusions

5.3.1 Summary of findings

This chapter highlighted the advantages of MAPSCE'’s integrative approach to
multi-omics data. Using the tool in the analysis of real datasets showcased its
ability to identify potential examples of parallel evolution and to provide

validation for novel evolutionary principles.

Firstly, we revisited the previous analysis presented in McGranahan et al.
(2017) and compared MAPSCE to LOHHLA in mapping subclonal HLA LOH
events on the tumour trees of the NSCLC TRACERXx 100 dataset. Since both
tools employ quadratic programming for their mapping algorithm, there was a
substantial level of agreement between the two methodologies. One of the
main differences between both tools was that MAPSCE offers additional
statistical support for its results, providing the user with more information to
interpret the results. MAPSCE’s automated clonality determination resulted in
lower mean and median RSS values compared to results obtained from
LOHHLA'’s heuristic approach. Thus, MAPSCE proved to be a more robust
and consistent tool for clonality determination. Unlike LOHHLA’s mapping
approach, MAPSCE is not limited to mapping subclonal LOH events, but also
allows for the integration of other types of events, showcasing its broader

functionality.

The biallelic inactivation of tumour suppressor genes has been shown to drive
tumour initiation for numerous cancer types, such as retinoblastoma (Knudson
1971; Cavenee et al. 1985), medulloblastoma (Lusher et al. 2002), prostate
cancer (Cheng et al. 2016), sporadic renal cell carcinoma (Hamano et al.
2002), multiple myeloma (Thanendrarajan et al. 2017) and many others.
However, genes that on the regional level appear to be biallelically inactivated

can have both events on different lineages, suggesting potential parallel
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evolution affecting this particular TSG. Expanding on the findings of the
previous analysis, we utilised MAPSCE to map the subclonal events affecting
the tumour suppressor genes in the NSCLC TRACERx 100 dataset. In the
NSCLC TRACERXx 100 dataset, the majority of the events affecting TSGs were
clonal rather than subclonal. Unfortunately, the scarcity of subclonal events
affecting tumour suppressor genes means that without an even larger cohort,
there is not enough statistical power to identify broader evolutionary patterns.
Thus, we focused on three examples of subclonal biallelic inactivation of
BRCAZ2. The slight increase in the number of mutations in the affected clones
could be indicative of positive selection for the double hit of BRCAZ2. However,
there was no consistent and significant evolutionary pattern identified, except
from an increased tumour burden following biallelic inactivation of BRCAZ2.
Lastly, we focused on the mutational signature SBS3, which is strongly
associated with the inactivation of BRCA71 and BRCAZ (Alexandrov et al.
2013). In these patients, the emergence of signature SBS3 was related to
mutations on BRCAZ rather than to the loss of the gene. The clonal status of
the majority of events affecting TSGs suggests that a single subclonal event
affecting tumour regions confers a sufficient growth advantage. This is
consistent with the hypothesised parallel evolution leading to the loss of HLA
and FAT1in NSCLC (McGranahan et al. 2017; Martinez-Ruiz et al. 2023).

To understand the evolutionary processes underlying antigen presentation
machinery, we compared the timing of subclonal losses of AP genes to the
timing of subclonal HLA LOH events. Using MAPSCE, we identified a total of
12 genes that always occurred on a sister branch to the HLA LOH event,
indicating mutual exclusivity. These genes, akin to the HLA genes examined,
affected the MHC class I. The mutual exclusivity of these events suggests that
further losses of the MHC class | do not confer additional growth advantage.
Moreover, we discovered 65 other AP genes that always appeared within the
same lineage following a subclonal HLA LOH, demonstrating a pattern of co-
occurrence. These co-occurring losses affected genes corresponding to the
MHC class Il. These findings suggest that the HLA LOH (MHC-I) requires
additional events hampering MHC-II to provide an improved immune escape

mechanism.
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Lastly, we used MAPSCE to track the transcriptomic and genomic changes
along the tumour evolutionary tree of a single patient in the NSCLC TRACERX
421 cohort. The analysis of allele-specific expression changes in patient
CRUKO0640 revealed potential evidence for parallel evolution, with
independent lineages developing both CN-dependent and CN-independent
ASE of the FAT1 gene on sister branches. This result is consistent with the
findings of other studies (Martinez-Ruiz et al. 2023). Additionally, in our
attempt to match the transcriptomic and the genomic changes for genes with
CN-dependent ASE using MAPSCE, we observed varying degrees of
success. These challenges can be attributed to the lack of consensus mapping
in this version of MAPSCE (v0.5.0). Nevertheless, these findings showcase
MAPSCE’s novel ability to integrate the subclonal genomic and the
transcriptomic data within the context of tumour evolutionary trees, which, to

the best of my knowledge, has not been previously attempted systematically.

5.3.2 Limitations and future work

The analysis of the antigen presentation machinery in the NSCLC TRACERX
100 dataset and the mapping of subclonal allele-specific expression and copy
number changes in a patient of the NSCLC TRACERx 421 cohort were
performed using an early version of the tool (v0.5.0). While the bootstrapping
of BICs, the conversion to Bayes Factors, and the comparison to the null
hypothesis were already present, there was no consensus mapping to
integrate the results in agreement in this version (v0.5.0).

Furthermore, MAPSCE v0.5.0 adopted a more lenient approach and
considered a broader range of results as potentially valid. The Bayes Factors
comparison involved sequentially comparing the top result’s BF to the second-
best result’'s BF, the second-best’s to the third-best’s, and subsequent pairs,
to evaluate the relative strength of each result. This led to less precise mapping

as more results were deemed potentially viable compared to the latest version
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of MAPSCE (v1.0.0), where all of the branches’ Bayes Factors are individually

compared to the top branch’s BF.

At the time, no confounding factors were identified, and there was no separate
mode for the patients with two regions sequenced. The quadratic programming
in MAPSCE still constrained both the copy number states before and after to

non-negative.

In future work, it would be valuable to repeat these analyses using the latest
version of MAPSCE (v1.0.0). This updated version includes consensus
mapping, which allows for enhanced mapping precision, addressing some of
the limitations observed in the previous iteration of the tool (v0.5.0). The
improved mapping precision in the version of the tool released on GitHub
(v1.0.0) would be beneficial for accurately determining the sequential order of
events and providing stronger evidence of parallel evolution, mutual exclusivity

and co-occurrence.

The mutational signature analysis on the three example cases of BRCA2
biallelic inactivation suggests that the mutational signature was more
dependent on the mutation rather than the CNA or the biallelic inactivation
event. However, specifically in the case of patient CRUK0083 we recorded a
disappearing mutational signature SBS3. This analysis was performed by
determining the relative contribution of each mutational signature. In patient
CRUKO0083, the mutational signature SBS3 decreased from a relative
contribution of 7.3% to 0%, while mutational signatures SBS6 and SBS7
increased considerably from 8.7% and 0% to 22% and 28.8% respectively.
Improving this analysis requires the quantification of the absolute contribution
of the mutational signature SBS3 in each patient. In the future, tools for
tracking of mutational signatures along the tree could also be utilised for
validation of the results (Miura et al. 2022).

The mapping of subclonal losses of antigen presentation genes with respect
to subclonal HLA LOH provided only preliminary insights into potential mutual
exclusivity between losses of TAP1, TAP2, TAPBP and HLA LOH, and
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highlighted that the additional losses of genes affecting MHC-I did not confer
added growth advantage. Conversely, the co-occurrence of losses of genes
corresponding to MHC-II and HLA LOH events (MHC-I) suggests that the
immune response acts as a key selective pressure driving mutagenesis to
hamper the MHC-II pathway as well. However, to establish definitive proof of
parallel evolution or co-occurrence, future analyses could include a larger
sampling size and incorporate more robust statistical evidence. Furthermore,
there are no tools available to examine the mutual exclusivity and co-

occurrence at the subclonal level to formally test this hypothesis.

When examining ASE changes and how they co-occurred with the genomic
changes on the tumour trees, it is important to consider the differences
between the definition of a CN-dependent and CN-independent ASE
according to the methodology of Martinez-Ruiz et al. (2023) compared to the
mapping results obtained by MAPSCE on the tumour trees. We integrated the
regional data to track the subclonal changes of expression along the patient’s
tumour tree. In contrast, Martinez-Ruiz et al. (2023) considered each sampled
region independently, analysing CN losses and ASE changes within each
region separately. As a result, MAPSCE did not detect any copy number
events for certain genes, that were classified as exhibiting CN-dependent ASE
by Martinez-Ruiz et al. (2023). Furthermore, MAPSCE works under the
assumption that there is only one event occurring per gene. Using MAPSCE,
it is possible to extend this analysis to more complex scenarios.

The novelty of MAPSCE in identifying evolutionary processes on the subclonal
level makes validation of the results challenging. Phylogenetic reconstruction
using CNAs could provide a measure of comparison of the mapping results of
MAPSCE in cases where the SNV-based and CNA-based trees would be in
agreement. Cell culture experiments provide a potential experimental
validation considering the controlled environment for modelling of the tumours.
However, it is challenging to replicate the complex tumour microenvironment
using a simplified cell culture system to model the evolutionary processes in
cancer. In vivo lineage tracing experiments also offer the ability to study the
developmental history and fate of individual cancer cells. Conversely, lineage
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tracing is still prone to sampling bias depending on the specific selection of
cells within a heterogeneous tumour mass. The procedures involved in lineage

tracing experiments can additionally disrupt the tumour microenvironment.

Lastly, the recently published NSCLC TRACERx 421 dataset (Frankell et al.
2023) presents an opportunity for MAPSCE’s mapping algorithm to gain
increased statistical power due to a larger sample size compared to the original
100 patients (Jamal-Hanjani et al. 2017). The continuous generation of new
multi-sample multi-omics data provides abundant opportunities to showcase
the tool’'s broad functionality, particularly in mapping other data types such as

the transcriptomic and methylomic changes.
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Chapter 6 Discussion

The work presented in this thesis focuses on the development, testing, and
validation of MAPSCE (MAPping SubClonal Events), a tool designed for
tracking subclonal events on tumour evolutionary trees. The aim of the project
was to develop a novel computational tool, which would allow for the
integration of the multi-region, multi-omics and onco-genomics data on the
subclonal level in the context of tumour evolutionary trees. This chapter will
summarise the work presented in this thesis, highlight the novel features and
functionality of the tool, outline the current limitations of the methodology and

the findings, as well as discuss the potential improvements in future work.

6.1 Summary and novelty of the findings

The development of the tool involved exploring and testing various methods
that could be utilised for mapping subclonal events of tumour evolutionary
trees.

Firstly, we reviewed the mapping algorithm for subclonal HLA LOH events from
LOHHLA (McGranahan et al. 2017) to identify the limitations of the existing
methodology. This approach employed heuristic clonality determination with
quadratic programming to integrate CN and SNV data in the context of tumour
evolutionary trees. Although novel at the time, LOHHLA’s mapping of
subclonal copy number events on SNV-based tumour trees lacked a measure
of goodness of fit and was limited to subclonal copy number events following
prior determination of their presence. The mapping of subclonal HLA LOH
events on SNV-based tumour trees was later explored in high-grade serous
ovarian cancer (Zhang et al. 2018). These proof-of-concept studies
demonstrated the potential of integrating different types of events, the CN and
the SNV data, in the context of a tumour evolutionary tree.

Chapter 3 further explored additional methods to expand mapping capabilities
to other types of subclonal copy number events, like copy number gains, while
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also introducing a measure of goodness of fit for the results. Initially, non-
negative least squares were considered as a potential replacement for
quadratic programming in the branch test. However, we found that nnls could
be presented as a form of quadratic programming minimisation (Equation 4)
(Bro and Jong 1997), which meant it faced similar limitations as quadratic

programming.

We explored a method to directly derive CCF from copy number data, to
validate the results obtained from mapping subclonal copy number events.
While this approach worked well for straightforward cases in its simplified form,
its implementation became circular when applied to more complex events. The
circularity stemmed from deriving CCF from copy numbers that were inferred
using quadratic programming, which relied on the CCF in the first place.
Further work is required to address the implementation of this approach.

Instead of finding an alternative to the quadratic programming in the branch
test, we explored adding statistical support to its results. We first tested
simulations of noise in artificial datasets to provide an objective measure of the
method’s performance. Initially, we attempted to implement Approximate
Bayesian Computation to provide the posterior distributions for different
branches as a measurement of the goodness of fit of the results. However,
due to the computational intensity of ABC, we tested a pseudo-ABC with
maximum likelihood estimation instead. Despite its accuracy, this approach
required a high number of simulations for result stability. Even with a simpler
sampling approach, implementing ABC or pseudo-ABC with MLE would
require considerable computational resources for mapping CN of every gene
of each patient in a larger cohort.

As an alternative to ABC, we explored bootstrapping with filtering of results.
This approach allowed for model selection and measurement of the goodness
of fit using RSS converted into Bayesian Information Criterion and Bayes
Factors. Combining these features and consensus mapping to integrate the
results in agreement improved the mapping precision of the tool. Furthermore,
adjusting quadratic programming in the branch test allowed mapping other
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copy number events, including copy number gains. Together, these results
helped shape the current framework of MAPSCE.

To evaluate the tool’s performance, we simulated various copy number events
(Chapter 4), including amplification (two to three copies), duplication (two to
four copies), homozygous loss (two to zero copies), heterozygous loss (two to
one copy) and loss of heterozygosity (one to zero copies) events. Since there
is no established gold standard method for mapping subclonal copy number
events, we benchmarked MAPSCE against LOHHLA’s mapping approach
(McGranahan et al. 2017) on the datasets with simulated copy number events.
Since LOHHLA’s mapping approach was specifically designed to only map
loss of heterozygosity events, the comparison between the two tools was
limited to that particular type of event. The results showed that MAPSCE
maintained a higher mapping accuracy for subclonal events than
LOHHLA/QP, regardless of the number of regions. Notably, our tool
consistently outperformed its competitor when mapping events in smaller
cluster sizes, regardless of whether we considered the size of the simulated or
the mapped cluster.

We demonstrated the novelty of the tool specifically in mapping other types of
CN events, such as copy number losses extending beyond LOH. These
included homozygous and heterozygous losses, copy number gains,
duplications and amplifications. Across different cluster sizes, MAPSCE
consistently maintained high mapping accuracy for subclonal events for events
with more than two regions sequenced and with constraints for events with two

regions sequenced.

Mapping copy number gains posed a challenge in determining the copy
number of the most recent common ancestor (MRCA) or the root of the tree.
However, providing the tool with the appropriate constraints to define the
expected type of event it would encounter in the dataset considerably
improved the mapping accuracy. What sets MAPSCE apart is its ability to
integrate various copy number events with the SNV data in the context of a
tumour evolutionary tree, an approach which has not been explored
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previously. Existing tools reconstruct phylogenies using the CN or the SNV
data independently and compare the two individual trees for potential
correlations (Malikic et al. 2015; Miller et al. 2014). Other tools integrate both
SNV and CNA data in their phylogenetic reconstruction, however those tools
re-analyse the data to provide their own interpretation. This approach is more
computationally intensive and produces less versatile data (Prandi et al. 2014;
Deshwar et al. 2015). MAPSCE integrates the output of state-of-the-art tools
for deciphering the intratumour heterogeneity (Van Loo et al. 2010), making it
compatible with other approaches.

Additionally, we validated the tool on real datasets, highlighting the novelty of
its features and demonstrating its potential in addressing various biological
questions. We compared MAPSCE and LOHHLA'’s mapping approach on the
NSCLC TRACERx 100 HLA LOH dataset (Jamal-Hanjani et al. 2017;
McGranahan et al. 2017). This comparison aimed to assess the accuracy of
clonality determination of both tools. The results showed a high agreement of
90.3% between both methods when classifying HLA alleles as having either
no LOH, clonal LOH or subclonal LOH. While both tools utilise quadratic
programming to map subclonal events, LOHHLA adopts a heuristic approach
for its clonality determination, whereas MAPSCE relies on an automated
method based on its mapping results. The high agreement between both tools
could be attributed to their shared reliance on the observed copy number either
directly in the case of LOHHLA/QP or indirectly in MAPSCE’s mapping
algorithm. These results demonstrate that MAPSCE's clonality determination
is, at the very least, comparable to that of another previously published study
(McGranahan et al. 2017).

Furthermore, we compared the timing of the genes involved in antigen
presentation machinery to the timing of subclonal HLA LOH events in the
NSCLC TRACERXx 100 dataset (Jamal-Hanjani et al. 2017). We identified 65
genes that, if lost, consistently appeared within the same lineage after a
subclonal HLA LOH event. Those genes included ERAP2, CD74, CD8A,
PCNX and PSMAG6. The co-occurrence of the homozygous losses of these

genes suggests that the immune system could be acting as a key selective
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pressure, driving further mutagenesis in antigen presentation machinery. The
subclonal HLA LOH event could be insufficient in releasing that pressure,
which led to additional events affecting the MHC class Il. We also found a set
of 12 genes whose losses consistently occurred on a sister branch to the
subclonal HLA LOH event. The timing of these losses could suggest a potential
mutual exclusivity between the events affecting the two lineages, ultimately
leading to a loss affecting the APM. These 12 mutually exclusive genes
corresponded to the MHC class I, akin to the examined HLA genes. However,
to establish a pattern of mutual exclusivity or parallel evolution among those
genes, additional statistical analysis, and a larger sample size are necessary.
Taken together, in this analysis, we demonstrated MAPSCE'’s potential in

uncovering novel evolutionary processes on a subclonal level.

Knudson’s (1971) two-hit theory highlighted the crucial role of biallelic
inactivation of the RB7 tumour suppressor gene in tumour initiation and
progression of retinoblastoma. This theory was further demonstrated in other
cancer types, such as medulloblastoma (Lusher et al. 2002), sporadic renal
cell carcinoma (Hamano et al. 2002), prostate cancer (Cheng et al. 2016), and
multiple myeloma (Thanendrarajan et al. 2017). Thus, we identified the biallelic
inactivation of TSGs on a subclonal level in the NSCLC TRACERx 100 dataset
(Jamal-Hanjani et al. 2017). The biallelically inactivated TSGs were further
categorized into those affected by the same-lineage events on a subclonal
level and those with both events occurring on sister branches. We analysed
these gene sets for correlations with different lung cancer types. Additionally,
we examined the dN/dS, the number of mutations, and mutational signatures,
specifically focusing on three cases of biallelic inactivation of BRCAZ2.
Unfortunately, due to the limited sample size of subclonal biallelic inactivation
of TSGs, we were unable to identify significant evolutionary processes within
the dataset except from an increase in tumour burden defined by an increased
number of mutations following a biallelic inactivation of BRCAZ2. The majority
of events affecting TSGs were clonal, after a clonal sweep.

Finally, we compared the allele-specific expression and copy number changes
on a tumour evolutionary tree for a single patient of the NSCLC TRACERx 421
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cohort (Frankell et al. 2023). Consistent with a recently published study,
MAPSCE identified evidence of potential CN-dependent and CN-independent
ASE of FAT1 for the CRUKO0640 patient (Martinez-Ruiz et al. 2023).
Furthermore, we compared the timing of the subclonal transcriptomic changes
to the subclonal genomic events for the genes previously described as
exhibiting CN-dependent ASE. The percentage of matching genomic and
transcriptomic events varied depending on whether the tool mapped the RNA
reads or the BAF of the RNA reads. Furthermore, there were notable
differences in how CN events were defined in Martinez-Ruiz et al. (2023)
compared to MAPSCE. The former identified subclonal CN events within each
region independently, while MAPSCE utilised regional data to map the events
and subsequently determine the clonality. It is important to note that this
analysis was performed with the tool still in development (v0.5.0). We
addressed the tool’s issues with mapping precision later in the project by
adding mapping constraints and consensus mapping to integrate results in
agreement. Taken together, these results demonstrated MAPSCE’s capability
to integrate multi-region, multi-omics data in the context of a tumour
evolutionary tree. To my knowledge, mapping of subclonal expression
changes against copy number events on an SNV-based tree has not been
attempted before, highlighting the novelty of MAPSCE. This further
demonstrates how this approach can be extended to integrate more complex

multi-omics data.

6.2 Limitations and future work

Throughout this thesis, each chapter has outlined specific limitations of the
described work and proposed future approaches to improve the results, as
indicated in the conclusions sections. This section will summarise those
specific limitations, outline the general shortcomings of this work, as well as
discuss the future directions opened up by the research presented in this
thesis.
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6.2.1 Single-cell sequencing and data availability

Single-cell sequencing has allowed for studying intratumour heterogeneity at
the level of individual cells. The focus of cancer research has started shifting
to integrate the scRNA-seq data (Navin et al. 2011; Tirosh et al. 2016; Wu et
al. 2021; Ren et al. 2022; Schmiel, Thomas, and George 2022) with some
studies integrating both single-cell RNA-seq and bulk RNA-seq data (Zhang et
al. 2021). MAPSCE is specifically designed to track and integrate the multi-
omics data on a subclonal level to decipher the intratumour heterogeneity in
bulk sequencing data. The tool relies on multi-sample bulk sequencing data
and has been thoroughly tested only for that use. Extending an algorithm
beyond bulk sequencing data to include single-cell sequencing data has been
done before with other tools, such as ASCAT (Van Loo et al. 2010).
Implementing this feature would greatly improve MAPSCE'’s versatility.

One major limitation of the research included in this thesis is the data
availability. While bulk sequencing data is prevalent in cancer research (Kuksin
et al. 2021), there is still a lack of large multi-region cancer datasets, in which
MAPSCE could be fully utilised for studying tumour evolution (Gerlinger et al.
2012; 2014; Zhang et al. 2014; Jamal-Hanjani et al. 2017; Frankell et al. 2023).

6.2.2 Validation of the tree space

During the phylogenetic reconstruction in the NSCLC TRACERx 100 dataset,
we observed that multiple trees could apply to a single patient’s data. The
cluster CCFs used for reconstructing phylogenies were not consistently
reliable, occasionally exceeding 100% for a particular lineage. In certain cases,
tree inference can lead to several solutions. Throughout this project, we tested
various versions of MAPSCE on these alternative trees, aiming to validate
them based on their fit to the data. However, the phylogeny of the tree was not
relevant as the key input for the tool was the CCF of the affected branch. Thus,
the tool was not able to differentiate between different phylogenies. Since the

integration of multi-omics data on the subclonal level relies on tumour
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evolutionary trees, validating the tree space would significantly improve our
understanding of the tumour evolutionary dynamics. By addressing these
limitations, we can further improve the accuracy of phylogenetic

reconstruction, ultimately leading to enhanced mapping precision.

6.2.3 Exploration of noise in a real dataset

Chapter 4 of this thesis described the simulations of subclonal copy number
events and the accompanying noise. Previous studies have explored various
methods of simulating noise in the sequencing data or measuring the expected
noise during subclonal deconvolution (Sloutsky et al. 2013; Barrett et al. 2017;
Saunders et al. 2012). MAPSCE’s acceptable thresholds of noise were
determined to be up to 15 - 20% noise using the simulated datasets. To
accelerate the testing of future tools developed for the analysis of sequencing
data, further exploration of noise in real data is necessary. Understanding the
average noise expected in the real data could further validate MAPSCE’s
results on the simulated datasets, determining whether the tool’s resistance to

noise is sufficient.

6.2.4 Improvements to the methodology

During the analysis of MAPSCE’s performance on simulated subclonal copy
number gains and losses in Chapter 4, the tool maintained higher mapping
accuracy when given a constraint to determine the expected type of copy
number events in the dataset. Providing the tool with the ability to automatically
detect the types of copy number events in the dataset based on the observed
copy number, and automatically setting an appropriate constraint would vastly
improve the tool's performance and make it more robust for mapping different
types of subclonal CNA. Currently, manual screening for the expected type of
CNA in the dataset is required to maximize the tool’s performance.
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In Chapter 5, the mapping of allele-specific expression changes demonstrated
the immense potential of MAPSCE in integrating different types of multi-omics
data onto a single tumour evolutionary tree. However, to ensure consistent
results, additional testing on simulated data and validation in real datasets is
crucial for reliable mapping of expression changes on the tumour trees. To our
knowledge, integration of methylation changes on SNV-based tumour
evolutionary trees has not been attempted before. By extending the tool’s
functionality to track both subclonal expression and methylation changes
together with CNA on the SNV-based trees, MAPSCE would become highly
versatile in integrating multi-omics data in the context of tumour evolutionary

trees.

6.3 Conclusion

Integration of multi-omics, onco-genomics data on a subclonal level within the
context of tumour evolutionary trees allows for deciphering the evolutionary
processes driving tumour progression. The lack of tools for tracking subclonal
changes has hindered the ability to backtrack a tumour’s evolutionary history.
The research presented in this thesis has outlined the advantages and
limitations of MAPSCE, a novel integrative tool for the precise mapping of
subclonal events. By combining the genomic and transcriptomic data, this work
provides the opportunity to study the diverse molecular alterations within
different subclones. Extending this integrative approach to other multi-region,
multi-omics and onco-genomics data holds immense potential for uncovering
the evolutionary trajectories underlying intratumour heterogeneity across all

cancer types.
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Figure S3-1. Example scatterplot of the mutations clustered based on their
CCFs in region 1 (R1) and region 2 (R2). The different colours indicate the
assigned cluster of the mutations during subclonal deconvolution using
PyClone (defined as Pyclone Cluster in the legend). The cluster with a thick
outline denotes the HLA LOH cluster inferred using MAPSCE. The cross
shows the derived CCFcn. Proximity of the cross to the HLA LOH cluster
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suggests matching results between MAPSCE and the derived CCFcn.

Table S5-1. List of all tumour suppressor genes identified.

A1CF ATP8A2 CBL COL12A1 ELF4 FGFR4
ABCAb6 ATR CCDC6 COL1A1 ELL FH
ABCF1 ATRX CCDCS85A COL3A1 ELN FHIT

ABI1 AXIN1 CCND1 COL6A3 EML4 FLCN

ABL1 AXIN2 CCND2 CR1 EP300 FLNA

ABL2 B2M CCND3 CR2 EPHA2 FLT4

ACVR1B BAP1 CCR7 CREBBP EPHA3 FMR1
ACVR2A BAZ1A CD58 CSF3R EPHA7 FN1
ADAMTS3 BCL10 CD70 CSMD3 ERBB2 FOXA1
ADAMTSS8 BCL11B CD79B CTCF ERBB3 FOXA2
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ADCY8 BCL6 CDH1 CTDNEP1 ERBB4 FOXP1
AFF1 BCL9 CDH10 CTNNA2 ERCC3 FREM2
AFF3 BCLOL CDH11 CTNND1 ERF FUBP1
AHR BCLAF1 CDH17 CTNND2 ERICH4 GATA2

AJUBA BCOR CDH18 CcuL3 ESR1 GATA3

AKAP9 BCORL1 CDH9 CUX1 ESRRA GCSAM
ALB BCR CDK12 CXCR4 ETV6 GFRA1
ALK BIRC6 CDKN1A CYLD EXT2 GLI1

AMER1 BMP2K CDKN1B DAXX EYS GNA11
ANK1 BMP5 CDKN2A DAZAP1 EZH2 GNA13
ANK2 BMPR1A CDKN2C DCC FAM104B GNAS

ANKRD36 BMPR2 CDX2 DDX3X FAM135B GRIA1

BORCSS8-

ANKRD36C MEF2B CEBPA DGCR8 FAMA46C GRM3
APC BRAF CEP170 DICER1 FAMA47C GTF2I
APOB BRCA1 CFHR5 DNAH9 FAM86B2 HELZ

AR BRCA2 CHD2 DNMT3A FANCA HHLA3

ARHGAP35 BRD7 CHD4 DOCK3 FAS HIP1

ARHGAP5S BTG1 CHEK2 DOTIL FAT1 HIST1H1B

ARHGEF10 BTG2 CHRDL1 DPP7 FAT2 HIST1H1E

ARHGLEFIO BTK CHRM4 DROSHA FAT3 HIST1H2BL

C70rf55-

ARHGEF12 LUCTL2 CIC DSCAM FAT4 HIST1H3B
ARID1A CACNA1A CITA DSG1 FBLN2 HLA-A
ARID1B CACNA1D CLIP1 DST FBN2 HLA-B

ARID2 CAMTA1 CLTC DTX1 FBXO11 HMCN1
ASXL1 CAPN5 CLTCL1 DUSP16 FBXW?7 HNF1A
ASXL2 CARD11 CMTR2 DUSP2 FER1L6 HOXA11

ATF7IP CARS CNBD1 EBF1 FEZF1 HOXC13

ATG2A CASP8 CNTN1 EHD2 FGF22 HOXD13
ATG7 CASZ1 CNTN5 EIF1AX FGFR1 HSP90AA1
ATM CBFB CNTNAP2 ELF3 FGFR3 HSP90AB1

HTRA2 LTB OR4C3 PTEN SIN3A TRAF2

HVCN1 LUC7L2 OR5L1 PTPN13 SIRPA TRAF3
HYDIN LYST OR8H2 PTPN14 SLC34A2 TRIM33

ID3 LZTR1 OTOP1 PTPNG6 SLC7A5 TRIM51
IDH2 MAML2 P2RY8 PTPRB SLFN13 TRIO

IFNAG6 MAN1A1 PABPC1 PTPRC SLIT2 TRIP11

IFNGR1 MAP2 PAQR9 PTPRD SMAD2 TRPV3
IGLL5 MAP2K4 PAX3 QKI SMAD3 TSC1

IGSF21 MAP2K7 PAX5 RAD21 SMADA4 TSC2
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IKZF1 MAP3K1 PBRM1 RANBP2 SMARCA1 TTLL2
IL1IRL1 MAPK1 PCBP1 RAP1GAP2 | SMARCA4 TTN
IL7R MARK2 PCDH17 RAP1GDS1 | SMARCB1 UBE2A
ING1 MAX PCDH18 RARG SMARCD1 UBE2D2
INO80 MB21D2 PCDH7 RASA1 SMO UBR5
INPPL1 MECOM PCDHB7 RASA2 SOCS1 UGT2B17
INSC MED1 PCLO RB1 SOX21 UNC80
IRAK1 MED12 PCMTD1 RBFOX1 SOX9 USH2A
IRF1 MEF2B PDGFRA RBM10 SP140 usP44
IRF8 MEN1 PDGFRB RBM15 SPEF2 USP6
IRS4 MET PDS5B RBM38 SPEN USP9X
ITGAE MGA PEG3 RCAN2 SPHKAP VAV1
ITGAV MSI2 PFAS RECQL4 SPOP VHL
ITGB6 MSN PHF6 REG1A SPTA1 WDR45
JAK1 MUC16 PIK3CA RELA SRRM2 WNK2
JAK2 MUC4 PIK3CB RET STAB2 WNK4
KANSL1 MYC PIK3R1 RFX7 STAG2 WRN
KAT6A MYH11 PIM1 RGPD3 STK11 WT1
KAT6B MYH9 PITPNM2 RGS7 STX2 XRRA1
KDM3B MYOS5A PLEKHG4B RHOA SuUz12 YLPM1
KDM5C NBEA PLXNB2 RHPN2 SYNE1 ZAN
KDM6A NCOA1l PMS2 RIPK1 SYNE2 ZBTB16
KDR NCOA2 POLD1 RNF213 TAF15 ZBTB20
KEAP1 NCOR1 POLE RNF43 TANGO6 ZBTB7B
KEL NCOR2 POLQ RNF6 TAS2R1 ZEB1
KIFC1 NF1 POM;ZILI ROBO2 TBX3 ZFHX3
KIT NF2 POT1 ROS1 TCF4 ZFHX4
KLF4 NFE2L2 POU2F2 RPL22 TCF7L2 ZFP36L1
KLF5 NFKB2 PPM1D RPS6KA3 TCHH ZFX
KLHL36 NFKBIA PPP3CA RUNX1 TCIRG1 ZIC4
KLHL6 NFKBIE PPP6C RUNX1T1 TCL1A ZMYM3
KMT2A NHLRC1 PPT2 RYR1 TET1 ZNF148
KMT2B NIN PRAMEF12 RYR2 TET2 ZNF165
KMT2C NIPBL PRB1 SALL4 TG ZNF429
KMT2D NKX2-1 PRB2 SATB1 TGFBR2 ZNF521
KRT15 NONO PRB3 SCN11A TGIF1 ZNF679
KRT38 NOTCH1 PRDM1 SCN2A TLL1 ZNF680
KRTAPS-1 NOTCH2 PRDM2 SCN7A TMEMS30A ZNF716
LAMAS NPFFR2 PRDMS8 SCNO9A TMEM51 ZNF717
LATS1 NPRL2 PREX2 SDC4 TMSB4X ZNF721
LATS2 NRAS PRF1 SELP TMTC1 ZNF814
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LDB1 NRK PRKAB2 SEMA3G TNFAIP3 ZNF98
LOX NSD1 PRKAR1A SET TNFRSF14 ZNRF3

LPAR4 NTNG1 PRKCD SETBP1 TNRC18 ZRSR2
LPP NTRK3 PRRX1 SETD1B TNRC6B ZXDB
LRIG3 NUMA1 PRSS54 SETD2 TOP1

LRP1B NUP93 PRSS58 SETDB1 TP53

LRRK2 NXF1 PSIP1 SF3B1 TP63

LRRN3 OBSCN PTCH1 SGK1 TPCN1

Table S5-2. List of same-lineage tumour suppressor genes identified.

BRCA2 TTN PLXNB2 NFKB2
ANK1 LRRK2 SYNE1 BCL11B
UBR5 BIRC6 UBR5 DNAH9
UBR5 ZFHX3 APOB MUC16
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