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Abstract 

Inferring the tumour’s evolutionary history is crucial for unravelling the intricate 

landscape of intratumour heterogeneity underlying cancer progression. 

Several bioinformatics tools have been designed for deciphering the subclonal 

population of the heterogeneous tumour mass. However, most of them rely on 

single-omics analysis and methods for integrating multi-omics data in the 

context of tumour evolutionary trees are still lacking. 

In this thesis, the development of MAPping SubClonal Events (MAPSCE), a 

new tool for mapping of subclonal events on tumour evolutionary trees, is 

described. This method allows for integration of multi-omics data in multi-

sample cancer evolutionary studies. In essence, MAPSCE implements a 

branch test where quadratic programming is applied to every branch of a 

patient tumour tree to find the best mapping branch (including the root). Each 

solution translates into a Bayesian Information Criterion value, and Bayes 

factors for model selection. MAPSCE has been released as an R package. 

Multiple datasets with different types of copy number events and varying 

degrees of noise up to ±30% were simulated to assess the reliability of the 

tool. For losses of haploid genes, MAPSCE was benchmarked against a tool 

of similar functionality, LOHHLA, showing both an increase in specificity and 

sensitivity. This comparison was not possible for other types of copy number 

events as MAPSCE is the only tool to date with the ability to map these. 

Lastly, MAPSCE’s potential applications were demonstrated in several 

analyses of multi-region, multi-omics datasets. Subclonal biallelic inactivation 

of tumour suppressor genes on subclonal level was identified in lung cancer 

patients. Subclonal changes of gene expression were further compared 

against subclonal copy number events to infer cases of copy number 

dependent or independent allele specific expression.  

This work provides an innovative way to integrate multi-omics data in multi-

sample cancer studies, refining the study of evolutionary processes underlying 

intratumour heterogeneity.   



 4 

Impact Statement 
 

Cancer is the second leading cause of mortality around the world, with lung 

cancer being one of the most common types of cancer among men and 

women. Intratumour heterogeneity, the diversity of cells within a single tumour 

mass, is one of the main issues preventing development of effective cancer 

therapeutics, as it leads to failure to validate cancer biomarkers, decreases 

drug efficacy, exacerbates patient prognoses and increases therapy costs.  

 

Many methods have been developed for studying the diversity within each 

individual tumour, however most of them only focus on one type of alteration 

at a time. This single-lens approach disregards the broader perspective of how 

multiple changes contribute to tumour evolution. Furthermore, many of the 

cancer studies have focused on inferring the tumour evolution based on a 

single biopsy, where two samples from different sites of a tumour could provide 

vastly different pictures of the tumour’s entire evolutionary process. While the 

rapid generation of new cancer datasets provides more avenues for studying 

tumour evolution, tools for integration of the various types of cancer data based 

on multiple biopsies in an evolutionary context are still lacking.  

 

This thesis presents the development, and testing of a novel methodology, 

MAPping Subclonal Events, for studying intratumour heterogeneity. This 

integrative tool allows for combining the different layers of information across 

multiple tumour samples as well as tracking of the diverse changes, to provide 

a more comprehensive understanding of the hidden processes underlying 

tumour evolution. The analysis of cancer datasets demonstrates the 

evolutionary questions that could be addressed with the tool presented in this 

thesis. Exploring the opportunities opened up by this research could identify 

novel drivers of cancer that could be targeted to predict therapy response.  

 
Ultimately, the research presented in this thesis provides a novel, integrative 

approach to studying tumour evolution, paving the way for more effective 

cancer diagnostics and therapeutics tailored to individual patients.   
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Chapter 1 Introduction 
 

1.1  Tumour evolution 
 
Tumours comprise individual cancer cells with distinct genetic alterations. The 

evolution of a tumour is based on these individual cancer cells acquiring 

genetic changes over time, some of which confer a growth advantage. These 

so-called driver events lead to clonal expansion, where cells proliferate and 

can, in turn, establish new subpopulations of cells with unique genotypes. One 

key manifestation of tumour evolution is the presence of intratumour 

heterogeneity (ITH), whereby even within the boundaries of a single tumour, 

there is considerable genetic diversity among the various subpopulations of 

cells (Mullighan et al. 2008; Navin et al. 2011; Gerlinger et al. 2012; Shah et 

al. 2012). This phenomenon highlights the complex and dynamic nature of 

tumour evolution.  

 

Intratumour heterogeneity poses a significant and unmet challenge in the 

treatment of cancer, as it results in increased therapy costs, reduced drug 

efficacy, failure to validate cancer biomarkers and poorer prognoses for cancer 

patients (Figure 1-1). Jamal-Hanjani et al. (2017) demonstrated the negative 

impact of subclonal copy number alterations on patient outcomes. In another 

study, only one out of 28 tested biomarkers effectively predicted patient 

survival, with others failing primarily due to ITH (Gulati et al. 2014). Biswas et 

al. (2019) highlighted the negative impact of the tumour sampling bias resulting 

from ITH on the efficacy of cancer biomarkers and presented their prognostic 

signature in lung cancer. Another study suggested the role of genetic and 

transcriptomic diversity as the origin of chemotherapy resistance in pancreatic 

cancer (Seth et al. 2019).  Finally, Marusyk, Janiszewska, and Polyak (2020) 

further discussed the increasing therapy costs associated with the necessary 

routine ITH assessment for patient prognostication. Taken together, 

understanding the complex molecular landscape of cancer necessitates the 

development of novel and tailored approaches to correctly consider ITH. 
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Figure 1-1 Intratumour heterogeneity leads to failure to validate cancer 
biomarkers, decreasing drug efficacy, poor prognosis of cancer patients 
and increasing therapy costs 

 

1.2  Models of tumour evolution 
 
One important discussion regarding tumour evolution revolves around whether 

cancers develop under the clonal expansion (positive selection) or the 

stochastic model (neutral selection) (Turajlic et al. 2019) . 

 

1.2.1 Clonal expansion model 
 

In 1859 Charles Darwin introduced the theory of branching evolution, in which 

diverse populations originated from a common ancestor through the process 

of natural selection. Analogically, Peter Nowell in 1976 hypothesised that 

cancer follows the Darwinian selection process, in which genetic variability is 

at the core of tumour evolution and different tumour cell populations compete 

for dominance by acquiring selective growth advantages over others (Nowell 

1976). The clonal evolution of cancer (Figure 1-2) follows a Darwinian 

selection process, where the majority of the cancer cell population can share 
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one or two progenitors, however different tumour clones acquire varying 

mutations, forming divergent tumour cell populations over time (Polyak, Haviv, 

and Campbell 2009). Events that give a selective advantage (driver events) 

lead to further development of the dominant subclones, while disadvantageous 

mutations and healthy cells slowly become evolutionary dead-ends (Marusyk 

and Polyak 2010). This results in a highly heterogeneous tumour, which 

requires a multi-faceted approach specifically tailored to kill every individual 

dominant subclone. Surviving clones could proliferate and expand, initiating 

another clonal expansion of resistant cells (Greaves and Maley 2012). The 

continuous clonal selection theory has been evidenced by the low ITH of the 

clonal driver events (Gao et al. 2016; Notta et al. 2016). 

 

 
Figure 1-2 Clonal expansion model, in which one cell initiates tumour 
progression that is driven by the emergence of new subclonal 
populations in cancer. 
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1.2.2 Stochastic model 
 

Conversely, the stochastic evolution model suggests that tumours evolve by 

acquiring mutations via genetic drift due to the random changes in allele 

frequencies with no single dominant subclone. According to this model, 

multiple cell populations with different genetic alterations coexist. 

Consequently, it is suggested that ITH is driven by the diverse random genetic 

and epigenetic alterations acquired under neutral evolution in subclonal 

populations that ultimately do not lead to a clonal sweep (Yates et al. 2015; 

Gerstung et al. 2020). 

 

1.3  Types of events driving tumour evolution 
 
There are different types of alterations which can drive tumour progression and 

contribute to intratumour heterogeneity. These include genetic alterations such 

as point mutations, insertions, deletions and copy number alterations (CNA), 

and epigenetic alterations, such as modifications to the chromatin structure, 

gene expression, and methylation changes without altering the DNA sequence 

(Takeshima and Ushijima 2019). Point mutations are the changes in the DNA 

sequence which substitute, insert or delete a single nucleotide. Copy number 

alterations encompass changes to the number of copies, either gains or 

losses, of specific segments of the DNA. The gene expression changes refer 

to the alterations affecting the production of RNA, leading to a modified 

expression level of a particular gene. Methylation changes are the alterations 

in the methylation patterns of the DNA, involving the addition or subtraction of 

a methyl group. Both the genetic and epigenetic alterations can drive tumour 

progression when they confer a growth advantage, either by activating, 

duplicating or upregulating oncogenes such as KRAS, or inactivating, losing 

or downregulating tumour suppressor genes such as TP53 (Hanahan and 

Weinberg 2000; 2011; Jamal-Hanjani et al. 2017; Juul et al. 2021; Frankell et 

al. 2023). While there are numerous other types of alterations which can 

contribute to tumour progression, this thesis will primarily centre on the major 

classes of alterations mentioned above.  
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All the aforementioned events can be further categorised as clonal or 

subclonal events. Clonal events are alterations present in all cells within a 

tumour sample, while subclonal events are alterations that occur only in a 

subset of cells within a particular tumour lineage (Black and McGranahan 

2021). Knowing the clonality of the events is crucial for determining the timing 

and order of the alterations. This allows us to explore the evolutionary 

processes including parallel evolution, co-occurrence and mutual exclusivity. 

Co-occurring driver events collaborate to activate oncogenic pathways, 

probably providing an additional selective advantage. In contrast, mutual 

exclusivity reveals the intricate interactions between specific drivers and can 

potentially offer targets for cancer treatments (Tekle et al. 2021). Turajlic et al. 

(2018) demonstrated the parallel evolution of single nucleotide variants 

(SNVs) affecting SETD2, BAP1 and PTEN driver genes. Deciphering these 

evolutionary processes and constraints uncovers the epistatic relationships 

between various driver events underlying branched tumour evolution (Landau 

et al. 2013; McGranahan et al. 2015; Cheng et al. 2022). 

 

1.4  Brief history of sequencing techniques 
 
The continuous development of new sequencing technologies has played a 

pivotal role in generating large amounts of data, and in turn, improving our 

understanding of the complex nature of tumour heterogeneity. 

 

1.4.1 First-generation sequencing 
 
The first-generation sequencing, Sanger sequencing, became the gold 

standard of sequencing technologies for years after its introduction in the 

1970s and was later utilised for the ambitious Human Genome Project (HGP), 

which aimed to sequence the entire human genetic sequence (Sanger, 

Nicklen, and Coulson 1977; Olson 1993; Collins and Fink 1995). However, 

Sanger sequencing was a complex, labour-intensive process which involved 

multiple steps, including DNA extraction, purification, amplification, 
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sequencing, gel electrophoresis, and manual data analysis (Crossley et al. 

2020). Scaling the technique to large genomes required the preparation of 

BAC libraries which was also a multi-step process (Osoegawa et al. 2001). 

Consequently, Sanger sequencing was ill-suited for large-scale sequencing of 

complex tumour genomes. 

 

1.4.2 Second-generation sequencing 
 
The emergence of second-generation sequencing, also known as Next-

Generation Sequencing (NGS), dominated by Solexa/Illumina, allowed for 

massively parallel sequencing, providing increased sequencing output at a 

reduced cost and time (Voelkerding, Dames, and Durtschi 2009). The NGS 

platform has been vastly improved since its inception by further reducing cost, 

increasing output, read length and depth of sequencing (Muir et al. 2016). 

These improvements to the NGS technology enabled sequencing of the 

genome of an individual or a tumour in a short time and at an affordable price.  

 

1.4.3 Third-generation sequencing 
 

Lastly, third-generation sequencing introduced single-molecule sequencing 

(SMS) (van Dijk et al. 2014) and nanopore sequencing (Clarke et al. 2009; 

Eisenstein 2012), both of which allowed for sequencing longer reads 

compared to NGS, while eliminating the need for DNA amplification (Xiao and 

Zhou 2020).  

 

1.5  Large-scale cancer datasets 
 

While the development of Sanger sequencing launched the HGP, other 

projects emerged over time to collect pan-cancer data and perform sequencing 

of the cancer genomes. The Sanger Institute’s Cancer Genome Project 

primarily utilised whole genome sequencing data to catalogue the cancer 

genes and patterns of clonal evolution in human tumours (Pleasance et al. 
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2010). The Cancer Genome Atlas (TCGA) aimed to assess the entire 

spectrum of genomic changes in human cancer (Tomczak, Czerwińska, and 

Wiznerowicz 2015). TCGA provides a public database on over 20,000 primary 

cancer and matched normal samples from 33 different cancer types. The 

International Cancer Genome Consortium (ICGC) was a global initiative to 

coordinate large-scale cancer genome studies and characterise the genomic 

landscape of over 50 different cancer types (Hudson et al. 2010). Lastly, the 

Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium was launched 

to identify common patterns of mutation in more than 2,600 cancer whole 

genomes, building on the work from ICGC and TCGA (Aaltonen et al. 2020).  

 

1.6  Multi-sample sequencing 
 
Importantly, the advancement of NGS techniques accelerated the sequencing 

progress at a lower cost, revolutionising cancer research. The main issue with 

inferring tumour evolutionary history from a single sample at one time point is 

intratumour heterogeneity. ITH makes it challenging to distinguish between the 

different subclonal populations within a heterogeneous tumour mass (Black 

and McGranahan 2021).  

 

Longitudinal studies have emerged where samples from the same patient were 

collected at different time points including metastases to provide an overview 

of the changes occurring within the tumour over time. Cindy Yang et al. (2021) 

examined solid tumours of 73 patients across 30 different cancer types before 

and after pembrolizumab therapy. The study revealed that BRCA2 mutations, 

increased mutation burden and elevated expression of immune signatures 

were associated with pembrolizumab sensitivity. In contrast, an abundance of 

CNA and loss of heterozygosity of B2M corresponded with drug resistance. 

Jiang et al. (2016) identified prognostic biomarkers by inferring tumour 

phylogeny from breast cancer patient xenografts and their subsequent 

propagation of metastatic xenografts. Boyle et al. (2021) examined samples 

from multiple time points of patients with smouldering multiple myeloma. The 

findings revealed an increased mutational load and elevated intratumour 
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heterogeneity in patients who progressed from smouldering multiple myeloma 

to multiple myeloma.  

 

Another approach involves sampling multiple regions of the same tumour at 

the same time. Gerlinger et al. (2012; 2014) have demonstrated how multi-

region whole-exome sequencing (WES) on patients with renal cell carcinoma 

revealed branched tumour evolution within the heterogenous tumour mass 

with 63 – 69% of all somatic mutations not being detectable across every 

tumour region, thus being missed in the single-sample analysis. Other studies 

have since investigated intratumour heterogeneity using a multi-region 

sequencing approach. Yates et al. (2015) identified subclonal diversification of 

common breast cancer genes, including PIK3CA, TP53, PTEN, BRCA2 and 

MYC in breast cancer patients. In another study of 11 localised lung 

adenocarcinoma patients, Zhang et al. (2014) found that all three relapsed 

patients had significantly larger fractions of subclonal mutations in their primary 

tumours, compared to non-relapsed patients. Additionally, de Bruin et al. 

(2014) demonstrated how mutations associated with APOBEC-mediated 

mutagenesis (apolipoprotein B mRNA editing enzyme catalytic polypeptide-

like) were mostly subclonal in four out of five lung adenocarcinoma (LUAD) 

patients. 

 

1.6.1 TRAcking Cancer Evolution through therapy 
(TRACERx) 

 

Recently, the TRAcking Cancer Evolution through therapy (TRACERx) 

showed novel insights into the study of intratumour heterogeneity of multiple 

cancers (Jamal-Hanjani et al. 2014). TRACERx is an ambitious translational 

research study which aims to elucidate the intricate evolutionary processes 

underlying cancer progression, and directly translate the findings to improved 

patient outcomes. Their work encompasses multiple cancer types, such as 

non-small cell lung cancer (NSCLC) (Jamal-Hanjani et al. 2017; Frankell et al. 

2023), melanoma (Menger et al. 2016) and renal cancer (Mitchell et al. 2018; 

Turajlic et al. 2018). Their multi-sample research aims to track the tumour 
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evolution through time and space to accurately identify clonal and subclonal 

drivers. The NSCLC TRACERx 100 study has demonstrated the significance 

of multi-region whole-exome sequencing. The study revealed that if only 

single-sample analysis had been used, 76% of subclonal mutations would 

have been misidentified as clonal (Jamal-Hanjani et al. 2017). Furthermore, 

significantly more mutations were identified with multi-region WES compared 

to single-sample analysis or with the use of a single NSCLC sampled from 

TCGA (Jamal-Hanjani et al. 2017).  

 

This thesis will predominantly focus on the NSCLC TRACERx 100 dataset 

and one patient from the NSCLC TRACERx 421 dataset (Jamal-Hanjani et 

al. 2017; Frankell et al. 2023; Martínez-Ruiz et al. 2023). 
 

1.7  Studying intratumour heterogeneity 
 
Advanced cancer genomics allows for studying the extent of heterogeneity of 

the tumour and the effects of the clonality of mutations (Schmitt, Prindle, and 

Loeb 2012; Dan et al. 2015). There is no standardised and universal workflow 

for studying intratumour heterogeneity as it entails the analysis of different 

types of events, both genetic and epigenetic. However, the research presented 

in this thesis will focus predominantly on the integration of subclonal CNA in 

the context of a tumour tree built on SNVs. This section will focus on the 

workflow for that analysis. 

 

1.7.1 Existing methods for studying ITH and their 
limitations 

 

One of the first steps in the workflow is the detection of the SNVs and CNAs 

(Figure 1-3). The former includes variant calling, which is the identification and 

classification of the somatic point mutations. There are several tools available 

for the detection of SNVs, such as VarScan and VarScan2 (Koboldt et al. 2009; 

2012), Strelka (Saunders et al. 2012) and MuTect (Cibulskis et al. 2013). Other 
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tools focus on processing copy number data (Koboldt et al. 2012; Rimmer et 

al. 2014) and estimating the absolute copy number, enabling the detection of 

gain, loss, copy number neutral and loss of heterozygosity (LOH) events. 

Carter et al. (2012) developed ABSOLUTE, a method for absolute 

quantification of copy number, while jointly estimating tumour purity and ploidy. 

Van Loo et al. (2010) presented ASCAT, an allele-specific copy number 

estimation tool for solid tumours, which also estimates tumour ploidy and 

purity. Oesper, Mahmoody, and Raphael (2013) also described THetA, which 

identifies subclonal copy number alterations.  

 

One way of studying ITH involves subclonal deconvolution, which is the 

process of disentangling the bulk sequencing data of a tumour to identify 

distinct features of subclonal populations (Barrett et al. 2017; Yang et al. 2019) 

(Figure 1-3). Subclonal deconvolution includes estimating the mutational 

cancer cell fraction (CCF), which involves calculating the proportion of cancer 

cells within a tumour sample carrying a specific mutation and clustering those 

mutations. Tools can temporally order the somatic point mutations to 

determine their clonality. Roth et al. (2014) developed PyClone, a Bayesian 

clustering method, which clusters somatic mutations to estimate subclonal 

frequencies while accounting for copy number changes and purity. Similarly, 

Miller et al. (2014) introduced SciClone, which also clusters somatic mutations 

into several subclones with estimated frequency, using a variational Bayesian 

mixture model. SciClone’s variational Bayesian mixture model includes a 

computational termination condition, which is less computationally intensive 

than PyClone’s Markov chain Monte Carlo (MCMC) convergence. However, 

SciClone’s method is heuristic and can result in sub-optimal solutions 

compared to PyClone’s stochastic MCMC. Ha et al. (2014) and Shen and 

Seshan (2016) both recognised the lack of tools for studying copy number 

heterogeneity in subclonal populations and developed TITAN and FACETS, 

respectively, to focus on inferring the copy number architecture. Fischer et al. 

(2014) presented cloneHD, a method that combines the use of copy number 

and somatic point mutations to infer the clonal population structure.  
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Subclones successfully deconvoluted can be used for phylogenetic 

reconstruction, which involves establishing evolutionary relationships between 

the clusters, ordering those clusters and rebuilding the tumour evolutionary 

trees (Niknafs et al. 2015) (Figure 1-3). Jiao et al. (2014) developed PhyloSub 

to infer relationships between the tumour clones using MCMC sampling. 

Similarly, Malikic et al. (2015) presented CITUP, a method for inferring 

phylogenies from multiple samples of the same patient. Both PhyloSub and 

CITUP reconstruct phylogenies based on somatic single nucleotide variants. 

Schwarz et al. (2014) and Zaccaria et al. (2017) also presented tools for 

deconvolution and phylogeny reconstruction based on copy number 

aberrations, MEDICC and CNT-MD, respectively. Deshwar et al. (2015) 

proposed PhyloWGS, a method very similar to cloneHD in that it combines 

both copy number and somatic point mutations, while also providing phylogeny 

reconstruction.  

 

 
Figure 1-3 Main steps involved in the workflow for studying ITH in the 
context of tumour evolutionary trees based on point mutations with 
example tools used for each analysis. 
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1.8  Challenges of studying intratumour 
heterogeneity 

 

1.8.1 Tumour sampling bias 
 
Sampling the tumour mass is the first step of analysing the intratumour 

heterogeneity underlying tumour evolution. The sampling process should 

involve careful consideration to ensure the inclusion of diverse subclonal 

populations and allow for a comprehensive assessment of the tumour's 

genetic and phenotypic heterogeneity. Notably, tumours consist of diverse 

subclonal populations of cells with distinct genetic make-up. In the past, bulk 

sequencing has been the common approach for many cancer studies (Nik-

Zainal et al. 2012; Gerstung et al. 2020). A single sample of a tumour, obtained 

from bulk sequencing data, provides a limited perspective as it offers only a 

glimpse into the entire tumour’s evolutionary history. It is important to 

acknowledge that certain alterations can be strictly subclonal and may not be 

present in the specific part of the tumour that was initially sampled. As such, 

these alterations may be missed when relying on a single sample for analysis. 

Furthermore, an alteration may be present in every cell of the tumour sample, 

while not being present in the other parts of the tumour that were not sampled, 

thus being misclassified as clonal while being subclonal.  

 

To mitigate these issues, recent studies have demonstrated how spatial 

sampling of multiple regions allows for the detection of a larger number of 

events, as well as more accurate clonality determination. Aforementioned 

NSCLC TRACERx 100 study provided compelling evidence that 76% of 

subclonal mutations would have appeared clonal through single-sample 

analysis (Jamal-Hanjani et al. 2017). Additionally, significantly more mutations 

were identified with multi-region WES compared to single-sample analysis. 

Conversely, longitudinal studies offer another approach to the tumour 

sampling bias by considering multiple samples from the same patient taken at 

different time points (Jiang et al. 2016; Chen et al. 2020; Boyle et al. 2020; 

2021; Cindy Yang et al. 2021). Taking different tumour samples over time 
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helps in identifying emerging subclonal populations and pinpointing clonal 

sweeps.   

 

1.8.2 Variant calling and purity estimation 
 

Another challenge in studying ITH is precise estimation of the mutational 

cancer cell fraction. Accurate determination of CCF requires correct 

differentiation between the inherited (germline) variants and variants acquired 

during tumour development (somatic) for accurate variant calling. The 

appropriate distinction between the two requires matched tumour and normal 

samples (Koboldt et al. 2012; Cibulskis et al. 2013). Conversely, absolute copy 

number estimation is hindered by the intricacies of purity estimation. 

Estimating the proportion of tumour cells within a sample and identifying the 

contamination from normal cells, requires matched normal samples and robust 

computational tools for accurate copy number analysis (Van Loo et al. 2010; 

Mermel et al. 2011; Carter et al. 2012).  

 

1.8.3 Subclonal deconvolution 
 
As outlined before, spatial multi-region and temporal multi-sample sequencing 

alleviate some of the sampling issues hindering inference of accurate tumour 

evolutionary history. However, studies performing bulk sequencing still require 

robust computational methods for dissecting the heterogeneity within the 

tumours to accurately depict the distinct subclonal populations within a 

heterogeneous tumour mass. Accurate subclonal deconvolution requires 

sequencing data of good quality and depth. With low coverage, alterations of 

low variant allele frequency (VAF) remain undetected, while low quality leads 

to misclassification of alterations into wrong subclonal populations. 

Furthermore, validation of the results remains challenging. Available 

approaches involve benchmarking on simulated data or independent 

validation using single-cell sequencing (sc-seq) or fluorescence in situ 

hybridization (FISH). Tools for subclonal deconvolution commonly rely on the 
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assumption of the infinite sites model, in which each mutation can only occur 

at a unique site and cannot disappear (Kimura 1969). However, this 

assumption has some inherent limitations, as it does not account for the 

possible occurrence of revertant mutations, recurrent mutations and deletions 

of loci harbouring mutations (Roth et al. 2014; Miller et al. 2014). Furthermore, 

the infinite sites model assumes that tumour evolution occurs under neutral 

evolution, disregarding how certain alterations confer a growth advantage and 

act as a selective pressure for other events to occur. 

 

1.8.4 Phylogenetic inference 
 

Phylogenetic reconstruction is a key step in backtracking the tumour’s 

evolutionary history. It involves determining the evolutionary relationships 

between different clones. Phylogenetic reconstruction often relies on two 

simple rules: the pigeonhole rule and the crossing rule. The pigeonhole rule 

states that two mutational clusters whose prevalence together exceeds 100% 

cannot be placed on independent branches of an evolutionary tree. The 

crossing rule forces the descendent clones to carry a lower cellular prevalence 

than their ancestors in every tumour region (Malikic et al. 2015). These two 

rules ensure higher accuracy of tree reconstruction. 

 

Some of the main challenges of phylogenetic reconstruction include data 

quality, tree complexity, homoplasy and viability of multiple trees. Firstly, 

phylogenetic reconstruction assumes a perfectly accurate subclonal 

deconvolution where each cluster’s CCF is correctly estimated and mutations 

are clustered correctly. However, due to the presence of noise in the data, 

achieving perfect accuracy in subclonal deconvolution is an exceedingly 

difficult task. Small errors can be amplified in phylogenetic reconstruction, 

especially when homoplasy, independently developed shared alterations, is 

present. Secondly, trees with a higher number of subclones are more complex 

and require more computational resources when applying both the pigeonhole 

and the crossing rules. Coupled with inaccurate subclonal deconvolution, the 

resources required for accurate reconstruction of all potential phylogenies can 
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be very computationally intensive. Lastly, phylogenetic reconstruction based 

on tumour clones can often present multiple alternative and equally viable 

trees as potential solutions, while independent approaches for tree validation 

are still lacking. 

 

1.8.5 Integration of multimodal data 
 
Many cancer studies continue to rely on independent analysis of single types 

of events or, at most, the analysis of single-omics data. Nik-Zainal et al. (2012) 

identified the mutational processes in 21 breast cancers based on single-

sample genomic data. Navin et al. (2011) used single-cell (sc) RNA 

sequencing to elucidate expression heterogeneity and identify subclonal 

populations of breast cancers. Landau et al. (2014) studied the transcriptomic 

heterogeneity of DNA methylation-based on genome-scale bisulfite 

sequencing in chronic lymphocytic leukaemias (CLL). All of the 

aforementioned studies focused on the analysis of subclonal events for 

studying intratumour heterogeneity. However, each utilised exclusively one 

type of data. Boyle et al. (2021) used longitudinal smouldering multiple 

myeloma patient data to examine the changes of subclonal CNA and 

mutations on phylogenetic trees between samples of the same tumour 

collected at different times. Recently, Martínez-Ruiz et al. (2023) attempted to 

integrate the genomic and transcriptomic data by studying the allele-specific 

expression (ASE) in NSCLC TRACERx 421 and classifying them based on 

whether they were copy number-dependent or copy number-independent. 

While this study performed phylogenetic reconstruction and attempted to map 

the ASE on a tumour branch, it should be noted that the results were still based 

on regional data, rather than truly deconvolving the regional data and 

identifying the subclonal events.  
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1.9  Tracking of subclonal events on tumour 
evolutionary trees 

 
Integration of multi-omics data is crucial for providing a more comprehensive 

analysis of the subclonal population and evolutionary constraints underlying 

tumour progression. McGranahan et al. (2017) presented Loss of 

Heterozygosity in Human Leukocyte Antigen (LOHHLA), which integrated the 

copy number and the SNV data by tracking subclonal CNA of HLA on SNV-

based trees. The focus of this research remained solely confined to genomics 

data. However, it served as a proof-of-concept study for mapping subclonal 

events on tumour evolutionary trees, thereby allowing for the tracking of 

evolutionary changes and the potential integration of multimodal data. Zhang 

et al. (2018) later utilised the LOHHLA tool to perform a similar mapping of 

subclonal HLA LOH events to study the tumour-infiltrating lymphocytes (TILs) 

in high-grade serous ovarian cancer (HGSC). Recently, Miura et al. (2022) 

presented PhyloSignare for tracking the somatic mutational processes on 

tumour evolutionary trees. This framework brought the study of mutational 

signatures to the subclonal level, potentially paving the way for integrating 

multi-omics data.  

 

Existing tools for the integration of multi-omics data allow for a combination 

analysis of multimodal data. These tools combine the data at the sequencing 

level, relying on complex models to identify novel evolutionary patterns 

(Silverbush et al. 2019; Chatsirisupachai et al. 2021; Menyhárt and Győrffy 

2021). However, interpreting the results of these complex models can be 

challenging without existing reference datasets for comparison and validation. 

Combining the multi-omics data at the sequencing level further requires 

additional single-omics analysis to provide the biological context needed for 

the appropriate interpretation of the results.  

 

There is still an unmet need for tools for tracking subclonal events on tumour 

evolutionary trees that can integrate different types of multi-omics data using 

the output from state-of-the-art tools. 
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Studies have shown the need for methods utilising the results of subclonal 

deconvolution and phylogenetic reconstruction (Jamal-Hanjani et al. 2017; 

McGranahan et al. 2017; Zhang et al. 2018; Boyle et al. 2021; Frankell et al. 

2023; Martínez-Ruiz et al. 2023). Studying the timing of subclonal events 

provides opportunities to identify novel evolutionary principles underlying 

tumour evolution. Accurate ordering of the different clusters enables the 

detection of new subclonal drivers driving tumour progression and therapy 

resistance. Furthermore, the ability to map mutational signatures and compare 

different types of events on tumour evolutionary trees would aid in identifying 

parallel evolution and mutual exclusivity of events on a subclonal level.  

 

1.10  Aims and outline of the thesis 
 

This introductory chapter has presented an overview of the literature on tumour 

evolution, clonal expansion, the data and existing methods for studying 

intratumour heterogeneity. Furthermore, it has highlighted the main challenges 

hindering the accurate reconstruction of cancer’s evolutionary history. 

Additionally, this chapter has revealed that, while a few tools have been 

developed to study subclonal events along the tumour trees, these were 

designed to re-interpret the data and more generic approaches utilising the 

output of the state-of-the-art tools are still lacking. To address the existing gap 

in the research and to provide the research community with the ability to 

accurately track and integrate various types of subclonal events, this thesis 

aims to: 

 

1) Develop a robust, automated, integrative method to accurately track 

various types of subclonal events on tumour evolutionary trees, and 

which provides a measure of goodness of fit of its results. 

2) Provide extensive testing with benchmarking on simulated datasets, 

comparing the developed tool against an existing methodology of a 

similar function. This analysis will aim to demonstrate the superior 

performance of the developed tool, highlighting its benefits and 

acknowledging its limitations. 
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3) Validate the tool’s functionality and potential capabilities by mapping 

and integrating different types of subclonal events on real datasets. 

 

The structure of this thesis will follow the outlined aims. Chapter 2 will present 

the data and the methods used for analysis throughout this thesis. Chapter 3 

will describe the development of the tool, encompassing a detailed discussion 

of the process employed for testing and evaluating different methods and 

strategies with the overarching aim of providing the tool with a measure of 

goodness of fit for the results. Chapter 4 will focus on the simulation of the 

different copy number events and benchmarking the developed methodology 

against another method of similar functionality. Chapter 5 will showcase the 

tool’s integrative functionalities on real datasets, mainly the NSCLC TRACERx 

100 dataset, by providing some insights into tumour’s evolutionary dynamics. 

Finally, Chapter 6 will summarise the novel findings presented in this thesis, 

as well as discuss the limitations of this research and explore future 

opportunities that have emerged as a result of the developed method. 

 

This work aims to provide the research community with a novel methodology 

for the integration of the multi-omics dataset to track the subclonal changes on 

the tumour evolutionary trees, deepening the understanding of evolutionary 

principles underlying intratumour heterogeneity.  
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Chapter 2 Data and Methods 
 

2.1  Introduction 
 

This chapter provides an overview of the data, bioinformatics, and 

experimental methods employed in this thesis. This project extensively utilised 

externally pre-processed data from previous studies (Jamal-Hanjani et al. 

2017; McGranahan et al. 2017). This chapter describes data acquisition and 

processing, various methods and statistical tools utilised in the thesis, and 

outlines the experimental methods and their significance. 

 

2.2  Data used in this thesis 
 

2.2.1 NSCLC TRACERx 100 multi-region data 
 

The collection and processing of the data, including subclonal deconvolution 

with mutation clustering, phylogeny reconstruction and estimation of 

segmented allele-specific copy numbers, were performed externally (Jamal-

Hanjani et al. 2017). The resulting data comprised mutational CCF, cluster 

CCF, the tumour evolutionary tree and the copy number data for each patient. 

 

Tumour samples from at least two regions, separated by 0.3 cm to 1 cm, were 

collected from 100 adult patients with non-small cell lung cancer (NSCLC) 

between stages 1A and 3A (with one patient classified as 3B) (Jamal-Hanjani 

et al. 2017). In this cohort, there were 38 women and 62 men, classified 

according to the tumour stage, type of cancer and smoking history. Most of the 

patients (n = 62) were sampled at earlier stages: stage 1A and stage 1B. 61 

patients were diagnosed with lung adenocarcinoma, 31 with lung squamous 

cell carcinoma (LUSC) and another 7 patients with other subtypes of non-small 

cell lung cancer.  
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2.2.1.1 Whole exome sequencing 
 

Patient samples were randomized, and whole exome sequencing was 

performed on an Illumina HiSeq machine. 327 tumour regions (323 primary 

and 4 lymph-node metastases) were sequenced in total, matched by 100 

germline samples drawn from the whole blood of the patients (with a median 

sequencing depth of 426x). The data was aligned to the reference human 

genome (hg19). 

 

Picard tools v1.107 (http://broadinstitute.github.io/picard) was utilised to clean, 

sort and merge files from the same patient region and to remove duplicate 

reads. Picard tools v1.107, GATK v2.8.1 (Van der Auwera and O’Connor 2020) 

and FastQC v0.10.1(https://bioinformatics.babraham.ac.uk/projects/fastqc/) 

were combined for quality control metrics. SAMtools mpileup v0.1.19 (H. Li et 

al. 2009) was used to locate non-reference positions in tumour and germline 

samples (Jamal-Hanjani et al. 2017). Somatic mutations were called using 

MuTect v1.1.4 (Cibulskis et al. 2013) and VarScan2 (Koboldt et al. 2009) in 

the multi-region sequencing data. Additional filtering was performed to improve 

the accuracy of variant calling and decrease the rate of false positives. 

Variants were considered true positive only when VAF was greater than 2% 

and the mutation was called by both VarScan2 and MuTect. For mutations that 

were called in one or more regions but not ubiquitously across all of them, VAF 

restrictions were reduced to VAF being equal to or greater than 1%, allowing 

for the identification of low-frequency variants that would otherwise have been 

missed. The annotation of the variants was done with Annovar (Wang, Li, and 

Hakonarson 2010) and COSMIC v75 (Forbes et al. 2015).  

 

2.2.1.2 Subclonal deconstruction and 
phylogeny reconstruction 

 

PyClone, a Bayesian clustering method (Roth et al. 2014), was used to cluster 

the mutations to determine their clonality and estimate their cluster CCF. The 

mutation CCF is the cancer cell fraction, or the frequency, of the mutations. 
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Under the infinite sites model assumptions, each cluster represents a 

monophyletic group, and the cluster CCF represents the proportion of cells 

harbouring that particular set of mutations, i.e. the proportion of cells in the 

lineage defined by these mutations. Cluster CCFs were estimated from the 

frequency or the CCF of the mutations corrected by purity and copy number. 

 

 
Figure 2-1 Frequency of different tree sizes measured by the number of 
nodes. 

 

To provide higher accuracy of tree reconstruction, mutational clusters were 

first filtered based on the “pigeonhole rule” and “crossing rule”. The pigeonhole 

rule ensures that two mutational clusters whose prevalence together exceeds 

100% cannot be considered independent and be placed on separate branches 

of an evolutionary tree, while the crossing rule states that a descendent clone 

must exhibit a lower cellular prevalence than its ancestor in every tumour 

region (Beerenwinkel et al. 2015). Only clusters with at least 5 mutations were 

included. CITUP was then employed for tree inference based on cluster CCFs, 

defining the relationships between different lineages (Malikic et al. 2015). In 

certain cases, CITUP identified several evolutionary trees as equally likely. For 

six patients, trees were constructed manually due to either number of clusters 

exceeding the maximum allowed in CITUP or erroneous copy number 

correction leading to trees and CCF values that were evolutionary nonsensical. 

Of note, tree sizes varied greatly between patients (Figure 2-1). Cluster CCFs 
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were also used to estimate clone CCF – the proportion of cells with the same 

genotype, unique for that particular clone (Figure 2-2).  

 

 
Figure 2-2 The difference between cluster and clone CCF on an 
exemplary tree. The coloured area is cluster CCF and the coloured 
circles is the clone CCF. Cluster CCF includes the clone CCF with its 
descendants’ CCF, while clone CCF is the proportion of cells with the 
genotype unique for that particular clone. Tables show the example 
Cluster CCF and Clone CCF for this particular tree. 

 

2.2.1.3 Copy number analysis 
 
The exome copy number data was processed with VarScan2 (Koboldt et al. 

2012). The minimum coverage required was 8 reads. Homozygous and 

heterozygous single nucleotide polymorphisms (SNPs) were called in the 

germline using Platypus v0.8.1 (Rimmer et al. 2014) and then used to 

genotype the tumour regions. SNPs with coverage lower than 20x were filtered 

out. Log-ratio (LogR) and B-allele frequency (BAF) values were processed with 

ASCAT v2.3 (Van Loo et al. 2010) to provide the segmented allele-specific 

copy number data as well as the purity and ploidy estimates for all samples 

(Jamal-Hanjani et al. 2017). The ASCAT-inferred allele-specific copy number 

was corrected for purity. 
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2.2.2 HLA NSCLC TRACERx 100 
 

Allele-specific HLA copy number data and HLA LOH events, classified based 

on their clonality in the NSCLC TRACERx 100 cohort, were obtained from 

McGranahan et al. (2017). 

 

Firstly, the tumour and germline reads were extracted and mapped to the HLA 

locus using the SAMtools view. All unpaired reads were removed. The HLA 

typing was performed with POLYSOLVER (Shukla et al. 2015). SAMtools 

mpileup was used to calculate the coverage of the matched tumour and 

germline HLA alleles. Considering the polymorphic nature of HLA alleles, the 

HLA allele abundance was estimated by re-aligning candidate reads onto the 

HLA alleles inferred for each patient. The reads that mapped univocally on 

either allele in the tumour samples were counted and normalised against the 

coverage in the normal sample, determined with the R Biostrings package. 

HLA-specific coverage was determined at mismatch positions for pairs of 

homologous alleles ensuring accurate read counting. For reads that spanned 

more than one mismatch position, each read was counted only once to avoid 

duplication. 

 

The LogR across each HLA gene was obtained by binning coverage across 

homologous alleles at intervals of 150 base pairs for both tumour and normal. 

Each bin was normalized by a multiplication factor M, corresponding to 

uniquely mapped reads for the germline, divided by uniquely mapped reads 

for the tumour. BAF was calculated as the coverage of one HLA allele divided 

by the sum of both HLA alleles. Finally, the HLA haplotype-specific copy 

number was determined utilising the LogR and BAF using the following 

equations: 

 

𝐶𝑁-.././	1 =
𝑝 − 1 + 𝐵𝐴𝐹 × 2<=>? × (2(1 − 𝑝) + 𝑝 × 𝜓

𝑝 	 (1) 

 

𝐶𝑁-.././	C =
𝑝 − 1 − 2(𝐵𝐴𝐹 − 1)<=>? × (2(1 − 𝑝) + 𝑝 × 𝜓

𝑝 	 (2) 
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Where 𝑝 was tumour purity and 𝜓 was tumour ploidy input at the beginning. 

The 𝐵𝐴𝐹 of the polymorphic site and the 𝐿𝑜𝑔𝑅 value found in the 

corresponding bin were used.   

 

For each bin, the median Allele 1 and Allele 2 copy numbers were calculated 

as the median value across bins.  

 

2.2.3 CRUK0640 from NSCLC TRACERx 421 
 

The mutational data, copy number data, RNA reads, the phylogenetic tree, as 

well as the cluster CCF of patient CRUK0640, were obtained from the recently 

published NSCLC TRACERx 421 cohort (Frankell et al. 2023; Martínez-Ruiz 

et al. 2023).  

 

For the RNA library preparation, FASTQ files were analysed using 

ARCHERDx analysis pipeline (v6.2.3) with default settings 

(https://archerdx.com/technology-platform/analysis/). The somatic mutation 

calling, copy number analysis and subclonal deconvolution methods were 

similar to the methodology previously described in the section for NSCLC 

TRACERx 100 with updated versions of the tools: SAMtools mpileup v1.10, 

VarScan2 v2.4.4, MuTect v1.1.7, GATK bundle v2.8, COSMIC v75, ASCAT 

v2.3, Platypus v0.8.1 and PyClone v0.13.1. The main changes involved using 

bam-readcount v0.8.0 for extraction of read information from the original 

alignment file for variant calling and using Sequenza v2.1.2 and ASCAT v2.3 

for processing of the LogR data to provide somatic copy number aberration 

(SCNA) profiles (Van Loo et al. 2010; Favero et al. 2015). Lastly, the 

phylogenetic reconstruction was performed with a newly released method, 

CONIPHER (Grigoriadis et al. 2023), rather than CITUP. CONIPHER 

reconstructs phylogenies using the same filtering process as described in the 

section for NSCLC TRACERx 100 dataset. Clusters with their respective CCFs 

were used to reconstruct phylogenetic trees using the crossing and pigeonhole 

rules. CONIPHER removed spurious clusters, which were defined as clusters 

resulting from artefactual mutations or errors in SCNA calling. The errors of 
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SCNA were identified based on mutations co-localized in the genome. Then 

the tool attempted to reconstruct the phylogenetic tree following the two 

aforementioned rules while preserving the greatest number of mutations 

possible and removing clusters accordingly. 

 

2.3  Methods 
 

2.3.1 Simulations of CNA data with noise 
  
Five distinct datasets, featuring different types of copy number alterations, 

were simulated to assess the performance of the different methods. These 

copy number alterations include loss of heterozygosity (CN 1>0), amplification 

(CN 2>3), duplication (CN 2>4), homozygous loss (CN 2>0) and heterozygous 

loss events (CN 2>1).  

 

We used the patients’ trees, mutation CCFs and cluster CCFs from NSCLC 

TRACERx 100 (Jamal-Hanjani et al. 2017) for the simulations. Patients lacking 

a tree, mutation CCF, and cluster CCF were excluded from the simulations, 

leaving 87 eligible patients. An event was simulated on every branch (including 

the root) of every patient, leading to 510 simulated events on 423 available 

branches and 87 roots across all 87 patient trees. Each simulation was 

performed by fitting a copy number value to the cluster CCF and patient tree 

across all regions. The equations for copy number fitting depended on the type 

of the event being simulated: 

 

a) LOH events 

𝐶𝑁HIJ = 1 −
𝐶𝐶𝐹
100  

(3) 

b) Duplication events 

𝐶𝑁HIJ =
𝐶𝐶𝐹
100 × 4 +	M1 −

𝐶𝐶𝐹
100N × 2 

(4) 
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c) Amplification events 

𝐶𝑁HIJ =
𝐶𝐶𝐹
100 × 3 +	M1 −

𝐶𝐶𝐹
100N × 2 

(5) 

c) Homozygous loss events 

𝐶𝑁HIJ = M1 −
𝐶𝐶𝐹
100N × 2 

(6) 

c) Heterozygous loss events 

𝐶𝑁HIJ =
𝐶𝐶𝐹
100 +	M1 −

𝐶𝐶𝐹
100N × 2 

(7) 

 

with constraints:  

𝐶𝑁HIJ ≥ 0, 𝐶𝐶𝐹 ∈ [0,100] 

(8) 

 

where 𝐶𝑁HIJwas the simulated copy number and 𝐶𝐶𝐹 was the clone’s cluster 

cancer cell fraction for a particular region.  

 

Simulated noise was added to the fitted copy numbers. The noise around copy 

numbers was simulated using the following equation: 

 

𝐶𝑁U=IH/ ∈ 	𝑢𝑛𝑖𝑓 Mmax M0, 𝐶𝑁HIJ −
𝑛𝑜𝑖𝑠𝑒
100 N , 𝐶𝑁HIJ +

𝑛𝑜𝑖𝑠𝑒
100 N 

(9) 

 

where 𝐶𝑁U=IH/ was the fitted copy number with simulated noise, 𝑢𝑛𝑖𝑓(𝑥) was 

sampling from a uniform distribution, and 𝑛𝑜𝑖𝑠𝑒 was the maximum noise range. 

The simulated control datasets included all noise ranges from 0 to 30 by 

increments of 5. 

 

To assess the tools’ performance on the simulated dataset, three different 

criteria were considered. Both tools were required to determine the correct 

clonality, the branch, and the copy number value for each simulated event to 
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be considered correct. These criteria were nested within each other, as 

specified. The tool had to determine the correct clonality first to identify the 

correct branch. Likewise, for the correct copy number to be determined, both 

the correct branch and clonality had to be determined. One caveat is that 

MAPping SubClonal Events (MAPSCE) can provide more than one good 

solution. In such cases, the tool consolidates the solutions by calculating a 

consensus copy number state. For scoring purposes, a branch was considered 

correctly mapped if it was among the ones returned by MAPSCE. For the tool 

to accurately map the type of CNA of the simulated event, the difference 

between the inferred copy number by a tool and the simulated copy number 

had to be lower than 0.3 for every clone of the tree. 

 

2.3.2 Gene annotation 
 
Segmented copy number data was annotated using the Ensembl (release 104) 

gene annotation (Cunningham et al. 2022) accessed with biomaRt (Durinck et 

al. 2005; 2009). The driver gene datasets were obtained from the Molecular 

Signatures Database (Subramanian et al. 2005; Liberzon et al. 2011; 2015) 

and IntOGen (Martínez-Jiménez et al. 2020).  

 

2.3.3 Gene sets testing 
 
We tested gene lists for overrepresentation by comparing them against gene 

sets from Gene Ontology (GO) database (Young et al. 2010) and pathways 

from Kyoto Encyclopaedia of Genes and Genomes (KEGG) Database 

(Kanehisa et al. 2016). Both the GO gene set and KEGG pathway analyses 

were performed using the goana and kegga functions with default parameters 

from the limma R package (Law et al. 2014; Ritchie et al. 2015; Phipson et al. 

2016).  
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2.3.4 Mutational Signature analysis 
 
We estimated the relative contribution of mutational signatures on the 

subclonal level using the deconstructSigs R package (Rosenthal et al. 2016). 

The mutational signature analysis was performed only for the three patients of 

NSCLC TRACERx 100 in particular (CRUK0011, CRUK0068, CRUK0083). 

Five out of six tested lineages had at least 100 mutations, with the remaining 

one comprising 54 mutations. We analysed the samples only for the presence 

of mutational signature SBS3, which is associated with BRCA1 and BRCA2 

mutations and whose proposed aetiology is the defective homologous 

recombination-based DNA damage repair. We used the default settings of 

deconstructSigs, which include the 27 reference mutational signatures from 

Alexandrov et al. (2013) and COSMIC v3 (Forbes et al. 2015).  

 

2.3.5 dN/dS analysis 
 
The dndscv R package (Forbes et al. 2015)(Martincorena et al. 2017) was used 

to quantify the selection for specific subclones of the NSCLC TRACERx 100 

patients. The dN/dS values used in the analysis were the global maximum 

likelihood estimation (MLE) of the dN/dS (ω all), representing the variation of 

the mutation rate across genes (Martincorena et al. 2017). 

 

2.3.6 Antigen presentation and processing genes 
 

The antigen presentation and processing gene dataset was extracted from 

Gene Ontology (Ashburner et al. 2000; Aleksander et al. 2023). We mapped 

homozygous losses of the genes involved in the antigen presentation 

machinery (APM) to the trees of NSCLC TRACERx 100 patients. This allowed 

us to compare them against the HLA LOH events also mapped by MAPSCE. 

To further show the specific role of genes considered to be lost, the genes 

were tested for overrepresentation in the KEGG antigen presentation and 
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processing pathway and visualized using R package, pathview (Luo and 

Brouwer 2013). 

 
 
 

2.3.7 Statistical analysis 
 
All statistical analyses were conducted in R (v4.0.0). Unless otherwise 

specified, all statistical tests were two-sided. For the association between the 

two groups, we used either Fisher’s exact test or Pearson’s chi-square test. 

Comparisons of distributions were performed using t-test. 
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Chapter 3 Mapping Subclonal Events 
development 

 

3.1  Introduction 
 

3.1.1 Intratumour heterogeneity at the core of 
tumour evolution 

 
The introduction of driver mutations, which confer a selective advantage, gives 

rise to new subclones that form the core of the intratumour heterogeneity. ITH 

is an important cancer immune escape mechanism and a predictor of a 

patient’s response to therapy (Hiley et al. 2014; Jiang et al. 2016; Li, 

Seehawer, and Polyak 2022) 

 
Capturing the extent of ITH is not without challenges. Indeed, single-sample 

analysis provides an incomplete picture of the tumour’s entire evolutionary 

history. Gerlinger et al. (2012) showed that 63 to 69% of all somatic mutations 

were not detectable across every tumour region in renal carcinomas. Jamal-

Hanjani et al. (2017) stated that 86% of all tumour regions had region-specific 

subclones, and 65% of all subclones would have been identified as clonal in 

NSCLC, both of which emphasise the limitations of a single-sample analysis 

in accurately portraying the heterogeneity within a tumour mass.  

 

Multi-region sequencing studies provide a more accurate picture of the 

subclonal populations driving ITH (Gerlinger et al. 2012; 2014; Jamal-Hanjani 

et al. 2017; Frankell et al. 2023). Timing of mutations and copy number 

alterations can reveal novel evolutionary mechanisms underlying tumour 

progression. In NSCLC, phylogenetic reconstruction allowed to identify 

potential parallel evolution of driver amplifications, including RHOH, PHOX2B, 

BCL11A and CDK4 (Jamal-Hanjani et al. 2017). Determining the clonality of 

certain events allows for the classification of certain drivers based on their role 

in either tumour initiation, progression or maintenance. Alterations in EGFR, 
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MET, BRAF, and TERT for adenocarcinomas, in NOTCH1, FGFR1 for 

squamous-cell carcinomas, and in TP53 for both lung cancer types, always 

appeared to be early clonal events occurring before genome duplication, 

suggesting a role in tumour initiation. Mutations of KMT2C and COL5A2 in 

adenocarcinomas, and PIK3CA in squamous-cell carcinomas were 

predominantly clonal, but occurred after genome duplication, suggesting their 

role in tumour progression or maintenance (Jamal-Hanjani et al. 2017). 

 

State-of-the-art methodologies focus on subclonal deconvolution and 

phylogenetic reconstruction (Roth et al. 2014; Miller et al. 2014; Malikic et al. 

2015; Deshwar et al. 2015). However, most cancer studies have primarily 

focused on the analysis of a single type of alteration, or at most using single-

omics data on tumour evolution (Nik-Zainal, Van Loo, et al. 2012; Gerlinger et 

al. 2012; de Bruin et al. 2014; Jamal-Hanjani et al. 2017), missing the bigger 

picture of how multiple alterations drive tumour evolution. Studying single-

omics datasets helps in understanding the mechanisms driving clonal 

expansion. Single-omics data has allowed for the study of mutational 

signatures along the tree (Miura et al. 2022), classification of the clonality, the 

timing and thus the role of the drivers in tumour evolution (Boyle et al. 2021), 

identification of evolutionary dynamics such as parallel evolution (Jamal-

Hanjani et al. 2017), and identification of novel mechanisms of immune escape 

(McGranahan et al. 2017). 

 

However, there has been little to no effort to integrate the multi-omics data at 

the subclonal level, including copy number, gene expression and methylation 

changes on the tumour evolutionary trees.  

 

McGranahan et al. (2017) presented LOHHLA, a tool for the estimation of 

allele-specific HLA loss from sequencing data. This study revealed the effects 

of HLA LOH on early-stage NSCLC. Loss of heterozygosity of HLA locus 

occurred in 40% of lung cancer patients. Furthermore, subclonal cases of HLA 

LOH could be related to a higher non-synonymous mutation rate and 

neoantigen burden (McGranahan et al. 2017). LOHHLA used quadratic 

programming, an optimisation method, in a branch test to map the subclonal 
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copy number changes on a particular branch of the tumour evolutionary tree 

(McGranahan et al. 2017). LOHHLA was the first tool that allowed the 

integration of mutation and copy number data through mapping subclonal 

events on SNV-derived tumour trees.  

 

Since then, Zhang et al. (2018) used a similar approach to study tumour 

evolution in ovarian cancer, where they showed that subclonal HLA LOH was 

linked to higher CD8+ TIL levels. They developed their own methodology to 

map subclonal HLA LOH events on SNV-based tumour evolutionary trees. 

This approach involved the use of Bayesian Inference and MCMC (Zhang et 

al. 2018). These methods for mapping subclonal HLA LOH could be extended 

to include other types of copy number alterations and to integrate multi-omics 

data in general.  

 

3.1.2 Methodology in LOHHLA 
 

LOHHLA allows for the detection of HLA allele losses, as well as direct 

mapping of the subclonal cases on the corresponding SNV-based patient 

evolutionary tree (McGranahan et al. 2017). LOHHLA improves the CN 

detection of the highly variable HLA loci by identifying the HLA alleles for a 

particular patient and remapping the sequencing reads on these alleles to 

quantify their CN states. LOHHLA determines the clonality of the event based 

on the inferred CN states and in cases of a subclonal LOH event, it uses 

quadratic programming (QP) to map this event on the patient tumour trees.  

 

3.1.2.1 Clonality determination 
 

For clonality determination, LOHHLA uses the observed copy number values, 

where these are inferred CN states of the HLA alleles. In cases where the 

observed copy number values across all samples are lower than 0.5, LOHHLA 

considered the allele to be clonally lost. If the observed copy number values 

across all the regions are all higher than 0.5, LOHHLA would determine that 
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there was no LOH at all. Lastly, for cases where observed copy numbers were 

varied, with some lower and some higher than 0.5, LOHHLA would determine 

the allele to be subclonally lost. Only after this filtering step, LOHHLA performs 

a branch test to map the LOH subclonal event. 

 

3.1.2.2 Branch test 
 

LOHHLA transforms the cluster CCF, the proportion of cancer cells in a 

particular lineage, onto the clone CCF, the proportion of cancer cells with the 

same genotype unique for that particular clone. Assuming that there has been 

one and only one subclonal copy number event, LOHHLA performs a branch 

test, splitting the tree at any particular branch to estimate the copy number 

state before (𝐶𝑁_/`=a/) and copy number state after (𝐶𝑁b`c/a) the branch. The 

proportion of mutations in both parts of the tree can be estimated by summing 

the clone CCFs in the lineage after the branch or in the rest of the tree. This 

problem can be written as a system of n equations with two unknowns, where 

n is the number of regions and each equation represents the relationship 

between the observed, empirical copy number values for that particular region 

and the linear combination of the clone CCFs multiplied by the 𝐶𝑁b`c/a or 

𝐶𝑁_/`=a/ depending on whether the clone appears within the lineage defined 

by the branch or not. The expectation is that a subclonal, allele-specific copy 

number loss would be detected as 𝐶𝑁_/`=a/ = 1 and 𝐶𝑁b`c/a = 0 when 

considering the branch where the loss occurred. 

 

The branch test aims to identify which branch best explains the observed data 

as a LOH event. 

 

3.1.2.3 Quadratic Programming 
 

The branch test in LOHHLA utilises quadratic programming to solve the 

aforementioned system of equations. Quadratic programming in LOHHLA’s 

branch test was used to find the best matching copy number states before and 
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after each branch of the tree under certain constraints, in this case, both 

solutions must be non-negative. In LOHHLA’s branch test, the copy number 

state before the event was constrained to be larger than 0.5. The solution to 

the system of equations can be presented as a quadratic programming 

equation (Equation 10): 

 

minM−𝑑g𝑏 +
1
2 𝑏

g𝐷𝑏N (10) 

 

under constraints: 

𝐴g𝑏 ≥ 𝑏j 

 

where d and b are n-vectors, D is a 2n symmetric positive definite matrix, A is 

an n x m matrix and b0 is an m-vector (Goldfarb and Idnani 1982; 1983). 

 

QP can naturally limit the solutions to non-negatives and is therefore ideally 

suited for resolving this kind of problem since negative CN values are non-

sensical. Since the branch test in LOHHLA was designed specifically to map 

subclonal LOH events of the HLA allele, it also constrained the inferred copy 

number value to be at least 0.5 at the root of the tree.  

 

In this thesis, LOHHLA’s mapping approach (LOHHLA/QP) refers to these last 

two parts of the method, namely the clonality determination step and the 

branch test, involving the mapping of subclonal events on the tumour 

evolutionary trees. 

 

The branch with the lowest sum of squares of residuals (RSS) is the best-fitting 

model (Equation 11). However, the main problem of this methodology is the 

lack of uncertainty quantification. 

 

	RSS = ∑nCNopqrstru − CNvsruwxyruz
C
	 (11) 

 

Other methods that could provide uncertainty measurement for the results of 

the branch test were also explored in this thesis.  
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3.1.3 Limitations of LOHHLA 
 

One of the major limitations of LOHHLA’s mapping approach was the lack of 

uncertainty quantification and the lack of measurement of goodness of fit for 

the results beyond the RSS. More precisely LOHHLA/QP does not have any 

indication on whether the best result was good enough or whether the second 

or third results were qualitatively just as good as the first one. In addition, the 

threshold approach to determining clonality did not allow for accurate 

measurement of the clonality determination itself. Indeed, LOHHLA’s mapping 

approach did not contrast the results with the possibility of not having any 

subclonal event (i.e. null hypothesis). Lastly, the parameters for QP in 

LOHHLA’s mapping approach were specifically selected for subclonal LOH 

events and thus used rigid constraints that limit the approach to only copy 

number losses. A more flexible approach would allow for the mapping of copy 

number gains or other data types like expression values, for instance.  

 

3.1.4 Mapping other subclonal copy number events 
and integration of multi-omics data 

 

This study provided the opportunity to extend this approach to map different 

types of subclonal copy number, gene expression and methylation changes 

on the tumour evolutionary trees, beyond HLA allele losses only. Such an 

approach would have to be able to provide an estimate of the uncertainty in 

the results to help with their interpretation. This project focuses on the 

development of a methodology specifically for mapping subclonal events, 

initially for both copy number gains and losses, but that can be extended to 

map other data types. 

 

The majority of this PhD project were committed to exploring different potential 

approaches to mapping subclonal events on the tumour evolutionary trees, 

and the development of the methodology, including simulating noise around 

the CCF for assessing the soundness of these approaches. This chapter 

describes the work and reasoning behind the features included in the release 



 52 

of the tool on GitHub (v1.0.0), and the utilisation and validation of the different 

functionalities.  

 

3.2  Results 
 

This section provides insight into how the tool was developed and why certain 

features were included in the release of the tool on GitHub (v1.0.0). 

 

3.2.1 Non-negative least squares 
 

Non-negative least squares (nnls) is a form of least squares where coefficients 

are constrained to be non-negative. Least squares is an optimisation approach 

where the solution minimizes the sum of the squares of the residuals. 

Residuals are the differences between the observed values and the values 

fitted by the model (Figure 3-1). Note that squaring the differences leads to a 

bias towards larger outliers.  

 

 
Figure 3-1 Least squares approach. Black points are data points, the blue 
line shows the fitted model, while the red dashed line indicates the 
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difference between two observed values and two values fitted by the 
model. 
 
We explored non-negative least squares optimisation for the branch test. The 

approach was implemented using the nnls R Package (Stokkum 2012). In all 

cases, the results of running the branch test with non-negative least squares 

and quadratic programming were identical. Both tools identified HLA LOH 

events on the same branches with the same error for patient CRUK0098 

(Figure 3-2). 

 

 

 
Figure 3-2 Comparison of the quadratic programming (QP, on the left) 
and non-negative least squares (nnls, on the right) used for branch 
testing on patient CRUK0098. The dashed line indicates the branch 
where HLA LOH was detected. 

 

Non-negative least squares is an equivalent of the quadratic programming 

approach currently used in the branch test. This is because non-negative least 

squares minimisation: 

 

arg𝑚𝑖𝑛}	~|𝐴𝑥 − 𝑦|~
C
	 (12) 

 

under constraints: 

𝑥 ≥ 0	  



 54 

 

where A is an n x m matrix, x is an n-vector and y is an m-vector (Bro and Jong 

1997), can be presented as a form of quadratic programming minimisation: 

argmin(1
C
𝑥g𝑄𝑥 + 𝑐g𝑥)	 (13)

under constraints: 

𝑥 ≥ 0  

 

where: 

𝑄 = 𝐴g𝐴	𝑎𝑛𝑑	𝑐 = −𝐴g𝑥	 (14)	 

 

Thus, non-negative least squares was equivalent to QP and therefore provided 

no advantage. 

 

3.2.2 Deriving CCF from observed copy number 
values 

 
We also explored deriving cancer cell fractions from observed copy number 

values for the purpose of mapping events on the tumour evolutionary trees. 

The CCF values can be derived from copy number for each region and 

mapped on the cancer evolution tree by re-clustering the somatic mutations 

with copy number CCF into cluster CCFs. This could provide explicit 

information regarding copy number alterations in the clustering step and 

present an additional validation of quadratic programming and mutation 

clustering. The conversion of the observed copy number to CCF was 

performed using two different strategies, in an attempt to integrate the 

observed CN values for the HLA alleles into the initial clustering of the SNV 

CCFs. 

 

The first approach focused on HLA LOH cases detected by LOHHLA where 

the observed copy number was 1 in one region and lower than 1 in another. In 

these cases, an assumption was made that a loss happened between the 

ancestral state (𝐶𝑁_/`=a/ = 1) and the descendant state (𝐶𝑁b`c/a = 0). Thus, 

the CCF derived from CN would be the CCF of the loss denoted by the 
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percentage of copy number lost between the two regions. This can be 

represented by the equation: 

 

𝐶𝐶𝐹�� = 1 − 𝐶𝑁?	 (15) 

where: 

𝐶𝑁?1 = 1 

0 < 	𝐶𝑁?C < 1 

thus: 

𝐶𝐶𝐹?1 = 0 

𝐶𝐶𝐹?C = 1 − 𝐶𝑁?C 

 

where 𝐶𝐶𝐹�� denotes the CCF derived from 𝐶𝑁=_H, 𝐶𝑁?	is the regional copy 

number, 𝐶𝑁?1 is copy number for one region and 𝐶𝑁?C is copy number for the 

other region. 𝐶𝐶𝐹��	ranges from 0% when the 𝐶𝑁?C is 1 to 100% when the 

𝐶𝑁?C is 0.  

 

This approach provided straightforward solutions in these simple cases. 

Visually, one can display the 𝐶𝐶𝐹�� onto the scatterplot with all mutation CCFs 

between two regions such that the 𝐶𝐶𝐹�� will always cluster with the mutation 

CCFs defining the clone where HLA LOH event was detected (Figure S3-1, 

Figure 3-3). However, this method is only applicable to cases where the 

𝐶𝑁_/`=a/ and 𝐶𝑁b`c/a are known, hence it was not possible to generalise this 

procedure to all types of copy number events without having an orthogonal 

method to infer both the ancestral and derived states. 

 

The second approach to deriving CCF from CN utilised the copy numbers 

estimated by quadratic programming. For consistent conversion of CN to CCF 

values, the following equation was used:  

 

𝐶𝐶𝐹�� = 	
~𝐶𝑁=_H − 𝐶𝑁��._/`=a/~

~𝐶𝑁��.b`c/a − 𝐶𝑁��._/`=a/~
	 (16) 

 

under constraints: 
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𝐶𝑁��.b`c/a ≠ 𝐶𝑁��._/`=a/ 

 

where 𝐶𝐶𝐹�� is the cancer cell fraction for the copy number event, 𝐶𝑁=_H is the 

observed copy number value in a given region, and 𝐶𝑁��._/`=a/ and 𝐶𝑁��.b`c/a  

are the quadratic programming-inferred copy number states before and after 

the branch, respectively. 

 

The resulting 𝐶𝐶𝐹�� was then mapped onto a 2-dimensional scatter plot of all 

mutation CCFs between two regions. In most cases, the 𝐶𝐶𝐹�� was located 

close to the cluster of mutations that denoted the branch where the LOH event 

occurred. 

 

Utilising copy number estimated by quadratic programming for conversion of 

𝐶𝑁=_H into 𝐶𝐶𝐹�� (Equation 16) made it possible to extrapolate the results for 

all patients regardless of the ancestral state. However, this approach required 

the use of QP to infer 𝐶𝑁��._/`=a/ and 𝐶𝑁��.b`c/a and therefore was not 

sufficient on its own. In one example case, the 𝐶𝐶𝐹�� for patient CRUK0039 

pointed exactly towards the cluster, where HLA LOH was detected from branch 

testing with quadratic programming (Figure 3-3, panels A-B). This result 

occurred for most cases except in a few exceptions. For instance, in patient 

CRUK0005 the 𝐶𝐶𝐹�� was placed visibly away from the target cluster in R3 

(Figure 3-3, panels C-D). This could have happened in instances where the 

noise levels in the data were too high. The example case of patient CRUK0005 

demonstrate there was no cluster with a high CCF in R1, R2 but low in R3. 

Cluster 3 seems to be the best approximation for the subclonal HLA LOH 

event, considering the placement of the derived CCFCN close to the cluster 3, 
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Figure 3-3 Mutation CCFs, HLA LOH cluster and 𝑪𝑪𝑭𝑪𝑵. Region 1 (R1) vs 
region 2 (R2) (A) and R1 vs region 3 (R3) (B) for patient CRUK0039, 
respectively. R1 vs R2 (C) and R1 vs R3 (D) for patient CRUK0005, 
respectively. Mutations were coloured by their assigned cluster during 
subclonal deconvolution using PyClone, labelled as Pyclone Cluster in 
the legend. The cluster where HLA LOH was detected is highlighted by a 
thicker outline of the cluster. The black cross indicates the derived CCF 
from copy number (𝑪𝑪𝑭𝑪𝑵). The placement of the black cross close to a 
particular cluster denotes denotes a potential mapping of the CCFCN on 
that cluster.  

 

3.2.3 Statistical support for the branch test 
 

In addition to assessing alternatives to quadratic programming, several 

methods to provide additional statistical support to the results were explored. 

 

3.2.3.1 Simulating noise in an artificial dataset 
 

An artificial dataset was simulated for testing the different approaches for 

uncertainty measurement. As a simple approach to simulate the noise in real 
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data, a random number was picked from a uniform distribution for different 

noise ranges, from ±1% to ±10%, in increments of 1%. The noise was then 

added to each of the cluster CCFs. 10,000 simulations were performed for 

each noise level. An LOH event was simulated in four different branches from 

the tree depicted in Figure 3-4 (branches 3, 4, 5 and 6) and the 𝐶𝑁=_H/a�/� 

values for each region were derived.  

 

 
Figure 3-4 Cluster and clone CCF and tumour tree made for the artificial 
dataset, coloured by clone. 

 

As expected, the percentage of correct solutions degraded with the increase 

in noise (Figure 3-5). For each tested branch, adding noise of up to ±10% led 

to the lowest percentage of correct answers, while with noise up to ±2 all 

results were still correct. 

 

1 

2 

3 4 

6 5 
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Figure 3-5 Percentage of correct results for different maximum noise 
ranges. Each bar represents 10,000 simulations. Different colours 
indicate the branch where the LOH event was simulated. 

Interestingly, the noise increase did not have the same consequence in all 4 

branches. Results for branch 3 were the most affected by noise, with the 

percentage of correct results declining to less than 50% for the highest level 

of tested noise. Conversely, simulated events on branches 6 and 4 seemed 

more robust to noise, with the percentages of correct answers always over 

90% for branch 6 and staying at 100% for branch 4. The explanation for this 

lies in the size of the lineages. While clusters 3 and 5 never represented more 

than 30% of any region, clusters 4 and 6 reached at least 50% in one of the 

regions (Figure 3-4), resulting in a higher signal-to-noise ratio, even in the 

presence of higher noise levels. 

 

3.2.3.2 Maximum Likelihood Estimation and 
Approximate Bayesian Computation  

 

Approximate Bayesian Computation (ABC) (Sunnåker et al. 2013) is a 

computational approach for estimating posterior distributions of model 

parameters using Bayesian statistics. In this case, ABC can be used to 

compare the posterior probability for each branch.  
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In an attempt to employ ABC, we utilised an artificial dataset with simulated 

noise around CCF (Figure 3-4). The best-fitting CN states before and after 

each branch of a tree using QP were calculated to provide an RSS for each 

possible solution. The cluster CCFs were re-built by incorporating simulated 

noise ranging from 5 to 10%. The noise was sampled from a uniform 

distribution. The CCF values were truncated to fit in the range between 0 – 

100% CCF. Approximate Bayesian Computation was then used to estimate 

the posterior probabilities and the goodness of fit of each model (branch of the 

tree). This was done on simulated data for 10,000 simulations, which resulted 

in a pseudo-ABC approach that resembled maximum likelihood estimation. 

Implementation of pseudo-ABC yielded posterior distributions for different 

models, which corresponded with the percentage of correct answers obtained 

by running the branch test with quadratic programming. However, this 

approach was very computationally intensive and other options were 

considered.  

 

3.2.3.3 Exploring bootstrapping 
 

Bootstrapping is a test which relies on sampling with a replacement that 

permits estimating the stability of a particular solution. Therefore, it provides a 

measure of the uncertainty in the result. In this case, the aim was to recalculate 

the cluster CCFs by sampling from the mutations in each cluster. After each 

sampling, QP was used to infer the best matching branch, 𝐶𝑁_/`=a/ and 

𝐶𝑁b`c/a , and obtain the corresponding RSS. Because of the resampling, the 

bootstrapped RSS values were an average and therefore more robust than the 

RSS inferred from a single branch test. Unlike pseudo-ABC or ABC, 

bootstrapping was more efficient and required fewer computational resources. 

 

Bootstrapped RSS values could be used to calculate a Bayesian Information 

Criterion (BIC) and Bayes Factors (BF) for model selection. 
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3.2.3.4 Filtering of results 
 

In the initial stages of the methodology development, the QP-based branch 

test identified multiple potential results for every allele. These results 

underwent a filtering process to remove spurious subclonal events. Using 

quadratic programming-based branch test with bootstrapping, 2056 putative 

CN changes were found for the NSCLC TRACERx 100 HLA dataset 

(McGranahan et al. 2017; Jamal-Hanjani et al. 2017) (Figure 3-6). These CN 

changes included cases, where the branch test identified a couple of potential 

events per HLA allele.  

 

 
Figure 3-6 All 2056 putative HLA copy number events for all alleles in 
every patient. X-axis shows inferred copy number before the event, and 
Y-axis shows inferred copy number after. Each point denotes a branch, 
coloured by the patient. The diagonal (dashed line) corresponds to 
CNbefore = CNafter. 

 

For each branch test, an RSS was obtained, which was then converted to BIC 

for model selection. By bootstrapping the cluster CCFs 100 times, we 

generated 100 BIC values to be averaged for every putative CN change. The 

first filter involved selecting branches with a significant difference between the 

BIC means of the branches. This statistical test was performed using a one-
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way analysis of variance (ANOVA) to check for significant differences between 

the BIC means of all the branches for each HLA allele. Additionally, only results 

with at least strong evidence for the most fitting BIC, compared to the next best 

one, were considered (within a difference of 6 Bayes Factors after conversion 

from BIC, as described in the later section of this chapter). Lastly, only 

branches, for which at least 95% of their bootstrapped BIC values were better 

than the BIC of the null hypothesis were included, resulting in 720 detected 

subclonal HLA allele CN changes over 57 patients (Figure 3-7). 

 

 
Figure 3-7 720 HLA CN changes (CNbefore vs CNafter) after applying the 
statistical filters. X-axis shows inferred copy number before the event, 
and Y-axis shows inferred copy number after. Each point denotes a 
branch, coloured by the patient. The diagonal (dashed line) corresponds 
to CNbefore = CNafter. 
 

Finally, for detection of HLA LOH events, branches were filtered to only include 

solutions where CNbefore is larger than CNafter by at least 0.5 for smaller CNbefore 

(at most 1), and by at least 1 for larger CNbefore (at least 2). This yielded only 

68 cases of subclonal HLA LOH events in 33 patients (Figure 3-8). 
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Figure 3-8 CN cases of subclonal HLA losses in 33 patients. X-axis shows 
inferred copy number before the event, and Y-axis shows inferred copy 
number after. Each point denotes a branch, coloured by the patient. The 
diagonal (dashed line) corresponds to CNbefore = CNafter. 

 

3.3  MAPping SubClonal Events method 
 

3.3.1 Overview of the tool 
 

MAPping SubClonal Events (MAPSCE) is a computational approach designed 

to map subclonal events on tumour evolutionary trees. It simultaneously infers 

the clonality of an event and, in the case of a subclonal event, maps it on the 

tree while providing robust measurements of goodness of fit. It leverages multi-

region sequencing data. MAPSCE clusters the mutations based on their 

cancer cell fraction to calculate the cluster CCF. Using the cluster CCF, the 

mutational CCF, the tumour evolutionary tree and the observed data (Figure 

3-9), MAPSCE performs a branch test using quadratic programming on every 

branch of the tree in turn, by solving the system of equations (Figure 3-10). 

The method assumes that, for a particular gene or locus, at most one subclonal 

event can take place. This assumption allows for more straightforward analysis 
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with higher computational efficiency. However, this assumption reduces the 

complexity of the biological data, which sometimes may involve repeated 

alterations affecting a particular gene or locus. The tool resamples the cluster 

CCF and runs the branch test 100 times, from which it derives an average 

bootstrapped RSS value for each branch, and the null hypothesis (the root), to 

assess how well a clonal event matches the observed CN values. The 

bootstrapped RSS values can then be converted into Bayesian Information 

Criterion for comparison of the distributions of the BIC for different branches 

and the null hypothesis (the trunk), and the BIC values can be, in turn, 

converted into Bayes Factors. MAPSCE uses the Bayes Factors for model 

selection (where each branch is a model) by assessing the strength of the 

evidence for each branch against the top-scoring one. In cases where more 

than one good solution is found, MAPSCE provides a consensus average copy 

number state for the clones where the solutions agree with each other. Lastly, 

where only two regions are available, the tool can automatically run without 

bootstrapping to avoid adding more noise to the data. Each feature of the tool 

is described in detail in the following sections. 

 

 
Figure 3-9 The tool relies on the use of multiregion sequencing data, i.e. 
mutational and cluster CCF, as well as the tumour evolutionary tree.   

 

3.3.2 Quadratic Programming 
 
As previously described, the tool utilises quadratic programming for its branch 

test to find the optimal solution for every branch of the tree and finally choose 

the most likely branch or branches where the event might have happened 

(Figure 3-10). Unlike LOHHLA/QP, where the copy number states are 
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constrained to 𝐶𝑁_/`=a/  being at least 0.5, and the 𝐶𝑁b`c/a  being non-negative, 

the default settings in MAPSCE constrain 𝐶𝑁_/`=a/ and 𝐶𝑁b`c/a  to be non-

negative. However, the tool has been designed to allow the user to set custom 

constraints on 𝐶𝑁_/`=a/ and 𝐶𝑁b`c/a  for cases where the type of CN event or 

any other event has been pre-determined in the dataset.  

 

 
Figure 3-10 MAPSCE’s branch test uses the observed data, i.e. patient 
tree, the absolute copy numbers, and the cluster CCFs, and can be 
represented as a system of equations with two unknowns. The value 
𝑪𝑵𝒃𝒆𝒇𝒐𝒓𝒆represents the CN state before the tree and 𝑪𝑵𝒂𝒇𝒕𝒆𝒓 represents 

the CN state after the tree. The coloured circles represent the clones of 
the tree (the colours of the circles are arbitrary), while the coloured areas 
denote the CN states before (orange) and after (green) the chosen 
branch. 

 

Quadratic programming is used to solve the system of equations, where each 

line of equations represents a different region of the dataset. The left side of 

the equation represents the observed data, copy number in the example 
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provided, while the right side of the equation estimates the proportion of 

mutations of two parts of the tree, the cluster CCF of the lineage before 

(ancestral state) and after (derived state) the branch where the event happens. 

This is a system of 𝑛 equations (where 𝑛	is the number of regions) with two 

unknowns, the copy number value before the branch (𝐶𝑁_/`=a/) and the copy 

number state after the branch (𝐶𝑁b`c/a): 

𝑅1:	𝐶𝑁=_H��𝐶𝐶𝐹_/`=a/� × 𝐶𝑁_/`=a/ + 𝐶𝐶𝐹b`c/a� × 𝐶𝑁b`c/a 

𝑅C:	𝐶𝑁=_H��𝐶𝐶𝐹_/`=a/� × 𝐶𝑁_/`=a/ + 𝐶𝐶𝐹b`c/a� × 𝐶𝑁b`c/a  

⋮ 

𝑅U:	𝐶𝑁=_H��𝐶𝐶𝐹_/`=a/� × 𝐶𝑁_/`=a/ + 𝐶𝐶𝐹b`c/a� × 𝐶𝑁b`c/a	 (17) 

 

𝐶𝑁=_H is the observed copy number, 𝐶𝐶𝐹b`c/a  is the cluster CCF of the lineage 

after the branch and 𝐶𝐶𝐹_/`=a/ refers to the rest of the tree, in this case 1	 −

𝐶𝐶𝐹b`c/a, which can be calculated by subtracting 𝐶𝐶𝐹_/`=a/ from 100 or 

subtracting 100 from 𝐶𝐶𝐹_/`=a/ in cases where the CCFs erroneously add up 

to more than 100%.  

 

For every QP solution, an RSS is calculated (Equation 11) where a lower RSS 

represents a better fit. However, MAPSCE converts the RSS into BIC first and 

then into Bayes Factors for scoring the branches.  
 

3.3.3 Bootstrapping 
 
As previously described, bootstrapping is a resampling technique where 

sampling is performed with replacement, and it can be used to provide a 

measure of accuracy to a particular estimate. In MAPSCE, bootstrapping is 

performed by resampling mutations from each cluster independently. In each 

case, the cluster CCF is recalculated as the average CCF of the sampled 

mutations. This allows MAPSCE to explore the uncertainty in the cluster CCFs 

and how that affects the mapping of the subclonal events. By default, 100 

bootstraps are performed per branch and an RSS for every bootstrap is 

available, summarised as a mean RSS for each branch (Figure 3-11).  
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Figure 3-11 Cluster CCF is bootstrapped 100 times from the mutation 
CCF through sampling with replacement. 

 

3.3.4 Bayesian Information Criterion 
The bootstrapped RSS values are converted into Bayesian information 

criterion for each sample and then used for model comparison (Schwarz 

1978). BIC is well suited for this application as it is used for model selection 

under a finite set of models, which consider both the maximised likelihood 

function and the number of parameters of each model. This results in selecting 

a model that is the most fitting from the ones compared while punishing 

overfitting by weighting the number of parameters of the model (Equation 18).  

 

𝐵𝐼𝐶 = ln(𝑛) 𝑘 − 2 ln(𝐿) (18) 

 

where: k is the number of parameters, L is the maximized likelihood function 

and n is the number of data points.  
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In this context, each branch is a possible model. This includes a distinct model 

for the trunk, corresponding to the null hypothesis, as it models the special 

case where no subclonal event can be detected (Figure 3-12). All subclonal 

models have two parameters (𝐶𝑁_/`=a/ and 𝐶𝑁b`c/a) while the null has only 

one (since 𝐶𝑁_/`=a/ = 𝐶𝑁b`c/a). 

 

 
Figure 3-12 MAPSCE includes null hypothesis directly during its model 
selection. 

 

In this case, the maximized likelihood function is equivalent to RSS. When 

comparing models, the lowest BIC denotes the most fitting model. This 

approach provides an objective criterion when choosing the most fitting 

branch. Because of the bootstrapping, comparing BIC in MAPSCE involves 

comparing the distributions of BIC for the different branches. It is worth noting 

that bootstrapping does not apply to the tree trunk as the CCF for the whole 

tree is, by definition, 100 (Figure 3-13). Since the model for the trunk 

represents the null hypothesis, we only consider the branches for which at 

least 95% of the bootstrapped BICs are lower than the null. If no branch fulfils 

these criteria, the null hypothesis is not rejected and MAPSCE concludes that 

no subclonal event can be inferred. 
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Figure 3-13 Bootstrapped BIC distributions are compared to each other, 
and to the null hypothesis BIC. 

 

3.3.5 Bayes factor comparison 
 

After considering the distribution of the bootstrapped BICs, the mean of the 

BICs was converted into Bayes Factors: 

 

𝐵𝐹 = 𝑒¤
¥¦��§¥¦��

C ¨	 (19) 

 

where 𝐵𝐹 is the Bayes factor for the chosen branch, 𝐵𝐼𝐶C is the BIC value of 

the next best branch and 𝐵𝐼𝐶1 is the BIC value of the top branch. Bayes factors 

of every branch of a particular allele were then compared to the BF of the top 

branch to determine the strength of evidence for the most fitting one according 

to this grading (Kass and Raftery 1995): 

 

Table 3-1 Grading strength of BF difference between the lowest and the 
second-lowest model (Kass and Raftery 1995). 

Evidence for most fitting model ∆BF to the top branch's BF 

positive 0-6 

strong 6-10 

very strong >10 

 



 70 

For a secondary model to be considered a good result, the difference between 

the model’s BF and the best model’s BF had to be lower than 6 ∆BF. MAPSCE 

considers both models to be sufficiently good. Lastly, if the top subclonal 

model’s BF is not sufficiently better than the null (∆BF > 6) then the null 

hypothesis is not rejected. This conservative approach ensures that a 

subclonal event is only called if there is sufficient evidence to reject the null 

hypothesis. Importantly, the grading for assessing the strength of the evidence 

for model comparison using BFs was derived in a mathematical model without 

the biological context provided in this analysis. Other phylogenetic tools have 

previously used BFs for model comparison with a high evidence for the strong 

support of the model of 20 ∆BF (Drummond and Rambaut 2007). Thus, we 

decided to only employ a very conservative approach for considering the 

proximity between two models of 6 ∆BF rather than 10 – 20 ∆BF. 

 

When considering copy number events, rejecting the null can be interpreted 

as either a clonal CN event or a lack of CN. The interpretation is left to the user 

as it is dependent on the type of data. For instance, the expectation will be 

different depending on whether allele-specific or global CN is considered. 

 

3.3.6 Post-mapping filtering 
 
In addition to the statistical filters, MAPSCE also considers the biological 

relevance of the result. For CN events, MAPSCE considers the difference 

between 𝐶𝑁_/`=a/ and 𝐶𝑁b`c/a . It requires this difference to be at least 0.4 for 

a result to be considered subclonal. However, this threshold can be adjusted 

to cater for different types of data. For copy number specifically, especially 

allele-specific copy number events, 0.4 has been identified as the most fitting 

threshold for the event to be considered subclonal. We examined the 

distribution of the absolute differences between the 𝐶𝑁_/`=a/ and 𝐶𝑁b`c/a  

inferred by MAPSCE for simulated subclonal CN events with 0% noise 

(described later in Chapter 4) based on trees and mutational CCFs from the 

NSCLC TRACERx 100 data (Jamal-Hanjani et al. 2017). The 0.4 value was 
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chosen to prevent overcalling subclonal events while still providing a high 

detection rate (Figure 3-14). 

 

 
Figure 3-14 Absolute difference between 𝑪𝑵𝒃𝒆𝒇𝒐𝒓𝒆 and 𝑪𝑵𝒂𝒇𝒕𝒆𝒓 for the 

simulated subclonal CN events inferred by MAPSCE. 

 

3.3.7 Consensus mapping 
 
In some cases, there is more than one good result that is statistically 

significant and significantly better than the null hypothesis, meaning 95% of 

bootstrapped BICs are lower than the null hypothesis’ BIC, the Bayes Factor 

is within 6 ∆BF to the top model’s BF, the BF exceeds null hypothesis’ BF by 

6 ∆BF, and the difference between 𝐶𝑁_/`=a/ and 𝐶𝑁b`c/a  is at least 0.4 (in 

default settings for subclonal copy number events).  
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Figure 3-15 Consensus mapping. Dashed lines denote branches which 
branch test identified as the best answers. On the left side the simulated 
event, in the middle the two good results and on the right side the 
consensus mapping for the tree. 

 

In these cases, each model produces an inferred copy number state for each 

clone (Figure 3-15). MAPSCE consolidates the results by calculating the 

average of the inferred copy number states for each clone. This is done for all 

clones where the different models agree. In practical terms, MAPSCE 

calculates the mean of the inferred CN states for each clone and calculates 

the difference between individual inferred CN states and the mean. If for a 

particular clone, any of these differences are larger than a set threshold (by 

default 0.1), the clone is left without a consensus CN state. If, following 

consensus mapping, fewer than two clones have a consensus state, the top-

scoring solution is selected instead. The equations for consensus mapping 

testing as well as calculations for an example case were: 

 

𝑅𝑒𝑠𝑢𝑙𝑡1:	𝐶𝑁_/`=a/ = 0.84	&	𝐶𝑁b`c/a = 0.06 

𝑅𝑒𝑠𝑢𝑙𝑡C:	𝐶𝑁_/`=a/ = 0.86	&	𝐶𝑁b`c/a = 0.01 

𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠	𝑡𝑒𝑠𝑡_/`=a/.1: ­
𝐶𝑁_/`=a/.1 + 𝐶𝑁_/`=a/.C

𝑛 − 𝐶𝑁_/`=a/.1­

< 𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠	𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠	𝑡𝑒𝑠𝑡_/`=a/.C: ­
𝐶𝑁_/`=a/.1 + 𝐶𝑁_/`=a/.C

𝑛 − 𝐶𝑁_/`=a/.C­

< 𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠	𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠	𝑡𝑒𝑠𝑡b`c/a.1: ­
𝐶𝑁b`c/a.1 + 𝐶𝑁b`c/a.C

𝑛 − 𝐶𝑁b`c/a.1­ < 𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠	𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙 
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𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠	𝑡𝑒𝑠𝑡b`c/a.C: ­
𝐶𝑁b`c/a.1 + 𝐶𝑁b`c/a.C

𝑛 − 𝐶𝑁b`c/a.C­

< 𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠	𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

 

𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠	𝑡𝑒𝑠𝑡_/`=a/.1: ­
0.84 + 0.86

2 − 0.84­ ≤ 0.1 

𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠	𝑡𝑒𝑠𝑡_/`=a/.C: ­
0.84 + 0.86

2 − 0.86­ ≤ 0.1 

𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠	𝑡𝑒𝑠𝑡b`c/a.1: ­
0.06 + 0.01

2 − 0.06­ ≤ 0.1 

𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠	𝑡𝑒𝑠𝑡b`c/a.C: ­
0.06 + 0.01

2 − 0.01­ ≤ 0.1 

𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠	𝑚𝑎𝑝𝑝𝑖𝑛𝑔_/`=a/: 𝐶𝑁_/`=a/ =
0.84 + 0.86

2 = 0.85	 

𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠	𝑚𝑎𝑝𝑝𝑖𝑛𝑔b`c/a: 𝐶𝑁b`c/a =
0.06 + 0.01

2 = 0.035	 (20) 

 

3.3.8 Possible modifications to the default 
algorithm 

 

3.3.8.1 Mapsce2r 
 
Following testing with the simulated data (described later in Chapter 4), we 

identified the number of regions as a limitation of the tool’s performance. 

Specifically, for cases, where only two regions are available, MAPSCE 

automatically performs all of the aforementioned calculations without 

bootstrapping. Thus, rather than comparing the bootstrapped BICs, only single 

BIC values for one branch test per branch are compared. This feature, 

mapsce2r, allows for improved mapping accuracy for cases with two regions 

only, since no additional noise from the bootstrapping is added to the data. For 

more than two regions, bootstrapping proved to be a feature that considerably 

improved the mapping accuracy. These results will be covered in Chapter 4. 

 

Furthermore, testing the tool on simulated data also showed that in all cases, 

but especially the ones with two regions, setting specific constraints on the 
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𝐶𝑁_/`=a/ and 𝐶𝑁b`c/a for the data based on the expected type of events 

showed great improvement to the mapping accuracy (Chapter 4).  

 

3.3.8.2 Comparing cluster CCF and clone CCF 
 

As described previously, cluster CCF represents the proportion of cells 

harbouring a particular set of mutations. This is the proportion of cells in a 

particular lineage. In the initial LOHHLA mapping approach, cluster CCF was 

converted into clone CCF which was then used for the quadratic programming-

based branch test (McGranahan et al. 2017). Clone CCF is the proportion of 

cells with the same genotype, unique for that particular clone. Figure 3-16 

shows the example tree, copy number data, cluster, and clone CCF with the 

example calculations of the CN states before and after the branch. In an ideal 

scenario, the calculations using cluster CCF and clone CCF should be 

identical. However, converting cluster CCFs to clone CCFs is fallible due to 

the estimated clone CCFs oftentimes not adding up to 100%. This makes using 

cluster CCF the safer option. Additionally, there is circularity in converting 

cluster CCFs to clone CCFs only to then add up the clone CCFs for clones 

before and after the tested branch.  
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Figure 3-16 Example tree, copy number data and cluster CCF, and clone 
CCF with their respective calculations of the CNbefore and CNafter. 

 

Instead of converting cluster CCFs to clone CCFs, cluster CCF can be directly 

used in quadratic programming. Assuming that the trunk always denotes 100% 

CCF, the branch tested in the branch test splits the tree towards the cluster 

CCF of the lineage after the branch, and the cluster CCF of the lineage before 

the branch. Thus, conversion to individual clone CCFs of every clone is 

avoided. Consequently, branch testing with just cluster CCF lead to the more 

efficient calculation. 

 

These two approaches were tested against each other on the HLA LOH events 

in the TRACERx 100 NSCLC dataset. The accuracy of the two approaches 

was dependent on the RSS between the inferred CN before and after the 

branch using quadratic programming and the closest integer. Equation 21 

describes the RSS calculation for this test. As established before, the better 

the result was denoted by the lower RSS. Let [𝑥]	mean the integer closest to 

𝑥 (rounding up for half – integer values):  
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𝑅𝑆𝑆 = 	 ~𝐶𝑁_/`=a/ − ²𝐶𝑁_/`=a/³~
C
+ ~𝐶𝑁b`c/a − ²𝐶𝑁b`c/a³~

C
	 (21) 

 

where 𝑅𝑆𝑆 is the sum of squares of residuals, 𝐶𝑁_/`=a/ is the copy number 

state before the branch and 𝐶𝑁b`c/a is the copy number state after the branch. 

 

The RSS for cluster CCFs was slightly lower than the RSS for clone CCFs 

(39.97 for cluster CCFs and 40.92 for clone CCFs) when looking at the CN 

states before and after for all the branches of every patient of TRACERx 100 

(Jamal-Hanjani et al. 2017). When comparing the good branches only, the 

RSS for cluster CCFs was still slightly lower than the RSS for clone CCFs 

(0.0210 for cluster CCFs and 0.0215 for clone CCFs). Thus, while the tool 

allows the user to choose between using the cluster CCFs or clone CCFs in 

quadratic programming, the cluster CCF is the default option. 

 

3.3.9 Using MAPSCE 
 

3.3.9.1 Inputs 
 
MAPSCE requires multi-sample sequencing data. As input, four types of 

information need to be provided, which include: 

 

- Observed data (i.e. regional copy number value) 
- Mutation CCF (required for bootstrapping specifically) 
- Cluster CCF 
- Tumour evolutionary tree 

 
The tool provides two different example inputs, including copy number data, 

mutation CCF, cluster CCF, and tree for a case with two regions only and for 

another case with more than two regions. 
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3.3.9.1.1 Observed data 
 

Observed data need to be provided as a numerical vector containing values 

for each region (minimum two regions). For example, for copy number, each 

respective value in the numerical vector would be the observed copy number 

value for a particular region.  

 

3.3.9.1.2 Mutation CCF 
 

Mutation CCF needs to be provided as a data frame, where each row 

represents a particular mutation, while the columns denote the corresponding 

CCF of that mutation in each region. The CCF values in the mutation CCF 

should be in decimals, rather than a percentage. Two additional columns 

named “PycloneCluster” and “CleanCluster” need to be provided. These 

columns are included in the output of the upstream analysis of the NSCLC 

TRACERx 100 methodology (Jamal-Hanjani et al. 2017) involving PyClone 

(Roth et al. 2014). “PycloneCluster” is the assigned cluster of the mutation, 

while the “CleanCluster” denotes whether the cluster passes through two 

filters. The first filter checks the size of the cluster and whether it has at least 

5 mutations. The second filter tests whether the cluster is copy number driven, 

i.e. whether the cluster is absent because of a copy number loss rather than 

the fact the mutations were never present.  “CleanCluster” values need to be 

either 1 or 0, where 1 shows that the cluster has passed the aforementioned 

filters to be considered for the analysis, while 0 suggests the cluster and the 

mutations should be disregarded. This format is based on the output of 

PyClone (Roth et al. 2014) and reflects the results produced in NSCLC 

TRACERx 100 project (Jamal-Hanjani et al. 2017).  

 

3.3.9.1.3 Cluster CCF 
 

While this information can be derived from the mutation CCFs, these are only 

required for bootstrapping. When no bootstrapping is used, MASPCE uses the 
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cluster CCFs instead of the mutation CCFs. Cluster CCF needs to be a matrix, 

where each column represents the different regions and the rows represent 

the different clones. The naming of the rows in the cluster CCF should 

correspond to the “PycloneCluster”, specifically the ones marked as suitable 

for the analysis (“CleanCluster” = 1), while the regions in the cluster CCF 

should be identical to the regions in the mutation CCF data frame. Each 

respective CCF value in cluster CCF should be a percentage between 0 and 

100.  

 

3.3.9.1.4 Tumour evolutionary tree 
 

Finally, MAPSCE requires a tumour evolutionary tree, in the form of a matrix 

with two columns. In this matrix, the first column denotes the ancestral clone 

(parent), while the second column denotes the descendant one (child). Thus, 

every row of this matrix denotes a branch. By definition, the clone present in 

the first column only is the root node, while all the clones in the second column 

only are the leaves (tips) of the tree.  Every value of the matrix should be a 

character vector.  

 

3.3.9.2 Other parameters 
 

The tool allows the user to change other parameters, which include: 

- the number of bootstraps (by default 100 bootstraps), 

- the option to run bootstrapping (by default bootstrapping is used, unless 

there are only 2 regions in the data),  

- the option to use clone CCF for quadratic programming (by default the 

tool uses cluster CCF for QP), 

- the option to set the constraints in the quadratic programming on the 

before and after states (both by default 0).  

Furthermore, the tool can print the raw matrix of results and the mapping 

duration. 
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3.3.9.3 Interpretation function 
 
The tool includes a wrapper function for interpretation of the raw results of 

MAPSCE, called interpret_mapsce(). This function provides the interpretation 

of the mapping results of MAPSCE, integrating the consensus mapping as well 

as automatically determining the clonality for the user. The input for this 

function requires the output of MAPSCE and the patient tree used for the 

output of MAPSCE. Furthermore, this function allows the user to change the 

minimum difference between the before and after states for the event to be 

considered subclonal (by default 0.4), the consensus threshold (by default 0.1) 

and the format of the output (by default a data frame).  

 

3.3.9.4 Outputs 
 
There are two outputs to the tool. The first output is the output of the 

MAPSCE() function, which is the raw mapping result for a particular gene. This 

output includes  

- the branch identifiers denoted by the clone which the branch precedes, 

i.e. branch is the branch directly before clone 5, 

- null hypothesis identifier, 

- QP-inferred before and after states,  

- number of regions and clones, 

- statistics for model selection with a summary of whether the result 

passes all the statistical filters, including: 

o RSS 

o number of bootstrapped BICs better than the null BIC,  

o the mean BIC,  

o filter for whether the Bayes Factors are within 6 ∆BF to the top 

one. 

The results are sorted by the good solutions at the top, and then by ascending 

BIC. 
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The second output is the result of the interpret_mapsce() function, which is the 

interpretation function for the raw mapping results of MAPSCE. This output 

includes:  

- the branch identifier, 

- the consensus mapping, containing the consensus states for clones of 

the tree, where the agreement was found, 

- the clonality of the event mapped (subclonal or null/clonal) inferred by 

MAPSCE, 

- the consistency filter, containing information on whether there were at 

least two good solutions in agreement. 
 

3.4  Discussion 
 

The increased generation of multi-region sequencing data improved the 

understanding of tumour evolution dynamics (Yan et al. 2019; Gerlinger et al. 

2012; Jamal-Hanjani et al. 2017). Increasingly new methods have been 

developed to analyse the generated data (Van Loo et al. 2010; Roth et al. 

2014; Deshwar et al. 2015; Niknafs et al. 2015). However, the majority of the 

work has focused on single-omics data, and there has been an increasing 

need for tools designed specifically for the Integration of multi-omics data.  

 

McGranahan et al. (2017) were the first group to present a method to integrate 

subclonal copy number losses with SNV events in the context of phylogenetic 

tumour evolution. Their method, LOHHLA, helped identify losses of HLA as 

distinct events occurring on separate branches of four patients’ tumour 

phylogenetic trees, indicative of parallel evolution. The same HLA alleles were 

subject to loss on those distinct branches, suggesting that the losses of those 

HLA alleles were required for subclonal expansion (McGranahan et al. 2017). 

LOHHLA was a proof of concept study of mapping of subclonal LOH events 

on a tumour evolutionary tree. 

 

One important distinction between MAPSCE and LOHHLA is their clonality 

determination (Figure 3-17). As mentioned previously, LOHHLA relies on a 
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heuristic approach based on the observed copy number states in the regional 

data to determine clonality of the events. LOHHLA then maps the pre-

determined subclonal events on a tumour evolutionary tree. Conversely, 

MAPSCE uses quadratic programming to simultaneously determine the 

clonality of the events and map them on tumour evolutionary trees (Figure 3-

17). 

 

 
Figure 3-17 Comparison of the clonality determination between MAPSCE 
and LOHHLA/QP. 

 

This chapter introduced MAPSCE, a tool for mapping subclonal events on 

SNV-based tumour trees.  MAPSCE was specifically designed to handle 

various types of copy number losses or gains but can accommodate different 

types of data as well. This chapter detailed the exploration of various methods 

and algorithms considered during the development of the tool. 

 

3.4.1 Limitations and future work 
 
Deriving CCF from observed copy numbers showed great potential for branch 

testing, as well as improving the process of clustering of the mutations. 

Deriving CCF for patients where 𝐶𝑁=_H/a�/� is 1 in a region and a fraction 
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(partial loss) in another yielded similar results compared to running quadratic 

programming, based on the cases where this approach was tested. However, 

extending this method for handling more complex CN events required 

estimating the ancestral and derived CN states. This further required the use 

of quadratic programming. This approach was mainly conceived to provide 

additional validation for the results obtained with quadratic programming. 

However, it was deemed inappropriate because of its circularity: QP used 

𝐶𝑁=_H/a�/� to infer the best fitting branch, and 𝐶𝑁_/`=a/ and 𝐶𝑁b`c/a ; these 

values were then used to derive the 𝐶𝐶𝐹��, necessarily resulting in 𝐶𝐶𝐹 values 

close to the ones for the mutations defining the best fitting branch. Further 

extension of this approach could be useful if those derived CCFs could be used 

to re-cluster the mutations, leading to more accurate cluster CCFs and trees 

that already contain information about certain subclonal events. However, this 

would still require defining original clusters without the 𝐶𝐶𝐹�� beforehand to 

then derive the 𝐶𝐶𝐹�� and re-cluster all the 𝐶𝐶𝐹𝑠. One drawback of such a 

method is that the 𝐶𝐶𝐹�� would be skewed towards the original mutational 

𝐶𝐶𝐹𝑠. 

 

The results of the initial noise simulations were intuitive with smaller clusters 

being more susceptible to noise. All things considered, one of the confounding 

factors was identified for further tool development; events simulated on smaller 

clusters yielded less reliable results. These initial noise simulations were 

extended to simulate other kinds of CNA for testing the methodology (Chapter 

4).  

 
The attempt at using ABC for the branch test was done on simulated data for 

10,000 simulations, which resulted in a pseudo-ABC approach that resembled 

maximum likelihood estimation. Ideally, using ABC in its original formulation 

would require sampling from the possible solutions for CNbefore and CNafter, 

which would effectively require a larger number of simulations to sample both 

these values as well as the different branches. The issue with the full 

implementation of ABC was how computationally expensive it would be. 

Ideally, each ABC simulation would include re-clustering of all mutations, 
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however, this would require a very high number of simulations to obtain stable 

results. Even a simpler sampling approach would require considerable 

computational resources to run ABC on each patient and every gene in a time-

efficient manner. 

 
The filtering process of the results after mapping with a QP-based branch test 

allowed for accurate detection of the clonality of the events. While the filtering 

approach limited the number of potential results of MAPSCE, they needed to 

be refined, as they still were not sufficient to pinpoint the exact branch where 

the event occurred in certain cases. Despite the filters, the results still included 

too many potential branches where the LOH event was likely to map without a 

robust criterion of distinguishing between the solutions. Furthermore, the 

filtering needed to be extended to also allow for mapping of different copy 

number changes and other types of events, rather than just CN LOH events. 

Thus, the statistical filters were further refined as described and then included 

in the release of the tool on GitHub (v1.0.0). Together with consensus 

mapping, the filtering approaches allowed for a more accurate determination 

of clonality and mapping of events.   

 

While both MAPSCE and LOHHLA/QP rely on quadratic programming in their 

branch test, MAPSCE includes additional statistical features to provide a more 

robust model selection and a measurement of the goodness of fit of the results. 

Finally, adding null hypothesis testing directly to the branch test and allowing 

for either more generic or ad hoc constraints in the quadratic programming 

compared to LOHHLA allows for the mapping of different data types compared 

to just HLA LOH events.  

 
The tool, MAPping SubClonal Events, for mapping subclonal events on the 

tumour evolutionary trees was developed as an R package, available for 

download on GitHub (https://github.com/MarkTranHS/MAPSCE). In the future, 

a release for CRAN is also planned. However, that requires additional work to 

test the software on various operating systems.  
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In summary, these results present the development and initial testing of the 

various features included in MAPSCE. The next chapter will describe the 

testing on simulated datasets to assess the performance of the tool. 
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Chapter 4 Tool validation using simulated copy 
number events 

 

4.1  Introduction 
 
The timing of mutational events in cancer provides an insight into tumour 

evolution, with direct implications for improving patient diagnosis and 

treatment. Studies have shown how phylogenetic reconstruction of cancers 

allows for the identification of new subclonal driver events as well as the 

labelling of previous drivers based on their role in tumour initiation, progression 

or maintenance (Gerlinger et al. 2012; 2014; Boyle et al. 2021). Nik-Zainal et 

al. (2012) identified a dominant subclonal lineage comprising more than 50% 

of tumour cells in every tumour of 21 breast cancer patients using phylogenetic 

reconstruction. Jamal-Hanjani et al. (2017) have shown that the late subclonal 

mutations in tumour-suppressor genes occurring after genome doubling 

predominantly affected only one allele, suggesting that late subclonal events 

of tumour suppressor genes (TSGs) were often passenger genes, rather than 

driver events. Miura et al. (2022) have demonstrated how, in lung cancer 

patients, the influence of smoking-related mutational signatures decreases, 

while the influence of APOBEC mutational signatures increases during later 

stages of tumour evolution. 

 

Mapping multiregion copy number data on tumour evolutionary trees improved 

the understanding of mechanisms underlying tumour evolution in NSCLC 

(McGranahan et al. 2017) and ovarian cancer (Zhang et al. 2018). In three out 

of four high-grade serous ovarian cancer patients, samples with subclonal HLA 

LOH also had the highest epithelial CD8+ TIL densities (Zhang et al. 2018). 

Subclonal HLA LOH was also linked to subclonal neoantigen depletion in 

HGSC. McGranahan et al. (2017) further suggested that subclonal HLA LOH 

is an immune escape mechanism which occurs late in the cancer evolution 

and facilitates subsequent subclonal expansion. While LOHHLA presented a 

novel framework for tracking tumour evolution, it lacked a measure of 

goodness of fit of the results, and its mapping was limited to subclonal HLA 
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LOH events. Tools for the integration of different types of events extending 

beyond subclonal LOH in tumour evolutionary context on phylogenetic trees 

are still lacking. Different approaches were explored and finally, MAPSCE was 

developed as a new tool to tackle this problem (Chapter 3). 

 

Simulating datasets has always proved to be an useful tool in testing new 

methodologies in all fields including cancer research (Miller et al. 2014; Roth 

et al. 2014; Deshwar et al. 2015), allowing for a controlled environment to 

explore different parameters and optimise the performance of a new algorithm. 

This chapter presents the testing of MAPSCE on different simulated datasets 

as well as a comparison of the mapping accuracy of the tool with other existing 

methodologies. We have utilised the simulated datasets to optimise the 

performance of various features of the tool, such as bootstrapping and the 

incorporation of constraints for patients with two regions and more than two 

regions sequenced. The simulated datasets also allowed us to explore the 

noise present in the trees provided in the NSCLC TRACERx 100 dataset 

(Jamal-Hanjani et al. 2017).  

 

In this chapter, the simulated events for patients with two regions sequenced 

are henceforth referred to as “events with two regions”. Analogically, simulated 

events for patients with more than two regions sequenced are henceforth 

referred to as “events with more than two regions”. As stated in the previous 

chapter, we identified the number of regions as one of the factors affecting the 

accuracy of the results. Having only two regions sequenced leads to an issue 

of overfitting, as we provide quadratic programming with a system of two 

equations with two unknowns. As a result, when evaluating the performance 

of the tools, we categorised the results based on clonality and number of 

regions. 

 

Additionally, we measured the performance of the tools based on their recall, 

the percentage of simulated events that were correctly identified, and their 

precision, the percentage of the identified results that were correct. The recall 

and precision can be measured at different levels. In this chapter, we 

examined either “perfect performance” (or “perfect recall” and “perfect 
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precision”), where the clonality, branch and CN states have been correctly 

inferred, or the performance for less stringent criteria as well. These criteria 

were nested within each other. The “clonality level” involved correctly 

determining an event as clonal or subclonal, as appropriate. The “branch level” 

for subclonal events referred to correctly identifying the branch where the 

subclonal event occurred or the mapping of the event on the trunk for clonal 

events. The “CN level” denoted correctly predicting the clonality, the branch 

and the CN states (within a tolerance of 0.3). The majority of the results in this 

chapter were tested for perfect performance (recall or precision) unless 

otherwise specified. Finally, the simulated events in this chapter included the 

addition of noise. For each event, the noise value denoted the maximum level 

of noise that could have been added to a particular simulated CN event. As 

such, a 15% noise “range” or “level” henceforth referred to ±15% noise, i.e. up 

to 15% added or subtracted to the CN (a CN range of 0.85 – 1.15 CN in 15% 

noise range for CN = 1).  

 

4.2  Results 
 

4.2.1 Testing bootstrapping and constraints 
 
MAPSCE allows the user to choose whether to use bootstrapping and whether 

to set custom constraints on the inferred results. We examined the effects of 

the constraints and bootstrapping on MAPSCE’s recall to determine suitable 

default values for these parameters (Figure 4-1). When using bootstrapping, 

MAPSCE was run with 100 bootstrap samples. When using constraints, these 

were CNbefore higher or equal to 0.5 and CNafter higher or equal to 0. Otherwise, 

both CNbefore and CNafter were forced to be non-negative. 
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Figure 4-1 Testing of MAPSCE’s features (boot_off – without 
bootstrapping, boot_on – with bootstrapping, constraint – with 
constraints, no constraints if not specified), and their respective effects 
on recall in the simulated LOH events dataset with different noise ranges 
(0 – 30%). Top: clonal; bottom: subclonal; left: two regions; right: more 
than two regions. 

 

The recall generally decreased with increasing noise levels, with subclonal 

events having a more pronounced decrease than clonal events. 

 

For clonal events, MAPSCE maintained a high recall above 75% for every 

noise range, regardless of the number of regions or the different combinations 

of parameters. MAPSCE with bootstrapping in events with two regions 

performed the worst, with its recall dropping below 90% in 20% and 30% noise 

levels.  

 

It was more challenging for MAPSCE to correctly map subclonal events with 

two regions sequenced. In those cases, the addition of a constraint improved 

the recall by ca. 25 – 40%. Without these constraints, quadratic programming 

employed in MAPSCE could easily generate mathematically valid, albeit 
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biologically non-sensical results where the inferred event is a gain from CN=0 

to CN=1 on the sister lineage rather than a loss on the correct lineage. This 

was especially prone to happen in cases with two regions where the cluster 

CCF of the root node was small in all regions (Figure 4-2). The interpretation 

function in MAPSCE already filters out these non-sensical results. However, 

providing quadratic programming with appropriate constraints results in a 

higher number of results appropriate for the biological context of the dataset. 
 

 
Figure 4-2 Example of common error by MAPSCE when no constraint 
was provided. Instead of inferring the correct LOH event (A), MAPSCE 
inferred a loss in the sister branch when up to 10% noise is added (D). B 
and C show the clone CCF in the two regions for this patient (CRUK0010). 
In this case, the clone CCF for the root node was small in both regions 
(3% and 15%) which prevented the precise mapping of the event despite 
the result being correct for all but the root node. Figure produced by 
Javier Herrero. 

 

The advantage of using bootstrap for events with two regions was less clear. 

Bootstrapping improved the clonality determination, however it also decreased 

the likelihood of identifying the correct branch (Figure 4-3). However, this 

affected mainly the smaller clusters (0 – 40%). For lineages with a CCF larger 

than 60%, the mapping recall was noticeably better than on smaller lineages 

(Figure 4-3). 
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Figure 4-3 Insight into various outcomes of MAPSCE with constraints for 
events with two regions with (bootstrap) and without (no boot.) 
bootstrapping in different noise ranges (0 – 30%). The cluster sizes (0 – 
100%) relate to subclonal events, while the right category shows clonal 
events. Bootstrapping improved clonality determination, however led to 
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a lower likelihood of identifying the correct branch. Figure produced by 
Javier Herrero. 
 
For subclonal events with more than two regions, MAPSCE’s recall declined 

considerably with increasing noise range (ca. 5-10% decline for every 5% 

noise increase). However, the tool still maintained above 50% mapping 

accuracy across all noise ranges (Figure 4-2). For subclonal events with more 

than two regions, the addition of bootstrapping improved the recall by ca. 10-

15% in every noise level. The inclusion of constraints still generally improved 

the results in simulated subclonal events with more than two regions, but the 

improvement was less pronounced (ca. 5-10%) compared to the addition of 

constraints in subclonal events with two regions. 

 

These results suggest that including constraints to restrict the solution space 

was the largest contributor to MAPSCE’s improved performance for subclonal 

events with two regions. In these cases, bootstrapping improved the clonality 

determination, while reducing the likelihood of correctly identifying the correct 

branch. Conversely, for subclonal events with more than two regions, the 

addition of bootstrapping was the largest contributor to MAPSCE’s improved 

recall. The advantages of including constraints were less prominent in this 

case, however including both the bootstrapping and the constraints led to the 

largest improvement in the performance for subclonal events with more than 

two regions. 

 

4.2.2 Comparing MAPSCE to LOHHLA/QP on a 
dataset with simulated loss of heterozygosity 
events 

 
We compared MAPSCE to LOHHLA/QP using the simulated loss of 

heterozygosity events, as LOHHLA’s mapping approach was specifically 

designed to address these types of events. We ran quadratic programming in 

MAPSCE with the same constraint as in LOHHLA, namely the inferred 

ancestral copy number state (CNbefore) had to be at least 0.5. We employed the 
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default parameters of MAPSCE for bootstrapping. These included 

bootstrapping for events with more than two regions but none for events with 

two regions. In this analysis, we looked at the aforementioned different levels 

of correctness, the clonality, the branch and the CN state. 

 

 
Figure 4-4 Recall of LOHHLA/QP and MAPSCE on simulated LOH events 
with different noise levels (0 – 30%). Top: clonal results; bottom: 
subclonal results; left: cases with two regions only; and right: cases with 
more than two regions. Different intensity levels show the various criteria 
of correctness considered. Clonality: correctly identified as a clonal or 
subclonal event; branch: for subclonal events, correctly identified the 
branch where the subclonal event occurred; CN: correctly predicted the 
clonality, the branch and the CN states (within a tolerance of 0.3). 

 

Both tools maintained high recall above 95% in identifying all clonal events 

regardless of the number of regions (Figure 4-4). Only MAPSCE’s 

performance degraded in clonal events with two regions to ca. 95% when the 

noise ranges reached 25% – 30%.  

 

MAPSCE consistently outperformed LOHHLA/QP in terms of recall for 

subclonal events, across all noise ranges. The advantage of MAPSCE’s 

mapping accuracy was more evident in subclonal events with more than two 
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regions (difference of ca. 3 – 15% depending on noise) compared to subclonal 

events with two regions (difference of ca. 8 – 23% depending on noise). 

MAPSCE maintained a recall of over 75% with noise levels up to 20% in 

subclonal events with more than two regions. However, as the noise levels 

increased, MAPSCE’s improved recall over LOHHLA/QP decreased, 

suggesting MAPSCE’s lower tolerance for higher noise levels (25 – 30%).  

 

MAPSCE was considerably better than LOHHLA/QP at correctly identifying 

subclonal events, regardless of the number of regions (Figure 4-4). Even in 

the presence of large noise, MAPSCE still remained capable of correctly 

discriminating clonal from subclonal events, although the noise affected its 

ability to correctly identify the branch affected by the LOH event. 

 

As previously mentioned, increasing noise levels led to a higher decrease in 

MAPSCE’s performance compared to LOHHLA/QP’s. The increasing noise 

levels mainly affected the smaller, rather than the larger branches. 

Consequently, we hypothesised that LOHHLA/QP was a more conservative 

tool, which did not consider smaller clones and mainly mapped events on the 

larger clusters. Conversely, bootstrapping in MAPSCE led to increased 

sensitivity for subclonal events simulated on smaller clusters, at the cost of 

lower tolerance of increasing noise levels.  

 

We tested this hypothesis by comparing the recall and precision of both tools 

in different cluster sizes. For this analysis, we considered the maximum size 

of a cluster among all regions as the cluster size, i.e. the size of the cluster in 

the region where it is the largest. 
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Figure 4-5 Recall (A) and precision (B) of LOHHLA/QP and MAPSCE in 
different cluster sizes and clonality on simulated LOH events with 
different noise levels (0 – 30%). Top: LOHHLA/QP; bottom: MAPSCE; left: 
two regions only; right: more than two regions. Yellow: high recall or 
precision; red: low recall or precision. The cluster sizes (0 – 100%) relate 
to subclonal events, while the top category shows clonal events. 

 

In general, LOH events simulated on small (0 – 40%) and medium clusters (40 

– 60%) were more challenging to map correctly due to a lower signal compared 

to the large clusters (60 – 100%). As a result, both tools struggled with clusters 

of smaller size (Figure 4-5).  

 

LOHHLA/QP was especially prone to mistakes when mapping events 

simulated on smaller cluster sizes (recall of ca. 0 – 5%) (Figure 4-5A). 

Additionally, LOHHLA/QP’s precision in the smaller clusters showed missing 

data since LOHHLA/QP mostly did not map events on the small clusters 

(Figure 4-5B). LOHHLA/QP maintained a high recall regardless of the number 

of regions for large clusters (ca. 50 – 94%) and for clonal events (100%). 

However, LOHHLA/QP’s precision for clonal events was considerably lower 

(ca. 54 – 59% for two regions, and ca. 39 – 41% for more than two regions).  
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As mentioned previously, MAPSCE’s recall and precision declined more with 

increasing noise levels, especially above 20% noise. MAPSCE generally 

outperformed LOHHLA/QP in terms of their recall and precision for subclonal 

events regardless of the cluster size. The advantage of MAPSCE’s 

performance over LOHHLA/QP’s was particularly noticeable in small and 

medium clusters, especially in their precision. MAPSCE’s precision (up to 20% 

noise: precision of ca. 20 – 100% for 2 regions, and ca. 37 – 100% for more 

than 2 regions) was higher than its recall (up to 20% noise: recall of ca. 6 – 

40% for 2 regions, and ca. 20 – 70% for more than 2 regions) in small clusters. 

Importantly, MAPSCE’s precision was consistently higher than LOHHLA/QP’s 

precision in clonal events regardless of the number of regions and noise levels.  

 

These results suggest that LOHHLA/QP mapped events conservatively, 

overcalling clonal events and mostly mapping subclonal events on the medium 

or large branches. For LOHHLA/QP to map events on small clusters, it 

required the observed CN value to be less than 0.5 in at least one of the 

regions. The few cases where LOHHLA/QP did map an event on a small 

cluster could be attributed to the effect of the added noise, such that the 

observed CN in a particular region dipped below 0.5 even for a small cluster. 

This led to an increased recall in large clusters and clonal events, at the cost 

of a decreased recall in small and medium clusters, and a decreased precision 

overall. These results also explain LOHHLA/QP’s high tolerance to increasing 

noise levels, as the tool ignored the smaller events that were mainly affected 

by the added noise. Conversely, MAPSCE was more sensitive in detecting 

small and medium clusters, at the cost of lower tolerance to increasing noise 

levels (above 10% noise for two regions and above 20% for more than two 

regions).  

 

4.2.3 MAPSCE’s performance beyond LOH events  
 
We tested MAPSCE on other types of simulated copy number events, 

including amplifications (two to three copies), duplications (two to four copies), 
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homozygous losses (two to zero copies) and heterozygous losses (two copies 

to one copy). We used two different sets of constraints for running MAPSCE 

on these datasets. These constraints were chosen depending on the type of 

simulated copy number events. For both heterozygous and homozygous loss 

events, we used 𝐶𝑁_/`=a/ ≥ 1.5, while for the amplifications and duplications, 

we used 𝐶𝑁b`c/a ≥ 2.5.  

 

 
Figure 4-6 Recall of MAPSCE on the dataset with other types of copy 
number events simulated with different noise levels (0 – 30%). Top: 
clonal results; bottom: subclonal results; left: cases with two regions 
only; and right: cases with more than two regions. 

 

The tool maintained a high recall of over 75% for clonal results up to 25% noise 

for events with two regions specifically (Figure 4-6). For clonal events with 

more than two regions, MAPSCE maintained over 75% recall in all four 

datasets only up to 15% noise.  

 

Interestingly, MAPSCE noted a higher mapping accuracy for clonal 

homozygous losses compared to the other clonal copy number events for two 

regions. This could be attributed to the fact that homozygous losses were 
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easier to distinguish even in the presence of noise due to the larger drop from 

𝐶𝑁_/`=a/ 	= 	2 down to 𝐶𝑁b`c/a 	= 	0 compared to heterozygous losses and 

amplifications. The difference between the tool’s performance between 

homozygous losses and duplications could be explained by more appropriate 

constraints on 𝐶𝑁_/`=a/ applied when running MAPSCE for the loss events. 

MAPSCE achieved over 95% recall for clonal loss events with more than two 

regions recall regardless of noise levels. The tool’s recall of clonal gain events 

with more than two regions declined considerably with increasing noise levels.  

 

The tool’s performance for subclonal events was worse than for clonal events. 

MAPSCE performed better when mapping subclonal events with more than 

two regions compared to subclonal events with two regions. The tool 

maintained high recall when mapping subclonal events regardless of the 

number of regions. As observed when examining the LOH dataset, MAPSCE’s 

performance declined as the noise levels increased, regardless of the number 

of regions, across all four datasets.  

 

Additionally, we examined MAPSCE’s recall and precision in different cluster 

sizes in all four simulated datasets. As previously stated, in this analysis, we 

considered the maximum size of a cluster among all regions as the cluster 

size, i.e. the size of the cluster in the region where it is the largest. 
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Figure 4-7 Recall (A) and precision (B) of MAPSCE on datasets with 
different types of copy number events simulated (from top to bottom: 
amplification, duplication, heterozygous loss, homozygous loss), with 
different noise levels (0 – 30%). Left: two regions only; right: more than 
two regions. Yellow: high recall or precision; red: low recall or precision. 
The cluster sizes (0 – 100%) relate to subclonal events, while the top 
category shows clonal events. 

 

In general, MAPSCE’s performance in other types of CN events was similar 

across all four simulated types of CN events. The tool’s performance did not 

differ significantly from its performance on simulated LOH events (Figure 4-7). 

For subclonal events with more than two regions, the tool consistently 

maintained a high recall and precision regardless of the cluster size of up to 

20% noise.  

 

As observed previously, MAPSCE’s recall was lower in small and medium 

clusters compared to the tool’s performance in large clusters (Figure 4-7A). 

This difference in the tool’s recall was more evident in events with two regions 

compared to events with more than two regions. The tool’s recall for cases 

with more than two regions was higher for CN gains than CN losses in smaller 

clusters, which could be due to the nature of the CNA and the constraints. A 

gain of CN in the smaller cluster provides a higher signal to be detected. 
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Additionally, the constraints for copy number gains being 	𝐶𝑁b`c/a ≥ 2.5 made 

it less challenging to detect the lineage that was affected by the CNA. When it 

came to CN losses, the constraints were 𝐶𝑁_/`=a/ ≥ 1.5 and 𝐶𝑁b`c/a ≥ 0. In 

these cases, the detection of a loss in a small branch was more challenging, 

since the small clusters already provided a small signal to be detected.  

 

Similarly, MAPSCE’s precision was higher in large clusters compared to the 

small and medium clusters (Figure 4-7B). This difference was again more 

pronounced in subclonal events with two regions compared to subclonal 

events with more than two regions. MAPSCE did not map any events in the 

heterozygous losses dataset for cases with two regions at 0 – 20% CCF and 

25% noise, resulting in missing data. 

 

Additionally, we quantified the number of times MAPSCE used consensus 

mapping to consolidate results. Consensus mapping was utilised in 

approximately 7 – 10% of cases at 0% noise. This usage steadily increased 

with increasing noise levels for all four simulated types of CN events, peaking 

at around 32% for amplifications at 30% noise. This indicates that higher noise 

levels led to MAPSCE being less precise and classifying more results as 

mathematically valid. These good results were then merged using consensus 

mapping. 

 

Taken together, MAPSCE maintained similarly high recall and precision across 

all four simulated datasets with different types of CNA. The tool performed best 

when provided with data from patients with more than two regions sequenced. 

MAPSCE maintained high mapping accuracy up to 20% noise, irrespective of 

the type of the CNA. This demonstrated that the tool can withstand a lot of 

noise in the data, even when mapping subclonal copy number gains. 

MAPSCE’s ability to map subclonal copy number gains on SNV-based tumour 

trees sets it apart from other existing tools. 
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4.3  Conclusions 
 

4.3.1 Summary of findings 
 

In this chapter, we compared MAPSCE to another approach of a similar 

purpose, LOHHLA/QP, using simulated LOH events.  Additionally, we 

assessed MAPSCE’s performance on other types of simulated copy number 

alterations, namely amplifications, duplications, heterozygous losses, and 

homozygous losses. These simulations allowed us to explore MAPSCE’s 

novel ability to map subclonal copy number gains on SNV-based trees, as no 

directly comparable approach is available to our knowledge. Furthermore, 

testing the tool on the simulated datasets helped in optimising MAPSCE’s 

default settings. Over the years of the tool’s development, the simulations 

provided a means to evaluate the advantages of the various features included 

in the tool. 

 

We examined the effects of including constraints and bootstrapping using 

MAPSCE on simulated LOH events. The tool’s performance declined 

considerably for subclonal events with two regions only. This could be 

explained by the quadratic programming overfitting results due to being 

provided with a system of two equations with two unknowns. Additionally, 

having two regions sequenced only, provided an insufficient amount of data 

for the tool’s optimal performance. The inclusion of constraints considerably 

improved MAPSCE’s recall for subclonal events with two regions. The addition 

of bootstrapping improved the clonality determination, however decreased the 

likelihood of mapping the event on the correct lineage.   

 

Conversely, bootstrapping was the largest contributor to MAPSCE’s improved 

recall in subclonal events with more than two regions. While including 

constraints still led to an increased recall of MAPSCE in subclonal events with 

more than two regions, this effect was less pronounced than in subclonal 

events with two regions. Furthermore, incorporating both constraints and 
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bootstrapping for events with more than two regions showed the largest 

increase in MAPSCE’s recall.  

 

Taken together, the default settings in MAPSCE were set to include 

bootstrapping for data with more than two regions, but not for data with two 

regions only. The addition of appropriate constraints was always 

recommended for best performance.  

 

By incorporating various noise ranges from 0 to 30% in the simulated datasets, 

we aimed to replicate the levels of noise found in real data and gain insight 

into the resilience of the two approaches to noise. The results indicated that 

MAPSCE exhibited a more significant decline with increasing noise levels, 

particularly in events with two regions, compared to LOHHLA/QP. As 

previously described, LOHHLA/QP was designed to be conservative and 

ignored events affecting small and medium lineages. The increasing noise 

levels mainly affected the smaller clusters. As a result, LOHHLA/QP had a 

higher tolerance to increasing noise levels, at the cost of overcalling clonal 

events and a lower performance for small and medium clusters. Furthermore, 

LOHHLA/QP overcalled clonal events, which resulted in a decreased 

performance when mapping subclonal events. Conversely, MAPSCE’s higher 

recall and precision in the smaller clusters suggest the tool’s higher sensitivity 

to events affecting smaller lineages, at the cost of higher sensitivity to 

increasing noise levels. 

 

MAPSCE’s performance on simulated datasets with other types of copy 

number alterations was similar to the tool’s performance in the simulated LOH 

dataset. MAPSCE’s consistently high recall and precision demonstrated its 

ability to integrate the copy number data in the context of SNV-based tumour 

evolutionary trees. As mentioned previously, the tool is prone to mistakes at 

noise levels above 20%, due to its high sensitivity to mapping events on 

smaller clusters. Importantly, MAPSCE’s ability to accurately map copy 

number gains is a novel feature, which to our knowledge, has not been 

attempted by any other existing methodology.  
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Taken together, the simulated datasets allowed for comparing the 

performance of MAPSCE with LOHHLA/QP in mapping LOH events. We also 

assessed MAPSCE’s recall and precision on other simulated copy number 

events. MAPSCE consistently outperformed LOHHLA/QP when mapping 

simulated subclonal LOH events. The tool also maintained high recall and 

precision when mapping other simulated copy number events, regardless of 

clonality. Having assessed the performance of the tool on the simulated data, 

the next chapter will describe the integration of real multi-omics data using 

MAPSCE.  

 

4.3.2 Future work 
 

The simulated copy number datasets in this chapter included noise simulations 

from 0 to 30% noise ranges with uniform distribution. These noise ranges were 

chosen in the simulated datasets to provide a wide range of potential noise 

that could be anticipated in real data. However, further work is needed for 

measuring the noise in the real genomics data. Assessing the extent of noise 

that is present in the data would provide insight into how distorted the signal in 

the genomic data is. Additionally, this would allow us to determine how resilient 

the developed bioinformatics tools need to be to withstand the background 

noise and still provide accurate results. 

 

The results in this chapter demonstrated MAPSCE’s improved recall when 

provided with appropriate constraints. These constraints could be refined to 

better provide the tool with the biological context of the dataset. Furthermore, 

MAPSCE could be improved by including an option for the tool to automatically 

detect the type of event being mapped. Based on whether the tool identified a 

CN gain or CN loss, it could also automatically apply the corresponding 

constraints to quadratic programming. While MAPSCE was primarily tested on 

simulated copy number events, the tool was designed to be able to integrate 

any type of data such as gene expression or methylation. The next chapter will 

provide some results on mapping gene expression changes on the tumour 
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trees along the copy number events. However, further testing of the tool on 

simulated gene expression changes and methylation events is required. 
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Chapter 5 Integration of multi-omics data 
 

5.1  Introduction 
 
The rapid advancement in next-generation sequencing techniques has 

created novel computational challenges in effectively tackling these large-

scale NGS data. One major issue of the massive development of NGS data is 

the increasing scale of the genomic data, which requires improved data 

integration and interpretation. While tools have been developed to analyse the 

increasingly complex NGS data, most of them are still single-omics 

approaches, which do not fully connect the different layers of data (Nik-Zainal, 

Alexandrov, et al. 2012). 

 

Integrative multi-omics approaches have been crucial for analysing the 

combined mutational data at different levels to provide a comprehensive 

understanding of tumour evolution (Silverbush et al. 2019; Schulte-Sasse et 

al. 2021; Sammut et al. 2022). Silverbush et al. (2019) presented ModulOmics 

to integrate protein-protein interactions, mutual exclusivity of mutations and 

CNAs, transcriptional coregulation and RNA co-expression into a single 

probabilistic model to identify novel cancer driver pathways in breast cancer. 

Schulte-Sasse et al. (2021) utilised a machine learning approach to combine 

mutational, CN, DNA methylation, gene expression data and protein-protein 

interaction networks to predict novel cancer genes. Sammut et al. (2022) also 

employed machine learning models to provide an integrative, multi-omics 

approach to predicting therapy response in breast cancer patients. These 

examples demonstrate how the integration of multi-omics data can provide a 

more holistic interpretation of the results to identify novel driver genes and 

cancer pathways for instance.  

 

At its core, MAPSCE allows for the integration of multi-omics analysis into a 

single framework to provide users with a broader perspective on the data. 
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What distinguishes MAPSCE from other multi-omics approaches is its ability 

to integrate data at the tumour clone level. MAPSCE can integrate different 

types of multi-omics data by using the output from state-of-the-art tools rather 

than re-interpreting the data. 

 

The previous chapters described the development of the MAPSCE 

methodology and the testing of the tool’s performance on simulated datasets. 

This chapter will illustrate the potential applications of MAPSCE in integrating 

multi-region, multi-omics data. 

 

5.2  Results 
 

5.2.1 NSCLC TRACERx 100 HLA LOH 
 
The HLA genes are responsible for presenting the intra-cellular antigens 

derived from tumour cells to T cell receptors for recognition. There are three 

main genes (HLA-A, HLA-B, HLA-C) encoding the HLA class I alleles. The 

HLA locus is highly polymorphic, with thousands of HLA alleles identified for 

each HLA gene. The polymorphic nature of the HLA region makes accurate 

copy number analysis of the HLA genes problematic. McGranahan et al. 

(2017) presented LOHHLA, a tool for determining HLA allele-specific copy 

numbers from sequencing data. LOHHLA identifies losses of heterozygosity 

of HLA alleles, determines their clonality and maps the subclonal HLA LOH 

events on tumour evolutionary trees.  

 

This section aims to validate MAPSCE by testing the tool in the NSCLC 

TRACERx 100 dataset and comparing it against a previous analysis using 

LOHHLA (McGranahan et al. 2017). The two methods were compared based 

on their clonality determination, by classifying each HLA allele as having either 

no LOH, clonal LOH or subclonal LOH.  
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5.2.1.1 Overview of the dataset 
 

We first reviewed the NSCLC TRACERx 100 dataset before running both tools 

to provide a general overview of the dataset (Figure 5-1).  

 

The cluster CCF varied across different sampled regions (Figure 5-1A). For 

this analysis, the term ‘minimum CCF’ (min CCF) refers to the CCF in the 

region with the lowest CCF for this cluster, while the ‘maximum CCF’ (max 

CCF) is the CCF in the region, where the CCF is the largest. Lastly, the 

‘average CCF’ (mean CCF) is the average of the CCFs across all regions. As 

expected, the min and max CCF of the root clusters were ca. 100%, with some 

outliers of maximum CCF being 95%, due to the noise in the data. The mean 

CCF for the root clusters was between 94.8% and 100%, with the majority of 

the mean CCFs falling between 98% and 100% (59 out of 90 root clusters). 

The CCF of the clusters on the internal branches mostly ranged from 50% to 

80% CCF for both minimum and maximum. As expected, the mean CCF of the 

clusters for the tips of the tree was significantly lower, ranging between 2% 

and 68.5%. This disparity can be attributed to the vast majority of the tips of 

the trees being region-specific (254 out of 261 tips). Interestingly, when 

disregarding the absent regions for the region-specific clusters in the tips of 

the tree, the average min CCF was comparable to the average max CCF 

(mean min CCF 57.7%, median min CCF 57%, mean max CCF 60.3%, median 

max CCF 62%). These results suggest that the tips of the trees comprised 

mostly region-specific, medium-sized clusters (40-60%), rather than solely 

small clusters (0-40%). The larger-than-expected size of the region-specific 

tips of the trees represents the high number of subclonal mutations in the later 

stages of cancer evolution.  

 

There were between two and four regions sequenced for most patients (77 out 

of 90, 85.6%) with the mean being 3.2 and the median being 3.0 (Figure 5-

1B). As shown in Chapter 4, MAPSCE performed worse in patients with only 

two regions sequenced, unless additional constraints were provided. In this 

dataset, 35 out of 90 patients had two regions sequenced (38.9%).  
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The trees of the patients in this cohort consisted of between 3 to 8 clones on 

average (72 out of 90 patients, 80%) with a mean of 5.8 and median of 5.0 

(Figure 5-1B). The most common patients’ trees had 3 to 5 clones (3: 18 

patients, 4: 13 patients, 5: 13 patients).  

 

The majority of the patients had clonal whole genome doubling (67 out of 90, 

which corresponds to 74.4%), with only a few cases being subclonal (3 out of 

90, which is 3.3%) and the rest of the patients not having any genome doubling 

event (20 out of 90, 22.2%) (Figure 5-1C). 

 

 
Figure 5-1 Overview of the NSCLC TRACERx 100 dataset. A) CCF 
distribution for clusters located in different parts of the tree. B) Number 
of regions and number of clones for each patient of the cohort. C) 
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Number of patients with different types of whole-genome doubling. D) 
Purity of the sampled regions for each patient. 
 

Each patient’s tumour was sampled in at least two regions, resulting in varying 

purity for each observed copy number; for each patient, a minimum and a 

maximum purity can be estimated from all sampled regions (Figure 5-1D). On 

average, the minimum purity was 25.3%, with a median of 22.0%. The 

minimum ranged from 10.0% recorded for patients CRUK0004 and 

CRUK0081, to 84.0% for patient CRUK0084. The maximum purity was 37.0% 

on average with a median of 42.0%. Values ranged from 15.0% for patient 

CRUK0064 to 86.0% for patient CRUK0016.  

 

5.2.1.2 Comparison of MAPSCE and 
LOHHLA/QP in mapping HLA LOH events 

 

In this analysis, out of 100 patients, only 60 patients were considered due to 

missing patient trees or incomplete copy number data. Among those 60 

patients, 288 HLA alleles were analysed, since not every patient was 

heterozygous for every HLA allele.  

 

The two tools had a 90.3% agreement when classifying HLA alleles as having 

either no LOH, clonal LOH or subclonal LOH across all 288 alleles (Table 5-

1). MAPSCE identified a higher percentage (17.01%) of subclonal HLA LOH 

events in the dataset compared to LOHHLA/QP (13.89%). For alleles that both 

tools deemed subclonally lost, the two tools mapped the event on the same 

branch in 6 out of the 27 cases (22.2%). In total, there were 28 cases where 

both tools disagreed. In most cases (21 cases), they disagreed on the 

presence of a LOH event, while in another 7 cases, they disagreed on the 

clonality of the LOH event (clonal vs subclonal).  
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Table 5-1 Comparison of MAPSCE and LOHHLA/QP’s mapping approach 
when mapping HLA LOH events in the TRACERx 100 dataset. Numbers 
denote the number of alleles in each category. “No LOH” indicates alleles 
where the tool identified no loss of heterozygosity of HLA, “clonal” refers 
to alleles identified as clonally lost, and “subclonal” are alleles 
subclonally lost. The bolded numbers in the diagonal show the matching 
alleles between the two tools. 

288 alleles 
LOHHLA/QP 

No LOH Clonal Subclonal 

M
AP

SC
E

 No LOH 205 2 9 

Clonal 0 28 4 

Subclonal 10 3 27 

 

When calling subclonal events, MAPSCE’s good results, those that satisfied 

the tool’s statistical filters, showed a mean RSS of 0.315, and a median of 

0.034. Conversely, when looking at the top result for the subclonal events 

mapped by LOHHLA/QP, the mean RSS was 2.253, and the median was 

0.4148. On the one hand, MAPSCE finds solutions with a lower RSS, 

suggesting that they are a better fit for the experimental data. On the other 

hand, the difference between the mean and median RSS for mapping 

subclonal events between both tools showed that MAPSCE’s mapping 

algorithm provides enhanced consistency and reliability. This is supported by 

the mean value being closer to the median, suggesting more robust and stable 

results. Certain HLA alleles determined by LOHHLA/QP as subclonally lost 

had a significantly higher residual sum of squares above 2, compared to the 

median of 0.04148. Manual inspection of these cases showed that MAPSCE 

considered them to lack sufficient statistical support, the null branch was not 

rejected and therefore no subclonal event was called.  

 

Interestingly, alleles identified as clonal LOH by MAPSCE were always 

determined to have a LOH event by LOHHLA/QP, albeit in four cases LOHHLA 

considered the event subclonal. Furthermore, most disagreements between 
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the tools arose when one tool classified an event as subclonal and the other 

determined it to have no LOH. This discrepancy occurred 10 times for 

MAPSCE and 9 times for LOHHLA/QP. These 9 cases classified as subclonal 

by LOHHLA were labelled as no LOH in MAPSCE due to the lack of statistical 

support. This included 3 cases where the best branch’s BICs were all higher 

than the null’s BIC and 6 cases where the Bayes Factors comparison showed 

that all results were equally good, leading to the null not being rejected. 

 

Chapter 4 demonstrated that the tool performed best in patients with more than 

two regions sequenced. In this analysis, we ran MAPSCE with default settings 

(i.e. without any specific constraint, with bootstrapping for cases with more 

than two regions and no bootstrapping for two regions). We assessed whether 

disagreements between LOHHLA/QP and MAPSCE were enriched in cases 

with two regions only. Among all discrepancies, only two alleles deemed 

subclonally lost according to MAPSCE and unaffected according to 

LOHHLA/QP had two regions sequenced. All other cases corresponded to 

patients with more than two regions sequenced. 

 

We divided the alleles into two groups based on the clonality determination 

using both tools: matching alleles, indicating the same clonality (e.g. subclonal 

LOH for both MAPSCE and LOHHLA), and mismatching alleles, indicating 

different clonality (e.g. subclonal LOH for MAPSCE and clonal LOH for 

LOHHLA. These groups were then tested for confounding factors using a t-

test. While the matching alleles corresponded to samples with a higher purity, 

the difference was not significant (p-value of 0.060). There was also no 

significant difference in the number of clones (p-value of 0.920) or the number 

of regions (p-value of 0.121) between the two groups. There was no significant 

difference in the proportion of genome duplication categories between patients 

with matching alleles and those with mismatching alleles (Fisher’s exact test; 

p-value of 0.317).  

 

These results demonstrated that MAPSCE’s automated detection of subclonal 

events exhibited comparable performance to the heuristic approach employed 

by LOHHLA/QP in the TRACERx 100 dataset. While it is possible to argue in 
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favour of either methodology in cases of disagreement, it is noteworthy that 

both tools agreed on the vast majority of alleles in terms of clonality 

determination. Importantly, MAPSCE provided additional statistical support for 

the results and more detail for the user to interpret and understand the 

mapping. All things considered, MAPSCE’s clonality determination proved to 

be a more robust approach due to its automatic nature, as well as its lower 

and closely aligned mean and median RSS values. 

 

5.2.2 Biallelic inactivation of tumour suppressor 
genes 

 
Tumour suppressor genes play the crucial role of guarding the genome against 

replication errors underlying the tumour’s ability to proliferate (Hanahan and 

Weinberg 2000; 2011). The loss of function of tumour suppressor genes is 

pivotal in cancer initiation and underlies other fundamental hallmarks of 

cancer, including the evasion of apoptosis and the unlimited replicative 

potential of cancer (Hanahan and Weinberg 2000; 2011). Knudson (1971) 

demonstrated the two-hit theory, in which each copy of the TSG needed to be 

affected independently for initiation of retinoblastoma. Cavenee et al. (1985) 

further identified that mutations involving the RB1 tumour suppressor gene on 

chromosome 13 were responsible for the development of retinoblastoma. The 

biallelic epigenetic inactivation of RASSF1 TSG was also linked to the 

development of medulloblastoma (Lusher et al. 2002). While biallelic 

inactivation of tumour suppressor genes has been identified as a driving 

mechanism in multiple cancer types, there is still a lack of this analysis at the 

subclonal level (Hamano et al. 2002; Thanendrarajan et al. 2017). 

 

We used MAPSCE’s functionality to explore subclonal biallelic inactivation of 

tumour suppressor genes in the NSCLC TRACERx 100 dataset. In this 

analysis, only somatic mutations and copy number events were considered. 
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Figure 5-2 The difference between events on the same lineage and 
independent events. 

 

We used the catalogue of driver genes from IntOGen (2020.02.01 release) to 

identify a list of 584 tumour suppressor genes (Martínez-Jiménez et al. 2020) 

(Table S5-1). All losses of TSGs, along with all mutations, were mapped on 

the tumour trees built using the SNVs. In total, we found 624 cases of biallelic 

inactivation of TSGs at the regional level. However, subclonal analysis 

revealed that 147 cases (23.6%) were independent events, where both events 

affected the same patient but in two different lineages (Figure 5-2). 340 cases 

were “double clonal”, which we defined as having both clonal SNV and clonal 

loss of a TSG. Since MAPSCE was designed to map subclonal events 

specifically, we focused on the events with subclonal loss of TSGs mapped 

using our tool. In total, there were 151 cases of biallelic inactivation of TSGs 

with a subclonal loss. We classified these 151 cases into same-lineage events 

(16 cases) (Table S5-2), where both events happened in the same lineage, 

thus leading to the true subclonal biallelic inactivation of a TSG, and 

independent events (135 cases) (Figure 5-2). The rare occurrence of same-

lineage events including a subclonal loss of a TSG can be explained by the 

fact that the majority of the events affecting TSGs conferred a growth 

advantage and became clonal after a clonal sweep.  
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We tested if the same-lineage events were associated with any particular 

cancer subtype compared to the independent events using the histological 

classification of the patient. However, there was no relationship between 

same-lineage or independent events in both lung adenocarcinoma and lung 

squamous carcinoma (Fisher’s exact test; p-value of 0.775). We used the 

MGSA R package to test for the gene set association for the LUAD and LUSC 

drivers. The independent events were more associated with the LUSC rather 

than LUAD drivers (0.1396 and 0.0790 posterior probabilities, respectively), 

although both posterior probabilities were still lower than 0.5. The same-

lineage events showed no association (0 posterior probability) for either LUAD 

or LUSC drivers. 

 

We reasoned that if the biallelic inactivation of TSGs provides a growth 

advantage, it could in turn lead to an acceleration in the evolution of the tumour 

and an increase in mutational burden. To test this hypothesis, we compared 

the nonsynonymous to synonymous mutation ratio of the lineage after 

subclonal biallelic inactivation of a TSG (affected lineage or clone) to its sister 

lineage sharing a common ancestor (sister lineage or clone) using the dNdS 

R package (Martincorena et al. 2017) (Figure 5-3). This comparison aimed to 

ascertain whether there was an evident increase in clones affected by the 

biallelic inactivation of a TSG compared to the unaffected sister clones. 
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Figure 5-3 An example of a same-lineage event with defined: unaffected 
(purple), sister (green) and affected (orange) clones. 

 

Clones affected by the same-lineage events generally had a lower dN/dS 

(1.079) than sister clones (1.161), however, there was no significant difference 

between the two sets (p-value of 0.682). That said, we observed five cases, 

where there was an increase of dN/dS in the affected lineage (mean dN/dS of 

1.48 for these five cases) compared to their respective sister lineage (mean 

dN/dS of 0.98 for these five cases). The increased dN/dS of the affected clones 

in these cases suggest that these affected clones were likely to be in the 

process of outcompeting their sister clones.   

 

Additionally, to examine the potential increase in the mutational burden 

following a biallelic inactivation of a TSG we compared the number of 

mutations per clone of the lineage after subclonal biallelic inactivation of a TSG 

(affected lineage or clone) to its sister lineage sharing a common ancestor 

(sister lineage or clone) (Figure 5-3). We hypothesised that starting from the 

same genomic origin, there would be an increase in the number of mutations 

after the biallelic inactivation of a TSG. This was determined by counting the 
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ratio of the average number of mutations of each clone in the lineage and 

normalised against the whole tree. The clones in the affected lineage generally 

included a higher average number of mutations (0.125) than clones in their 

sister lineage (0.062). However, no significant difference was observed 

between the two datasets (p-value of 0.108). 

 

The clones affected by the subclonal biallelic inactivation of a TSG exhibited 

generally lower dN/dS and a considerably higher number of mutations. 

However, no significant difference was found in the analysis. These findings 

suggest that a subclonal inactivation of a TSG leads to an increase in the 

mutational burden measured as the number of mutations per clone. However, 

the dN/dS analysis on the same-lineage events also showed that the subclonal 

biallelic inactivation of a TSG is not generally a cause for positive selection. 

 

Given the low sample size of the patients with subclonal same-lineage biallelic 

inactivation of tumour suppressor genes, it was important to look into specific 

examples of how MAPSCE could be utilised to investigate a particular tumour’s 

evolution. Thus, we analysed three examples of biallelic inactivation of the 

BRCA2 gene in the cohort. BRCA2 plays a crucial role in DNA damage repair 

(Cheng et al. 2016; Yoshida and Miki 2004), and the inactivation of the BRCA2 

and BRCA1 genes has been strongly associated with the mutational signature 

SBS3 (Alexandrov et al. 2013). The biallelic inactivation of the BRCA2 gene 

was mapped on the tumour evolutionary trees to compare the dN/dS, the 

number of mutations and ultimately, the rise of the mutational signature SBS3 

between clones affected and unaffected by the biallelic inactivation of BRCA2 

(Figure 5-4).  
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Figure 5-4 Copy number and mutational changes for the three patients 
with subclonal biallelic inactivation of BRCA2 of the NSCLC TRACERx 
100 dataset. Panels A-C show different patient trees, A – CRUK0011, B – 
CRUK0068, and C – CRUK0083. 

 

We compared the effects of the biallelic inactivation of BRCA2 on the dN/dS 

in affected clones and their respective sister lineages. Patients CRUK0011 and 

CRUK0068 recorded a decreased dN/dS in the lineages affected by the 

biallelic inactivation of BRCA2 compared to their sister lineages (0.90 vs 1.10, 

and 1.11 vs 1.15, respectively). Conversely, there was a large increase of 

dN/dS in affected (1.58) compared to sister clones (1.06) in patient 

CRUK0083. Looking at the tumour burden, all three patients showed an 

increased number of mutations in the affected clones compared to sister 

clones (CRUK0011: 0.155 vs 0.0249; CRUK068: 0.0628 vs 0.0520; and 

CRUK0083: 0.840 and 0.155 respectively).  

 

We mapped the mutational signatures on the subclonal level using the 

deconstructSigs R package (Rosenthal et al. 2016). We performed this 

analysis by comparing the affected clones (Figure 5-3) to both all unaffected 

clones, i.e. sister and parental clones combined (Figure 5-3) as background. 

We expected the mutational signature SBS3 to not be present in the rest of 

the tree and only appear after the subclonal biallelic inactivation of BRCA2. In 

two out of three patients (CRUK0011 and CRUK0068), the mutational 

signature SBS3 could be specifically identified after the biallelic inactivation of 
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the BRCA2 gene (Figure 5-4A, 5-4B). Patient CRUK0068 had a clonal LOH of 

BRCA2 followed by a subclonal mutation of the gene, while patient CRUK0011 

had both the loss of BRCA2 and mutation of the gene occurring on the same 

subclonal branch (Figure 5-4A, 5-4B). For patient CRUK0083, the mutational 

signature SBS3 was detected in the root of the tree already and disappeared 

after the second hit on the BRCA2, which was a loss (Figure 5-4C). In this 

patient, the mutation of BRCA2 was a clonal event occurring on the root of the 

tree, while the loss of the gene was a subclonal event. These results suggest 

that the mutational signature SBS3 is more dependent on the mutation of the 

BRCA2 gene rather than the CNA or the biallelic inactivation of the gene. 

 

The dN/dS results did not show a clear example of positive selection for the 

biallelic inactivation of the BRCA2 gene. However, the consistent increase in 

the number of mutations in affected clones compared to their sister lineages 

suggests that BRCA2 potentially leads to an increased tumour burden 

(Zámborszky et al. 2017). Nevertheless, these results illustrate the efficacy of 

MAPSCE and how it allows for an in-depth analysis of the different causes 

driving the evolution of a tumour. 

 

5.2.3 Mutual exclusivity of antigen-presentation 
machinery 

 
HLA LOH has been identified as an immune escape mechanism (McGranahan 

et al. 2017) which inhibits neoantigen presentation. During the development of 

MAPSCE’s framework, a question was raised regarding the presence and 

timing of the subclonal homozygous loss of the other genes involved in antigen 

presentation (AP). Specifically, we were interested in whether these losses 

occurred on sister branches opposite to the subclonal loss of heterozygosity 

of HLA or within the same lineage as the HLA LOH event. A consistent pattern 

of either co-occurrence or mutual exclusivity of certain AP genes involved in 

antigen presentation machinery could help identify novel evolutionary 

constraints of NSCLC development. To test this hypothesis, MAPSCE was 

used to map the subclonal losses of antigen presentation genes from Gene 
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Ontology (GO:0019882) on the tumour trees of the NSCLC TRACERx 100 

dataset.  

 

In this section, unless explicitly stated otherwise, “MAPSCE” refers to 

MAPSCE (v.0.5.0).  

 

MAPSCE identified a total of 12 genes, whose subclonal loss always occurred 

on a sister branch to the subclonal HLA LOH event (Figure 5-5). We examined 

these genes for their involvement in the antigen processing and presentation 

pathway based on the KEGG dataset (Figure 5-6). Among the identified genes, 

only three (TAP1, TAP2 and TAPBP) were found to be associated with the 

transport of antigenic peptides across the endoplasmic reticulum, as 

previously reported (Maeurer et al. 1996). The consistent occurrence of these 

subclonal events on a sister branch is indicative of mutual exclusivity. 

Interestingly, these three genes all corresponded to the major 

histocompatibility complex (MHC) class I, akin to the examined HLA genes. 

This mutual exclusivity could be explained by further events affecting MHC 

class I not conferring additional growth advantage.  
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Figure 5-5 Subclonal LOH of antigen presentation genes on a sister 
branch (left) and in the same lineage (right) relative to subclonal HLA 
LOH. 

 

MAPSCE also identified 65 other antigen presentation genes whose subclonal 

losses always occurred within the same lineage following a subclonal HLA 

LOH event (Figure 5-5). These genes included but were not limited to, ERAP2, 

CD74, CD8A, PCNX and PSMA6. Importantly, CD8A is normally active in the 

CD8+ T-cells as it plays a crucial role in facilitating antigen recognition and 

binding. The losses of CD8A in our results could have been a spurious result 

or passenger losses and were not relevant to the tumour cells. To explore their 

functional relevance, these genes were also examined for their involvement in 

the antigen processing and presentation pathway based on the KEGG dataset 

(Figure 5-6). Notably, all of these losses were consistently subclonal and 

occurred after an HLA LOH event. Interestingly, these co-occurring events 

affected genes primarily corresponding to the major histocompatibility complex 

(MHC) class II.  This finding suggests that additional events affecting the MHC-

II in addition to the HLA LOH (MHC-I) could be necessary for an improved 

immune escape mechanism.   
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Figure 5-6 Genes with homozygous losses identified by MAPSCE and 
their association with the antigen processing and presentation pathway 
based on the KEGG dataset. Red labels show proteins coded by genes 
that were always lost on a sister branch to HLA LOH (mutually exclusive). 
Yellow labels show proteins coded by genes that were always lost within 
the same lineage to HLA LOH (co-occurring). The figure was made using 
R Package pathview. 

 

In summary, MAPSCE facilitated the mapping of subclonal losses in antigen 

presentation genes to compare their timing with that of subclonal HLA LOH 

events. These results highlight the potential of mapping subclonal copy 

number events on the SNV-based tumour evolutionary trees to identify 

examples of parallel evolution and uncover novel selective forces shaping 

branched tumour evolution. 
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5.2.4 Allele-specific expression in NSCLC TRACERx 
 
Transcriptomic variation is another major contributor to intratumour 

heterogeneity which influences tumour progression, therapy, and patient 

outcomes. Studies have shown the altered expression of specific cancer driver 

genes in metastatic melanoma (Tirosh et al. 2016; Rambow et al. 2018), 

glioblastoma (Neftel et al. 2019) and lung cancer (Biswas et al. 2019).  

 

A recently published TRACERx study demonstrated a comprehensive multi-

region analysis of the transcriptomic diversity in the 421 TRACERx NSCLC 

dataset (Martínez-Ruiz et al. 2023; Frankell et al. 2023). The study described 

the transcriptomic landscape of the TRACERx 421 cohort, distinguishing 

between the CN-dependent allele-specific expression (ASE) caused by 

genomic alterations, and CN-independent ASE linked to epigenomic variation. 

Specifically, patient CRUK0640 showcased the expression change of one of 

the two alleles of the FAT1 gene in two different regions, where a CN event 

explained the downregulation in one region (CN-dependent ASE). However, 

no CN event was found in the other region, suggesting an epigenetic 

modification drove the downregulation of the allele in that case (CN-

independent ASE). The phylogenetic analysis demonstrated the independent 

evolution of the two regions leading to the same phenotype of a loss of the 

FAT1 gene through different mechanisms.  

 

We compared the subclonal allele-specific gene expression changes with the 

subclonal genomic alterations using MAPSCE. This analysis aimed to identify 

both CN-independent and CN-dependent expression changes. The work 

presented in this section was performed with MAPSCE in its developmental 

stage (v0.5.0). 

 

MAPSCE revealed a subclonal CN loss of the FAT1 gene on branch 3 for allele 

A in patient CRUK0640 (Figure 5-7). Subsequently, we analysed the subclonal 

allele-specific expression changes based on changes in the RNA read counts. 

We observed allele-specific expression changes of allele A on branch 4 (best 

result, subclonal), branch 3 (second-best result, subclonal), branch 7 (third-
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best result, subclonal) and branch 1 (fourth-best result, clonal). Notably, the 

second-best result of MAPSCE’s mapping of expression changes aligned with 

its mapping of copy number alterations, illustrating an example of CN-

dependent ASE. Additionally, MAPSCE showed a subclonal ASE change on 

branch 4 which was not followed by a subclonal CNA, demonstrating an 

example of CN-independent ASE. Nominally, MAPSCE assumes that only one 

event has happened. However, in this case, there are possibly more than one 

event.  

 

MAPSCE (v0.5.0) allowed for more than one good result without consolidating 

the result with consensus mapping. Thus, all four of the best results for 

mapping expression changes of the allele A were deemed sufficiently good at 

the time of analysis to be considered a potential solution.  

 

These results are consistent with previously reported parallel evolution in 

patient CRUK0640, in which CN-dependent and CN-independent ASE were 

found on two different regions, with convergence upon the loss of different 

alleles of FAT1 through genomic and transcriptomic means (Martínez-Ruiz et 

al. 2023). 

 

 
Figure 5-7 Mapped copy number changes (blue) and ASE changes (red) 
of the FAT1 gene on the tumour tree of the patient CRUK0640. 

 

We analysed all pairs of alleles of 152 genes that exhibited CN-dependent 

ASE only, following the methodology outlined by Martínez-Ruiz et al. (2023). 
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This analysis aimed to determine if these genes displayed co-occurrence of 

CN and ASE changes on the same branch of a tumour tree. MAPSCE was 

utilised to map the CN events (using the DNA reads) and the ASE changes 

(using the RNA reads) separately for each gene. In addition to checking the 

co-occurrence of the subclonal events, the directionality of the events was 

interrogated. This involved examining whether a loss corresponded with 

downregulation and a gain with upregulation. We repeated this analysis using 

various approaches, including: 

 

- mapping allele-specific RNA reads compared to CN changes (as in the 

aforementioned FAT1 analysis), 

- mapping purity-adjusted allele-specific RNA reads compared to CN 

changes, 

- non-directional mapping the BAF of the purity-adjusted RNA reads 

compared to CN changes 

 

 
Figure 5-8 Percentage of matching alleles for different approaches to 
mapping CN changes and ASE changes in genes with CN-dependent 
ASE. The good results indicate all potential good results of MAPSCE, 
while the top results denote only the best branch selected for every 
mapping. 
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The results were split for all good results and only the best results (top results) 

of MAPSCE. For all good results of both CN and ASE mapping, an allele was 

considered a match between the CN and ASE change mappings if the 

alterations were mapped within one of the potential good results for either 

mapping. In most cases, the top result matched the CN change, but an 

additional 10% agreement could be found when using all good results (Figure 

5-8). Looking into top results specifically aimed to assess the precision of 

MAPSCE’s mapping at the time.   

 

There was minimal difference between the percentage of matching CN and 

ASE changes between the purity-adjusted RNA reads and raw RNA reads. 

Correcting the expression data for sample purity had little effect when mapping 

ASE changes as RNA reads (55.7% for raw RNA reads to 57.7% for purity-

adjusted RNA reads). 

 

Lastly, when using non-directional BAF of the purity-adjusted reads instead of 

RNA reads, the transcriptomic and genomic data matched most of the time 

(86.9% matched with good results of MAPSCE considered and 76.2% with 

only the top results). MAPSCE consistently mapped both genomic and 

transcriptomic events on the same branch of the tumour tree for CN-dependent 

ASE.  

 

The results of mapping the losses and ASE changes of FAT1 suggest potential 

parallel evolution between the sister lineages of the patient CRUK0640 tree 

leading to the loss of FAT1 through genomic and transcriptomic changes, 

consistent with the findings of Martínez-Ruiz et al. (2023). However, MAPSCE 

assumes there is at most one subclonal event for each gene for a particular 

tree. In this case, the different solutions of MAPSCE suggest the potential 

presence of more than one subclonal event. Additionally, this analysis 

demonstrated MAPSCE’s ability to validate the CN-dependent ASE by 

mapping the genomic and transcriptomic changes separately on a tumour 

evolutionary tree. In summary, these results show how MAPSCE can be 

utilised to integrate genomic and transcriptomic data to identify examples of 

parallel evolution. 
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5.3  Conclusions 
 

5.3.1 Summary of findings 
 
This chapter highlighted the advantages of MAPSCE’s integrative approach to 

multi-omics data. Using the tool in the analysis of real datasets showcased its 

ability to identify potential examples of parallel evolution and to provide 

validation for novel evolutionary principles. 

 

Firstly, we revisited the previous analysis presented in McGranahan et al. 

(2017) and compared MAPSCE to LOHHLA in mapping subclonal HLA LOH 

events on the tumour trees of the NSCLC TRACERx 100 dataset. Since both 

tools employ quadratic programming for their mapping algorithm, there was a 

substantial level of agreement between the two methodologies. One of the 

main differences between both tools was that MAPSCE offers additional 

statistical support for its results, providing the user with more information to 

interpret the results. MAPSCE’s automated clonality determination resulted in 

lower mean and median RSS values compared to results obtained from 

LOHHLA’s heuristic approach. Thus, MAPSCE proved to be a more robust 

and consistent tool for clonality determination. Unlike LOHHLA’s mapping 

approach, MAPSCE is not limited to mapping subclonal LOH events, but also 

allows for the integration of other types of events, showcasing its broader 

functionality.  

 

The biallelic inactivation of tumour suppressor genes has been shown to drive 

tumour initiation for numerous cancer types, such as retinoblastoma (Knudson 

1971; Cavenee et al. 1985), medulloblastoma (Lusher et al. 2002), prostate 

cancer (Cheng et al. 2016), sporadic renal cell carcinoma (Hamano et al. 

2002), multiple myeloma (Thanendrarajan et al. 2017) and many others. 

However, genes that on the regional level appear to be biallelically inactivated 

can have both events on different lineages, suggesting potential parallel 
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evolution affecting this particular TSG. Expanding on the findings of the 

previous analysis, we utilised MAPSCE to map the subclonal events affecting 

the tumour suppressor genes in the NSCLC TRACERx 100 dataset. In the 

NSCLC TRACERx 100 dataset, the majority of the events affecting TSGs were 

clonal rather than subclonal. Unfortunately, the scarcity of subclonal events 

affecting tumour suppressor genes means that without an even larger cohort, 

there is not enough statistical power to identify broader evolutionary patterns. 

Thus, we focused on three examples of subclonal biallelic inactivation of 

BRCA2. The slight increase in the number of mutations in the affected clones 

could be indicative of positive selection for the double hit of BRCA2. However, 

there was no consistent and significant evolutionary pattern identified, except 

from an increased tumour burden following biallelic inactivation of BRCA2. 

Lastly, we focused on the mutational signature SBS3, which is strongly 

associated with the inactivation of BRCA1 and BRCA2 (Alexandrov et al. 

2013). In these patients, the emergence of signature SBS3 was related to 

mutations on BRCA2 rather than to the loss of the gene. The clonal status of 

the majority of events affecting TSGs suggests that a single subclonal event 

affecting tumour regions confers a sufficient growth advantage. This is 

consistent with the hypothesised parallel evolution leading to the loss of HLA 

and FAT1 in NSCLC (McGranahan et al. 2017; Martínez-Ruiz et al. 2023). 

 

To understand the evolutionary processes underlying antigen presentation 

machinery, we compared the timing of subclonal losses of AP genes to the 

timing of subclonal HLA LOH events. Using MAPSCE, we identified a total of 

12 genes that always occurred on a sister branch to the HLA LOH event, 

indicating mutual exclusivity. These genes, akin to the HLA genes examined, 

affected the MHC class I. The mutual exclusivity of these events suggests that 

further losses of the MHC class I do not confer additional growth advantage. 

Moreover, we discovered 65 other AP genes that always appeared within the 

same lineage following a subclonal HLA LOH, demonstrating a pattern of co-

occurrence. These co-occurring losses affected genes corresponding to the 

MHC class II. These findings suggest that the HLA LOH (MHC-I) requires 

additional events hampering MHC-II to provide an improved immune escape 

mechanism.  
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Lastly, we used MAPSCE to track the transcriptomic and genomic changes 

along the tumour evolutionary tree of a single patient in the NSCLC TRACERx 

421 cohort. The analysis of allele-specific expression changes in patient 

CRUK0640 revealed potential evidence for parallel evolution, with 

independent lineages developing both CN-dependent and CN-independent 

ASE of the FAT1 gene on sister branches. This result is consistent with the 

findings of other studies (Martínez-Ruiz et al. 2023). Additionally, in our 

attempt to match the transcriptomic and the genomic changes for genes with 

CN-dependent ASE using MAPSCE, we observed varying degrees of 

success. These challenges can be attributed to the lack of consensus mapping 

in this version of MAPSCE (v0.5.0). Nevertheless, these findings showcase 

MAPSCE’s novel ability to integrate the subclonal genomic and the 

transcriptomic data within the context of tumour evolutionary trees, which, to 

the best of my knowledge, has not been previously attempted systematically.  

 

5.3.2 Limitations and future work 
 
The analysis of the antigen presentation machinery in the NSCLC TRACERx 

100 dataset and the mapping of subclonal allele-specific expression and copy 

number changes in a patient of the NSCLC TRACERx 421 cohort were 

performed using an early version of the tool (v0.5.0). While the bootstrapping 

of BICs, the conversion to Bayes Factors, and the comparison to the null 

hypothesis were already present, there was no consensus mapping to 

integrate the results in agreement in this version (v0.5.0).  
 

Furthermore, MAPSCE v0.5.0 adopted a more lenient approach and 

considered a broader range of results as potentially valid. The Bayes Factors 

comparison involved sequentially comparing the top result’s BF to the second-

best result’s BF, the second-best’s to the third-best’s, and subsequent pairs, 

to evaluate the relative strength of each result. This led to less precise mapping 

as more results were deemed potentially viable compared to the latest version 
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of MAPSCE (v1.0.0), where all of the branches’ Bayes Factors are individually 

compared to the top branch’s BF.  

 

At the time, no confounding factors were identified, and there was no separate 

mode for the patients with two regions sequenced. The quadratic programming 

in MAPSCE still constrained both the copy number states before and after to 

non-negative.   

 

In future work, it would be valuable to repeat these analyses using the latest 

version of MAPSCE (v1.0.0). This updated version includes consensus 

mapping, which allows for enhanced mapping precision, addressing some of 

the limitations observed in the previous iteration of the tool (v0.5.0). The 

improved mapping precision in the version of the tool released on GitHub 

(v1.0.0) would be beneficial for accurately determining the sequential order of 

events and providing stronger evidence of parallel evolution, mutual exclusivity 

and co-occurrence. 

 

The mutational signature analysis on the three example cases of BRCA2 

biallelic inactivation suggests that the mutational signature was more 

dependent on the mutation rather than the CNA or the biallelic inactivation 

event. However, specifically in the case of patient CRUK0083 we recorded a 

disappearing mutational signature SBS3. This analysis was performed by 

determining the relative contribution of each mutational signature. In patient 

CRUK0083, the mutational signature SBS3 decreased from a relative 

contribution of 7.3% to 0%, while mutational signatures SBS6 and SBS7 

increased considerably from 8.7% and 0% to 22% and 28.8% respectively. 

Improving this analysis requires the quantification of the absolute contribution 

of the mutational signature SBS3 in each patient. In the future, tools for 

tracking of mutational signatures along the tree could also be utilised for 

validation of the results (Miura et al. 2022). 

 
The mapping of subclonal losses of antigen presentation genes with respect 

to subclonal HLA LOH provided only preliminary insights into potential mutual 

exclusivity between losses of TAP1, TAP2, TAPBP and HLA LOH, and 
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highlighted that the additional losses of genes affecting MHC-I did not confer 

added growth advantage. Conversely, the co-occurrence of losses of genes 

corresponding to MHC-II and HLA LOH events (MHC-I) suggests that the 

immune response acts as a key selective pressure driving mutagenesis to 

hamper the MHC-II pathway as well. However, to establish definitive proof of 

parallel evolution or co-occurrence, future analyses could include a larger 

sampling size and incorporate more robust statistical evidence. Furthermore, 

there are no tools available to examine the mutual exclusivity and co-

occurrence at the subclonal level to formally test this hypothesis. 

 
When examining ASE changes and how they co-occurred with the genomic 

changes on the tumour trees, it is important to consider the differences 

between the definition of a CN-dependent and CN-independent ASE 

according to the methodology of Martínez-Ruiz et al. (2023) compared to the 

mapping results obtained by MAPSCE on the tumour trees. We integrated the 

regional data to track the subclonal changes of expression along the patient’s 

tumour tree. In contrast, Martínez-Ruiz et al. (2023) considered each sampled 

region independently, analysing CN losses and ASE changes within each 

region separately. As a result, MAPSCE did not detect any copy number 

events for certain genes, that were classified as exhibiting CN-dependent ASE  

by Martínez-Ruiz et al. (2023). Furthermore, MAPSCE works under the 

assumption that there is only one event occurring per gene. Using MAPSCE, 

it is possible to extend this analysis to more complex scenarios. 

 

The novelty of MAPSCE in identifying evolutionary processes on the subclonal 

level makes validation of the results challenging. Phylogenetic reconstruction 

using CNAs could provide a measure of comparison of the mapping results of 

MAPSCE in cases where the SNV-based and CNA-based trees would be in 

agreement. Cell culture experiments provide a potential experimental 

validation considering the controlled environment for modelling of the tumours. 

However, it is challenging to replicate the complex tumour microenvironment 

using a simplified cell culture system to model the evolutionary processes in 

cancer. In vivo lineage tracing experiments also offer the ability to study the 

developmental history and fate of individual cancer cells. Conversely, lineage 
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tracing is still prone to sampling bias depending on the specific selection of 

cells within a heterogeneous tumour mass. The procedures involved in lineage 

tracing experiments can additionally disrupt the tumour microenvironment.  

 

Lastly, the recently published NSCLC TRACERx 421 dataset (Frankell et al. 

2023) presents an opportunity for MAPSCE’s mapping algorithm to gain 

increased statistical power due to a larger sample size compared to the original 

100 patients (Jamal-Hanjani et al. 2017). The continuous generation of new 

multi-sample multi-omics data provides abundant opportunities to showcase 

the tool’s broad functionality, particularly in mapping other data types such as 

the transcriptomic and methylomic changes.  
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Chapter 6 Discussion 
 
The work presented in this thesis focuses on the development, testing, and 

validation of MAPSCE (MAPping SubClonal Events), a tool designed for 

tracking subclonal events on tumour evolutionary trees. The aim of the project 

was to develop a novel computational tool, which would allow for the 

integration of the multi-region, multi-omics and onco-genomics data on the 

subclonal level in the context of tumour evolutionary trees. This chapter will 

summarise the work presented in this thesis, highlight the novel features and 

functionality of the tool, outline the current limitations of the methodology and 

the findings, as well as discuss the potential improvements in future work.  

 

6.1  Summary and novelty of the findings 
 

The development of the tool involved exploring and testing various methods 

that could be utilised for mapping subclonal events of tumour evolutionary 

trees.  

 

Firstly, we reviewed the mapping algorithm for subclonal HLA LOH events from 

LOHHLA (McGranahan et al. 2017) to identify the limitations of the existing 

methodology. This approach employed heuristic clonality determination with 

quadratic programming to integrate CN and SNV data in the context of tumour 

evolutionary trees. Although novel at the time, LOHHLA’s mapping of 

subclonal copy number events on SNV-based tumour trees lacked a measure 

of goodness of fit and was limited to subclonal copy number events following 

prior determination of their presence. The mapping of subclonal HLA LOH 

events on SNV-based tumour trees was later explored in high-grade serous 

ovarian cancer (Zhang et al. 2018). These proof-of-concept studies 

demonstrated the potential of integrating different types of events, the CN and 

the SNV data, in the context of a tumour evolutionary tree.  

 

Chapter 3 further explored additional methods to expand mapping capabilities 

to other types of subclonal copy number events, like copy number gains, while 
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also introducing a measure of goodness of fit for the results. Initially, non-

negative least squares were considered as a potential replacement for 

quadratic programming in the branch test. However, we found that nnls could 

be presented as a form of quadratic programming minimisation (Equation 4) 

(Bro and Jong 1997), which meant it faced similar limitations as quadratic 

programming.  

 

We explored a method to directly derive CCF from copy number data, to 

validate the results obtained from mapping subclonal copy number events. 

While this approach worked well for straightforward cases in its simplified form, 

its implementation became circular when applied to more complex events. The 

circularity stemmed from deriving CCF from copy numbers that were inferred 

using quadratic programming, which relied on the CCF in the first place. 

Further work is required to address the implementation of this approach.  

 

Instead of finding an alternative to the quadratic programming in the branch 

test, we explored adding statistical support to its results. We first tested 

simulations of noise in artificial datasets to provide an objective measure of the 

method’s performance. Initially, we attempted to implement Approximate 

Bayesian Computation to provide the posterior distributions for different 

branches as a measurement of the goodness of fit of the results. However, 

due to the computational intensity of ABC, we tested a pseudo-ABC with 

maximum likelihood estimation instead. Despite its accuracy, this approach 

required a high number of simulations for result stability. Even with a simpler 

sampling approach, implementing ABC or pseudo-ABC with MLE would 

require considerable computational resources for mapping CN of every gene 

of each patient in a larger cohort.  

 

As an alternative to ABC, we explored bootstrapping with filtering of results. 

This approach allowed for model selection and measurement of the goodness 

of fit using RSS converted into Bayesian Information Criterion and Bayes 

Factors. Combining these features and consensus mapping to integrate the 

results in agreement improved the mapping precision of the tool. Furthermore, 

adjusting quadratic programming in the branch test allowed mapping other 
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copy number events, including copy number gains. Together, these results 

helped shape the current framework of MAPSCE. 

 

To evaluate the tool’s performance, we simulated various copy number events 

(Chapter 4), including amplification (two to three copies), duplication (two to 

four copies), homozygous loss (two to zero copies), heterozygous loss (two to 

one copy) and loss of heterozygosity (one to zero copies) events. Since there 

is no established gold standard method for mapping subclonal copy number 

events, we benchmarked MAPSCE against LOHHLA’s mapping approach 

(McGranahan et al. 2017) on the datasets with simulated copy number events. 

Since LOHHLA’s mapping approach was specifically designed to only map 

loss of heterozygosity events, the comparison between the two tools was 

limited to that particular type of event. The results showed that MAPSCE 

maintained a higher mapping accuracy for subclonal events than 

LOHHLA/QP, regardless of the number of regions. Notably, our tool 

consistently outperformed its competitor when mapping events in smaller 

cluster sizes, regardless of whether we considered the size of the simulated or 

the mapped cluster. 

 

We demonstrated the novelty of the tool specifically in mapping other types of 

CN events, such as copy number losses extending beyond LOH. These 

included homozygous and heterozygous losses, copy number gains, 

duplications and amplifications. Across different cluster sizes, MAPSCE 

consistently maintained high mapping accuracy for subclonal events for events 

with more than two regions sequenced and with constraints for events with two 

regions sequenced.  

 

Mapping copy number gains posed a challenge in determining the copy 

number of the most recent common ancestor (MRCA) or the root of the tree. 

However, providing the tool with the appropriate constraints to define the 

expected type of event it would encounter in the dataset considerably 

improved the mapping accuracy. What sets MAPSCE apart is its ability to 

integrate various copy number events with the SNV data in the context of a 

tumour evolutionary tree, an approach which has not been explored 
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previously. Existing tools reconstruct phylogenies using the CN or the SNV 

data independently and compare the two individual trees for potential 

correlations (Malikic et al. 2015; Miller et al. 2014). Other tools integrate both 

SNV and CNA data in their phylogenetic reconstruction, however those tools 

re-analyse the data to provide their own interpretation. This approach is more 

computationally intensive and produces less versatile data (Prandi et al. 2014; 

Deshwar et al. 2015). MAPSCE integrates the output of state-of-the-art tools 

for deciphering the intratumour heterogeneity (Van Loo et al. 2010), making it 

compatible with other approaches.  

 

Additionally, we validated the tool on real datasets, highlighting the novelty of 

its features and demonstrating its potential in addressing various biological 

questions. We compared MAPSCE and LOHHLA’s mapping approach on the 

NSCLC TRACERx 100 HLA LOH dataset (Jamal-Hanjani et al. 2017; 

McGranahan et al. 2017). This comparison aimed to assess the accuracy of 

clonality determination of both tools. The results showed a high agreement of 

90.3% between both methods when classifying HLA alleles as having either 

no LOH, clonal LOH or subclonal LOH. While both tools utilise quadratic 

programming to map subclonal events, LOHHLA adopts a heuristic approach 

for its clonality determination, whereas MAPSCE relies on an automated 

method based on its mapping results. The high agreement between both tools 

could be attributed to their shared reliance on the observed copy number either 

directly in the case of LOHHLA/QP or indirectly in MAPSCE’s mapping 

algorithm. These results demonstrate that MAPSCE’s clonality determination 

is, at the very least, comparable to that of another previously published study 

(McGranahan et al. 2017). 

 
Furthermore, we compared the timing of the genes involved in antigen 

presentation machinery to the timing of subclonal HLA LOH events in the 

NSCLC TRACERx 100 dataset (Jamal-Hanjani et al. 2017). We identified 65 

genes that, if lost, consistently appeared within the same lineage after a 

subclonal HLA LOH event. Those genes included ERAP2, CD74, CD8A, 

PCNX and PSMA6. The co-occurrence of the homozygous losses of these 

genes suggests that the immune system could be acting as a key selective 
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pressure, driving further mutagenesis in antigen presentation machinery. The 

subclonal HLA LOH event could be insufficient in releasing that pressure, 

which led to additional events affecting the MHC class II. We also found a set 

of 12 genes whose losses consistently occurred on a sister branch to the 

subclonal HLA LOH event. The timing of these losses could suggest a potential 

mutual exclusivity between the events affecting the two lineages, ultimately 

leading to a loss affecting the APM. These 12 mutually exclusive genes 

corresponded to the MHC class I, akin to the examined HLA genes. However, 

to establish a pattern of mutual exclusivity or parallel evolution among those 

genes, additional statistical analysis, and a larger sample size are necessary. 

Taken together, in this analysis, we demonstrated MAPSCE’s potential in 

uncovering novel evolutionary processes on a subclonal level. 

 

Knudson’s (1971) two-hit theory highlighted the crucial role of biallelic 

inactivation of the RB1 tumour suppressor gene in tumour initiation and 

progression of retinoblastoma. This theory was further demonstrated in other 

cancer types, such as medulloblastoma (Lusher et al. 2002), sporadic renal 

cell carcinoma (Hamano et al. 2002), prostate cancer (Cheng et al. 2016), and 

multiple myeloma (Thanendrarajan et al. 2017). Thus, we identified the biallelic 

inactivation of TSGs on a subclonal level in the NSCLC TRACERx 100 dataset 

(Jamal-Hanjani et al. 2017). The biallelically inactivated TSGs were further 

categorized into those affected by the same-lineage events on a subclonal 

level and those with both events occurring on sister branches. We analysed 

these gene sets for correlations with different lung cancer types. Additionally, 

we examined the dN/dS, the number of mutations, and mutational signatures, 

specifically focusing on three cases of biallelic inactivation of BRCA2. 

Unfortunately, due to the limited sample size of subclonal biallelic inactivation 

of TSGs, we were unable to identify significant evolutionary processes within 

the dataset except from an increase in tumour burden defined by an increased 

number of mutations following a biallelic inactivation of BRCA2. The majority 

of events affecting TSGs were clonal, after a clonal sweep. 

 

Finally, we compared the allele-specific expression and copy number changes 

on a tumour evolutionary tree for a single patient of the NSCLC TRACERx 421 
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cohort (Frankell et al. 2023). Consistent with a recently published study, 

MAPSCE identified evidence of potential CN-dependent and CN-independent 

ASE of FAT1 for the CRUK0640 patient (Martínez-Ruiz et al. 2023). 

Furthermore, we compared the timing of the subclonal transcriptomic changes 

to the subclonal genomic events for the genes previously described as 

exhibiting CN-dependent ASE. The percentage of matching genomic and 

transcriptomic events varied depending on whether the tool mapped the RNA 

reads or the BAF of the RNA reads. Furthermore, there were notable 

differences in how CN events were defined in Martínez-Ruiz et al. (2023) 

compared to MAPSCE. The former identified subclonal CN events within each 

region independently, while MAPSCE utilised regional data to map the events 

and subsequently determine the clonality. It is important to note that this 

analysis was performed with the tool still in development (v0.5.0). We 

addressed the tool’s issues with mapping precision later in the project by 

adding mapping constraints and consensus mapping to integrate results in 

agreement. Taken together, these results demonstrated MAPSCE’s capability 

to integrate multi-region, multi-omics data in the context of a tumour 

evolutionary tree. To my knowledge, mapping of subclonal expression 

changes against copy number events on an SNV-based tree has not been 

attempted before, highlighting the novelty of MAPSCE. This further 

demonstrates how this approach can be extended to integrate more complex 

multi-omics data. 

 

6.2  Limitations and future work 
 
Throughout this thesis, each chapter has outlined specific limitations of the 

described work and proposed future approaches to improve the results, as 

indicated in the conclusions sections. This section will summarise those 

specific limitations, outline the general shortcomings of this work, as well as 

discuss the future directions opened up by the research presented in this 

thesis. 
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6.2.1 Single-cell sequencing and data availability  
 

Single-cell sequencing has allowed for studying intratumour heterogeneity at 

the level of individual cells. The focus of cancer research has started shifting 

to integrate the scRNA-seq data (Navin et al. 2011; Tirosh et al. 2016; Wu et 

al. 2021; Ren et al. 2022; Schmiel, Thomas, and George 2022) with some 

studies integrating both single-cell RNA-seq and bulk RNA-seq data (Zhang et 

al. 2021). MAPSCE is specifically designed to track and integrate the multi-

omics data on a subclonal level to decipher the intratumour heterogeneity in 

bulk sequencing data. The tool relies on multi-sample bulk sequencing data 

and has been thoroughly tested only for that use. Extending an algorithm 

beyond bulk sequencing data to include single-cell sequencing data has been 

done before with other tools, such as ASCAT (Van Loo et al. 2010). 

Implementing this feature would greatly improve MAPSCE’s versatility.  

 

One major limitation of the research included in this thesis is the data 

availability. While bulk sequencing data is prevalent in cancer research (Kuksin 

et al. 2021), there is still a lack of large multi-region cancer datasets, in which 

MAPSCE could be fully utilised for studying tumour evolution (Gerlinger et al. 

2012; 2014; Zhang et al. 2014; Jamal-Hanjani et al. 2017; Frankell et al. 2023).  

 

6.2.2 Validation of the tree space 
 

During the phylogenetic reconstruction in the NSCLC TRACERx 100 dataset, 

we observed that multiple trees could apply to a single patient’s data. The 

cluster CCFs used for reconstructing phylogenies were not consistently 

reliable, occasionally exceeding 100% for a particular lineage. In certain cases, 

tree inference can lead to several solutions. Throughout this project, we tested 

various versions of MAPSCE on these alternative trees, aiming to validate 

them based on their fit to the data. However, the phylogeny of the tree was not 

relevant as the key input for the tool was the CCF of the affected branch. Thus, 

the tool was not able to differentiate between different phylogenies. Since the 

integration of multi-omics data on the subclonal level relies on tumour 
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evolutionary trees, validating the tree space would significantly improve our 

understanding of the tumour evolutionary dynamics. By addressing these 

limitations, we can further improve the accuracy of phylogenetic 

reconstruction, ultimately leading to enhanced mapping precision. 

 

6.2.3 Exploration of noise in a real dataset 
 
Chapter 4 of this thesis described the simulations of subclonal copy number 

events and the accompanying noise. Previous studies have explored various 

methods of simulating noise in the sequencing data or measuring the expected 

noise during subclonal deconvolution (Sloutsky et al. 2013; Barrett et al. 2017; 

Saunders et al. 2012). MAPSCE’s acceptable thresholds of noise were 

determined to be up to 15 - 20% noise using the simulated datasets. To 

accelerate the testing of future tools developed for the analysis of sequencing 

data, further exploration of noise in real data is necessary. Understanding the 

average noise expected in the real data could further validate MAPSCE’s 

results on the simulated datasets, determining whether the tool’s resistance to 

noise is sufficient. 

 

6.2.4 Improvements to the methodology 
 

During the analysis of MAPSCE’s performance on simulated subclonal copy 

number gains and losses in Chapter 4, the tool maintained higher mapping 

accuracy when given a constraint to determine the expected type of copy 

number events in the dataset. Providing the tool with the ability to automatically 

detect the types of copy number events in the dataset based on the observed 

copy number, and automatically setting an appropriate constraint would vastly 

improve the tool’s performance and make it more robust for mapping different 

types of subclonal CNA. Currently, manual screening for the expected type of 

CNA in the dataset is required to maximize the tool’s performance.   
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In Chapter 5, the mapping of allele-specific expression changes demonstrated 

the immense potential of MAPSCE in integrating different types of multi-omics 

data onto a single tumour evolutionary tree. However, to ensure consistent 

results, additional testing on simulated data and validation in real datasets is 

crucial for reliable mapping of expression changes on the tumour trees. To our 

knowledge, integration of methylation changes on SNV-based tumour 

evolutionary trees has not been attempted before. By extending the tool’s 

functionality to track both subclonal expression and methylation changes 

together with CNA on the SNV-based trees, MAPSCE would become highly 

versatile in integrating multi-omics data in the context of tumour evolutionary 

trees.  

 

6.3  Conclusion 
 
Integration of multi-omics, onco-genomics data on a subclonal level within the 

context of tumour evolutionary trees allows for deciphering the evolutionary 

processes driving tumour progression. The lack of tools for tracking subclonal 

changes has hindered the ability to backtrack a tumour’s evolutionary history. 

The research presented in this thesis has outlined the advantages and 

limitations of MAPSCE, a novel integrative tool for the precise mapping of 

subclonal events. By combining the genomic and transcriptomic data, this work 

provides the opportunity to study the diverse molecular alterations within 

different subclones. Extending this integrative approach to other multi-region, 

multi-omics and onco-genomics data holds immense potential for uncovering 

the evolutionary trajectories underlying intratumour heterogeneity across all 

cancer types.  
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Appendix 
 

 
Figure S3-1. Example scatterplot of the mutations clustered based on their 

CCFs in region 1 (R1) and region 2 (R2). The different colours indicate the 

assigned cluster of the mutations during subclonal deconvolution using 

PyClone (defined as Pyclone Cluster in the legend). The cluster with a thick 

outline denotes the HLA LOH cluster inferred using MAPSCE. The cross 

shows the derived CCFCN. Proximity of the cross to the HLA LOH cluster 

suggests matching results between MAPSCE and the derived CCFCN.   

 
Table S5-1. List of all tumour suppressor genes identified. 

A1CF ATP8A2 CBL COL12A1 ELF4 FGFR4 
ABCA6 ATR CCDC6 COL1A1 ELL FH 
ABCF1 ATRX CCDC85A COL3A1 ELN FHIT 
ABI1 AXIN1 CCND1 COL6A3 EML4 FLCN 
ABL1 AXIN2 CCND2 CR1 EP300 FLNA 
ABL2 B2M CCND3 CR2 EPHA2 FLT4 

ACVR1B BAP1 CCR7 CREBBP EPHA3 FMR1 
ACVR2A BAZ1A CD58 CSF3R EPHA7 FN1 

ADAMTS3 BCL10 CD70 CSMD3 ERBB2 FOXA1 
ADAMTS8 BCL11B CD79B CTCF ERBB3 FOXA2 
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ADCY8 BCL6 CDH1 CTDNEP1 ERBB4 FOXP1 
AFF1 BCL9 CDH10 CTNNA2 ERCC3 FREM2 
AFF3 BCL9L CDH11 CTNND1 ERF FUBP1 
AHR BCLAF1 CDH17 CTNND2 ERICH4 GATA2 

AJUBA BCOR CDH18 CUL3 ESR1 GATA3 
AKAP9 BCORL1 CDH9 CUX1 ESRRA GCSAM 

ALB BCR CDK12 CXCR4 ETV6 GFRA1 
ALK BIRC6 CDKN1A CYLD EXT2 GLI1 

AMER1 BMP2K CDKN1B DAXX EYS GNA11 
ANK1 BMP5 CDKN2A DAZAP1 EZH2 GNA13 
ANK2 BMPR1A CDKN2C DCC FAM104B GNAS 

ANKRD36 BMPR2 CDX2 DDX3X FAM135B GRIA1 

ANKRD36C BORCS8-
MEF2B CEBPA DGCR8 FAM46C GRM3 

APC BRAF CEP170 DICER1 FAM47C GTF2I 
APOB BRCA1 CFHR5 DNAH9 FAM86B2 HELZ 

AR BRCA2 CHD2 DNMT3A FANCA HHLA3 
ARHGAP35 BRD7 CHD4 DOCK3 FAS HIP1 
ARHGAP5 BTG1 CHEK2 DOT1L FAT1 HIST1H1B 
ARHGEF10 BTG2 CHRDL1 DPP7 FAT2 HIST1H1E 
ARHGEF10

L BTK CHRM4 DROSHA FAT3 HIST1H2BL 

ARHGEF12 C7orf55-
LUC7L2 CIC DSCAM FAT4 HIST1H3B 

ARID1A CACNA1A CIITA DSG1 FBLN2 HLA-A 
ARID1B CACNA1D CLIP1 DST FBN2 HLA-B 
ARID2 CAMTA1 CLTC DTX1 FBXO11 HMCN1 
ASXL1 CAPN5 CLTCL1 DUSP16 FBXW7 HNF1A 
ASXL2 CARD11 CMTR2 DUSP2 FER1L6 HOXA11 
ATF7IP CARS CNBD1 EBF1 FEZF1 HOXC13 
ATG2A CASP8 CNTN1 EHD2 FGF22 HOXD13 
ATG7 CASZ1 CNTN5 EIF1AX FGFR1 HSP90AA1 
ATM CBFB CNTNAP2 ELF3 FGFR3 HSP90AB1 

HTRA2 LTB OR4C3 PTEN SIN3A TRAF2 
HVCN1 LUC7L2 OR5L1 PTPN13 SIRPA TRAF3 
HYDIN LYST OR8H2 PTPN14 SLC34A2 TRIM33 

ID3 LZTR1 OTOP1 PTPN6 SLC7A5 TRIM51 
IDH2 MAML2 P2RY8 PTPRB SLFN13 TRIO 
IFNA6 MAN1A1 PABPC1 PTPRC SLIT2 TRIP11 

IFNGR1 MAP2 PAQR9 PTPRD SMAD2 TRPV3 
IGLL5 MAP2K4 PAX3 QKI SMAD3 TSC1 

IGSF21 MAP2K7 PAX5 RAD21 SMAD4 TSC2 
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IKZF1 MAP3K1 PBRM1 RANBP2 SMARCA1 TTLL2 
IL1RL1 MAPK1 PCBP1 RAP1GAP2 SMARCA4 TTN 

IL7R MARK2 PCDH17 RAP1GDS1 SMARCB1 UBE2A 
ING1 MAX PCDH18 RARG SMARCD1 UBE2D2 

INO80 MB21D2 PCDH7 RASA1 SMO UBR5 
INPPL1 MECOM PCDHB7 RASA2 SOCS1 UGT2B17 

INSC MED1 PCLO RB1 SOX21 UNC80 
IRAK1 MED12 PCMTD1 RBFOX1 SOX9 USH2A 
IRF1 MEF2B PDGFRA RBM10 SP140 USP44 
IRF8 MEN1 PDGFRB RBM15 SPEF2 USP6 
IRS4 MET PDS5B RBM38 SPEN USP9X 

ITGAE MGA PEG3 RCAN2 SPHKAP VAV1 
ITGAV MSI2 PFAS RECQL4 SPOP VHL 
ITGB6 MSN PHF6 REG1A SPTA1 WDR45 
JAK1 MUC16 PIK3CA RELA SRRM2 WNK2 
JAK2 MUC4 PIK3CB RET STAB2 WNK4 

KANSL1 MYC PIK3R1 RFX7 STAG2 WRN 
KAT6A MYH11 PIM1 RGPD3 STK11 WT1 
KAT6B MYH9 PITPNM2 RGS7 STX2 XRRA1 
KDM3B MYO5A PLEKHG4B RHOA SUZ12 YLPM1 
KDM5C NBEA PLXNB2 RHPN2 SYNE1 ZAN 
KDM6A NCOA1 PMS2 RIPK1 SYNE2 ZBTB16 

KDR NCOA2 POLD1 RNF213 TAF15 ZBTB20 
KEAP1 NCOR1 POLE RNF43 TANGO6 ZBTB7B 

KEL NCOR2 POLQ RNF6 TAS2R1 ZEB1 

KIFC1 NF1 POM121L1
2 ROBO2 TBX3 ZFHX3 

KIT NF2 POT1 ROS1 TCF4 ZFHX4 
KLF4 NFE2L2 POU2F2 RPL22 TCF7L2 ZFP36L1 
KLF5 NFKB2 PPM1D RPS6KA3 TCHH ZFX 

KLHL36 NFKBIA PPP3CA RUNX1 TCIRG1 ZIC4 
KLHL6 NFKBIE PPP6C RUNX1T1 TCL1A ZMYM3 

KMT2A NHLRC1 PPT2 RYR1 TET1 ZNF148 
KMT2B NIN PRAMEF12 RYR2 TET2 ZNF165 
KMT2C NIPBL PRB1 SALL4 TG ZNF429 
KMT2D NKX2-1 PRB2 SATB1 TGFBR2 ZNF521 
KRT15 NONO PRB3 SCN11A TGIF1 ZNF679 
KRT38 NOTCH1 PRDM1 SCN2A TLL1 ZNF680 

KRTAP9-1 NOTCH2 PRDM2 SCN7A TMEM30A ZNF716 
LAMA5 NPFFR2 PRDM8 SCN9A TMEM51 ZNF717 
LATS1 NPRL2 PREX2 SDC4 TMSB4X ZNF721 
LATS2 NRAS PRF1 SELP TMTC1 ZNF814 
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LDB1 NRK PRKAB2 SEMA3G TNFAIP3 ZNF98 
LOX NSD1 PRKAR1A SET TNFRSF14 ZNRF3 

LPAR4 NTNG1 PRKCD SETBP1 TNRC18 ZRSR2 
LPP NTRK3 PRRX1 SETD1B TNRC6B ZXDB 

LRIG3 NUMA1 PRSS54 SETD2 TOP1  

LRP1B NUP93 PRSS58 SETDB1 TP53  

LRRK2 NXF1 PSIP1 SF3B1 TP63  

LRRN3 OBSCN PTCH1 SGK1 TPCN1  

 
Table S5-2. List of same-lineage tumour suppressor genes identified. 

BRCA2 TTN PLXNB2 NFKB2 
ANK1 LRRK2 SYNE1 BCL11B 
UBR5 BIRC6 UBR5 DNAH9 
UBR5 ZFHX3 APOB MUC16 

 


