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Abstract 

 

Adversarial collaboration has been championed as the gold standard for resolving scientific 

disputes. Although the virtues of adversarial collaboration have been extensively discussed, 

the approach has gained little traction in neuroscience and allied fields. In this Perspective, 

we argue that adversarial collaborative research has been stymied by an overly-restrictive 

concern with the falsification of scientific theories. We advocate instead for a more 

expansive view that frames adversarial collaboration in terms of Bayesian belief updating, 

model comparison, and evidence accumulation. This framework broadens the scope of 

adversarial collaboration to accommodate a wide range of informative (but not necessarily 

definitive) studies, while affording the requisite formal tools to guide experimental design and 

data analysis in the adversarial setting. Crucially, this approach enables theoretical models 

to be scored in terms of a common metric of evidence, thereby furnishing a means of 

tracking the amount of empirical support garnered by competing theories over time. 

 

 

Keywords: Adversarial collaboration, Bayesian inference, evidence accumulation, 

falsification, meta-science, model comparison 
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A frustrated judge in an English (adversarial) court finally asked a barrister after 

witnesses had produced conflicting accounts, ‘Am I never to hear the truth?’ ‘No, my 

lord, merely the evidence’, replied counsel. 

– Peter Murphy, A Practical Approach to Evidence, 1988 

1. Introduction 

Scientific progress depends on the accumulation of knowledge derived from formal and 

empirical tests of scientific beliefs 1. Key to this endeavour is the development of reliable 

experimental procedures for testing predictions generated under theoretical models (i.e., 

hypotheses). Typically, such procedures are designed and deployed by scientists interested 

in garnering evidence for (or against) a particular theory or hypothesis. More rarely, 

proponents of rival theories band together to formulate experiments capable of adjudicating 

their disagreements 2–4. Such adversarial collaborations have been championed as the ‘gold-

standard’ for settling scientific disputes, thereby accelerating scientific progress through 

stringent but fair tests of competing theories 5,6. However, adversarial collaboration is also 

attended by various costs and challenges that have hindered its uptake in the cognitive and 

social sciences 5,7. 

 

This paper aims to address two problems that may have curbed the adoption of adversarial 

collaboration in neuroscience and psychology – at least until recently.1 The first problem is 

conceptual; it concerns what we consider to be a misleading (and overly restrictive) 

emphasis on the centrality of falsification in adversarial collaborative research. Rather than 

serving to definitively resolve theoretical disagreements in favour of one party or another, we 

argue that the primary function of adversarial collaboration is to formulate experiments that 

inform probabilistic (Bayesian) belief updates over a family of theoretical models. This more 

expansive conception of adversarial collaboration would be particularly salutary for relatively 

immature fields of inquiry, such as the neuroscience of consciousness. 

 

The second problem is more practical in nature; it concerns the foundational question of how 

the evidence generated by adversarial experiments should be evaluated and integrated with 

prior knowledge. We aim to solve this problem by appealing to Bayesian principles of optimal 

 
1 See, for example, the structured adversarial collaboration projects supported by the Templeton 

World Charity Foundation’s ‘Accelerating Research on Consciousness’ initiative 
(https://www.templetonworldcharity.org/accelerating-research-consciousness-our-structured-
adversarial-collaboration-projects), and the psychological and social science research supported by 
the Adversarial Collaboration Project (https://web.sas.upenn.edu/adcollabproject/). 

https://www.zotero.org/google-docs/?I919kO
https://www.zotero.org/google-docs/?MFZEt9
https://www.zotero.org/google-docs/?p8UUqW
https://www.zotero.org/google-docs/?ZVNET5
https://www.templetonworldcharity.org/accelerating-research-consciousness-our-structured-adversarial-collaboration-projects
https://www.templetonworldcharity.org/accelerating-research-consciousness-our-structured-adversarial-collaboration-projects
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experimental design, evidence accumulation, and model comparison. We show how 

competing theoretical hypotheses of varying degrees of specificity (precision) can be 

encoded as prior constraints over the parameters of a generative model prescribed by each 

theory. We then consider how the evidence furnished by inverting such models – using 

standard variational techniques – can be aggregated across disparate experimental 

paradigms. Under this integrative framework, adversarial collaboration serves to advance 

scientific progress one evidence-based belief update at a time. 

 

2. Falsificationism and the experimentum crucis 

At the heart of many contemporary discussions of adversarial collaboration is a fundamental 

commitment to falsificationism (see, e.g., 5). In principle, rival theorists should be able to 

identify certain systematic differences in the empirical observations predicted under their 

respective theoretical models, and to agree upon suitable methods for obtaining and 

analysing such data. If all goes well, this analysis will reveal the data to be concordant with 

one model’s predictions, thereby earning a substantial reputational boost for the theory that 

‘survived’ the adversarial challenge unscathed. The defeated party is faced with the 

unenviable choice of abandoning their ‘falsified’ model, modifying it in such a way as to 

accommodate the newly acquired data, or ascribing unfavourable results to previously 

unforeseen (but not theoretically compromising) factors 7. 

 

This (admittedly simplified) characterisation of adversarial collaboration harkens back to the 

notion of the experimentum crucis, an experiment capable of rendering data that decisively 

favour one theory or hypothesis over its competitors 8. Perhaps the most famous example of 

such an experiment is Eddington’s seminal investigation of gravitational lensing (i.e., the 

deflection of starlight as it passes through the gravitational field of the sun) 9. Eddington’s 

observations during the 1919 solar eclipse were compatible with Einstein’s theory of general 

relativity 10,  which predicted double the degree of light-bending expected under Newton’s 

law of universal gravitation.2 This result – which catapulted Einstein to international fame 14 – 

 
2 In fact, the 1919 eclipse results were not so straightforwardly definitive as sometimes 
portrayed. Although the data collected on Eddington’s expedition were concordant with the 
theory of general relativity, data from one of the telescopes used by another team appeared 
to challenge it; however, this latter dataset was excluded from analysis on account of 
technical artefact. This decision would lead to later accusations of bias against Eddington 11 
– who was, supposedly, “an enthusiastic proponent of general relativity” (p. 37; 12) – 
although recent re-analysis of the data vindicates the original study’s conclusions 13. Aside 
from this later controversy, it is also noteworthy that publication of the expedition report 

https://www.zotero.org/google-docs/?ll54NR
https://www.zotero.org/google-docs/?zBMf6P
https://www.zotero.org/google-docs/?fV0bhJ
https://www.zotero.org/google-docs/?SwMKbR
https://www.zotero.org/google-docs/?zQeHjI
https://www.zotero.org/google-docs/?WfKbaN
https://www.zotero.org/google-docs/?4app8K
https://www.zotero.org/google-docs/?koNHuw
https://www.zotero.org/google-docs/?cNArnE
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greatly influenced Karl Popper’s philosophical development of falsificationism 15,16. Indeed, 

Eddington’s expedition has been highlighted in recent neuroscientific discourse on 

adversarial collaboration as a paradigmatic example of the sort of experiment that ought to 

be designed to arbitrate rival theories of consciousness (e.g., 17,18; see also 19). 

 

It is notable in light of such discourse that early (and indeed, more recent; e.g., 5,6) 

proponents of adversarial collaboration in the psychological sciences generally refrain from 

lionising the experimentum crucis – settling instead for a rather more modest, incremental 

picture of scientific progress 2,4. Indeed, adversarial collaboration often fails to reconcile 

conflicting views 7,20, even in cases where experimental outcomes appear decisive (e.g., 21). 

One might argue that the committed theorist’s reluctance to concede defeat in the face of 

disconfirmatory evidence is incidental to the judgement of a broader community of more 

impartial (or at least, less-personally invested) observers. Nonetheless, scientists’ proclivity 

to “exploit the fount of hindsight wisdom […] when disliked results are obtained” (p. 270) 4 – 

coupled with the observation that adversarial research tends to generate complex results 

that neither fully support nor defeat opposing hypotheses 22 – would seem to undercut the 

notion that adversarial collaboration affords an efficient route to scientific progress via the 

elimination of deficient theories. 

 

While the experimentum crucis might function as a useful ideal when attempting to design 

studies capable of discriminating amongst competing theoretical hypotheses, emphasis on 

definitive falsification might prove counterproductive for a number of reasons. First, this 

attitude may set an unrealistically high bar for many areas of theoretical disagreement, 

potentially stymying adversarial collaboration at the first hurdle. Indeed, the high-stakes 

nature of the experimentum crucis might go some way to explaining the limited uptake of 

adversarial collaboration in neuroscience and allied fields over the past two decades. 

Lowering the stakes such that experiments are designed with a view to furnishing 

informative – but not necessarily fatal – observations might embolden more theorists to 

collaborate with their adversaries, while making mutually acceptable experimental designs 

easier to find. 

 

Moreover, the search for an experimentum crucis might not be feasible (nor indeed 

desirable) in certain areas of neuroscientific research. In nascent fields such as the 

neuroscience of consciousness, for instance, there is widespread controversy about the 

 
sparked contemporary scientific debate about alternative theoretical explanations of the 
lensing effect. Such historical details highlight the inherent difficulty of settling scientific 
disputes through critical experiments.  

https://www.zotero.org/google-docs/?3OS8eW
https://www.zotero.org/google-docs/?SDgMip
https://www.zotero.org/google-docs/?HpaGno
https://www.zotero.org/google-docs/?1GoyKT
https://www.zotero.org/google-docs/?YWLTB0
https://www.zotero.org/google-docs/?b3OxkA
https://www.zotero.org/google-docs/?m2EpA2
https://www.zotero.org/google-docs/?7BKY9c
https://www.zotero.org/google-docs/?sCFafG
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fundamental nature of the target phenomenon and how it ought to be investigated 23–26. 

While several theories of consciousness have garnered empirical support, recent work 

indicates that they tend to pick out distinct aspects of consciousness rooted in largely non-

overlapping domains: e.g., brain networks, phenomenology, information theory, et cetera 27. 

Hence, even if an adversarial experiment were to rule in favour of one theory over another, it 

may be premature to jettison the defeated candidate altogether: all that has been 

demonstrated in this situation is a case in which Theory A outperforms Theory B; the 

converse may be true in another domain. Consciousness research may be better served by 

adversarial collaborations that evaluate the performance of various theoretical frameworks in 

multiple domains (e.g., through a more ‘holistic’ series of experiments designed to test a 

range of predictions about different sorts of observations; see, e.g., 28) before arriving at firm 

abductions about which avenues should be pursued and which excluded from future 

exploration. 

 

3. Bayesian bets and the value of information 

Falsificationism as formulated by Popper characterises the scientific process as the accrual 

of provisional knowledge in the form of theories that withstand the challenge of empirical 

refutation. The logic of this philosophical doctrine – which continues to find widespread 

acceptance as a core tenet of modern science amongst cognitive scientists (e.g., 29,30) – is 

deeply enmeshed with classical (frequentist) notions of statistical inference. Notably, 

however, the normative question of how one ought to update one’s beliefs following the 

acquisition of new data is naturally handled by Bayesian inference. Given the often mixed 

results of adversarial collaborative research (or at least, the mixed interpretations advanced 

by its protagonists), we propose Bayesian belief updating is more apt for naturalising and 

conceptualising the role of adversarial collaboration in advancing scientific progress. 

 

We are not the first to conceive of adversarial collaboration in Bayesian terms. Noting the 

ease with which scientists tend to fall back on auxiliary hypotheses to explain away 

inconvenient results, Tetlock and Mitchell 31 encouraged adversarial parties to stake 

‘Bayesian bets’ on the outcomes of their experiments (cf. 32,33). These wagers formalise 

experimental predictions in terms of a likelihood function defining the probability of various 

patterns of empirical data under a given hypothesis.3 The more these likelihoods differ 

 
3 Technically, this function is a marginal likelihood; namely, the likelihood of the data under a given 
theory or model. This is also known as model evidence. The model evidence marginalises over any 
unknown variables or model parameters; thereby accommodating any sources of irreducible 

https://www.zotero.org/google-docs/?vsqDjV
https://www.zotero.org/google-docs/?sYka0O
https://www.zotero.org/google-docs/?WvPkz1
https://www.zotero.org/google-docs/?1s1sfg
https://www.zotero.org/google-docs/?4dMUxr
https://www.zotero.org/google-docs/?SlYVGf


BAYESIAN ADVERSARIAL COLLABORATION        7 

 

across competing hypotheses (i.e., the more the likelihood ratio diverges from unity), the 

greater the potential for empirical data to arbitrate these hypotheses (assuming prior beliefs 

about the ex ante probability of competing hypotheses are not overwhelmingly loaded in 

favour of one theory). 

 

This Bayesian perspective affords three important insights concerning the nature of 

adversarial collaboration: First, it naturally accommodates cases in which the data fail to 

decisively arbitrate between one theory and another (e.g., as a consequence of observing 

data that were deemed unlikely under both theories). Second, it explains why adversarial 

parties might arrive at different conclusions concerning the results of their collaboratively 

designed experiment – proponents of one theory may (informally) assign higher prior 

probabilities to their favoured hypotheses relative to their adversaries, and may entertain 

different (posterior) beliefs given the same likelihood function over candidate hypotheses. 

Without explicit specification of these beliefs, it is impossible to anticipate the magnitude of 

belief updating that ought to be driven by the empirical data (although prior beliefs can be 

recovered from posterior beliefs and the empirical likelihood). We postpone further 

discussion of this issue to Section 5. Third, the relationship between the likelihood ratio and 

the informativeness of novel observations speaks to a key principle of optimal experimental 

design 34,35, to which we turn next. 

 

One of the most distinctive features of adversarial collaboration is the development of 

experimental protocols designed to address research questions in a way that satisfies 

theorists of different stripes. This process has been argued to complement recent advances 

in the open science movement (e.g., preregistration of predictions, experimental methods, 

and analysis procedures) by imposing additional constraints on researcher degrees of 

freedom pertaining to experimental design 5,6. Participation in adversarial collaboration 

requires theorists to pursue questions and adopt methods that all parties consider 

worthwhile, avoiding the temptation to develop studies that ‘load the dice’ in favour of one’s 

preferred theory 7. This is to say that the structure of adversarial collaboration is designed to 

generate empirical results that are informative to the scientific community at large, not 

merely a subset of scientists working within a particular framework – or limited repertoire of 

theories. 

 

 
uncertainty. Under the assumption that all theories are, a priori, equally likely, the evidence reduces to 
the probability of each theory, given the data. 

https://www.zotero.org/google-docs/?BHwyZc
https://www.zotero.org/google-docs/?WB2pz5
https://www.zotero.org/google-docs/?lkHntM
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From a normative (Bayesian) perspective, one can construe the task of experimental design 

as that of inferring the most reliable course of action (policy) for generating informative 

(epistemically valuable) observations. An informative observation is one that reduces 

uncertainty about the state of affairs, thereby helping to disambiguate the candidate 

hypothesis (theoretical model) that provides the best explanation of the generative process 

of interest. Optimal experimental design thus entails the adoption of procedures that 

generate data that are expected to reduce uncertainty (Shannon entropy 36) over competing 

hypotheses (models); or equivalently, to maximise the gain of (Shannon) information about 

the hidden (latent) causes of observed phenomena. This expected information gain is 

quantified by the Kullback-Leibler (KL) divergence (i.e., relative entropy 37) between the 

predictive posterior and prior distributions 35,38,39. It turns out, mathematically, that the 

expected information gain is the mutual information – between latent (theoretical) causes 

and empirically observable consequences – expected under a particular experimental 

design. 

 

What constitutes the most informative experiment within a given context will depend on the 

family of experiments under consideration. While one theorist may consider a particular 

experiment the most effective means of disambiguating between predictions generated 

under two versions of Theory A, another theorist may consider this experiment uninformative 

as to the broader question of whether Theory A provides a better account of the target 

phenomenon than Theory B. Adversarial collaboration is valuable (and difficult) to the extent 

that it overcomes such impasses, providing the conditions for rival theorists to reach 

consensus on the best experiments for generating the most informative data for all 

concerned. Notice that this criterion of informativeness (i.e., epistemic value) does not 

depend on whether the data are capable of falsifying one or other theoretical model outright: 

progress is made to the extent that information is gained about the target phenomenon (i.e., 

latent causes of data) in the domain shared by all theories at hand. 

 

Seen in this light, adversarial collaboration fosters scientific progress by facilitating the 

development of highly-informative experiments. Such experiments are characterised by two 

features: (i) they solicit data about highly uncertain states of affairs (i.e., latent causes about 

which little is known); (ii) they sample observations that can be reliably mapped to the 

underlying states that caused them (i.e., states about which something can be learnt). 

Adversarial collaboration engenders feature (i) by encouraging adversaries to propose 

experiments that step out of their respective ‘comfort zones’ – that is, to stake risky Bayesian 

bets about the patterns of data that ought to obtain under novel conditions. This mitigates 

the temptation to seek evidence consistent with one’s preferred model where it may be easy 

https://www.zotero.org/google-docs/?5ymbnJ
https://www.zotero.org/google-docs/?0RwjHI
https://www.zotero.org/google-docs/?UUqt71
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to find (e.g., by sampling more certain, less-informative sources; cf. the ‘streetlight effect’ 40). 

Adversarial collaboration also delivers on feature (ii), since joint participation in experimental 

design should underwrite the selection of methodological procedures expected to promote 

unambiguous (rather than underdetermined or ‘aliased’) observations. In other words, prior 

commitment to a particular experimental policy mitigates the temptation to dismiss 

inconvenient data as being uninformative. 

 

4. Theory comparison as (Bayesian) model 

comparison 

We have proposed a Bayesian perspective on adversarial collaboration in which the 

collaborative effort facilitates the selection of appropriate experiments for informing debates 

about competing theories. On this view, the binary logic of falsificationism is replaced by a 

more flexible, continuous process of belief updating, in which the probabilities assigned to 

competing theories depend on the likelihood of observations under their respective 

hypotheses. However, as alluded to above, Bayesian inference permits adversarial parties to 

ascribe different prior beliefs about the probability of their favoured theoretical hypotheses; 

leading to different posterior beliefs – i.e., belief updating – in the face of the evidence 

(a.k.a., marginal likelihood). While this need not be problematic in itself, it may curb the utility 

of adversarial collaboration as a mechanism for evincing scientific consensus. In this section, 

we sketch out a method of theory comparison that aims to formalise the evaluation of 

theoretical models in the adversarial setting. We then return to the issue of divergent priors. 

 

The approach considered here inherits from Bayesian methods of (hierarchical generative) 

model comparison 41–43. Hierarchical Bayesian modelling affords an elegant way to formalise 

scientific theories as models encoding a hierarchically-structured hypothesis space 44. In this 

perspective, higher levels of a model specify more abstract or generic hypotheses, while 

lower levels generate more concrete or specific hypotheses about the process in question. 

The hierarchical structure of such models ensures that higher-level predictions impose 

theoretically-informed constraints on the parameters of lower levels of the hierarchy, thereby 

influencing the model’s predictions about the sorts of data the target process will generate. 

One can then evaluate candidate models by comparing their capacity to account for 

empirical observations sampled from the generative process (i.e., experimental data). 

 

https://www.zotero.org/google-docs/?HiIAuU
https://www.zotero.org/google-docs/?s8tHFr
https://www.zotero.org/google-docs/?qx8dcc
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To motivate this approach via a toy example, imagine that we performed a psychophysics 

experiment under two conditions, where each condition included five levels of some 

experimental factor (e.g., stimulus intensity). Figure 1 illustrates the kind of data one might 

obtain from such an experiment. In fact, these data are synthetic and were generated by the 

generative model presented in Figure 2. Having a generative model underneath the data 

enables us to ask the question: is there any evidence for a difference in the implicit detection 

threshold between the two conditions – and, if so, which hypothesis best explains this 

difference? Figure 2 illustrates how to assess this evidence, with a special focus on why 

having a more precise hypothesis can evince greater evidence in its favour. 

Practically speaking, the Bayesian approach to theory comparison can be decomposed into 

three steps: (i) model specification; (ii) model inversion; and (iii) model comparison. First, a 

generative model must be specified in accordance with the nature of the generative process 

under examination. For example, if our experimental design entails the collection of two-

alternative forced choice (2AFC) responses, a model capable of generating binary choice 

data could be constructed via the specification of a binomial likelihood function (Figure 2a). 

This ‘generic’ model could then be elaborated in various ways according to the particular 

predictions of alternative theories. This may be achieved by imposing different (theory-

specific) priors over critical model parameters; namely, those parameters underwriting 

distinctive hypotheses concerning the presence (or absence) of experimental effects (Figure 

2b). In the case of our 2AFC task, a generic binomial model could be equipped with a prior 

that permits variability in the patterning of responses (or associated psychometric 

parameters) across the two experimental conditions (as hypothesised under Theory A), 

while another model could be equipped with a prior stipulating no difference between 

conditions (i.e., the absence of an experimental effect, as hypothesised under Theory B; see 

Box 1). 

 

Once models encoding the different hypotheses of competing theories have been specified, 

they can be fitted to empirical data. Here, we appeal to variational methods based on the 

Laplace approximation 45–49, as is standard in machine learning and neuroscience (e.g., 

dynamic causal modelling). These techniques afford an efficient approximation of intractable 

integrals, rendering an explicit estimate of model evidence (a.k.a. marginal likelihood) – an 

indicator of model quality that outperforms common alternatives such as the Akaike and 

Bayesian information criteria 50. Variational methods are widely available through open 

source software packages such as the Statistical Parametric Mapping (SPM) toolbox 

(https://www.fil.ion.ucl.ac.uk/spm/). 

 

https://www.zotero.org/google-docs/?0Cx0cF
https://www.zotero.org/google-docs/?NpPyUw
https://www.fil.ion.ucl.ac.uk/spm/
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Bayesian model inversion entails updating prior beliefs to posterior beliefs about model 

parameters after the model has been exposed to new data (Figure 2c). Bayesian update 

schemes seek to update prior beliefs by inferring the optimal balance between model 

accuracy (i.e., the discrepancy between predictions and observations) and model complexity 

(i.e., the degrees of freedom required to accommodate observations). This optimal balance 

is implicit in maximising (log) model evidence via the (negative) variational free energy: 

a.k.a., the evidence lower bound or ELBO 48. The upshot of this process is a model that fits 

the observed data as well as possible while remaining as simple (i.e., parsimonious) as 

possible, thereby mitigating the risk of overfitting parameters to the observations that 

happened to have been sampled from the generative process during data collection (cf. 

Ockham’s razor 51). 

 

The Bayesian belief update – realised by model inversion – is scored by the KL divergence 

between the posterior and prior distributions (i.e., model complexity). Note that, while Bayes-

optimal experimental design calls for experiments that are expected to maximise the 

expected KL divergence (and hence precipitate greater information gain), model inversion 

calls for minimisation of the KL divergence, in accordance with the imperative to restrict 

model complexity (i.e., update the model as little as possible in light of new data). This 

apparent contradiction is resolved by the intuition that scientists ought to prefer experiments 

that procure the most informative observations (i.e., resolve the most uncertainty about 

hidden states), while also preferring explanations that integrate novel observations within the 

context of prior beliefs as conservatively as possible (i.e., avoid more complicated belief 

updates than are necessary, given the evidence at hand; cf. the maximum entropy principle 

52). 

 

Having deployed variational methods to invert generative models encoding the predictions of 

competing theories, one now has access to the free energies that approximate (i.e., bound) 

the evidence for each model. Model evidence reflects the probability of the observed data 

given a generative model of those data, and is simply the difference between the accuracy 

and complexity terms alluded to above. Intuitively, models accumulate more evidence (i.e., 

their marginal likelihood increases) when their prior predictions accurately characterise 

empirical observations. In other words, the farther posteriors have to depart from prior beliefs 

to explain sampled data – i.e., the larger the KL divergence between posterior and prior 

beliefs – the greater the complexity penalty incurred. Consequently, one can rank models 

according to their log evidence (as approximated by the variational free energy bound) in 

order to assess which parameterisation affords the best explanation of the data (Figure 2d). 

 

https://www.zotero.org/google-docs/?YajiWP
https://www.zotero.org/google-docs/?u6Tl4T
https://www.zotero.org/google-docs/?MITyKA
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In terms of scientific progress, this process can be repeated indefinitely, to accumulate 

evidence — from successive experiments — for plausible theories (see Box 2 for a worked 

example). This simply entails adding the log evidence for each theory from successive 

experiments (see Figure 3). Informative experiments ensure that the accumulated evidence 

for each theory diverges with each new experiment (or not, if all theories provide equally 

good explanations4). There is an accepted semantics for differences in log evidence 41, 

where a difference of three is usually read as ‘strong evidence’ for one theory or model 

relative to another. This is because a log evidence of three corresponds to an evidence ratio 

of 20:1 (cf. a nominal p-value of 0.05 in classical inference). 

 

One might ask whether one can apply the theory comparison procedures described herein to 

theories that inherit from the free energy principle 54. Indeed, this question was asked by our 

reviewers. This is a revealing question for two reasons: First, because there is an ongoing 

adversarial collaboration to precisely do this; namely, to compare variants of predictive 

processing and active inference with integrated information theory 

(https://www.templetonworldcharity.org/projects-database/0646). Second, because our 

Bayesian approach to adversarial collaboration arose as an application of the free energy 

principle to theory comparison. The rationale here is that perception, and indeed active 

sensing (a.k.a., active inference), follow exactly the same rules and imperatives as evidence-

based scientific enquiry 55,56; namely, soliciting those data that maximise expected 

information gain 39 – and then evaluating those data through a process of Bayesian belief 

updating to find the theory or explanation that has the greatest evidence. When used to 

describe sentient behaviour, this process is neatly summarised as self-evidencing 57. 

 

5. Circumventing incommensurability 

We have seen how Bayesian inference can be harnessed to inform both the design and 

analysis of adversarial collaborative research projects, focusing in particular on the power of 

(variational) Bayesian methods to operationalise and evaluate competing theoretical models. 

 
4 Note that evidence is only meaningful in a relative sense. In other words, one can only compare the 
evidence for one model in relation to others; e.g., using differences in log evidence. The evidence of 
any single model has no meaning and can change arbitrarily with, say, the units of measurement of 
the data. This means there is no ‘true’ model — there is only the ‘best’ model from among those 
models considered. In classical inference, this truism explains why one always compares an alternate 
hypothesis with a null hypothesis. In Bayesian inference, one can compare an arbitrarily large set of 
hypotheses or models that may include a null hypothesis. And, interestingly, discover the evidence for 
the null model is greater than a classically significant alternate model. This is known as ‘Lindley's 
paradox’ 53. 

https://www.zotero.org/google-docs/?5ZjHkT
https://www.zotero.org/google-docs/?lKoYog
https://www.templetonworldcharity.org/projects-database/0646
https://www.zotero.org/google-docs/?KIyyxj
https://www.zotero.org/google-docs/?rnNogO
https://www.zotero.org/google-docs/?jbZRnw
https://www.zotero.org/google-docs/?kcuPAC
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In this final section, we explore some more general implications of this framework, 

foregrounding how it may help to accelerate scientific progress through the comparison of 

seemingly incommensurable theories. 

 

The crucial insight here is that the variational free energy bound on (log) model evidence can 

be used not only to rank the relative quality of alternative generative models of the same 

dataset, but also as a general purpose metric that can be aggregated across multiple 

settings and scales (e.g., sampling units, replication sites, experimental paradigms). In other 

words, variational free energy affords a common currency for quantifying the evidential 

support accrued under different theoretical models – currency which can be accumulated 

over multiple studies and modalities (see Box 2 and Figure 3). This paves the way for a 

flexible and integrative approach to adversarial collaboration, one that (departing from the 

ideal of the experimentum crucis) permits multiple adversarial experiments involving more or 

less risky Bayesian bets (e.g., an experiment that tests a highly-constrained set of 

predictions under Theory A versus a weakly-constrained set under Theory B, and vice-versa. 

This is illustrated in Box 3, using the worked examples of Box 2. 

 

Notably, the logic of (model) evidence accumulation can also be extended to experiments 

designed beyond the context of adversarial collaboration. This is particularly valuable when 

a theory lacks predictions about a given scenario, making it difficult to formulate an 

experiment capable of rendering informative data from this perspective. This speaks to the 

concern that progress in nascent research fields – such as the neuroscience of 

consciousness – may be hampered by the development of multiple theories in the absence 

of common conceptual frameworks, methodological standards, and explanatory targets 27,29: 

namely, theories that may ultimately prove incommensurable with one another. Access to a 

common measure of evidence affords the opportunity to quantify how well different theories 

are performing (in terms of how well model predictions are borne out by empirical data), 

even if such theories were developed and tested “in different worlds” (p. 150) 58, so to speak. 

 

It should be stressed, however, that the scoring of evidence accumulated within 

independently pursued research programmes may not be sufficient to gauge which theory is 

making the most scientific progress. This is because independent research generates 

evidence based on independent datasets, therefore enabling alternative theories to accrue 

similar quantities of evidence in parallel to one another. While such endeavours can be 

useful for evaluating and refining theoretical models within the context of a particular 

research domain or tradition, the unique advantage conferred by the adversarial method – 

from the perspective of scientific progress – inheres in the discriminative value of comparing 

https://www.zotero.org/google-docs/?8HLidW
https://www.zotero.org/google-docs/?OuLYKO
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competing theoretical predictions on the same empirical observations. Engaging in such 

activity is guaranteed to be informative in one way or another: either one theoretical model 

will accrue more evidential support than its competitor(s), or all models will accrue similar 

amounts of evidence (suggesting that the candidate theories afford equally good or bad 

explanations of the data, or that their predictions could not be adequately disambiguated 

under the selected experimental design). In this way, Bayesian adversarial collaboration 

clarifies which theories are making the most scientific progress, and which theories (or 

experiments) are most in need of revision. 

 

None of this is to say that the outcome of an adversarial collaboration should be the endpoint 

of scientific debate. As anticipated by Kahneman (p. 729) 2 – and subsequently borne out by 

two decades of adversarial collaborative research – adversaries seldom converge on a 

consensus view upon the completion of their collaboration. Competing interpretations are to 

be expected irrespective of whether collaboration takes place under a Bayesian framework 

or not. Theorists are just as likely to draw from the ‘fount of hindsight wisdom’ when 

evidence favours a rival theory rather than their own. And indeed, such behaviour is entirely 

rational from a Bayesian perspective; ascribing surprising results to mitigating factors that 

explain away the discrepancy between expected and observed results enables theorists to 

change their minds as little as possible, thereby preserving their prior belief in the fidelity of 

their model (cf. 59). This is simply to reiterate the point made in Section 3 that a particular set 

of empirical observations will not compel the same degree of belief updating amongst all 

observers, given individual differences in the prior probabilities assigned to competing 

theories. 

 

Does the propensity to persevere with one’s favoured theory in the face of countervailing 

evidence undermine the supposed benefits of adversarial collaboration? We think not, for 

two reasons. First, as we have argued, the adversarial setting encourages theorists to stake 

risky Bayesian bets beyond the epistemic safety of their theoretical ‘comfort zone’. Even if 

theorists are quick to ascribe unfavourable findings to unanticipated factors, unreliable 

measures, or imprecise predictions made at the margins of their framework (rather than 

admitting a fundamental deficiency in the framework itself), such outcomes disclose potential 

avenues for further theoretical and/or methodological development. Valuable information has 

been gained, and with this information a challenge (and an opportunity for scientific 

progress) has presented itself.  

 

The second reason not to be discouraged by the prospect of lingering disagreement 

between adversarial parties pertains to the function of adversarial collaboration more 

https://www.zotero.org/google-docs/?kZKBck
https://www.zotero.org/google-docs/?2Rzxb0
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generally. In our view, adversarial collaboration should not be construed as a mechanism for 

converging on consensus amongst its protagonists. In much the same way as the 

adversarial legal system is not designed to change the minds of opposing advocates –  

hinging instead on the arbitration of evidence by an impartial jury of peers – adversarial 

collaboration seeks to generate the most salient data for the scientific community at large. 

By fostering rigorous experiments that disambiguate competing hypotheses – pertaining to 

shared domains of interest – the evidence accrued through Bayesian adversarial 

collaboration can be exploited to update our beliefs about the merits and prospects of 

competing theories; ultimately serving to guide individual and collective decisions about 

resource allocation (e.g., where to invest one’s time, energy, and funding). In this way, the 

knowledge generated through Bayesian adversarial collaboration helps to inform meta-

theoretical bets concerning which research policies afford the most promising routes toward 

scientific progress. 

 

6. Concluding remarks 

Under ideal conditions, adversarial collaboration helps to advance scientific progress by 

procuring critical experimental data that convincingly settle theoretical disputes. However, 

the reality of adversarial collaboration is typically less straightforward: decisive tests of 

empirical predictions may be difficult to identify; results may fail to definitively arbitrate 

competing predictions; scientists are wont to interpret data in ways that accord with their own 

theoretical proclivities. We have proposed that adversarial collaboration should be cast 

within a (variational) Bayesian framework that facilitates optimal experimental design and the 

quantification of evidence accrued under theoretical (generative) models. This framework 

enables evidence to be accumulated over multiple (adversarial and independent) studies, 

thereby furnishing a simple, common metric of evidential support. As such, it affords a 

valuable tool for tracking the relative performance of competing theoretical perspectives over 

time. This information may prove useful for directing resources towards the most promising 

(i.e., evidence-based) scientific theories, as well as identifying when dominant theoretical 

frameworks are stagnating and in need of major revision. 
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Figure 1. Experimental data predicted under three alternative hypotheses. 

 
 

Left panels exemplify three sets of (synthetic) data that might be obtained from a 

psychophysics experiment investigating how stimulus detection performance varies across 

five levels of intensity under two conditions (green and blue functions). The aim of the 

experiment is to test hypotheses about the effect of some manipulation on the intensity level 

at which the detection threshold (dotted line) is achieved (where threshold performance at 

higher intensity levels corresponds to a reduction in the sensitivity parameter 𝜃). Middle and 

right panels depict binomial likelihood functions characterising detection performance at 

each intensity level in either condition. (a) Condition 2 induces a rightward shift in the 

psychometric function – corresponding to a decrease in sensitivity (i.e., negative change in 

𝜃) – relative to Condition 1. (b) Condition 2 induces a leftward shift in the psychometric 

function – corresponding to an increase in sensitivity (i.e., positive change in 𝜃) – relative to 

Condition 1. (c) The psychometric function remains unchanged across conditions, thus 

indicating no difference in sensitivity.  
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Figure 2. Generative model specification, inversion, and comparison.  

 
 

(a) Left and middle panels depict binomial likelihood functions describing variation in 

stimulus detection performance across five levels of stimulus intensity under two 
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experimental conditions. Right panel depicts the likelihood function p(y|𝜃) characterising the 

change in sensitivity between conditions, 𝚫𝜃. (b) Prior distributions p(𝜃|hi) encode distinct 

hypotheses about the plausible set of experimental effects expected under competing 

theories (see Figure 1 for an illustration of how such predictions might manifest in the 

psychometric and likelihood functions). The location of the modal value of each prior – which 

signifies the most probable value of 𝚫𝜃 under each theoretical (generative) model before the 

data are observed – is denoted by the diamond symbol. The Gaussian prior (left panel) 

specifies that 𝜃 may increase or decrease as a consequence of the experimental 

manipulation, as reflected by a left- or rightward shift of the psychometric function (i.e., a 

non-directional hypothesis). The log-Gaussian prior (middle panel) stipulates a more 

restrictive set of predictions, constraining 𝚫𝜃 to positive values (i.e., a directional 

hypothesis). The shrinkage prior (right panel) implies that the manipulation will fail to 

systematically perturb 𝜃 (i.e., a null hypothesis); this model is equivalent to one that pools 

observations across conditions. (c) Posterior distributions p(hi|y) (filled functions, modal 

value denoted by the star symbol) obtained via model inversion represent the optimal 

integration of prior beliefs (unfilled functions) and observed data (black likelihood function). 

While h1 and h2 evince similar degrees of model accuracy (as indicated by their respective 

log-likelihoods, lnp(y|𝜃)), h2 incurred a lower complexity cost (as scored by the Kullback-

Leibler divergence, DKL). By contrast, h3 remains effectively unchanged by the data. (d) 

Comparison of log marginal likelihoods p(y|hi) reveals strong evidence of an experimental 

effect (see 41). The superiority of h2 over h1 highlights the potential advantage conferred by 

staking riskier ‘Bayesian bets’. 

 

  

https://www.zotero.org/google-docs/?Wlg8db
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Figure 3. Integration of model evidence over subjects and experiments. 
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(a) Synthetic data from four (virtual) subjects performing a two-alternative forced choice 

discrimination task. Green circles represent the proportion of trials in which a target stimulus 

was selected during the control condition; blue diamonds indicate the proportion of target 

choices during the experimental condition. Psychometric functions are fit to each dataset 

according to the prior predictions specified under Theory A (top row) and Theory B (bottom 

row). While Theory A predicted that the experimental manipulation would promote a change 

in sensitivity (but not bias), Theory B predicted a change in bias (but not sensitivity). (b) Top 

row displays the (log) model evidence for the generative models fit to the datasets presented 

in (a); bottom row shows how the relative evidence for either theory evolves as successive 

subjects are included in the analysis. Here, cumulative estimates of model evidence diverge 

over the first 8 subjects, fluctuate slightly over the following 8 subjects, and remain stable for 

the remainder of the sample. This demonstration speaks to the diminishing informational 

returns availed by further replications of the experiment once uncertainty over hypothesised 

effects has been adequately resolved. (c) Left panel depicts evidence for the presence vs. 

absence of neurophysiological effects (i.e., the modulation of intrinsic and backwards 

connectivity) during an attention to visual motion task. While both theories accrue evidence 

in favour of altered intrinsic cortical excitability, Theory A accumulates additional evidence 

for correctly positing the modulation of backwards connectivity (right panel). (d) Relative 

evidence for the two theories following integration of the results presented in (b) and (c). 
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Figure 4. Key stages of Bayesian adversarial collaboration. 

 

 

This graphic distils the Bayesian approach to adversarial collaboration into four key stages. 

Although these stages may not be implemented in a strictly sequential fashion (e.g., model 

specification may reveal insights that motivate revised experimental designs), this cyclical 

depiction is intended to highlight the iterative, open-ended nature of adversarial collaboration 

when viewed from the Bayesian perspective. 
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Box 1. Bayesian theory comparison: A schematic example 

 

Here, we elaborate the example of a psychophysics task in which participants respond to 

various stimuli presented under two conditions (see Figure 1). Theory A predicts a change in 

psychometric parameter θ across the two conditions; Theory B predicts no such difference. 

 

First, a generative model encoding the joint probability of the observed data and the hidden 

states causing them must be defined. This can be accomplished with a binomial likelihood 

model, specifying the probability of stimulus detection as a function of stimulus kind in either 

condition (Figure 2a). 

 

Next, this model needs to be equipped with priors that constrain parameter values to be 

consistent with theoretically-inspired predictions (Figure 2b). The simplest implementation of 

this contrast is to specify priors that allow θ to vary in the case of Theory A (but not Theory 

B).  

 

For the model corresponding to Theory A, centring a Gaussian function over θ=0 enables 

the model to entertain predictions that θ could take a variety of positive or negative values. 

This set of plausible values could be made more specific by limiting the prior to (e.g.) the 

positive range of θ. More precise priors (i.e., confining predictions to smaller regions of 

parameter space) constitute stronger ‘Bayesian bets’ about a theory’s capacity to 

accommodate novel observations. 

 

For Theory B, placing a highly-precise shrinkage prior over θ=0 encodes the prediction that θ 

does not systematically differ between conditions. This prior effectively ‘switches off’ θ, 

rendering a reduced model that can be scored against the Theory A model 60. The goal of 

this technique is to evaluate whether the more complex model (Theory A) delivers sufficient 

improvements in predictive accuracy to justify its additional flexibility. Under variational 

Bayes, this trade-off is gracefully negotiated via the comparison of (log) model evidence 

(Figure 2d). 
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Box 2. Evidence accumulation over effects, subjects, and experiments. 

 

To provide a worked example – that showcases the application of Bayesian theory 

comparison procedures – we use synthetic data to illustrate evidence accumulation over 

subjects and modalities. In brief, we simulated two kinds of experiments: a psychophysical 

experiment and a neurophysiological (fMRI) experiment. 

Table 1 summarises the predictions of two theories about two effects in the two (synthetic) 

experiments. Theorists have the latitude to specify whether an effect was present or not – or 

to abstain from any prediction. Only by committing to the presence or absence of an effect 

can evidence be ‘claimed’ for the theory in question. In other words, making a definitive 

prediction is a commitment to accepting an increase or decrease in log evidence when 

comparing generative models with and without the effect in question. In this example, two 

theorists made specific predictions about both effects in the psychophysics study (a change 

in sensitivity and bias, respectively), while the second theorist was noncommittal about one 

of the effects in the fMRI study (please see below). 

 

Table 1: Theoretical predictions for two effects in two (synthetic) experiments. 

 Psychophysical Effects Neurophysiological Effects 

Bias Sensitivity Intrinsic connectivity Backward connectivity 

Theory A ╳ ✓ ✓ ✓ 

Theory B ✓ ╳ ✓ — 

 

Psychophysics study: We generated psychophysical data from 32 (virtual) subjects using 

a generative model of the sort described in Box 1. These data were generated with 

condition-specific experimental effects; namely, an increase in the sensitivity (slope) 

parameter, but no change in bias; i.e., under the predictions of Theory A. Figure 3a shows 

the (synthetic) data from four subjects, and the corresponding psychometric functions 

predicted under each theory. The agenda of this example is to illustrate how the evidence for 

two (or more) theories can be successively accumulated over an increasing number of 

subjects – showing that an informative picture emerges after a sufficient number of subjects’ 

data are assimilated (Figure 3b). 
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Neurophysiological study: To illustrate the ‘common currency’ afforded by (log) model 

evidence, we next supplemented the results of the psychophysical study with the evidence 

from a brain imaging study. To do this, we inverted dynamic causal models of fMRI 

timeseries from a study of attention to visual motion 61. In this example, the first (correct) 

theory posited a change in backward connectivity from a higher to a lower region in the 

visual cortex, in addition to intrinsic (within region) changes in excitability. Conversely, the 

second theory committed to intrinsic changes in the lower visual area, but declared no 

prediction for an effect on backward connections. These data were inverted using standard 

variational procedures 47 – according to open source tutorials on the modelling of these data 

62. Although we only analysed data from one subject, we pretended that this was the result of 

a group inversion (from 32 subjects) using parametric empirical Bayes 63. The evidence for 

models with and without a backwards and intrinsic effect were assessed using an evidence 

lower bound (a.k.a., variational free energy) in the usual way (Figure 3c). The ensuing 

evidence for and against the two competing theories was then added to the evidence from 

the psychophysics study above to give the final results of theory comparison. Unsurprisingly, 

the evidence was overwhelmingly in favour of Theory A (Figure 3d). 

 

This brief example demonstrates the mechanics of how to transcribe the commitments or 

predictions of competing theories into an inference procedure that returns an informative, 

evidence-based assessment of each theory. Key things to note here include the ability of the 

implicit evidence accumulation to gather evidence over different subjects and data 

modalities. And, crucially, different kinds of effects that are specified to a greater or lesser 

degree by each theory (see Box 3); sometimes in an unbalanced fashion. In other words, 

two (or more) theories may make strong predictions about different kinds of effects and yet 

these predictions can be used in a complementary way to assimilate evidence for one theory 

over another. Note further that in Table 1, the commitments of Theory B were less specific 

than Theory A, insofar as no effects were predicted for changes in backward connectivity. 

Had the theorist been more specific – and committed to saying that there were changes – 

they would have accumulated more evidence for their theory. 
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Box 3. The power of precise predictions 

 

One advantage of the Bayesian adversarial collaboration framework is the flexibility it affords 

to implement various kinds of prediction within a (generally hierarchical) generative model. 

Theories that propose precise predictions about experimental effects can be specified using 

bespoke priors that constrain expected parameter values to a narrow range; less-specific 

predictions (e.g., a positively- or negatively-valenced effect) can be implemented using 

minimally-informative priors that span the corresponding region of parameter space. Indeed, 

parameters may even be left entirely unconstrained if a theory lacks any prediction about a 

particular effect.  

 

Precise predictions constitute riskier Bayesian bets on the outcome of an experiment, since 

there are many ways in which the model may fail to accurately capture the data. By the 

same token, data that fit these predictions well furnish compelling evidence of the model’s 

validity. Conversely, weakly-constrained model parameters constitute safer bets, but stand 

to accrue less evidence irrespective of how the data turn out (since there are many other 

patterns of data that the model could accommodate equally as well; see Figure 2). 

 

There are a number of ways in which this general scheme can be elaborated. For instance, 

the confidence each theorist invests in their predictions could be incorporated into the model 

via the inclusion of hyperpriors over prior constraints on parameters of interest. In this way, 

the precision accorded to specific predictions could be modulated to reflect stronger or 

weaker theoretical commitments about putative effects (thus implying stronger or weaker 

Bayesian bets). One could also incorporate theorists’ beliefs about the prior probability of 

their favoured hypothesis or model; this will constrain the capacity for novel observations to 

compel belief updates during model inversion. This strategy might be useful for quantifying 

the magnitude of the ‘prediction error’ that would be necessary for a theorist to update their 

beliefs upon observing some data, as compared to an impartial observer (i.e., a scientist 

who ascribes equal prior probability to each alternative hypothesis). 
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