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Abstract: The uncertainty in the concrete compressive strength is one of the most challenging
issues in safety checking of existing reinforced concrete (RC) buildings. The concrete compressive
strength used in the assessment can highly influence the vulnerability results and thus the retrofit
strategies. The need to use less expensive and less invasive in situ measurements such as the non-
destructive tests should be balanced with a careful check of their structural reliability. The compressive
concrete strength is characterized herein based on a large database of both in situ destructive and
non-destructive results measured on the same structural members. The data are obtained from
existing RC buildings mainly located in the Campania region, Southern Italy. Probabilistic linear
and multilinear regression models are developed for calculating the compressive concrete strength
based on non-destructive tests. Furthermore, the implementation of the concrete strength based
on ultrasonic test results are investigated together with the relative measurement error through a
fully probabilistic workflow. Accordingly, the relative weights of non-destructive data for calculating
concrete compressive strength are estimated and compared with those recommended by the Italian
national code. The results demonstrate that the effective weights of the non-destructive data are very
close to the code-based recommendation.

Keywords: concrete compressive strength; existing RC structures and infrastructures; knowledge
levels; destructive tests; non-destructive tests; Bayesian updating

1. Introduction

The process of the knowledge regarding the definition of structural system and the
estimation of mechanical material properties are crucial steps towards the seismic evalua-
tion of existing structures, especially in high-seismicity areas. There are different tests on
structural members that can be part of this process of the knowledge. The main objective of
this test campaign is to characterize the mechanical properties of materials and the potential
defects in construction details. Estimation of the compressive strength of members plays
a fundamental role in the seismic performance of existing RC structures/infrastructures,
which is evaluated based on destructive and non-destructive tests. The most common de-
structive test is the core sampling, while one of the most widely used non-destructive tests
is the SONREB method (performed by the combination of the results of rebound number S
and ultrasonic pulse velocity V, [1–3]). The main advantage of the non-destructive test is
the fact that there is no need to remove a structural sample of concrete. UNI EN 12504-2 [1];
UNI EN 12504-4 [2] provide important instructions on implementation of these types of
tests. Instead, the core sampling needs the structural sample extraction that is generally
in a form of a cylinder. Then, the sample is tested in a laboratory to assess the concrete
compressive strength under specific techniques ([3]; see also [4] on how to perform this
type of test). While the core destructive test is generally more reliable, it is indeed more
difficult to be executed and more expensive compared to the non-destructive tests. In fact,

Sustainability 2023, 15, 14644. https://doi.org/10.3390/su151914644 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su151914644
https://doi.org/10.3390/su151914644
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-6638-1983
https://doi.org/10.3390/su151914644
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su151914644?type=check_update&version=2


Sustainability 2023, 15, 14644 2 of 19

in some cases, it is practically not feasible to collect enough cores according to the code
provisions (NTC 2018, [5]), as the normal activity cannot be interrupted; hence, the role of
the non-destructive tests becomes more fundamental.

The mechanical properties of the structural concrete have been deeply studied in
the past. Various methods have been presented for investigating and processing of the
related results based on experimental tests. Important studies were conducted in 1980s
in Europe (e.g., [6]) and later in the United States (e.g., [7,8]). However, the results of
these research efforts are not directly applicable to the Italian buildings stock, given the
differences between the concrete constructions where these studies have been conducted.
With specific reference to Italy, there is vast literature on the topic starting from 1980s
(see, e.g., [9–12]). Using the ultrasonic velocity V and the rebound number S, the concrete
strength is obtained with nonlinear regressions (e.g., in the RILEM standard [13]; see
also [9,10,14]).

More recently, other researchers have investigated the assessment of concrete strength
based on probabilistic approaches. One of the most critical issues, largely discussed in the
scientific community (see, e.g., [15–18]), is to assess correctly the uncertainty that exists in
evaluating in situ test results. In fact, the reliability of the in situ concrete strength tests
can depend on many factors such as the quality of the measurement, the amount of data
used for the regression model, and the range of concrete strength values considered in
the regression. Monti and Alessandri [19] proposed a method for evaluation of material
strength and calibration of the relevant confidence factors based on a Bayesian procedure.
They calibrated a correlation equation to evaluate the confidence factors as a function of
the number, type, and the reliability of the available in situ tests being employed and
of the reliability of the available prior information. In the work of Giannini et al. [20],
the assessment of concrete strength was implemented combining destructive and non-
destructive tests measures via Bayesian inference. Moreover, the influence of the number
of coring points on the reliability of the models was studied in Trtnik et al. [21] and later
in Giannini et al. [20]. Pereira and Romao [22] worked on the assessment of the concrete
strength in existing buildings using as investigation technique called finite population
approach to evaluate the uncertainty in the estimate of the variability of the concrete
strength in a population as well as the uncertainty in the estimate of the mean value of the
concrete strength. Vasanelli et al. [23] estimated the in situ concrete strength considering
the correlations between destructive and non-destructive tests.

This paper proposes a fully probabilistic workflow to estimate the concrete compres-
sive strength based on both in situ destructive and non-destructive test results and to inves-
tigate the relative measurement error within a fully probabilistic framework. Moreover, it
attempts to propose a methodology for calculating the relative weight of non-destructive
measurements with respect to the destructive tests. This is the compilation of the workflow
that was proposed in [24] by the authors. The results can be directly employed to estimate
the compressive strength of concrete for design/assessment purposes. To this end, a large
database containing 221 pairs of core test and SONREB non-destructive test results that
refer to the same structural members in various RC structures is provided herein. The build-
ings are mainly located in the Campania region, Southern Italy, constructed between 1930
and 1990. Hence, the proposed workflow based on the Bayesian inference and its outcomes
have practical implications in (probabilistic) seismic performance assessment of existing
RC construction; see, e.g., [25–30]. Regression models are proposed to obtain predictive
expressions for estimating the concrete compressive strength Rc based on the ultrasonic
velocity V and on the rebound number S. In particular, expressions for logarithmic linear
(lnV-lnRc) and multilinear (lnV-lnS-lnRc) regressions are derived to obtain Rc based on the
available database. It is further explored that the regression model (lnV-lnRc) can be used
instead of the multilinear model (lnV-lnS-lnRc) without significant loss of accuracy. This is
also confirmed by the significance test of the rebound index S in the regression. In addition,
the relative weights of non-destructive tests for calculating concrete compressive strength,
derived based on the proposed probabilistic workflow, are compared with the relative
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weights recommended in the NTC 2018 Commentary [31], which assigns 1 to destructive
and 1/3 to non-destructive tests. The results demonstrate that the non-destructive tests
effective weights are close to code provision. This result is important because it demon-
strates that the non-destructive tests, implemented in terms of the ultrasonic velocity V,
can be a reliable instrumentation to complement the destructive test (particularly where it
is not easy to execute them).

2. Methodology

This section presents the methodology used in this paper (see also the flowchart in
Figure 1). Section 2.1 proposes the first step of the procedure that consists of converting fcore
into its equivalent in situ cylindrical fc and cube Rc values. Section 2.2 employs the data
in order to obtain the probabilistic logarithmic regression models (lnV-lnRc) and (lnV-lnS-
lnRc). Finally, Section 2.3 introduces the Bayesian workflow for quantifying the relative
error in non-destructive (ultrasonic) test measurements, denoted as Rultr, and calculating
their relative weights with respect to destructive (core) test results Rc. The probabilistic
workflow consists of the following steps: (i) calculation on the conditional probability
model for predicting Rultr given the core strength Rc; (ii) characterization of the uncertainty
in the concrete strength considering both destructive and non-destructive test results;
(iii) estimation of the relative weights associated with each ultrasonic non-destructive
test data.
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2.1. Conversion of fcore into the Equivalent In Situ Cylindrical fc and Cube Rc Values

Core test is the most reliable method to evaluate the concrete compressive strength;
nevertheless, the strength measured on a core specimen is different from the actual in
situ strength. The specifications to use core test are given in NTC 2018 [5] and in its
Commentary [31]. The code refers to the Italian council for public works recommendations
(CSLP guidelines, [32]) and to the UNI EN 13791 [33]. In particular, the CSLP guidelines [32]
indicate that the estimate of the resistance of the cast-in-place concrete, based on the core
specimen extraction, should be modified by implementing corrective coefficients. Different
formulations from the literature proposed factors to quantify these corrections.

In this work, a relationship proposed in [12,34] to convert the concrete strength from
the core specimen, denoted as fcore, into the equivalent cylindrical strength fc is used. The
main factors considered in this relationship to estimate the real concrete strength are the size
and geometry of the cores, presence of reinforcing bars, and the effect of drilling damage:

fc = (CH/D · Cdia · Ca · Cd) · fcore, (1)

where

• CH/D is the correction for height/diameter ratio H/D of the specimen; CH/D = 2/(1.50
+ D/H).
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• Cdia is the correction for the diameter of the core; Cdia = [1.06, 1.00, 0.98] for D = [50,
100, 150] mm, respectively. Linear interpolation can be used for the diameters included
between the indicated intervals; thus, the general linear equation can be Cdia = 1 +
0.0012 × (100 − D) when D ≤ 100 mm and Cdia = 1 − 0.0004 × (D − 100) when
D > 100 mm.

• Ca is the correction for the presence of reinforcing bars; Ca = 1.0 for the absence of bars,
and varying between 1.03 for small-diameter bars (φ10) and 1.13 for large-diameter
bars (φ20).

• Cd is the correction for damage due to drilling; Cd = 1.20 for fcore < 20 MPa, and 1.10
for fcore ≥ 20 MPa.

Regarding the correction coefficient Cd, it is important to note that the lower the
original concrete quality, the larger the drilling damage (see [12]). Alternatively, it is
important to note that there is another formulation for the assessment of in situ concrete
strength, proposed from Reluis-DPC Guidelines [35]. The functional form to convert fcore to
fc is very similar to Equation (1), including (a) a geometry correction factor based on H/D
with different expressions (depending on the humidity condition for the core specimen)
but similar values compared to CH/D; (b) the diameter correction factor with the same
expression as that of Cdia; (3) the correction factor for damages due to drilling (equal to the
constant value 1.06); (d) the factor taking into account the humidity condition for the core
specimen (which was not considered in Equation (1)). There is no coefficient in Reluis-DPC
Guidelines [35] related to the presence of reinforcing bars (i.e., similar to Ca in Equation (1)).
In this study, we employ Equation (1) instead of the Reluis-DPC expression due to the
lack of data about the conservation of the specimen after the extraction (related to the
inclusion of the humidity corrections used in (a) and (d) of the Reluis-DPC expression
denoted above).

Once the cylinder strength fc is evaluated, a factor of 0.83 is suggested in NTC 2018 [5]
to convert fc to the cube strength Rc for normal concrete strength as follows:

Rc = fc/0.83. (2)

It should be noted that the above conversion is for standard samples with H/D = 2.
This conversion is useful because many literature regression predictions that correlate V
and S to the concrete strength use the cube concrete strength. Many research endeavors
in Italy re dedicated to fc-Rc mapping (see, e.g., [10,36,37]). The conversion presented in
Equation (2) is also proposed by Masi [11] and ACI 214.4-R03 [38]. Given the linear relation
in Equation (2), the standard deviation and coefficient of determination (see Section 2.2) of
the logarithmic linear regression are the same for fc and Rc.

2.2. Probabilistic Logarithmic Linear and Multilinear Regressions

Linear least squares fitting is a procedure for finding the best fitting line to a given
dataset by minimizing the sum of the squares of the residuals of the data from the line.
The regression can also be regarded as a probabilistic model to define the conditional
probability distribution of dependent variable with respect to independent variable. This
probabilistic model has many applications in the structural engineering literature (see,
e.g., [39,40]). Herein, this probabilistic model is implemented to obtain the lognormal
probability distribution of lnRc|V. This is equivalent to fit a power-law curve to the Rc-V
response in the arithmetic scale that gives the conditional median of Rc for a certain velocity
V value, denoted as ηRc |V , as follows:

ln ηRc |V = ln a + b · ln V = ln
(

a ·Vb
)

, ηRc |V = a ·Vb

βRc |V =

√
n
∑

i=1

(
ln Rci

a·Vi
b

)2
/(n− 2)

, (3)
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where lna and b are the logarithmic linear regression parameters; βRc |V is the logarithmic
standard deviation of regression (i.e., the standard error of regression); {Vi, Rci}, i = 1:n, are
the n in situ core test data. The conditional logarithmic standard deviation of the regression
follows the homoscedasticity assumption. One of the most well-known measures indicating
how well the sample regression line fits the data is called the coefficient of determination or
the R-square (R2) defined as

R2 = 1−

n
∑

i=1

(
ln Rci

a·Vi
b

)2

n
∑

i=1

(
ln Rc,i − ln Rc

)2 , ln Rc =

n
∑

i=1
ln Rc,i

n
. (4)

R2 varies between zero and one and offers a variance measure reduction provided by
means of the regression. The perfect fit has R2 ≈ 1 (R2 ≈ 0 shows a poor fit). It should be
noted that each building can have its own characterization of non-destructive parameters
versus the concrete strength, based on the data related only to that building. Nevertheless,
in the absence of building-specific calibration between destructive and non-destructive
data, the regression prediction, albeit imperfect, is useful.

The probabilistic logarithmic multilinear regression model is also employed herein,
where the lnS and lnV are used as independent predictor variables, as follows:

ln ηRc |V,S = ln a + b · ln S + c · ln V = ln
(

a · Sb ·Vc
)

, ηRc |V,S = a · Sb ·Vc

βRc |V,S =

√
n
∑

i=1

(
ln Rci

a·Sb ·Vc

)2
/(n− 3)

. (5)

2.3. Bayesian Workflow for Quantifying the Relative Error in Non-Destructive Test Measurements
and Calculating Their Relative Weights with Respect to Destructive Test Results

A preliminary version of this Bayesian workflow was presented first in [24]. Herein,
we describe the complete methodology in a stepwise manner.

2.3.1. The Conditional Probability Model for Predicting Rultr Given the Core Strength Rc

The procedure relies on a probabilistic regression model in the logarithmic scale
of ultrasonic resistance Rultr versus destructive test resistance Rc measured at the same
location. This regression model does not imply the inclusion of rebound parameter S. Later,
in Section 3, it is demonstrated that S is not significant within a multilinear regression
model shown in Equation (5). This helps in characterizing the conditional probability
model for predicting Rultr given Rc based on a linear regression model between lnRultr and
lnRc as follows:

ln ηRultr |Rc = ln a f + b f · ln Rc = ln
(

a f · Rc
b f
)

βRultr |Rc =

√
n
∑

i=1

(
ln Rultr,i−ln ηRultr |Rc ,i

)2

n−2 =

√
n
∑

i=1

(
ln(a·Vi

b)−ln ηRultr |Rc ,i

)2

n−2

, (6)

where lnaf and bf are the parameters of the linear regression; ηRultr |Rc is the conditional
median of Rultr given Rc; βRultr |Rc is the logarithmic standard deviation (dispersion) of Rultr
given Rc. It should be noted that an early version of this relationship (a proportional one)
was proposed in [24], which evolved into a power–law relationship in the arithmetic scale.

2.3.2. Characterizing the Uncertainty in the Concrete Strength Considering Both
Destructive and Non-Destructive Test Results

The procedure for Bayesian updating of the probability distribution for concrete
strength is outlined herein. D defines the set of available test data consisting of the core test
data (destructive, denoted as Dcore) and ultrasonic test data (non-destructive, denoted as
Dultr); thus, D = {Dcore, Dultr}. By employing the Bayes theorem, the posterior (updated)
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joint distribution of the median η and logarithmic standard deviation β of the concrete
strength given D, P(η, β |D ), can be expressed as follows:

P(η, β|D) = c−1P(D|η, β )P(η, β), (7)

where P(D|η, β ) is the likelihood of our data D; P(η, β) is the prior joint distribution of
the concrete strength parameters; c−1 is the normalizing constant. Assuming that, prior
to implementing D, random variables η and β are independent, Equation (7) can be re-
written as

P(η, β|D) = c−1P(Dcore|η, β)P(Dultr|Dcore, η, β)P(η)P(β), (8)

where P(Dcore|η, β ) and P(Dultr|Dcore, η, β ) are the likelihoods of the two sets, Dcore and
Dultr, respectively. We note that the likelihood of the ultrasonic test is conditioned on
Dcore data. Assuming independence between core test measurements (which is not true in
general), the likelihood of observing the core test measurements can be written as

P(Dcore|η, β) = ∏i P(Rc,i|η, β) = ∏i

 1
βRc,i

φ

 ln
(

Rc,i
η

)
β

, (9)

where φ(·) is the standard normal probability density function; Dcore = {Rc,i, i = 1:n}. On
the other hand, the likelihood P(Dultr|Dcore, η, β ) can be written by employing the total
probability theorem:

P(Dultr|Dcore, η, β) = ∏k P(Rultr,k
∣∣Dcore, η, β) = ∏k

(
∑i P(Rultr,k

∣∣Rc,i)P(Rc,i|η, β)
)

, (10)

where Dultr = {Rultr,k, k = 1:n}. In Equation (10), the probability of observing the kth ultrasonic
data P(Rultr,k|Dcore, η, β ) can be expanded with respect to the vector of the core values {Rc,i,
i = 1:n}. We note that the conditioning on Dcore manifests itself in the conditional probability
P(Rultr,k|Rc,i ), which is a lognormal distribution with the median and logarithmic standard
deviation derived from the probabilistic regression model in Equation (6). Hence, it can be
expressed as

P(Rultr,k
∣∣Rc,i) =

1
βRultr |Rc Rultr,k

φ

 ln
(

Rultr,k/(a f Rc,i
b f )
)

βRultr |Rc

. (11)

Substituting Equation (11) into Equation (10), we obtain

P(Dultr|Dcore, η, β) = ∏k

∑i
1

βRultr |Rc Rultr,k
φ


ln

(
Rultr,k(

a f Rc,i
b f
)
)

βRultr |Rc

 · 1
βRc,i

φ

 ln
(

Rc,i
η

)
β


. (12)

Substituting Equation (9) and Equation (12) into Equation (8), the updated joint
probability distribution P(η, β |D ) can be estimated.

The mechanical property of interest herein is the average of concrete strength across
the whole data (i.e., a constant value of concrete strength is used for structural analysis,
performance assessment, etc.). This means that we are specifically interested in the proba-
bility distribution for concrete median strength value. The updated marginal distribution
of the median η, P(η |D ), can be calculated directly from the updated joint probability
distribution by integrating P(η, β |D ) over the domain of dispersion parameter β. This
marginal probability P(η |D ) of η takes into account both destructive and non-destructive
test results. The maximum likelihood of the median η, denoted herein as R̂c, can directly
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be estimated from of the joint distribution P(η, β |D ). The coefficient of variation of the
median η, denoted as COVRc , is estimated as follows:

COVRc =

√
E(η2)− E(η)2

E(η)
, E(η) =

∫
Ωη

η · p(η |D )dη,E
(

η2
)
=
∫

Ωη

η2 · p(η |D )dη. (13)

As a result, parameters R̂c and COVRc can directly be used as the median and log-
arithmic standard deviation of an equivalent lognormal probability density function for
concrete strength.

2.3.3. Estimating the Relative Weights Associated with Each Ultrasonic Non-Destructive
Test Data

In order to obtain an estimate of the relative weight of the kth ultrasonic test given
the measurements of the core test Dcore, we start with the probability of observing the kth
ultrasonic data given the maximum likelihood estimates of the joint distribution P(η, β |D )
that can be shown as P

(
Rultr,k

∣∣ηML = R̂c, βML
)

(we note that we drop the conditioning on
Dcore since it is already embedded in the estimated maximum likelihood parameters ηML
and βML). With reference to Equation (10), this probability can be written as

P(Rultr,k
∣∣ηML, βML) = ∑

i
P(Rultr,k

∣∣Rc,i)P(Rc,i|ηML, βML)

= ∑
i

1
βRultr |Rc Rultr,k

φ

(
ln
(

Rultr,k/(a f Rc,i
b f )
)

βRultr |Rc

)
· 1

βMLRc,i
φ

(
ln(Rc,i/ηML)

βML

) . (14)

Equation (14) can be interpreted as the “exact” probability content of
P
(

Rultr,k
∣∣ηML = R̂c, βML

)
(in the sense of if we want to account for the relative mea-

surement error explicitly). The goal herein is to obtain a weight to be applied to a non-
destructive data in order for it to obtain the same reliability of the destructive test. The
equivalent weight of a given ultrasonic test can then be seen as the likelihood of observing
the ultrasonic test results, calculated based on the conditional probability estimated over all
observed core tests. Thus, Equation (14) can be seen as the weight of the kth ultrasonic test.

3. Application
3.1. Brief Overview of the In Situ Tests

As underlined in CSLP guidelines [32], the choice of the number of destructive and non-
destructive tests on concrete specimens is among the most challenging issues during field
investigation and should follow precise recommendations. The reliability of the concrete
strength depends on the number of concrete cores extracted as well as non-destructive
measurements carried out. Rebound index and ultrasonic (non-destructive) test can be
carried out quickly, which are less expensive, and cause the least damage to the surfaces of
the structures. However, the estimation of the resistance is not straightforward as it requires
complex calibrations. Core drilling is the reference method for calibrating non-destructive
measurements. In fact, estimating concrete strength by coring, except for the recourse to
some corrective coefficients, does not require a real correlation for the interpretation of
data. However, it causes localized and moderate damages to the structure, is obviously
slower and more expensive in execution. Finally, it is important to note that between the
non-destructive tests, rebound index test is less expensive compared to the ultrasonic test;
however, this work shows (see Section 3.3) that rebound index test has a weak relation with
the concrete core strength, while the ultrasonic test indicates a much better correlation.

3.1.1. Destructive Tests

Concrete strength can more reliably be estimated by core test; however, it is important
to follow all the prescriptions from the codes in extracting and analyzing the core specimen.
The procedures for removal, the process on the extracted samples to obtain the specimens,
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and the relative compression test methods are described in UNI EN 12504-1 (“Removal
from concrete in structures—Carrots—Removal, examination and compression test”, [4]), UNI
EN 12390-1 (“Testing hardened concrete—Part 1: Shape, dimensions and other requirements for
specimens and moulds”, [41]), UNI EN 12390-2 (“Testing hardened concrete—Part 2: Making and
curing specimens for strength tests”, [42]), and UNI EN 12390-3 (“Testing hardened concrete—
Part 3: Compressive strength of test specimens”, [43]). It is important to respect some main
recommendations (as highlighted also in the CSLP guidelines, [32]):

• The diameter of the extracted carrots should be at least three times greater than the
maximum diameter of the aggregates.

• Carrots intended for resistance assessment should not contain reinforcing steel bars.
• Carrots with defects should be evaluated carefully and separately.
• The height/diameter ratio (slenderness) of the specimens should, if possible, be equal

to one or two.
• Before breaking, the core samples should be aired out for at least 24 h.

3.1.2. Non-Destructive Tests

The code recommendations for the ultrasonic and rebound index tests and for their
combination can be found in Reluis Guidelines [35] and CSLP Guidelines [32], UNI EN
12504 [1,2]. The ultrasonic test technique is based on the measurement of the ultrasound
propagation velocity, i.e., the propagation of longitudinal elastic waves inside the concrete.
It takes into account the global mechanical properties of the material, since the speed of
wave propagating within a homogeneous material depends on material density, elastic
modulus, and Poisson’s coefficient. As a first approximation, the propagation speed is pro-
portional to the square root of the elastic modulus and inversely proportional to the square
root of the density. The compressive strength is estimated based on the ultrasound trans-
mission velocity, assuming the validity of a proportional relationship between compressive
strength and elastic modulus, using experimental correlations.

The propagation velocity of elastic waves is influenced by various factors, including
the humidity content, the composition of the concrete mixture, and the degree of maturation.
In determination of velocity, possible presence of steel reinforcement bars and any possible
macroscopic defects should be considered. The estimated average speed of the ultrasonic
waves, V, should be controlled, i.e., measurements that lead to transmission speeds higher
than 4800 m/s or less than 2500 m/s should be further verified by considering the following
indicative values (CSLP Guidelines [32]):

• For concrete of poor quality: V < 3000 m/s;
• For medium-quality concrete: 3000 m/s ≤ V ≤ 4000 m/s;
• For concrete of good quality: V > 4000 m/s.

The rebound index method uses the sclerometer to measure the elastic energy absorbed
by the concrete after an impact. This energy can be put in relation to concrete stiffness
and strength by empirical relationships. The relation between rebound index and concrete
strength can be influenced by numerous other factors, including the humidity conditions of
the concrete on the surface (a wet surface leads to a lower rebound index); the presence of a
carbonated surface layer (increases the rebound index); a surface texture (a rough surface
generally provides a lower rebound index); the orientation of the instrument; the age of
the concrete; the size and type of the aggregates. Since only the concrete near the point of
impact strongly influences the rebound index values, the test methodology is sensible for
local conditions.

The combined method consists of the application of two survey methods, the rebound
index plus the measurement of ultrasound propagation speed, which is known as the
SONREB method for assessing the strength of concrete. The available results from two
different methods makes it possible to estimate the resistance through several correlations.
The validity of the SONREB method is derived from the compensation of the inaccuracies of
the two non-destructive methods used. In fact, it has been noted that the humidity content
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underestimates the sclerometric index measurement, and overestimates the ultrasonic
velocity. Moreover, as the age of the concrete increases, the sclerometric index increases
while the ultrasonic speed decreases.

3.2. The Database

The database used in this study consists of 221 test results. The data are obtained from
20 different structures. The buildings have been built in the past century between the 1930s
to the 1990s, mainly in the Campania region, Southern Italy (with some exceptions related,
however, to other Italian regions). The importance classes for buildings are mainly related
to Class II (ordinary buildings with normal occupancy) and Class III (important buildings
with high occupancy), defined in NTC 2018 [5]. The tests are implemented on RC beams,
columns, and walls. Table 1 summarizes the data. The information about the buildings
is just related to their construction period (CP), and to ensure the privacy, more specific
information cannot be shared. The following issues are addressed:

Table 1. The database of the used tests.

BN * CP * Total Number
of Tests

Tests on
Beams

Tests on
Columns

Tests on
Walls

Average
Rc

Standard
Deviation Rc

1 60s–70s 18 8 10 0 20.96 6.70
2 60s–70s 21 11 10 0 13.73 3.41

3 [44] 70s 3 3 0 0 19.78 1.91
4 70s 9 4 5 0 24.24 3.31
5 80s–90s 26 0 5 21 29.41 3.88
6 70s–80s 21 19 2 0 25.86 6.61
7 - 3 3 0 0 27.00 2.11

8 [45] - 10 - - - 14.30 3.75
9 80s 17 0 0 17 19.98 6.33
10 60s–70s 7 5 1 1 18.47 4.26
11 30s–40s 3 1 2 0 17.98 1.71
12 - 4 1 3 0 35.95 2.17
13 90s 30 3 21 6 30.43 6.03
14 30s–40s 4 2 2 0 18.36 3.12
15 30s–40s 3 1 2 0 18.56 4.34
16 30s–40s 14 6 8 0 18.22 4.28
17 80s 3 0 3 0 27.60 2.21
18 60s 9 9 0 0 17.42 6.93
19 80s 4 4 0 0 15.50 1.92
20 - 3 0 3 0 28.00 5.63

21 [46] 80s 9 9 0 0 17.99 5.48

* BN = Building Number; CP = Construction Period.

â For all the 221 data points, concrete strength from destructive core tests, ultrasonic
velocity V and rebound number S from non-destructive tests are available. For each
test, they are measured on the same structural member.

â For BN 8, CP and type of structural member is not available.
â For BNs 7, 12 and 20, CPs are not available.
â BN 18 and 19 belong to the same building but refer to two different periods (in

particular, the lower floors have been built in 60s, while the last floor has been built in
80s as superelevation).

â The number of the tests corresponding to the same building is always less than or
equal to 30. For each BN, the average and the standard deviation values of the test
data are shown in the last two columns.

â A significant part of the data is collected based on personal communications with
different professional engineers. The data associated with three buildings, BNs 3, 8
and 21, are obtained based on the tests available in the literature.
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Figure 2 shows the three test typologies, the Core test, the Rebound index test, and the
Ultrasonic test, performed on BN 2.
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3.3. Results and Comparisons
3.3.1. Regression Predictive Equations

Figure 3 illustrates the logarithmic linear regression performed on the 221 data pairs
{(Vi, Rc,i), i = 1:n = 221}. The data points associated with each building are shown with
distinct colors (the amount of data for each building is shown in Table 1). Figure 3 also
shows the regression line, i.e., the median ηRc |V (see Section 2.2), with dark grey solid
line and the model parameters a, b, and βRc |V as well as R2 are reported in the figure (see
Equation (3)).
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Figure 3. The logarithmic linear regression between Rc and ultrasonic velocity V.

Figures 4 and 5 show the scatter plots for test data {(Si, Vi, Rc,i), i = 1:n = 221} on a
natural logarithmic scale. In Figure 4, the regression model is derived for {(Vi, Rc,i), S = 39.7,
i = 1:n = 221} where the constant rebound number S = 39.7 corresponds to the mean value
extracted from the data. On the same page, Figure 5 illustrates the regression model {(Vi,
Rc,i), V = 3445 m/s, i = 1:n = 221} where the constant ultrasonic velocity V = 3445 m/s is the
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mean of data. Figures 4 and 5 also show the regression prediction model (i.e., regression line
in blue solid line and the estimated model parameters a, b, c and βRc |V,S; see Equation (5)).
Figure 6 illustrates the three-dimensional (3D) representation of the multilinear logarithmic
regression, which reveals that Rc has a significant correlation with the ultrasonic velocity V;
however, there is low statistical correlation with the rebound index S. To this end, a test
of significance for the rebound index S is conducted in Section 3.3.3 in order to check the
feasibility of this parameter within the multilinear regression.
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Based on the collected database, the following two probabilistic logarithmic regression
models (linear, Equation (15), and multilinear, Equation (16)) in the arithmetic scale are
proposed herein:

ηRc |V =
(

1.21× 10−5
)
·V1.79; βRc |V = 0.23, (15)

ηRc |V,S =
(

1.06× 10−5
)
· S0.07 ·V1.78; βRc |V,S = 0.23. (16)

3.3.2. Comparison with Literature

Figure 7 illustrates comparisons of the proposed multilinear regression model with
regression models in the literature. The functional forms of the existing models in the
literature are as follows:

RILEM (1993) : Rc =
(

7.7× 10−11
)
· S1.40 ·V2.60, (17)

Gasparik (1992) : Rc =
(

6.69× 10−8
)
· S1.246 ·V1.85, (18)

Di Leo and Pascale (1994) : Rc =
(

1.0× 10−9
)
· S1.058 ·V2.446, (19)

Del Monte et al. (2004) : Rc =
(

3.7× 10−7
)
· S1.13 ·V1.69. (20)
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Figure 7 shows the scatter plots of test data = {(Si, Vi, Rc,i), i = 1:n = 221} for a constant
value of S = 39.7 (the average value for the dataset). The coefficients a, b and c of these
regressions, shown in the figures, are taken based on Equations (17)–(20) [9,10,13,14].
Finally, R2 is also calculated in the arithmetic scale and shown in Figure 7:

R2 = 1−

n
∑

i=1

[
Rc,i −

(
a · Si

b ·Vi
c
)]2

n
∑

i=1

(
Rc,i − Rc

)2
. (21)

It should be noted that although R2 is calculated based on Equation (21), it is not a
least squares error estimate. That is, the reported R2 is simply representing the goodness of
fit of a prescribed regression model (herein, alternative regressions with constant rebound
number S are presented).

The comparison between the literature regression models (blue solid line) and the
proposed multilinear regression model (black dashed line) is also proposed in Figure 7.
It can be noted that the proposed multilinear regression model is mainly governed by
the parameter V, while the coefficient for the S parameter is very small. To this end, a
significance test on the parameter S in the regression is performed in the next section.

The value of R2 of the proposed formulation is higher with respect to the other
literature predictions. This is expected because the presented regression is the logarithmic
linear least squares fit to the same data. Nevertheless, in absence of building-specific
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calibration between destructive and non-destructive data, the regression prediction is
useful, mainly in the Campania region.

3.3.3. Significance Test for the Rebound Index S in the Regression

A one-side p-value test is implemented [47] to test the significance of the rebound index
S in the regression. The test is performed on the potential trend among two logarithmic
residuals sets, one is that of Rc given V based on the original regression between Rc and V,
and one is that of S (considered as a potential independent variable) on V. The slope of the
regression line to be zero (test of hypothesis, [47]) helps to derive the significance of the
trend among the two logarithmic residuals. The slope significance is quantified through
the p-value, assuming that the slope of the regression line is a random variable described
by Student’s t-distribution [47]. The hypothesis is rejected, and the results are statistically
significant if the p-value is smaller than a certain (small) value, e.g., 0.01. Figure 8 shows a
p-value that is quite high; thus, S is not statistically significant as a second independent
regression variable. Moreover, the small R2 value of the logarithmic residual–residual plot
confirms this issue. The high p-value for the second predictor variable (S) and similar R2

between the multi-variable (V and S) and mono-variable (only V) regressions offer another
confirmation to use only V. Therefore, it is recommended to use the logarithmic linear
regression based on ultrasonic velocity V as the only independent variable.
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3.3.4. The Uncertainty Characterization of Concrete Strength Based on Both Destructive
and Non-Destructive Tests

This section presents the uncertainty characterization of concrete strength based on
both destructive and non-destructive tests within the Bayesian workflow, as presented
in Section 2.3.2. The procedure relies on a probabilistic logarithmic linear regression
model built to predict the ultrasonic resistance Rultr as a function of the core resistance Rc
measured at the same structural element (see Section 2.3.1, Equation (6)). Figure 9 shows
the probabilistic regression model.
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Following the Bayesian updating procedure proposed in Section 2.3.2, the marginal
distribution of the median of the concrete strength η, denoted as P(η|D ), can be calculated
directly from the joint distribution P(η, β|D ) in Equation (8). The errors in both destructive
and non-destructive tests are incorporated within this distribution. It can be directly
employed for uncertainty propagation within the framework of performance-based design
and assessment of structures. Figure 10 illustrates the posterior distribution P(η|D ) with
a thick black line. The prior probability distribution of the median η, denoted as P(η) in
Equation (8), is assumed to have the distribution proposed by Verderame et al. [48], which
is based on the typical values of the post-World War II constructions in Italy. The prior
distribution is a lognormal distribution with the median equal to 16.5/0.83 MPa and a COV
equal to 0.15. This prior distribution is shown in Figure 10 with a thin grey line. Moreover,
we assigned a non-informative prior to P(β) in Equation (8). Figure 10 also shows the
maximum likelihood estimate of the median, denoted as R̂c, in Section 2.3.2, with a red
dotted line. The maximum likelihood is estimated from of the maximum likelihood of the
joint distribution P(η, β|D ). Moreover, the coefficient of variation (COV) of the median η,
denoted as COVRc , is calculated through Equation (13), and shown in this figure.
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Figure 10. The posterior and prior distribution of the median of the concrete strength Rc considering
both core and ultrasonic test results.

3.3.5. Non-Destructive Data Relative Weights for the Concrete Compressive Strength
Estimation

This section proposes the results of the non-destructive data relative weights based
on the results of the destructive tests. Generally, these weights are directly employed
for calculating the weighted average of the concrete compressive strength for existing
structures. With reference to NTC (2018) [5], the concrete compressive strength of specimens
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extracted from columns and beams at each floor should be weighted by assigning weights
1 and 1/3 to destructive and non-destructive results, respectively.

Figure 11 presents the histogram and statistics of the relative weights of 221 ultrasonic
pieces of data, calculated based on Equation (14). The calculation of the statistics for the
relative weights is based on the first two moments of the set of weights. In particular, the
expected value is calculated as follows:

Ew =

∑
k

wk · Rultr,k

∑
k

Rultr,k
, (22)

where Ew is the expected value of the weights. Moreover, the standard deviation on the set
of the weights can be calculated as follows:

σw =

√
E(w2)− (Ew)

2, (23)

where E(w2) can be calculated as follows:

E
(

w2
)
=

∑
k

wk
2 · Rults,k

∑
k

Rults,k
(24)
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Figure 11. Histogram and statistics of the 221 relative weights of the ultrasonic test data calculated
based on Equation (14) and NTC 2018-based weight w = 1/3.

The Ew and Ew ± σw values calculated from Equations (22) and (23) are reported in
Figure 11 as blue solid and dash dotted lines, respectively. The red line indicating the
code-based weight of w = 1/3 is also shown in Figure 11. The expected value of the weights
calculated according to Equation (24) is Ew = 0.28, and the confidence band of one standard
deviation around the expected value, calculated according to Equation (23), is estimated as
0.14 and 0.42. The code weight w = 1/3 is very close to the estimated mean weight.

As a result, the mean of the non-destructive test effective weights is very close to
the code-base recommended values. This result is important because it demonstrates
how the non-destructive tests, implemented in terms of the ultrasonic velocity V, can be
reliably used within the concrete strength calculation to complement the destructive test, in
particular where it is not easy to execute them.

4. Conclusions

This paper proposes a Bayesian workflow to characterize the uncertainty in the con-
crete compressive strength based on both in situ destructive and non-destructive data. It
further attempts to estimate the relative weight of non-destructive measurements with
reference to the destructive tests in order to estimate the compressive strength for de-
sign/assessment purposes. A database containing core tests and SONREB non-destructive
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test data, performed on the same structural members of various RC structures, is assembled
in this work. The buildings are mainly located in the Campania region, Southern Italy,
constructed between 1930s and 1990s. Probabilistic logarithmic linear and multilinear
regression models are implemented to obtain predictive expressions for estimating the
concrete compressive strength, Rc, based on the ultrasonic velocity, V, and on the rebound
number, S. The implementation of the concrete strength based on non-destructive test
results is successively considered by estimating the relative measurement error with a
probabilistic methodology. The Bayesian inference framework presented herein manages
to quantify the relative error of the non-destructive tests with respect to the destructive
core tests. The main findings of the work are herein summarized:

• The logarithmic linear regression model (lnV-lnRc) can be adopted instead of the
logarithmic multilinear model (lnV-lnS-lnRc) without significant loss of accuracy. This
is also confirmed from the significance test of the rebound index S in the regression.

• It is good to have an own regression for each specific building among destructive
and non-destructive tests. However, it can be noted that the proposed multilinear
regression model has a good fit with respect to the considered data that allows its
usage for similar data.

• The relative weights of non-destructive tests for calculating concrete compressive
strength are derived based on the proposed probabilistic workflow. The mean of the
weights is very close to the relative weight recommended in the NTC 2018 Commen-
tary, which assigns a value of 1/3 to non-destructive tests.
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