
RESEARCH ARTICLE

SimpliPyTEM: An open-source Python library

and app to simplify transmission electron

microscopy and in situ-TEM image analysis

Gabriel IngID
1*, Andrew Stewart2, Guiseppe Battaglia3,4, Lorena Ruiz-PerezID

3*

1 Institute of Structural and Molecular Biology, Department of Chemistry, University College London, London,

United Kingdom, 2 Department of Chemistry, University College London, London, United Kingdom,

3 Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona,

Spain, 4 Catalan Institution of Research and Advanced Studies, Barcelona, Spain

* gabriel.ing.19@ucl.ac.uk (GI); lruiz@ibecbarcelona.eu (LR-P)

Abstract

Introducing SimpliPyTEM, a Python library and accompanying GUI that simplifies the post-

acquisition evaluation of transmission electron microscopy (TEM) images, helping stream-

line the workflow. After an imaging session, a folder of image and/or video files, typically

containing low contrast and large file size 32-bit images, can be quickly processed via Sim-

pliPyTEM into high-quality, high-contrast.jpg images with suitably sized scale bars. The app

can also generate HTML or PDF files containing the processed images for easy viewing and

sharing. Additionally, SimpliPyTEM specifically focuses on in situ TEM videos, an emerging

field of EM involving the study of dynamic processes whilst imaging. The package allows

fast data processing into preview movies, averages, image series, or motion-corrected aver-

ages. The accompanying Python library offers many standard image processing methods,

all simplified to a single command, plus a module to analyse particle morphology and popu-

lation. This latter application is particularly useful for life sciences investigations. User-

friendly tutorials and clear documentation are included to help guide users through the pro-

cessing and analysis. We invite the EM community to contribute to and further develop this

open-source package.

Introduction

Electron microscopy (EM) is a powerful technique for observing samples at the nanoscale, and

it is unrivalled for ease and popularity of use [1]. As with most modern-day microscopy meth-

ods, EM imaging nowadays yields data in the form of digital images or videos, or arrays of

numbers, with high and low values representing bright and dark regions of the image respec-

tively. In conventional, bright-field EM, the intensity of the signal corresponds to the density

of the sample at each point, with more dense regions transmitting fewer electrons and thus

yielding dark regions in the images. There is considerably more data available in the average

EM image than can be seen with the naked eye, for example, the images are often 16-bit or

32-bit allowing for far more contrast than is displayed. Combined with this, there is often a

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0285691 October 5, 2023 1 / 13

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Ing G, Stewart A, Battaglia G, Ruiz-Perez L

(2023) SimpliPyTEM: An open-source Python

library and app to simplify transmission electron

microscopy and in situ-TEM image analysis. PLoS

ONE 18(10): e0285691. https://doi.org/10.1371/

journal.pone.0285691

Editor: Carlos Fernandez-Lozano, University of A

Coruña, SPAIN

Received: April 14, 2023

Accepted: September 19, 2023

Published: October 5, 2023

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0285691

Copyright: © 2023 Ing et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: Software developed

can be found in a public repository on github,

accessible at https://github.com/gabriel-ing/

SimpliPyTEM, documentation and tutorials can be

https://orcid.org/0000-0001-9572-0147
https://orcid.org/0000-0003-0512-5606
https://doi.org/10.1371/journal.pone.0285691
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285691&domain=pdf&date_stamp=2023-10-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285691&domain=pdf&date_stamp=2023-10-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285691&domain=pdf&date_stamp=2023-10-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285691&domain=pdf&date_stamp=2023-10-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285691&domain=pdf&date_stamp=2023-10-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285691&domain=pdf&date_stamp=2023-10-05
https://doi.org/10.1371/journal.pone.0285691
https://doi.org/10.1371/journal.pone.0285691
https://doi.org/10.1371/journal.pone.0285691
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/gabriel-ing/SimpliPyTEM
https://github.com/gabriel-ing/SimpliPyTEM


considerable amount of noise in EM images, arising from various sources including from

inelastically scattered electrons and electrons scattered due to multiple collision events [2],

alongside undesired detector and readout signals. Noise can substantially obscure the under-

neath image. However, noise can often be reduced or removed using techniques ranging from

simple linear filters [3] to complex methods, including deep learning-based methods [4–7].

Effective data processing of EM images is thus vital to maximising the information yielded by

electron microscopy experiments. This requirement is even more significant in the world of in
situ EM, where the ability to observe the behaviour of materials and nanoparticles under real-

time, and controlled conditions can provide novel insights into advanced materials and novel

nano-structures. In situ TEM typically generates a significant amount of data in the form of

videos thus effective data processing and post-acquisition workflow optimisation become

essential tasks.

With these requirements considered, a lot of specialised and manual image processing

work is often required for post-experimental analysis. However, much of the post-experimen-

tal process cannot be easily automated, as the files produced are commonly incompatible with

standard image viewing programs, they often have poor contrast and lack scale bars. As a

result, many users spend significant time performing basic post-imaging tasks including con-

trast enhancement, basic filtering and adding scale bars. These tasks can be automated. It can

also be time-consuming to examine the acquired images as a whole or simply to produce a pre-

sentation to view and share these, for example for discussing the results with colleagues. There-

fore, EM users are in constant need of methods to automate the basic data processing steps

and allow the production of experimental contact sheets. Combined with this, the possibility

to access the metadata from the images collected is also important, so users can quickly access

details about images. However, metadata is often hidden within files and not easily accessible,

making image curation a time-consuming task.

Many programs are available to process EM images, with one of the most common

approaches being the use of ImageJ [8], an open-source package for scientific image analysis.

ImageJ is effective for manually editing images and has a scripting-based macro language to

automate repetitive tasks. However, the scope for automating complex tasks is limited and

many of the most powerful image analysis tools are not available with ImageJ. Gatan’s Digital

Micrograph program [9] is also effective at various image analysis tasks, however is only avail-

able on Windows operating systems. Coded approaches can be very effective, and the most

popular language since October 2022, is Python [10], Python is also widely used for science

and image analysis. Many image analysis libraries and functions are available with Python,

including openCV [11], pillow [12] and scikit-image [13], making it possible to perform an

enormous variety of tasks. One advantage of using Python for this analysis is the prevalence of

Python-based machine learning and deep learning-based image analysis tools [14, 15], which

commonly use images in a similar format and can easily be combined with other Python-

based workflows. At the same time, the range of available options and locations can make it

difficult for newcomers to locate the required methods. Many of the functions in these libraries

also come with many parameters which can make the function much more complicated to use

than is necessary for most cases. Whilst Python can be difficult to learn, the wide range of

users and tutorials available freely online can aid the learning process. While scripting tends to

be more powerful than user-interface-based approaches due to the wider availability of

options, many potential users find coding intimidating and challenging to learn, leading to

users performing time-consuming manual methods.

Herein, we introduce a new app for basic image and video processing, and visualisation. In

addition, we also introduce a Python library for work of added complexity. The app aims to

allow effective image processing from large file-size images or video files in various formats to

PLOS ONE SimpliPyTEM: An open-source Python library and app for electron microscopy image analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0285691 October 5, 2023 2 / 13

found on readthedocs at https://simplipytem.

readthedocs.io/en/latest/. The software can be

installed through PyPI from here: https://pypi.org/

project/SimpliPyTEM/.

Funding: GI acknowledges the Wellcome Trust for

funding his studentship (222908/Z/21/Z). The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0285691
https://simplipytem.readthedocs.io/en/latest/
https://simplipytem.readthedocs.io/en/latest/
https://pypi.org/project/SimpliPyTEM/
https://pypi.org/project/SimpliPyTEM/


reduced-size, high-contrast JPEG files with scale bars. HTML or PDF documents containing

these images and videos can also be created for easy visualisation. The Python library aims to

build on available methods by lowering the barriers of users new to Python for analysing EM

images and videos. An extensive range of functions, including image and video visualisation,

filtering, contrast enhancement and scale-bar addition are available in a user-friendly, consis-

tent and well-documented manner, with few required parameters. This package is accompa-

nied by detailed documentation and iPython notebook-based tutorials to make it easy to

access and follow for users with only basic knowledge of Python.

Results

SimpliPyTEM-library for images

Python is among the most powerful and widely used image processing and image analysis

tools. There are lots of modules available for image analysis, which can be very effective, how-

ever many of these modules involve steep learning curves and unnecessarily large numbers of

parameters. Therefore, to make common methods more available, we have created a library

drawing upon some commonly used methods, including openCV, scikit-image and numpy

[11, 13, 16]. This library is built on the principle of making the methods simple to use while

sacrificing little performance. Fig 1A and Table 1 display some of the available functions

within the library. In contrast, Fig 1B shows a code snippet, demonstrating the simplicity of

using the code, and Fig 1C shows the effect of the code snippet on a single example image.

This code ran in less than 2 seconds on a MacBook Pro, 2018 for a 32-bit 3838x3710 pixel

image, demonstrating the speed at which the processing can be performed.

SimpliPyTEM image processing is primarily hosted in a single Python class called ‘Micro-

graph’. The Micrograph object hosts the image data, metadata and pixel size, and the methods

to process the image. The library currently contains many simple methods to process the

images, including image filtering (with median, gaussian, low-pass, non-local means and Wie-

ner filters), the addition of scale-bar, converting to 8-bit, contrast enhancement and extracting

metadata from digital micrograph images. These functions are all designed to be performed

with a single line of code and with as few required parameters as possible, making the func-

tions as easy as possible. These functions return a copy of the object, meaning the original

object is kept.

In addition to conventional image processing methods, SimpliPyTEM includes support for

denoising images and videos using the deep-learning based denoising method Topaz, pro-

duced by Bepler et al. [6]. This method uses a deep learning model trained to predict and

remove noise from cryo-EM images by comparing two different examples of noisy cryo-EM

images. Topaz can dramatically enhance images and videos, particularly by making low resolu-

tion features much easier to see. Although Topaz is specifically trained for cryo-EM, it can be

highly effective for various bright-field TEM images and videos including in situ TEM videos.

Unfortunately, this does have significant hardware requirements and benefits greatly from a

CUDA GPU for fast processing. On a Macbook Pro, 2018 Topaz takes several minutes per

32-bit 3838x3710 pixel image, while a CUDA GPU can accelerate this to mere seconds. By

integrating Topaz within SimpliPyTEM-GUI, we aim to make state-of-the-art denoising meth-

ods more accessible and user-friendly for any researcher.

SimpliPyTEM-library for videos

In situ TEM is a growing field, allowing the capture of live nanoscale events, providing

dynamic information on phenomena that are not easily studied using other methods [17].

This results in EM videos containing a lot of information, particularly if captured from a direct

PLOS ONE SimpliPyTEM: An open-source Python library and app for electron microscopy image analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0285691 October 5, 2023 3 / 13

https://doi.org/10.1371/journal.pone.0285691


electron detector, which commonly have high bit-rates and large sizes. Efficient analysis of

acquired videos is essential, and as discussed in the introduction Python is ideal for this, how-

ever can prove difficult for inexperienced users. As such, we have created a Python library

Fig 1. SimpliPyTEM—Python library. A) Venn diagram showing an example of available functions for image and

video processing, these are all accessible with a single line of code. B) Example code for basic image processing. C)

Image transformation achieved by the code shown in B, with a running time of 1.97s, with it falling to 0.84s when the

image is not plotted (on MacBook Pro, 2018).

https://doi.org/10.1371/journal.pone.0285691.g001

PLOS ONE SimpliPyTEM: An open-source Python library and app for electron microscopy image analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0285691 October 5, 2023 4 / 13

https://doi.org/10.1371/journal.pone.0285691.g001
https://doi.org/10.1371/journal.pone.0285691


allowing for many basic and advanced methods to be employed for analysis of videos. Such

methods include all of the techniques discussed for the image library, while also including

many video-specific methods, for example, averaging frames together, video normalisation,

and using existing software, motioncor2 [18] to correct for global motion within the video.

Videos can be loaded into a ‘MicroVideo’ object from various sources, including DM files,

movie files like MP4, AVI, MOV and sequences of TIF or DM image files. From here, the vid-

eos can be averaged into groups of n frames, averaged in a sliding window fashion, converted

to 8-bit, contrast enhanced and filtered, added a scale-bar, alongside several other functions.

As with the image-processing library, these functions can be achieved in single lines of code,

with few required parameters to make them as simple as possible. By processing videos in this

way, the user can easily prepare the video for further analysis or presentations. Moreover, the

video can be easily viewed in an iPython notebook (e.g., Jupyter notebook) and saved as an

image sequence, an image stack, a single image (either single frame or average) or a movie file

in.mp4 or.avi format, depending on its intended use.

SimpliPyTEM-GUI

The GUI-based image processing app is designed as a simple tool for EM users to use during

or post-experiment (Fig 2). Images and videos in a number of common formats, including dig-

ital micrograph (GATAN),.emi (FEI) and.TIF can be loaded, enhanced, and saved into.JPG or.

TIF images. Basic processing tasks can be performed on the images, including gaussian and

median filters, the addition of a scale bar and contrast enhancement. Different options are also

available for videos, including DM image stacks,.mp4 and.avi files to be saved as an average

image, a video (.mp4 or.avi), a motion-corrected average (using motioncor2), a tif sequence

(i.e. saved as individual tif files) or a tif stack. This app provides many options for in situ users

Table 1. List of functions available for image and video processing.

Function Image Video

Contrast enhancement

Median Fillter, gaussian Filter

Wiener filter, Low-pass filter, non-local means

filter

Display Fourier Transform

Bin in x and y dimensions

Crop

Improve uneven contrast

Show in Jupyter notebook

Save key metadata into.csv file (from DM files)

Save into PDF Can save average frame

Save into HTML

Save as 8-bit TIF, 32-bit TIF, JPEG Can save average frame. Can save choice of frame though

coded approaches.

Save videos as TIF stack, TIF sequence, MP4 or

AVI video files

N/A

Average frames N/A

Correct for motion using motioncor2 N/A

Denoise using Topaz Deep-learning denoiser

The table shows the functions available with both the code library and the GUI (Green) whereas the purple shows

functions only available using the code library.

https://doi.org/10.1371/journal.pone.0285691.t001

PLOS ONE SimpliPyTEM: An open-source Python library and app for electron microscopy image analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0285691 October 5, 2023 5 / 13

https://doi.org/10.1371/journal.pone.0285691.t001
https://doi.org/10.1371/journal.pone.0285691


Fig 2. SimpliPyTEM-GUI for post-acquisition image processing. A) Appearance of SimpliPyTEM-GUI. B) Effect of SimpliPyTEM-GUI, showing the simple

conversion of digital micrograph files with poor contrast and limited compatibility, to high contrast JPGs which can be used for observation and display. This

process is quicker than many comparable methods, including using imageJ, taking seconds per file. There is also a document creation section which allows a

PDF or responsive HTML document to be produced showing the images and videos collected during the experiment. Examples of these documents are shown

at the bottom of B). C) A flowchart showing the steps takn to use the GUI to process a folder of images. D) A flowchart showing the steps taken to produce an

HTML or PDF document containg the required images.

https://doi.org/10.1371/journal.pone.0285691.g002

PLOS ONE SimpliPyTEM: An open-source Python library and app for electron microscopy image analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0285691 October 5, 2023 6 / 13

https://doi.org/10.1371/journal.pone.0285691.g002
https://doi.org/10.1371/journal.pone.0285691


to create effective previews of their videos. The functions accessible from the GUI are detailed

in Table 1. Flowcharts for how the GUI can be used are included in Fig 2C and 2D.

Alongside the image or video processing, there is also an additional section for visualisa-

tion. Images can be easily added to PDF or HTML files with a designated title and experimen-

tal notes. This process allows the rapid generation of documents to summarise the results of an

experiment, which can be conveniently viewed or shared with others with very little prepara-

tion time. This development is beneficial as it allows for rapid sharing and discussion of the

results with colleagues or collaborators. Examples of these documents can be seen in Fig 2.

As discussed in the introduction, image metadata can be useful for various reasons, for

example to easily get an idea of the magnification used in an image. This value may provide

information about what the acquired image contains without the need to view the image itself.

SimpliPyTEM-GUI will automatically extract many of the features found within these meta-

data tags, including magnification, voltage, exposure time and acquisition date and time.

These values are collected into a CSV table with the other files within the folder, which can

then be easily examined, allowing easy identification of files by their imaging conditions.

Particle analysis module

While the basic image and video processing modules, Micrograph_class and MicroVideo_-

class, are highly effective for image processing, we also include a basic image analysis module.

The module contains simple methods for extracting data from nanoparticle, including posi-

tions, sizes, morphology, shape, and other physical properties. This information is crucial for

thorough sample characterisation and optimisation in various fields, including pharmaceutical

and materials science, nanotechnology, and biomedicine. The process for measuring particle

properties is simple and involves applying a threshold to separate the nanoparticles from the

background intensity, locating the boundaries of the particles and filtering the selected parti-

cles by area. The process will yield the user to measure the physical characteristics of the parti-

cles, which are returned in a Python dictionary of characteristics. These physical properties

include area, position, circularity, major and minor axes, and major: minor axis ratio. The

module also includes a way to take multiple measurements of the particle diameter from a sin-

gle particle, allowing the diameter’s maximum, minimum, mean, and standard deviation to be

collected. By considering these measurements, the user can obtain quantitative information

about the uniformity of the investigated particles. An example of this functionality is given in

Fig 3, where a negatively stained micrograph of polymer particles was selected for applying

this module. Thresholding, was applied to the image, then the objects in the field of view, i.e.

particles were located, filtered by size, and various properties could subsequently be extracted

and plotted.

Detailed methods

Image manipulation

The main aim of this package is to simplify the use of Python-based programming for process-

ing and analysing electron microscopy images. Python already has many publicly available

libraries for image analysis [11–13], some of which have been used to varying degrees in this

package. Image processing with Python is commonly performed by holding images in a

numpy array [16], these are n-dimensional matrices of values which store data and allow many

efficient data-editing functions. These numpy arrays are the backbone of image handling and

manipulation in SimpliPyTEM.

SimpliPyTEM supports the opening of various image and video format files. Digital micro-

graph (DM) [9] files, a common EM file format from Ametek (formally Gatan) detectors, are

PLOS ONE SimpliPyTEM: An open-source Python library and app for electron microscopy image analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0285691 October 5, 2023 7 / 13

https://doi.org/10.1371/journal.pone.0285691


opened using openNCEM [19]. Metadata from DM files are extracted and easily accessible.

Another popular EM image format, MRC files, are opened using the Python package mrcfile

[20]. Both of these file types can include both images and movie files. Other Microscopy image

files can be opened using the multi-format spectral analysis program Hyperspy [21], which

allows a wide range of Micrograph formats to be opened, including those used by FEI, JEOL

and Gatan.

In-situ TEM experiments are often recorded with screen recording software due to insuffi-

ciencies in direct and charge-coupled detectors for capturing videos. However, the data pro-

duced often require similar processing to detector-captured videos. Here, we support the

opening of most major video formats, including MP4, MOV and AVI, these file types are

opened using openCV’s [11] VideoCapture module.

Several choices are available for outputting image and video files from the software. For

images, there is a choice between TIF files and JPEG files. TIFs allow image data to be saved in

the current conditions, thus producing uncompressed images or images with higher bitrates.

The Python package tifffile is used for this task. JPEG files are also supported, in this case files

are compressed, producing a much smaller file size. Saving images as JPEGs can introduce

Fig 3. Basic particle analysis protocol to extract particle data from a negatively stained image of polymer

particles. The starting image is opened (A), preprocessed to enhance contrast and features (B), then a threshold is

applied to create a binary image, with particles and background in white and black, respectively (C). The particles are

located and filtered by size (D), particles touching the edges of the image are also removed. Finally, data is extracted (E)

and plotted (F) with very few lines of code (from image to data). Here we show plots of particles’ diameter, circularity,

and position, however more features are also accessible. The code to produce this analysis is available online as a

tutorial within the documentation (https://simplipytem.readthedocs.io/en/latest/Tutorials/Particle_analysis_tutorial.

html).

https://doi.org/10.1371/journal.pone.0285691.g003

PLOS ONE SimpliPyTEM: An open-source Python library and app for electron microscopy image analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0285691 October 5, 2023 8 / 13

https://simplipytem.readthedocs.io/en/latest/Tutorials/Particle_analysis_tutorial.html
https://simplipytem.readthedocs.io/en/latest/Tutorials/Particle_analysis_tutorial.html
https://doi.org/10.1371/journal.pone.0285691.g003
https://doi.org/10.1371/journal.pone.0285691


subtle distortions in the image, but can be useful for ensuring files remain lightweight for easy

viewing and sharing. The generated images are high quality nonetheless and ideal for display

purposes.

Movie files have many export options, allowing for various downstream applications.

Movie frames can be saved as sequences of TIF Files or as a TIF format image stack. Image

sequencing can be particularly useful when investigating a dynamic process via in situ EM.

MP4 and AVI movie files are saved using moviePy; MP4 files are effective for viewing and dis-

playing movies, in particular, the MP4 format was chosen for its suitability to be displayed on

webpages. The AVI files produced are uncompressed or raw, this format was chosen to be

compatible with ImageJ.

Image filtering

Several common image filters are used in this library. OpenCV [11] was used to implement

median and gaussian filters. These filters use 2D convolution to reduce the noise levels within

the image and are commonly used when viewing noisy images. Additionally, a non-local

means filter is also introduced from OpenCV. Other 2D image filters included that aim to

reduce noise within the images, such as a Wiener filter, here implemented using SciPy [22].

Low-pass filtering has been implemented using a number of numpy functions to perform fast

Fourier transforms, along with OpenCV to produce a circular mask. Topaz denoising as

implemented by Bepler et al. [6] can also be called via SimpliPyTEM. While these functions

rely upon other libraries, they have been made more convenient to use by reducing unneces-

sary input requirements and simplifying the functions to call them. This simplification is par-

ticularly beneficial for video processing.

Document generation

The project herein presented aims to create an automated method to view, share and present

data collected by electron microscopy. To achieve this aim, we create PDF files containing all

the images collected in an imaging session, this is a common format and easy to share as a

standalone document. The Python package FPDF2 [23] was used to generate the PDF docu-

ments. Furthermore, to allow the user a more interactive experience, an HTML file containing

all the images and movie files from an experiment can be generated. An accompanying CSS

stylesheet is also produced to add to the interactive viewing experience. The HTML is gener-

ated with the Python library airium [24]. These options generate documents that can act like

photography contact sheets, allowing users to rapidly view images and identify the images suit-

able for further processing or presentation.

Displaying image and videos

The recommended usage method for SimpliPyTEM’s Python library is to use an iPython note-

book, for example, a Jupyter notebook [25]. These notebooks allow an interactive coding inter-

face where images and plots can be displayed, and the underlying code can be easily edited and

rerun. This method also allows new code to be run independently of the code which came

before it, with variables still saved. To display images and plots within iPython notebooks,

Matplotlib is used, while MoviePy is used to display videos.

Contrast enhancement methods

The clip_contrast method is used to improve the contrast of an image or video by scaling the

image to new white and black values. The advantage of this method, rather than other

PLOS ONE SimpliPyTEM: An open-source Python library and app for electron microscopy image analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0285691 October 5, 2023 9 / 13

https://doi.org/10.1371/journal.pone.0285691


examples like openCV’s enhanced contrast or histogram equalisation, is that clip_contrast can

provide reliable improvements without any user decisions, and thus can be used in automated

pipelines. Image contrast is selected by entering maximum and minimum pixel values or a sat-

uration value, the saturation here is the percentage of pixels above a maximum or below a min-

imum value. Hence the minimum and maximum values are selected using the saturation. The

pixel values in the image are then scaled to the new minimum and maximum values, such that

these values are between 0 and 255. This function therefore returns a contrast-enhanced ver-

sion of the image or video, while the degree of this enhancement is controlled by the saturation

value.

We have also implemented local_normalisation, this aims to even the contrast out across an

image, as often TEM images are bright in the centre and dark in the corners. This effect can be

visually displeasing, but more significantly it can make image segmentation using thresholding

challenging. This algorithm separates the image into n x n patches, and then scales these

patches to the global median, such that each pixel in the patch is multiplied by the global-

median / local-median. To reduce edge artefacts from the patches, padding can be used. Pad-

ding in this context is an overlap between adjacent patches, and the mean of shared pixels in

overlapping patches is used in the final image. For this function, only the number of patches is

required alongside the original image, and an image with more even contrast is outputted. An

example of this method being used can be found within the documentation (https://

simplipytem.readthedocs.io/en/latest/Tutorials/MicrographAnalysisTutorial.html#Fixing-

uneven-contrast).

Addition of scale-bar

A scale-bar can be easily added to an image with a single command. The size of the scale-bar is

chosen as a fraction of the size of the image, meaning scale-bar sizes appear consistent for

images of different dimensions. The pixel-size is taken from the metadata of DM files automat-

ically but can also be loaded in when opening other files, or defined using a separate function

(set_scale). The colour is chosen to be either black or white based on whether the scale bar area

has a significantly lower mean pixel value than the rest of the image. The pixel values in the

specified position are changed using numpy. The scale-bar text is added using pillow [12], as

this allows special characters, including ‘μ’, which is commonly used in scale-bars (for micron

units: μm). The user can convert the scale between nanometers and microns with a single com-

mand, while other conversions can also be performed but do require a scaling factor or mea-

surements to be included.

Particle analysis

A basic particle analysis module is included within the package, this is designed to collect sta-

tistics on the particle morphology, including area, circularity, and maximum, mean and mini-

mum diameters. The module includes methods to threshold particles, using tools available

with openCV, and extract data from the particles into dictionaries or pandas databases. Such

databases can then be used to plot figures in Python or export the data to CSV files.

Particles can be located by finding edges in the binary thresholded image, internal parts of

the particle are filled in, and particles larger or smaller than set values are filtered out, particles

on the edge of the image are also filtered out. Again these functions mainly use openCV and

the Python package imutils. A labelled image can also be inputted to find morphology data,

allowing users to locate particles using other available methods, for example object detection

programs like StarDist [15]. Morphology data from particles are collected and returned as a

Python dictionary. An additional option to measure each particle across many positions is also

PLOS ONE SimpliPyTEM: An open-source Python library and app for electron microscopy image analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0285691 October 5, 2023 10 / 13

https://simplipytem.readthedocs.io/en/latest/Tutorials/MicrographAnalysisTutorial.html#Fixing-uneven-contrast
https://simplipytem.readthedocs.io/en/latest/Tutorials/MicrographAnalysisTutorial.html#Fixing-uneven-contrast
https://simplipytem.readthedocs.io/en/latest/Tutorials/MicrographAnalysisTutorial.html#Fixing-uneven-contrast
https://doi.org/10.1371/journal.pone.0285691


included. In order to perform this measurement, every pair of coordinates is considered, and

when these coordinates make an angle of 180˚±1˚ with the centre point, the measurement of

diameter is counted. This procedure was used in an image of polymer nanoparticles and

shown in Fig 3 and can be found in more detail in a tutorial within the library’s documentation

(https://simplipytem.readthedocs.io/en/latest/Tutorials/Particle_analysis_tutorial.html).

Metadata

Image metadata can be useful but difficult to access with TEM files. As such, we have tried to

make it more accessible by saving the image or video metadata from DM files into a comma-

separated value (CSV) file, showing many of the key values saved within the file. The metadata

is taken from the headers of DM files using openNCEM [19], from which several key values

are extracted. By doing so, a user could easily check which images were collected at a certain

magnification, or when the images were acquired by looking at an automatically generated

table. Unfortunately, at present, this task only works with DM files.

Sample images

The sample images included in the manuscript were collected on a JEOL 2200 microscope

with a Gatan K2 camera. These images include a range of stained polymer nanoparticles, amy-

loid fibres and gold nanoparticles.

Conclusion

Herein, we present a new computational Python package to aid with the processing and analy-

sis of image and video data from electron microscopy experiments. The package is fully docu-

mented and supported by tutorials, aiming to make one of the most powerful image analysis

tools more accessible to beginner users. The proposed package is particularly beneficial to in
situ EM investigations where early data evaluation and post-processing can help users identify

trends and correlations that may not be apparent from the raw data. In this fashion SimplyPy-

TEM allows users to make informed decisions about experiment design, sample preparation,

etc by providing a fast and thorough evaluation of the data collected in the imaging session.

Post-experimental image processing times can be reduced to mere seconds per file, and user-

friendly documents to present, evaluate and share the data can be generated rapidly. By exam-

ining simple preview images within these documents, one can rapidly find the images or vid-

eos of particular interest for further analysis or display. Ultimately the aim for SimplyPyTEM

is to share commonly used methods and unlock the potential of our data analysis. This, in

turn, will help accelerate the science of all electron microscopy and in situ electron

microscopy.

Code availability

All the code is fully open-source and licensed under the GPL-3 licence. It can be downloaded

and installed using Python’s package manager ‘pip’ (‘pip install SimpliPyTEM’), with the pyPI

page for the package being found at https://pypi.org/project/SimpliPyTEM/. The code is also

deposited on GitHub at https://github.com/gabriel-ing/SimpliPyTEM, documentation and

tutorials can be found at https://simplipytem.readthedocs.io/en/latest/index.html.

Acknowledgments

We would like to thank Valentino Barbieri, Chiara Cursi and Barbara Yus-Ibarzo, for provid-

ing samples which have become example images in this manuscript.

PLOS ONE SimpliPyTEM: An open-source Python library and app for electron microscopy image analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0285691 October 5, 2023 11 / 13

https://simplipytem.readthedocs.io/en/latest/Tutorials/Particle_analysis_tutorial.html
https://pypi.org/project/SimpliPyTEM/
https://github.com/gabriel-ing/SimpliPyTEM
https://simplipytem.readthedocs.io/en/latest/index.html
https://doi.org/10.1371/journal.pone.0285691


Author Contributions

Conceptualization: Gabriel Ing.

Software: Gabriel Ing.

Supervision: Andrew Stewart, Guiseppe Battaglia, Lorena Ruiz-Perez.

Writing – original draft: Gabriel Ing.

Writing – review & editing: Andrew Stewart, Lorena Ruiz-Perez.

References
1. Friedrich H, Frederik PM, de With G, Sommerdijk NAJM. Imaging of Self-Assembled Structures: Inter-

pretation of TEM and Cryo-TEM Images. Angewandte Chemie International Edition. 2010; 49

(43):7850–8. https://doi.org/10.1002/anie.201001493 PMID: 20821772

2. Egerton RF. Radiation damage to organic and inorganic specimens in the TEM. Micron. 2019; 119:72–

87. https://doi.org/10.1016/j.micron.2019.01.005 PMID: 30684768

3. Kushwaha HS, Tanwar S, Rathore KS, Srivastava S, editors. De-noising Filters for TEM (Transmission

Electron Microscopy) Image of Nanomaterials. 2012 Second International Conference on Advanced

Computing & Communication Technologies; 2012 7–8 Jan. 2012.

4. Lehtinen J, Munkberg J, Hasselgren J, Laine S, Karras T, Aittala M, et al. Noise2Noise: Learning image

restoration without clean data. arXiv preprint arXiv:180304189. 2018.

5. Krull A, Buchholz T-O, Jug F, editors. Noise2void-learning denoising from single noisy images. Pro-

ceedings of the IEEE/CVF conference on computer vision and pattern recognition; 2019.

6. Bepler T, Kelley K, Noble AJ, Berger B. Topaz-Denoise: general deep denoising models for cryoEM

and cryoET. Nature Communications. 2020; 11(1):5208. https://doi.org/10.1038/s41467-020-18952-1

PMID: 33060581

7. Marchello G, C. dP A. D-C, Battaglia G, Ruiz-Perez L. End-to-end image analysis pipeline for liquid-

phase electron microscopy. Journal of Microscopy. 2020; 279(3):242–8. https://doi.org/10.1111/jmi.

12889 PMID: 32157689

8. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source

platform for biological-image analysis. Nature Methods. 2012; 9(7):676–82. https://doi.org/10.1038/

nmeth.2019 PMID: 22743772

9. inc G. Digital Micrograph™ software. https://wwwgatancom/products/tem-analysis/gatan-microscopy-

suite-software.

10. TIOBE. TIOBE Index for May 2023. 2023.

11. Bradski G. The openCV library. Dr Dobb’s Journal: Software Tools for the Professional Programmer.

2000; 25(11):120–3.

12. Clark A. Pillow (pil fork) documentation. readthedocs. 2015.

13. Van der Walt S, Schönberger JL, Nunez-Iglesias J, Boulogne F, Warner JD, Yager N, et al. scikit-

image: image processing in Python. PeerJ. 2014; 2:e453. https://doi.org/10.7717/peerj.453 PMID:

25024921

14. Dey S. Hands-On Image Processing with Python: Expert techniques for advanced image analysis and

effective interpretation of image data: Packt Publishing Ltd; 2018.

15. Schmidt U, Weigert M, Broaddus C, Myers G. Cell Detection with Star-Convex Polygons. Springer

International Publishing; 2018. p. 265–73.

16. Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, et al. Array program-

ming with NumPy. Nature. 2020; 585(7825):357–62. https://doi.org/10.1038/s41586-020-2649-2 PMID:

32939066

17. Ross FM, Minor AM. In Situ Transmission Electron Microscopy. In: Hawkes PW, Spence JCH, editors.

Springer Handbook of Microscopy. Cham: Springer International Publishing; 2019. p. 101–87.

18. Zheng SQ, Palovcak E, Armache J-P, Verba KA, Cheng Y, Agard DA. MotionCor2: anisotropic correc-

tion of beam-induced motion for improved cryo-electron microscopy. Nature Methods. 2017; 14

(4):331–2. https://doi.org/10.1038/nmeth.4193 PMID: 28250466

19. Ercius P. NF, Ophus C., Pekin T., Gainsforth Z. OpenNCEM: http://www.github.com/ercius/

openNCEM.

PLOS ONE SimpliPyTEM: An open-source Python library and app for electron microscopy image analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0285691 October 5, 2023 12 / 13

https://doi.org/10.1002/anie.201001493
http://www.ncbi.nlm.nih.gov/pubmed/20821772
https://doi.org/10.1016/j.micron.2019.01.005
http://www.ncbi.nlm.nih.gov/pubmed/30684768
https://doi.org/10.1038/s41467-020-18952-1
http://www.ncbi.nlm.nih.gov/pubmed/33060581
https://doi.org/10.1111/jmi.12889
https://doi.org/10.1111/jmi.12889
http://www.ncbi.nlm.nih.gov/pubmed/32157689
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2019
http://www.ncbi.nlm.nih.gov/pubmed/22743772
https://wwwgatancom/products/tem-analysis/gatan-microscopy-suite-software
https://wwwgatancom/products/tem-analysis/gatan-microscopy-suite-software
https://doi.org/10.7717/peerj.453
http://www.ncbi.nlm.nih.gov/pubmed/25024921
https://doi.org/10.1038/s41586-020-2649-2
http://www.ncbi.nlm.nih.gov/pubmed/32939066
https://doi.org/10.1038/nmeth.4193
http://www.ncbi.nlm.nih.gov/pubmed/28250466
http://www.github.com/ercius/openNCEM
http://www.github.com/ercius/openNCEM
https://doi.org/10.1371/journal.pone.0285691


20. Burnley T, Palmer CM, Winn M. Recent developments in the CCP-EM software suite. Acta Crystallogra-

phica Section D: Structural Biology. 2017; 73(6):469–77. https://doi.org/10.1107/S2059798317007859

PMID: 28580908

21. De La Peña F, Ostasevicius T, Tonaas Fauske V, Burdet P, Jokubauskas P, Nord M, et al. hyperspy/

hyperspy: HyperSpy 1.3. Zenodo. 2017.

22. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: funda-

mental algorithms for scientific computing in Python. Nature Methods. 2020; 17(3):261–72. https://doi.

org/10.1038/s41592-019-0686-2 PMID: 32015543

23. Reingart M, contributors P. The PyFPDF Library. 2023.

24. Kaczmarczyk M. Airium Python Library 2022.

25. Kluyver T, Ragan-Kelley B, Pérez F, Granger BE, Bussonnier M, Frederic J, et al. Jupyter Notebooks-a

publishing format for reproducible computational workflows2016.

PLOS ONE SimpliPyTEM: An open-source Python library and app for electron microscopy image analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0285691 October 5, 2023 13 / 13

https://doi.org/10.1107/S2059798317007859
http://www.ncbi.nlm.nih.gov/pubmed/28580908
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
http://www.ncbi.nlm.nih.gov/pubmed/32015543
https://doi.org/10.1371/journal.pone.0285691

