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Abstract

Determining whether a given number is positive is a fundamental question in mathe-

matics. This can sometimes be answered by showing that the number counts some

collection of objects, and hence, must be positive. The work done in this dissertation

is in the field of enumerative combinatorics, the branch of mathematics that deals

with exact counting. We will consider several problems at the interface between

enumerative combinatorics, continued fractions and total positivity.

In our first contribution, we exhibit a lower-triangular matrix of polynomials

in six indeterminates that appears empirically to be coefficientwise totally positive,

and which includes as a special case the Eulerian triangle. This generalises Brenti’s

conjecture from 1996. We prove the coefficientwise total positivity of a three-variable

case which includes the reversed Stirling subset triangle.

Our next contribution is the study of two sequences whose Stieltjes-type con-

tinued fraction coefficients grow quadratically; we study the Genocchi and median

Genocchi numbers. We find Stieltjes-type and Thron-type continued fractions for

some multivariate polynomials that enumerate D-permutations, a class of permuta-

tions of 2n, with respect to a very large (sometimes infinite) number of simultaneous

statistics that measure cycle status, record status, crossings and nestings.

After this, we interpret the Foata–Zeilberger bijection in terms of Laguerre

digraphs, which enables us to count cycles in permutations. Using this interpretation,

we obtain Jacobi-type continued fractions for multivariate polynomials enumerat-

ing permutations, and also Thron-type and Stieltjes-type continued fractions for

multivariate polynomials enumerating D-permutations, in both cases including the

counting of cycles. This enables us to prove some conjectured continued fractions
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due to Sokal–Zeng from 2022, and Randrianarivony–Zeng from 1996.

Finally, we introduce the higher-order Stirling cycle and subset numbers; these

generalise the Stirling cycle and subset numbers, respectively. We introduce some

conjectures which involve different total-positivity questions for these triangular

arrays and then answer some of them.



Impact Statement

The primary impact of this dissertation is to academia, and in particular, to study of

enumerative combinatorics in mathematics (and also possibly to theoretical computer

science).

Positivity problems form a central theme in enumerative combinatorics, see for

example [Sta99]. One subclass of these problems is on total positivity, see for exam-

ple [Bre89, Bre95, Bre96]. Another line of investigation is the study of continued

fractions in combinatorics which was initiated by Flajolet [Fla80]. The two main

threads in this thesis concern the interaction between enumerative combinatorics with

total positivity and with continued fractions. The new contributions are presented in

Chapters 3-6.

In Chapter 3 we present some conjectures generalising conjectures due to Brenti

from 1996 [Bre96]. Our generalisation may suggest new ways of attacking this

stubborn conjecture that has been open for over a quarter century. The total positivity

of triangles generated by n-dependent or k-dependent recurrences were handled by

Brenti in 1995 [Bre95]. However, our primary result in this chapter concerns the

reversed Stirling subset triangle that has mixed n and k-dependence.

Our work in Chapters 4 and 5 is a sequel to the recent work of Sokal and

Zeng [SZ22]. In Chapter 4, we take one step up in complexity and study continued

fractions in which the continued fraction coefficients grow quadratically. We intend

to categorise sequences according to the growth rate of their Stieltjes-type continued

fraction coefficients and study each family separately. This line of investigation was

initiated by Pollaczek [Pol56].

Then in Chapter 5 we show how one can count cycles in permutations using the
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Foata–Zeilberger bijection [FZ90], thereby obtaining new continued fractions. Our

novel method allows us to resolve conjectures due to Sokal and Zeng [SZ22] from

2022, and also a conjecture due to Randrianarivony and Zeng from [RZ96a] from

1996.

Finally, in Chapter 6 we present several conjectures on total positivity of various

kinds concerning the higher-order Stirling cycle and subset numbers. We advertise

four questions that one has whenever they have a lower-triangular array of real

numbers. Also, see Section 2.1.6 where we provide several examples of important

triangles in combinatorics in the context of these questions. All of these four

questions are important positivity questions in combinatorics and we present them in

a systematised way.
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Chapter 1

Introduction

A combinatorial family of objects is a class of sets S = (Si)i∈I where I is an indexing

set, and each set Si is finite. (Most often I = N.) Enumerative combinatorics

is the branch of mathematics that deals with exact enumeration of combinatorial

families, i.e., given a combinatorial class S =
(
Si
)

i∈I , we are interested in computing

|Si|. When I = N, we have several ways to enumerate S; we are often looking

for a nice closed-form formula for |Si| in terms of i. However, depending on our

situation, we may prefer to work with the ordinary generating function (this is the

formal power series ∑
∞
i=0 |Si|t i), or the exponential generating function (this is the

formal power series ∑
∞
i=0 |Si|t i/i!). Again, the generating functions may have nice

closed-form formulae. However, there are other ways of representing the generating

functions such as a differential or a functional equation, a series expansion, or —

most importantly for the present thesis — a continued fraction. Our prototypical

example of a combinatorial family is the class of all permutations
(
Sn
)

n≥0. Here,

we have the nice closed-form formula |Sn|= n!. The ordinary generating function

∑
∞
i=0 n!tn does not have a nice closed-form expression (indeed, it has zero radius of
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convergence), but it does have the following continued fraction due to Euler [Eul60]:

∞

∑
n=0

n!tn =
1

1− t

1− t

1− 2t

1− 2t

1− 3t

1− 3t

1− . . .

. (1.1)

The exponential generating function is simply 1/(1− t).

It is common practice in enumerative combinatorics to refine the counting

by keeping track of one or several statistics along with computing the cardinality

of the sets of each size. Given a combinatorial family S = (Sn)n∈N, a statistic is

a function f : ∪Sn → N. Given a statistic f , we are interested in computing the

generating polynomials pn(x) = ∑τ∈Sn x f (τ) = ∑i∈N
∣∣ f−1(i)∩Sn

∣∣xi. Setting x = 1,

we clearly obtain pn(1) = |Sn|. Thus, we upgrade from counting using natural

numbers to counting using polynomials with nonnegative integer coefficients to

obtain a more refined enumeration. For example, when our class is Sn =Sn and the

statistic is the number of cycles in a permutation, the polynomials pn(x) are given

by pn(x) = x(x+ 1)(x+ 2) · · ·(x+ n− 1). In fact, we need not restrict ourselves

to only one statistic and univariate polynomials; we can count multiple statistics

simultaneously and work with multivariate polynomials.

The two main threads in this thesis concern the interaction between enumerative

combinatorics and the following themes: total positivity and continued fractions.

We will introduce these themes in Sections 1.1 and 1.2, respectively; we will also

mention how the investigations of these themes meet at the end of Section 1.1 (and

in greater detail later in Sections 2.1.4 and 2.3). We will then end this introductory

chapter by stating the outline of this thesis in Section 1.3.

1.1 Total positivity and combinatorics
Positivity problems form a central theme in enumerative combinatorics (see for

example [Sta99]). The primary idea, which will be a recurring theme in this thesis,
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is that an integer can be proven to be nonnegative if it is the cardinality of a set. One

such class of problems are total positivity problems in combinatorics.

Definition 1.1.1. A matrix of real numbers is said to be totally positive (TP in short)

if all its minors are nonnegative.1 We say that a matrix is strictly totally positive

(STP in short) if all its minors are strictly positive.

Notice that the matrix in Definition 1.1.1 need not be a square matrix, or

even finite. We can have an infinite number of rows and columns; all we need is

the determinant of all finite square submatrices to be nonnegative. Nonnegative

bidiagonal matrices are an example of a class of totally positive matrices; these

are matrices with non-negative entries on two consecutive diagonals and zeroes

everywhere else.

The study of total positivity was started independently in the 1930s by two

different schools: Schoenberg and his school while studying the distribution of

roots of polynomials in the complex plane, and Krein and his school while studying

problems in mechanics. See the Foreword and the Remarks at the end of each chapter

of [Pin09] for more detailed historical notes on the theory of total positivity.

The study of total positivity in combinatorics was initiated by Brenti [Bre89,

Bre95, Bre96]. Several matrices whose entries are given by important combinatorial

sequences or arrays are totally positive. Some examples of totally positive matrices

are

• the binomial triangle
((n

k

))
n,k≥0,

• the binomial square matrix
((n+k

k

))
n,k≥0

,

• the lower-triangular matrix of Stirling cycle numbers
([n

k

])
n,k≥0 (here the

(n,k)-th entry counts the number of permutations of [n] with k cycles, they are

also called the unsigned Stirling numbers of the first kind),

• the lower-triangular matrix of Stirling subset numbers
({n

k

})
n,k≥0 (here the

1Warning: We would like to warn the reader that there could be some confusion in terminology
while looking at the relevant literature from different sources. In the sources such as [GK02, FJ11] the
terms “total nonnegativity” and “total positivity” are used to refer to what we call “total positivity” and
“strict total positivity”, respectively. Here we follow the terminology in sources such as [Kar68, Pin09].
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(n,k)-th entry counts the number of set partitions of [n] into k nonempty blocks,

they are also called the Stirling numbers of the second kind),

• and the Hankel matrix of factorials ((n+ k)!)n,k≥0.

We will explain these examples with relevant citations in Section 2.1. An example of

a matrix that has been conjectured to be totally positive is the triangle of Eulerian

numbers
(〈n+1

k

〉)
n,k≥0

[Bre96]; here
〈n+1

k

〉
is the number of permutations on [n+1]

with k descents. We discuss this conjecture in more detail in Chapter 3.

In the spirit of introducing statistics, one might be interested in studying matrices

whose entries are polynomials in one or several variables with nonnegative integer

coefficients where the variables keep track of the distribution of one or several

statistics. Thus, it makes sense to extend the notion of total positivity to matrices

with polynomial entries.

Definition 1.1.2. We say that a polynomial with real coefficients (in one or several

variables) is coefficientwise-positive, if all its coefficients are nonnegative. A matrix

whose entries are polynomials with real coefficients is said to be coefficientwise-

totally positive (coefficientwise-TP in short) if all its minors, which are polynomials

themselves, are coefficientwise-positive.

A bidiagonal matrix is one where every entry is zero except for the entries

in two consecutive diagonals. A bidiagonal matrix whose entries are polynomials

with non-negative coefficients is an example of matrix that is coefficientwise-totally

positive; this is not difficult to prove. Another example is the lower-triangular matrix((n
k

)
xkyn−k)

n,k≥0. We will see more on these examples in Section 2.1.3.

Now let A be a lower-triangular matrix

A =


a00

a10 a11

a20 a21 a22
... . . .

 (1.2)
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and let An(x) be the n-th row-generating polynomial of A, i.e.,

An(x) =
n

∑
k=0

ankxk. (1.3)

One can then ask the following different questions:

1a. Is the matrix A totally positive?

1b. Is the reversal of A, Arev := (an,n−k)n,k≥0 totally positive? (Here an,k = 0 when

k < 0.)

When the rows of A are palindromic, questions 1a. and 1b. are the same.

2. Is the lower-triangular Toeplitz matrix of the n-th row sequence, (an,i− j)i, j≥0,

totally positive?

3. Is the Hankel matrix of the sequence
(
An(x)

)
n≥0, which is the matrix(

An+k(x)
)

n,k≥0, coefficientwise-totally positive with respect to the variable x?

For several important combinatorial matrices, the answer to all four of these

questions have either been proven to be true or are conjectured to be true. Some

examples of matrices where all four questions are provably true are the binomial

triangle, the Stirling cycle triangle and the Stirling subset triangle. Additionally, for

the Eulerian triangle the questions 1a. and 1b. are conjectured to be true, while the

answer to questions 2. and 3. is provably true. We will see more on these along with

the relevant citations in Section 2.1.6.

The total positivity of a Toeplitz matrix depends on the distribution of the zeroes

and poles of the associated ordinary generating function. In the particular case of

question 2., the ordinary generating function An(x) is a polynomial and the total

positivity of the matrix (an,i− j)i, j≥0 is equivalent to the polynomial An(x) being

negative-real-rooted, i.e. all its (complex) zeroes lie in (−∞,0]. The study of real-

rooted polynomials has been important in combinatorics, see for example [Brä15].

We will see more on this in Section 2.1.5.

On the other hand, the total positivity of a Hankel matrix is related to completely

different behaviour of the associated ordinary generating function. This is where

the study of continued fractions come in. More precisely, given a sequence of real
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numbers (bn)n≥0 its Hankel matrix (bn+k)n,k≥0 is totally positive if and only if there

exist real numbers α0,α1, . . .≥ 0 such that the following identity holds (at the level

of formal power series):

∞

∑
n=0

bntn =
α0

1−
α1t

1−
α2t

. . .

. (1.4)

This result is combination of results due to Stieltjes [Sti94] and Gantmakher–Krein

[GK37]. The continued fraction of the form as the one on the right-hand side of

equation (1.4) is called a Stieltjes-type continued fraction (S-fraction in short).

If (bn)n≥0 is instead a sequence of polynomials in one or several variables, we

no longer have any equivalent condition available to us. However, if an S-fraction

such as the one in equation (1.4) exists where the α0,α1, . . . are all polynomials

with non-negative coefficients, then that is a sufficient condition for the Hankel

matrix (bn+k)n,k≥0 to be coefficientwise-totally positive (see Theorem 2.1.3 below).

However, there are other methods to prove coefficientwise total positivity for Hankel

matrices such as existence of Thron-type continued fractions, branched S-fractions

and the production-matrix method. We will employ some of these methods in this

thesis. We will see more on total positivity and coefficientwise-total positivity of

Hankel matrices in Sections 2.1.4 and 2.3.

Our contributions are presented in Chapters 3–6, where we try to attempt to

answer some of the above four questions for some interesting combinatorial triangles.

In some cases, we are successful in proving these, thereby obtaining new results.

In others, we generalise existing conjectures and thus provide new conjectures. In

Chapter 3, we will generalise questions 1a. and 1b. for the triangle of Eulerian

numbers
(〈n+1

k

〉)
n,k≥0

thereby generalising a conjecture of [Bre96]. However, we

can prove question 1b. for the Stirling subset triangle
({n

k

})
n,k≥0. In Chapters 4

and 5 our problems are generalisations of question 3. Finally, in Chapter 6, we will

ask all of these questions for some generalisations of the Stirling cycle and subset
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numbers. We will present some conjectures and prove some special cases of our

conjectures.

1.2 Continued fractions and combinatorics
If (an)n≥0 is a sequence of combinatorial numbers or polynomials with a0 = 1, it

is often fruitful to seek to express its ordinary generating function as a continued

fraction. The most commonly studied types of continued fractions are Stieltjes-type

(S-fractions),
∞

∑
n=0

antn =
1

1−
α1t

1−
α2t

1−
α3t

1−·· ·

, (1.5)

and Jacobi-type (J-fractions),

∞

∑
n=0

antn =
1

1− γ0t−
β1t2

1− γ1t−
β2t2

1− γ2t−
β3t2

1−·· ·

. (1.6)

(In Section 1.1, we have already mentioned that the existence of S-fractions is

important in the study of totally positive Hankel matrices and we will see this in

even more detail in Section 2.1.4.) This line of investigation goes back at least to

Euler [Eul60, Eul55a], but it gained impetus following Flajolet’s influential paper

[Fla80]. We recall that even though the ordinary generating function ∑
∞
i=0 n!tn does

not have a nice closed-form expression, it does have the nice S-fraction stated in

equation (1.1). Using some contraction formulae one can transform S-fractions into

J-fractions, we will see this in Section 2.2.2.

The work that we present in Chapters 4 and 5 can be viewed as a sequel to

the work of Sokal and Zeng [SZ22] which presented Stieltjes-type and Jacobi-type
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continued fractions for some “master polynomials” that enumerate permutations, set

partitions or perfect matchings with respect to a large (sometimes infinite) number

of independent statistics. In this paper, the authors systematized the study of the

“linear family”: namely, sequences in which the S-fraction coefficients (αn)n≥1

grow linearly in n. More precisely, in the simplest case for permutations [SZ22,

Theorem 2.1] the even and odd coefficients grow affinely in n:

α2k−1 = x+(k−1)u, α2k = y+(k−1)v (1.7)

When x = y = u = v = 1, these coefficients α2k−1 = α2k = k correspond to Euler’s

continued fraction (1.1) for n!; so it is natural to expect that the resulting polynomials

Pn(x,y,u,v) can be interpreted as enumerating permutations of [n] with respect to

some suitable statistics.

In Chapter 4 we take one step up in complexity, to consider the “quadratic

family”, in which the (αn)n≥1 grow quadratically in n. For instance, we could

consider

α2k−1 = [x1 +(k−1)u1] [x2 +(k−1)u2], (1.8a)

α2k = [y1 +(k−1)v1] [y2 +(k−1)v2] (1.8b)

With all parameters set to 1, these coefficients α2k−1 = α2k = k2 correspond to the

continued fraction [Vie, eq. (9.7)] [Vie83, p. V-15] for the median Genocchi numbers

[OEI19, A005439]; so it is natural to seek a combinatorial model that is enumerated

by the median Genocchi numbers. We shall focus on a class of permutations of [2n]

called D-permutations. These were introduced by Lazar and Wachs [LW22, Laz20]

and are defined by imposing some constraints concerning the parity (even/odd) of

excedances and anti-excedances. Our most general results in Chapter 4 will involve

a less commonly studied type of continued fraction called Thron-type continued

fraction (T-fraction). We will enumerate D-permutations with respect to a large

(sometimes infinite) number of independent statistics.

The continued fractions in [SZ22] and in Chapter 4 have been classified as “first”
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or “second” depending on whether they do not or do involve the count of cycles.

In both of these works, the “second” continued fractions were proven using two

specialisations, but conjectured using one specialisation. In Chapter 5, we prove the

one-specialisation conjecture of Sokal–Zeng [SZ22, Conjecture 2.3] and then we use

similar proof techniques to prove our corresponding one-specialisation conjecture for

D-permutations (see Theorem 4.3.1 below). We will also prove a continued fraction

that was conjectured by Randrianarivony and Zeng in 1996 [RZ96a, Conjecture 12]

for D-o-semiderangements2 (a subclass of D-permutations).

The continued fractions in Chapters 4 and 5 are obtained bijectively. We employ

different bijections from permutations and D-permutations to labelled Motzkin and

Schröder paths, respectively. Our bijections are variants of or are motivated by a

bijection of Foata and Zeilberger [FZ90], and another bijection of Biane [Bia93].

The continued fractions are then immediately obtained by using Flajolet’s general

theory [Fla80] of interpreting S or J-fractions as weighted Dyck or Motzkin paths

and its generalisation [FG17, OdJ15, JV17, Sok, PS20] to interpreting Thron-type

continued fractions as weighted Schröder paths. We will review this in Sections 2.2.4

and 2.2.5. Finally, we carefully read off the various statistics in our bijections.

1.3 Outline of thesis
In Chapter 2, we will provide fundamental definitions and facts for total positivity

and continued fractions in the context of enumerative combinatorics, and we set up

notation for the rest of this thesis. The remaining four chapters discuss four different

projects undertaken by the author, some of which are based on joint work with other

researchers.

Chapter 3 is based on joint work with Xi Chen, Alexander Dyachenko,

Tomack Gilmore and Alan D. Sokal [CDD+21, CDD+]. We exhibit a lower-

triangular matrix of polynomials in six indeterminates that appears empirically

to be coefficientwise totally positive, and which includes as a special case the Eule-

rian triangle. This generalises Brenti’s conjecture from 1996 [Bre96]. We prove the

2In their paper [RZ96a], Randrianarivony and Zeng call these Genocchi permutations. We will
explain our nomenclature in Section 2.4.3.
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coefficientwise total positivity of a three-variable case which includes the reversed

Stirling subset triangle. We do this by constructing a planar digraph and then use the

Lindström–Gessel–Viennot lemma. We provide two proofs, one using a recurrence

and the second is a direct bijection between paths in the digraph and set partitions.

Chapter 4 is on the study of continued fractions for Genocchi and median Genoc-

chi numbers and is based on joint work with Alan D. Sokal [DS22]. The Genocchi

and median Genocchi numbers have S-fractions whose coefficients grow quadrati-

cally, see (2.45) and (2.51), respectively. We find Stieltjes-type and Thron-type con-

tinued fractions for some multivariate polynomials that enumerate D-permutations, a

class of permutations of 2n, with respect to a very large (sometimes infinite) number

of simultaneous statistics that measure cycle status, record status, crossings and

nestings.

Our next chapter (Chapter 5) is based on [Deb23] which is the author’s solo

work. In this chapter, we interpret a bijection due to Foata and Zeilberger [FZ90]

in terms of Laguerre digraphs [FS84, Sok22], which enables us to count cycles

in permutations. Using this interpretation, we obtain Jacobi-type continued frac-

tions for multivariate polynomials enumerating permutations, and also Thron-type

and Stieltjes-type continued fractions for multivariate polynomials enumerating

D-permutations, in both cases including the counting of cycles. This enables us to

prove some conjectured continued fractions due to Sokal–Zeng from 2022 [SZ22],

and Randrianarivony–Zeng from 1996 [RZ96a].

Our final chapter (Chapter 6) is based on joint work with Alan D. Sokal [DS].

Here we introduce the higher-order Stirling cycle and subset numbers; these gen-

eralise the Stirling cycle and subset numbers, respectively. We then ask the four

questions for lower-triangular matrices introduced in Section 1.1 and thus, introduce

some new conjectures; we then answer some of these.



Chapter 2

Preliminaries

This chapter provides the fundamental definitions and facts, and sets up notation for

the rest of this thesis. This chapter is organised as follows: we begin by revisiting

the notion of total positivity in Section 2.1 in which we mention basic definitions,

provide examples and basic facts, and mention some proof techniques. Then in

Section 2.2 we introduce continued fractions and then state associated formulae, and

also the link to combinatorics. In Section 2.3 we state some results on coefficientwise

Hankel-total positivity. We then define Genocchi and median Genocchi numbers,

and D-permutations in Section 2.4 which will play a central role in Chapters 4 and 5.

Finally, we define various permutation statistics that will play an important role in

this thesis (Section 2.5).

2.1 Total positivity
We will recall the basic definitions of total positivity, provide examples and basic

facts. We begin in Section 2.1.1 with the basic definitions, some examples and

then mention operations that do and do not preserve total positivity. We then state

a theorem due to Loewner and Whitney in Section 2.1.2. In Section 2.1.3, we

introduce the upgraded notion of coefficientwise total positivity. We then focus our

attention to the total positivity of some specific matrices: in Section 2.1.4 we look at

Hankel matrices and this is where continued fractions come into the picture, and in

Section 2.1.5 we look at Toeplitz matrices and we show the connection to real-rooted

polynomials. We then ask some general questions on the total positivity of various
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kinds for any lower-triangular matrix in Section 2.1.6, we provide some examples

where the answer to all four of these questions is either known or is conjectured to be

true. Finally, in Section 2.1.7 we provide an overview of the celebrated Lindström–

Gessel–Viennot lemma and mention how it is a very powerful tool to prove total

positivity.

2.1.1 Definition and examples

We defined the notion of total positivity in definition 1.1.1 which we recall here: a

matrix of real numbers is said to be totally positive (TP in short) if all its minors are

nonnegative. We say that a matrix is strictly totally positive (STP in short) if all its

minors are strictly positive.

In this thesis, rows and columns of infinite size will be indexed from 0, and

finite rows and columns will be indexed from 1. The following are some standard

examples of totally positive matrices:

1. Diagonal matrices with nonnegative diagonal entries constitute a family of TP

matrices. For real numbers ddd = (di)i≥0, let D(ddd) denote the diagonal matrix

with entries d0,d1,d2, . . ..

2. Bidiagonal matrices are our next example. These are matrices with all entries

0, other than the entries in two consecutive diagonals. Bidiagonal matrices

with nonnegative entries are totally positive as any submatrix is upper or lower

triangular, and hence the corresponding minor is the product of its diagonal

entries all of which are nonnegative.

By a lower-bidiagonal matrix (upper-bidiagonal matrix), we shall refer to

a matrix whose non-zero entries are only allowed to be on the diagonal or

the first subdiagonal (first superdiagonal). For ddd = (di)i≥0 and xxx = (xi)i≥1,

let L(ddd,xxx) be the lower-bidiagonal matrix with entries d0,d1,d2, . . . on the
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diagonal and entries x1,x2, . . . on the subdiagonal and zero elsewhere, i.e.,

L(ddd,xxx) =



d0 0 0 0 . . .

x1 d1 0 0 . . .

0 x2 d2 0 . . .

0 0 x3 d3 . . .
...

...
...

... . . .


.

Similarly, let U(ddd,xxx) be the upper bidiagonal matrix with entries d0,d1,d2, . . .

on the diagonal and entries x1,x2, . . . on the superdiagonal and zero elsewhere.

Thus, U(ddd,xxx) = L(ddd,xxx)ᵀ.

We abbreviate L(111,xxx) as L(xxx) and U(111,xxx) as U(xxx) where 111 is the all-ones

vector.

Given two totally positivity matrices A and B, we can show using the Cauchy–

Binet formula that their product AB (if it exists) is also totally positive (see for e.g.

[FJ11, Section 1.1]). This fact is so fundamental to the theory of total positivity

that we shall henceforth use it without comment. However, the following matrix

operations do not preserve total positivity:

1. The sum of two TP matrices need not be TP. For example, consider the two

matrices,

A =

0 0

1 0

 , B =

1 2

0 1

 .
Clearly A and B are both TP, but det(A+B) =−1 < 0 and hence A+B is not.

2. The Hadamard product (also called the entry-wise product) of two TP matrices

need not be TP. For example, consider the two matrices,

A =


1 1 0

1 1 1

1 1 1

 , B =


1 1 1

1 1 1

0 1 1

 .

Their Hadamard product has determinant−1. However, the Hadamard product
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preserves the non-negativity of the minors of size two.

Some other examples of totally positive matrices are the binomial triangle

B def
=
((n

k

))
n,k≥0, the binomial square

((n+k
k

))
n,k≥0

= B ·Bᵀ, the lower-triangular

matrices of Stirling cycle numbers and the lower-triangular matrices of Stirling

subset numbers, and the Hankel matrix of factorials

((n+ k)!)n,k≥0 = D
(
(n!)n≥0

)
·B ·Bᵀ ·D

(
(n!)n≥0

)
. (2.1)

See for e.g. [Bre95, Bre96] for proofs of total positivity of the binomial, Stirling

cycle and subset triangles.

2.1.2 Loewner–Whitney theorem and Neville elimination

For a fixed positive integer n, let G = GLn(R) be the set of all n× n invertible

matrices with real entries. Let G≥0 be the subset consisting of all invertible TP

matrices. Clearly, G≥0 is a submonoid of G under matrix multiplication. We know

that invertible diagonal and bidiagonal matrices with nonnegative entries are elements

of G≥0. Consider the following subset of diagonal and bidiagonal matrices:

Di(x) = D(1, . . . ,1︸ ︷︷ ︸
i−1

,x,1, . . . ,1︸ ︷︷ ︸
n−i

), (2.2a)

Li(x) = L(0, . . . ,0︸ ︷︷ ︸
i−1

,x,0, . . . ,0︸ ︷︷ ︸
n−i−1

), (2.2b)

Ui(x) = (Li(x))
ᵀ . (2.2c)

For x > 0, [Whi52] first noticed and [Loe55] first stated that these matrices generate

the entire monoid G≥0.

Theorem 2.1.1 ([Whi52, Loe55] Loewner–Whitney Theorem). For x > 0, the ma-

trices Di(x), Li(x) and Ui(x) generate G≥0.

In fact, their proof is constructive: given A ∈ G≥0, they provide a factorisation

of A into Di(x), Li(x) and Ui(x). [GP96] studied the factorisations of TP matrices

in depth and gave an efficient polynomial-time algorithm. In fact, their algorithm,

which is often referred to as Neville elimination, is more general and works for
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singular matrices as well. See Section 6.4 in [Pin09] for historical remarks on this

entire story. See [Gil21, Section 2.1] for more on Neville elimination and the relation

to planar digraphs. This algorithm has been very useful for our experiments and we

employ it to efficiently test the total positivity of matrices of real numbers.

2.1.3 Coefficientwise total positivity

We first recall the notion of coefficientwise-total positivity from Definition 1.1.2:

we say that a polynomial with real coefficients (in one or several variables) is

coefficientwise-positive, if all its coefficients are nonnegative. A matrix whose entries

are polynomials with real coefficients is said to be coefficientwise-totally positive

(coefficientwise-TP in short) if all its minors, which are polynomials themselves, are

coefficientwise-positive.

Now we define the related notion of pointwise-total positivity:

Definition 2.1.1. We say that a polynomial (in one or several variables) is pointwise-

positive, if it is nonnegative when substituted with non-negative real numbers. A

matrix whose entries are polynomials with real coefficients is said to be pointwise-

totally positive (pointwise-TP in short) if all its minors are pointwise-positive.

Note that coefficientwise-positivity implies pointwise-positivity. However, the

converse is not true. For example, x2−2x+1 is not coefficientwise-positive even

though it is pointwise-positive. Similarly, coefficientwise-total positivity implies

pointwise-total positivity but the converse is not true.

For indeterminates ddd,xxx the diagonal matrix D(ddd), and the bidiagonal matrices

L(ddd,xxx) and U(ddd,xxx) are clearly coefficientwise-TP with respect to the variables ddd,xxx.

Also, the product of two coefficientwise-TP matrices is also coefficientwise-TP.

Another example of a matrix which is coefficientwise-TP is the weighted

binomial matrix B(x,y) def
=
((n

k

)
xkyn−k)

n≥0,k≥0. In fact, entries satisfy the following

identity

(
n
k

)
xkyn−k = x

((
n−1
k−1

)
xk−1yn−k

)
+ y
((

n−1
k

)
xkyn−k−1

)
. (2.3)
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This gives us the matrix identity

B(x,y) =

 1 0

0 B(x,y)

 ·L((x,x,x, . . .),(y,y,y, . . .)) (2.4)

which by induction shows that B(x,y) is coefficientwise-TP in the variables x and y.

2.1.4 Total positivity of Hankel matrices, Stieltjes-moment

problem, and continued fractions

We will now focus on Hankel matrices and state some equivalent conditions for these

matrices to be totally positive. This will show the connection to continued fractions

and motivate us to study continued fractions.

Given a sequence aaa = (an)n≥0, the matrix

H∞(aaa)
def
= (an+k)n,k≥0 =


a0 a1 a2 . . .

a1 a2 a3

a2 a3 a4
... . . .

 (2.5)

is called its Hankel matrix. If aaa is a sequence of real numbers, we say that aaa is

Hankel totally positive (Hankel-TP in short) if H∞(aaa) is TP. Similarly, if aaa is a

sequence of polynomials with real coefficients, we say that aaa is coefficientwise-

Hankel-totally positive (coefficientwise-Hankel-TP in short) if the matrix H∞(aaa) is

coefficientwise-TP.

The following theorem provides equivalent conditions for aaa to be Hankel-TP

when aaa is a sequence of real numbers.

Theorem 2.1.2 ([Sti94], [GK37]). For a sequence aaa = (an)n≥0 of real numbers, the

following are equivalent:

1. The Hankel matrix H∞(aaa) is totally positive.
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2. There exists a positive measure µ supported on [0,∞) such that

an =
∫

∞

0
xndµ(x) (2.6)

for all n≥ 0, i.e. aaa is a Stieltjes-moment sequence.

3. There exists real numbers α0,α1, . . .≥ 0 such that the following formal power

series identity holds:

∞

∑
n=0

antn =
α0

1−
α1t

1−
α2t

. . .

. (2.7)

The equivalence of 2. and 3. is due to Stieltjes [Sti94]; he also proved that

the positive-semidefiniteness of the Hankel matrix H∞(aaa) and the corresponding

once-shifted Hankel matrix (this is weaker than the total positivity of H∞(aaa)) implies

2. Gantmakher and Krein [GK37] proved that 2. implies 1.

Thus, Theorem 2.1.2 relates total positivity to the moment problem and to the

study of continued fractions. Continued fractions having the form shown on the

right-hand side of equation (2.7) are known as Stieltjes-type continued fractions, or

S-fractions in short. For example let us look at the situation when an = n!:

(a) We showed in equation (2.1) that the Hankel matrix H∞((n!)n≥0) is totally

positive.

(b) The sequence (n!)n≥0 can be obtained as the sequence of moments of the

measure e−xdx, i.e., we have

n! =
∫

∞

0
xne−xdx . (2.8)
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(c) We recall the continued fraction of Euler [Eul60] which we stated in (1.1):

∞

∑
n=0

n!tn =
1

1− t

1− t

1− 2t

1− 2t

1− 3t

1− 3t

1− . . .

. (2.9)

Let us now consider the situation when aaa is a sequence of polynomials. In this

situation, 2. in Theorem 2.1.2 no longer makes sense. However, we can still talk

about 1. and 3. by replacing Hankel-TP with coefficientwise-Hankel-TP in 1., and if

α0,α1, . . . are a sequence of coefficientwise-positive polynomials. In this situation,

the following theorem holds:

Theorem 2.1.3 ([Fla80], [Vie83], [Sok14]). Let aaa = (an)n≥0 and α0,α1, . . . be two

sequences of polynomials. If the polynomials α0,α1, . . . are coefficientwise-positive

and they satisfy the following power series identity:

∞

∑
n=0

antn =
α0

1−
α1t

1−
α2t

. . .

(2.10)

then aaa is coefficientwise-Hankel totally positive.

The above theorem was first stated in this form by Sokal in [Sok14]. However,

it is an easy corollary of [Fla80] and of [Vie83, Section 3, Chapter 4].

The converse of Theorem 2.1.3 is not true for two reasons. First of all, if aaa

is a sequence of polynomials that is coefficientwise Hankel-totally positive, there

may not exist any continued fraction (2.10) with coefficients α0,α1, . . . in the ring

of polynomials; in general the coefficients α0,α1, . . . are rational functions. And

secondly, even if a continued fraction (2.10) does exist in the ring of polynomials,

the coefficientwise-positivity of α0,α1, . . . is merely a sufficient condition for the
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coefficientwise Hankel-total positivity of aaa, not a necessary one. This has been

discussed in [PSZ18, Section 6.1]. We will see more on continued fractions in

Section 2.2. The above theorem has also been generalised to T-fractions and branched

continued fractions. We will state these results in Section 2.3.

2.1.5 Total positivity of Toeplitz matrices

We will now focus on Toeplitz matrices and state an equivalent condition for these

matrices to be totally positive. This will motivate us to also consider the distribution

of zeroes of polynomials.

Let aaa = (an)n≥0 be a sequence of real numbers. The Toeplitz matrix of aaa is

defined to be the lower-triangular matrix

T∞(aaa)
def
= (an−k)n,k≥0 =


a0

a1 a0

a2 a1 a0
... . . .

 (2.11)

where an−k = 0 when n < k. We say that the sequence aaa is Toeplitz-totally positive

(Toeplitz-TP in short) if T∞ (aaa) is totally positive1.

The following theorem provides an equivalent condition for aaa to be Toeplitz-TP.

Theorem 2.1.4 (Aissen–Schoenberg–Whitney ([ASW52]), Edrei ([Edr52])). For a

sequence aaa = (an)n≥0 of real numbers with a0 = 1, the following are equivalent:

1. The sequence aaa is Toeplitz-totally positive.

2. There exists sequences ααα = (α)n≥1,βββ = (βn)n≥1 with αn ≥ 0, β ≥ 0, and a

number γ ≥ 0 such that

faaa(t) = eγt ·∏
∞
n=1(1+αnt)

∏
∞
n=1(1−βnt)

. (2.12)

1These sequences have also been called Pólya-frequency sequences in the literature.
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Note that if all but finitely many terms of the sequence aaa is 0, then faaa(t) is a

polynomial. In this case, Theorem 2.1.4 says that aaa is Toeplitz-TP if and only if all

the zeroes of faaa(t) are real and non-positive.

Remark. If aaa is instead a sequence of polynomials, then the ordinary generating

function faaa(t) need not (and usually does not) have a representation (2.12) with

ααα,βββ ,γ being coefficientwise-positive polynomials. However, it can be shown that

if they exist and are coefficientwise-positive, then the sequence aaa is coefficientwise

Toeplitz-TP [Sok]. �

2.1.6 Three total positivity questions for lower-triangular

matrices

We now revisit the three total-positivity questions for lower-triangular matrices which

were asked in Section 1.1 and we provide citations containing proofs or conjectures

for our examples.

Recall that A is the lower-triangular matrix

A =


a00

a10 a11

a20 a21 a22
... . . .


and An(x) is the n-th row-generating polynomial of A, i.e.,

An(x) =
n

∑
k=0

ankxk. (2.13)

We shall refer to a lower-triangular matrix as a triangle.

We then asked the following questions:

1a. Is the matrix A totally positive?

1b. Is the reversal of A, Arev := (an,n−k)n,k≥0 totally positive? (Here an,k = 0 when

k < 0.)

When the rows of A are palindromic, questions 1a. and 1b. are the same.
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2. Are An(x) negative-real-rooted, i.e., is the n-th row of A Toeplitz-totally posi-

tive?

3. Is the sequence
(
An(x)

)
n≥0 coefficientwise Hankel-totally positive in the vari-

able x?

For several important combinatorial triangles, the answer to all four of these

questions have either been proven to be true or are conjectured to be true. Some

examples are:

1. When A =
((n

k

))
n,k≥0 is the matrix of binomial coefficients, the matrix A

is known to be totally positive (this follows from equation (2.4) specialised

to x = y = 1). In this situtation, Arev = A as the rows are palindromic. The

row-generating polynomials An(x) = (x+1)n are clearly negative-real-rooted.

And finally, the sequence
(
(x+1)n)

n≥0 is coefficientwise Hankel-totally

positive in the variable x; this is because they have the continued fraction

∑
∞
n=0(x+1)ntn = 1/(1− (1+ x)t).

2. When A =
([n

k

])
n,k≥0 is the matrix of Stirling cycle numbers, which count the

number of permutations on [n] with k cycles. The total positivity of the matrix A

and its reversal Arev were shown by Brenti in 1995 [Bre95]; they hold because

the entries satisfy a binomial-like recurrence with nonnegative n-dependent

coefficients. The row generating polynomials An(x) = x(x+1) · · ·(x+n−1)

are clearly real-rooted with non-positive roots. The sequence (An(x))n≥0 has a

Stieltjes-type continued fraction discovered by Euler in 1760 [Eul60], also see

[SZ22, eq. (2.2), (2.6)].

3. When A =
({n

k

})
n,k≥0 is the matrix of Stirling subset numbers, which count

the number of set partitions on [n] with k blocks. The total positivity of the

matrix A is due to Brenti from 1995 [Bre95]; it holds because the entries
{n

k

}
satisfy a binomial-like recurrence with nonnegative k-dependent coefficients.

However, the total positivity of the reversal Arev was only recently shown

by us in [CDD+21], and we will see this in greater detail in Chapter 3. The

real-rootedness of the row generating polynomials An(x) is due to Harper from
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1967 [Har67]. The sequence (An(x))n≥0 has a Stieltjes-type continued fraction,

discovered by various people in the second half of the twentieth century, see

[SZ22, eq. (3.2), (3.5) and footnote 19].

4. When A =
(〈n

k

〉)
n,k≥0, is the matrix of Eulerian numbers, which count the

number of permutations on [n] containing k descents. The row-generating

polynomials An(x) were shown to be real-rooted by Frobenius in 1910 [Fro10].

The sequence (An(x))n≥0 has a Stieltjes-type continued fraction, going back

to Stieltjes [Sti94], also see [SZ22, eq. (2.2), (2.8) and footnote 4]. In 1996,

Brenti [Bre96] conjectured that the matrix A is totally positive2. In this case,

A and Arev are not palindromic but the total positivity of one would imply

the total positivity of the other. We will generalise Brenti’s conjecture in

Chapter 3.

We will study these questions for some new triangles generalising the Stirling

cycle and subset triangles in Chapter 6.

2.1.7 Lindström–Gessel–Viennot Lemma

An often-used tool to prove total positivity is the well-known Lindström–Gessel–

Viennot lemma (LGV lemma in short), which is a lemma that has been discovered

and rediscovered several times most notably in [GV89]. We shall now provide a brief

description of the LGV lemma in a setting that is useful for proving total positivity.

See for example [AZ18, Chapter 32] for a proof of the LGV lemma.

Let D be a digraph and let R be a commutative ring with identity. Let each edge

e of D be assigned a weight we ∈ R. Let U = {u0,u1, . . .} and V = {v0,v1, . . .} be

two distinguished sets of vertices which we call the sources and sinks, respectively.

For a path P in D, we write P : un→ vk to mean that P starts at the source vertex un

and ends at the sink vertex vk. The weight of a path P is the product of the weights

2Dyachenko [Dya] has verified this conjecture for the first 512× 512 submatrix of the matrix(〈n+1
k

〉)
n,k≥0

.
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of its edges and we denote it as wt(P). Now let

P(un→ vk)
def
= ∑

P:un→vk

wt(P) . (2.14)

We define the path matrix of (D,U ,V) to be the matrix

PPP(D,U ,V) def
= (P(un→ vk))n≥0,k≥0 . (2.15)

We call this set-up an LGV network.

Let I = {n1, . . . ,nr} and J = {k1, . . . ,kr} be two sets of indices. From the usual

definition of determinant of a matrix we have that

detPPP(D,U ,V)I,J = det(P(uni → vki))1≤i≤r

= ∑
σ∈Sr

sign(σ)
r

∏
i=1

P(uni → vkσ (i))

= ∑
σ∈Sr

sign(σ) ∑
(P1,...,Pr)

r

∏
i=1

wt(Pi) (2.16)

where P1 : un1 → vnσ(1), . . . ,Pr : unr → vnσ(r) .

A sequence of paths (P1, . . . ,Pr) is called non-intersecting if they have no

vertices in common. The LGV lemma states that if the digraph D is acyclic, then

detPPP(D,U ,V)I,J = ∑
σ∈Sr

sign(σ) ∑
(P1,...,Pr)

non-intersecting

r

∏
i=1

wt(Pi) (2.17)

where P1 : un1 → vnσ(1), . . . ,Pr : unr → vnσ(r) . Note that the only change in the

expressions for the determinant in equations (2.16) and (2.17) is the phrase “non-

intersecting” which may remove a lot of extra terms. We shall look at some examples

soon.

We say that the triplet (D,U ,V) is fully compatible if for any subset of sources

{un1, . . . ,unr}, and any subset of sinks {vn1 , . . . ,vnr}, the only permutation σ ∈Sr

which gives rise to a family of non-intersecting paths is the identity permutation. If
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(D,U ,V) is fully compatible, equation (2.17) reduces to

detPPP(D,U ,V)I,J = ∑
(P1,...,Pr)

non-intersecting

r

∏
i=1

wt(Pi) (2.18)

where P1 : un1 → vn1, . . . ,Pr : unr → vnr .

Let D be planar digraph with a planar embedding in which U and V lie on the

boundary of a circle and all the other vertices lie within the circle, such that the

sources U occur in clockwise order and the sinks V occur in anti-clockwise order

such that the sources and sinks are not interspersed. We call (D,U ,V) with such an

embedding a planar network.

From the descriptions of planar network and full compatibility, we can see that

a planar network is fully compatible. This was first described by Brenti in [Bre95].

If the ring R is a ring of polynomials in one or several variables over R and

if the edge weights we are coefficientwise-positive, then from the LGV lemma, we

get that PPP(D,U ,V) is coefficientwise-TP. Thus, to show that a matrix M is TP (or

coefficientwise-TP), it suffices to construct a planar network (D,U ,V) whose path

matrix is M. This is the set-up that one often uses to prove total positivity.

If a planar network (D,U ,V) is provided, it is not difficult to describe

PPP(D,U ,V). However, the other direction is difficult, i.e., if a matrix M is pro-

vided, it is highly nontrivial to construct a planar network D with PPP(D,U ,V) = M.

However, providing such a network for M, ensures total positivity of M.

A few examples of planar digraphs are given:

1. Planar network for the lower-bidiagonal matrix L(ddd,xxx) is given in Figure 2.1.

2. Planar network for the weighted binomial triangle
((n

k

)
xkyn−k)

n,k≥0 is given

in Figure 2.2.

2.2 Continued fractions
In this section, we will introduce some preliminaries and basic definitions on con-

tinued fractions. We begin in Section 2.2.1 with the basic definitions of classical

continued fractions, which are the continued fractions of Stieltjes, Jacobi and Thron
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u0 v0
d0

u1 v1
d1

u2 v2
d2

u3 v3
d3

u4 v4
d4

u5 v5
d5

x1

x2

x3

x4

x5

Figure 2.1: Planar network for the lower-bidiagonal matrix L(ddd,xxx).

u0 v0

u1 v1

u2 v2

u3 v3

u4 v4

u5 v5

Figure 2.2: Planar network for the weighted binomial triangle
((n

k

)
xkyn−k

)
n,k≥0. All the

horizontal edges get weight x and all the diagonal edges get weight y.

types. We then state some contraction formulae to transform Stieltjes- and Thron-

type continued fractions into Jacobi-type fractions in Section 2.2.2. In Section 2.2.3

we state some transformation formulae to transform one T-fraction to another.

Our proofs in Chapters 4 and 5 are based on Flajolet’s [Fla80] combinatorial

interpretation of continued fractions in terms of Dyck and Motzkin paths and its
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generalization [FG17, OdJ15, JV17, Sok, PS20] to Schröder paths, together with

some bijections mapping combinatorial objects (in particular, D-permutations) to

labelled Dyck, Motzkin or Schröder paths. We begin by reviewing briefly these two

ingredients in Sections 2.2.4 and 2.2.5.

2.2.1 Classical continued fractions: S-fractions, J-fractions and

T-fractions

Let (an)n≥0 is a sequence of combinatorial numbers or polynomials with a0 = 1. We

recall that a continued fraction of Stieltjes-type (S-fraction) is

∞

∑
n=0

antn =
1

1−
α1t

1−
α2t

1−
α3t

1−·· ·

, (2.19)

and Jacobi-type (J-fraction) is

∞

∑
n=0

antn =
1

1− γ0t−
β1t2

1− γ1t−
β2t2

1− γ2t−
β3t2

1−·· ·

. (2.20)

A less commonly studied type of continued fraction is the Thron-type (T-fraction):

∞

∑
n=0

antn =
1

1−δ1t−
α1t

1−δ2t−
α2t

1−δ3t−
α3t

1−·· ·

. (2.21)
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(Both sides of all these expressions are to be interpreted as formal power series in the

indeterminate t.) This line of investigation goes back at least to Euler [Eul60, Eul55a],

but it gained impetus following Flajolet’s [Fla80] seminal discovery that any S-

fraction (resp. J-fraction) can be interpreted combinatorially as a generating function

for Dyck (resp. Motzkin) paths with suitable weights for each rise and fall (resp. each

rise, fall and level step). More recently, several authors [FG17, OdJ15, JV17, Sok,

PS20] have found a similar combinatorial interpretation of the general T-fraction:

namely, as a generating function for Schröder paths with suitable weights for each

rise, fall and long level step. These interpretations will be reviewed in Section 2.2.4

below.

2.2.2 Contraction formulae

The formulae for even and odd contraction of an S-fraction to an equivalent J-

fraction are well known: see e.g. [DZ94, Lemmas 1 and 2] [Dum95, Lemma 1]

for very simple algebraic proofs, and see [Vie83, pp. V-31–V-32] for enlightening

combinatorial proofs based on grouping pairs of steps in a Dyck path. Here we will

provide an extension of these formulae to suitable subclasses of T-fractions [Sok]:

Proposition 2.2.1 (Even contraction for T-fractions with δ2 = δ4 = δ6 = . . . = 0).

We have

1

1−δ1t−
α1t

1−
α2t

1−δ3t−
α3t

1−·· ·

=

1

1− (α1 +δ1)t−
α1α2t2

1− (α2 +α3 +δ3)t−
α3α4t2

1− (α4 +α5 +δ5)t−
α5α6t2

1−·· ·

. (2.22)
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That is, the T-fraction on the left-hand side of (2.22) equals the J-fraction with

coefficients

γ0 = α1 +δ1 (2.23a)

γn = α2n +α2n+1 +δ2n+1 for n≥ 1 (2.23b)

βn = α2n−1α2n (2.23c)

Here (2.22)/(2.23) holds as an identity in Z[ααα,δδδ odd][[t]], where ααα = (α1,α2, . . .) and

δδδ odd = (δ1,0,δ3,0, . . .).

Proposition 2.2.2 (Odd contraction for T-fractions with δ1 = δ3 = δ5 = . . . = 0).

We have

1

1−
α1t

1−δ2t−
α2t

1−
α3t

1−δ4t−
α4t

1−·· ·

=

1 +
α1t

1− (α1 +α2 +δ2)t−
α2α3t2

1− (α3 +α4 +δ4)t−
α4α5t2

1−·· ·

. (2.24)

That is, the T-fraction on the left-hand side of (2.24) equals 1 plus α1t times the

J-fraction with coefficients

γn = α2n+1 +α2n+2 +δ2n+2 (2.25a)

βn = α2nα2n+1 (2.25b)

Here (2.24)/(2.25) holds as an identity in Z[ααα,δδδ even][[t]], where δδδ even =
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(0,δ2,0,δ4, . . .).

Both the algebraic and the combinatorial proofs of the contraction formulae for

S-fractions can be easily generalized [Sok] to prove Propositions 2.2.1 and 2.2.2.

One consequence of Proposition 2.2.1 is that if two T-fractions with only

odd deltas — say, one with coefficients (ααα,δδδ odd) and the other with coefficients

(ααα ′,δδδ ′odd) — give rise by contraction to the same J-fraction (βββ ,γγγ), then they must

be equal. In some cases this principle can be used to transform a T-fraction into an

S-fraction (that is, δδδ
′
odd = 000): we will see an instance in Corollary 4.3.3 below.

By combining Propositions 2.2.1 and 2.2.2, we obtain:

Corollary 2.2.3 (Combining odd and even contraction). If

∞

∑
n=0

antn =
1

1−
α1t

1−δ2t−
α2t

1−
α3t

1−δ4t−
α4t

1−·· ·

, (2.26)

then
∞

∑
n=0

an+1tn =
a1

1−δ ′1t−
α ′1t

1−
α ′2t

1−δ ′3t−
α ′3t

1−·· ·

(2.27)

whenever

α1 +α2 +δ2 = α
′
1 +δ

′
1 (2.28a)

α2n+1 +α2n+2 +δ2n+2 = α
′
2n +α

′
2n+1 +δ

′
2n+1 for n≥ 1 (2.28b)

α2nα2n+1 = α
′
2n−1α

′
2n (2.28c)
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2.2.3 Transformation formula

We now prove a useful transformation formula for T-fractions. First, a lemma:

Lemma 2.2.4. Let R be a commutative ring, and let f (t),g(t) ∈ R[[t]]. Then

1 +
t f (t)

1− t f (t)− tg(t)
=

1

1−
t f (t)

1− tg(t)

(2.29)

as an identity in R[[t]].

PROOF. Trivial: both sides equal
1− tg(t)

1− t f (t)− tg(t)
. �

Proposition 2.2.5 (Augmentation/restriction of T-fraction).

1 +
δ1t

1−δ1t−
α1t

1−δ2t−
α2t

1− . . .

=
1

1−
δ1t

1−
α1t

1−δ2t−
α2t

1− . . .

. (2.30)

PROOF. Use the lemma with f (t) = δ1 and g(t) =
α1

1−δ2t−
α2t

1− . . .

. �

Reading the identity (2.30) from left to right, it says that if the ogf of a sequence

aaa = (a0,a1,a2, . . .) with a0 = 1 is given by a T-fraction with coefficients ααα and δδδ ,

then the ogf of the “augmented” sequence aaa′ = (1,δ1a0,δ1a1,δ1a2, . . .) is given by a

T-fraction with coefficients ααα ′ and δδδ
′, where

α
′
1 = δ1 (2.31a)

α
′
n = αn−1 for n≥ 2 (2.31b)

δ
′
1 = δ

′
2 = 0 (2.31c)

δ
′
n = δn−1 for n≥ 3 (2.31d)
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In particular, if δ2 = δ3 = . . . = 0, then the T-fraction on the right-hand side is an

S-fraction. Of course, this transformation gives something interesting only when

δ1 6= 0.

Alternatively, reading the identity (2.30) from right to left, it says that if the

ogf of a sequence aaa′ = (a′0,a
′
1,a
′
2, . . .) with a′0 = 1 is given by a T-fraction with

coefficients ααα ′ and δδδ
′, where δ ′1 = δ ′2 = 0 (and of course α ′1 6= 0), then the ogf

of the “restricted” sequence aaa = (a1/α ′1,a2/α ′1, . . .) is given by a T-fraction with

coefficients ααα and δδδ , where

αn = α
′
n+1 (2.32a)

δ1 = α
′
1 (2.32b)

δn = δ
′
n+1 for n≥ 2 (2.32c)

2.2.4 Combinatorial interpretation of continued fractions

We will now mention Flajolet’s seminal result [Fla80] on the combinatorial inter-

pretation of continued fractions of Stieltjes and Jacobi type in terms of Dyck and

Motzkin paths, respectively, and an analogous interpretation for Thron-type contin-

ued fractions in terms of Schröder paths. This will show that bijective combinatorics

can be used to prove continued fractions. This is one of the key ingredients for our

proofs in Chapters 4 and 5.

A Motzkin path of length n≥ 0 is a path ω = (ω0, . . . ,ωn) in the right quadrant

N×N, starting at ω0 = (0,0) and ending at ωn = (n,0), whose steps s j = ω j−ω j−1

are (1,1) [“rise” or “up step”], (1,−1) [“fall” or “down step”] or (1,0) [“level step”].

We write h j for the height of the Motzkin path at abscissa j, i.e. ω j = ( j,h j); note in

particular that h0 = hn = 0. We writeMn for the set of Motzkin paths of length n,

andM=
⋃

∞
n=0Mn. A Motzkin path is called a Dyck path if it has no level steps.

A Dyck path always has even length; we write D2n for the set of Dyck paths of

length 2n, and D =
⋃

∞
n=0D2n.

Let a = (ai)i≥0, b = (bi)i≥1 and c = (ci)i≥0 be indeterminates; we will work in

the ring Z[[a,b,c]] of formal power series in these indeterminates. To each Motzkin
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path ω we assign a weight W (ω) ∈ Z[a,b,c] that is the product of the weights for

the individual steps, where a rise starting at height i gets weight ai, a fall starting at

height i gets weight bi, and a level step at height i gets weight ci. Flajolet [Fla80]

showed that the generating function of Motzkin paths can be expressed as a continued

fraction:

Theorem 2.2.6 (Flajolet’s master theorem). We have

∑
ω∈M

W (ω) =
1

1− c0−
a0b1

1− c1−
a1b2

1− c2−
a2b3

1−·· ·

(2.33)

as an identity in Z[[a,b,c]].

In particular, if ai−1bi = βit2 and ci = γit (note that the parameter t is conjugate

to the length of the Motzkin path), we have

∞

∑
n=0

tn
∑

ω∈Mn

W (ω) =
1

1− γ0t−
β1t2

1− γ1t−
β2t2

1−·· ·

, (2.34)

so that the generating function of Motzkin paths with height-dependent weights is

given by the J-type continued fraction (2.20). Similarly, if ai−1bi = αit and ci = 0

(note that t is now conjugate to the semi-length of the Dyck path), we have

∞

∑
n=0

tn
∑

ω∈D2n

W (ω) =
1

1−
α1t

1−
α2t

1−·· ·

, (2.35)

so that the generating function of Dyck paths with height-dependent weights is given
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by the S-type continued fraction (2.19).

Let us now show how to handle Schröder paths within this framework. A

Schröder path of length 2n (n≥ 0) is a path ω = (ω0, . . . ,ω2n) in the right quadrant

N×N, starting at ω0 = (0,0) and ending at ω2n = (2n,0), whose steps are (1,1)

[“rise” or “up step”], (1,−1) [“fall” or “down step”] or (2,0) [“long level step”]. We

write s j for the step starting at abscissa j−1. If the step s j is a rise or a fall, we set

s j = ω j−ω j−1 as before. If the step s j is a long level step, we set s j = ω j+1−ω j−1

and leave ω j undefined; furthermore, in this case there is no step s j+1. We write

h j for the height of the Schröder path at abscissa j whenever this is defined, i.e.

ω j = ( j,h j). Please note that ω2n = (2n,0) and h2n = 0 are always well-defined,

because there cannot be a long level step starting at abscissa 2n− 1. Note also

that a long level step at even (resp. odd) height can occur only at an odd-numbered

(resp. even-numbered) step. We write S2n for the set of Schröder paths of length 2n,

and S =
⋃

∞
n=0S2n.

There is an obvious bijection between Schröder paths and Motzkin paths:

namely, every long level step is mapped onto a level step. If we apply Flajolet’s

master theorem with ai−1bi = αit and ci = δi+1t to the resulting Motzkin path (note

that t is now conjugate to the semi-length of the underlying Schröder path), we obtain

∞

∑
n=0

tn
∑

ω∈S2n

W (ω) =
1

1−δ1t−
α1t

1−δ2t−
α2t

1−·· ·

, (2.36)

so that the generating function of Schröder paths with height-dependent weights

is given by the T-type continued fraction (2.21). More precisely, every rise gets a

weight 1, every fall starting at height i gets a weight αi, and every long level step at

height i gets a weight δi+1. This combinatorial interpretation of T-fractions in terms

of Schröder paths was found recently by several authors [FG17, OdJ15, JV17, Sok].
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2.2.5 Labelled Dyck, Motzkin and Schröder paths

We have looked at the combinatorial interpretations of weighted Dyck, Motzkin

and Schröder paths in terms of continued fractions in Section 2.2.4. As our next

step in this approach, we will now look at Dyck, Motzkin and Schröder paths with

height-dependent labels on each step which will lead us to some continued fractions.

LetA= (Ah)h≥0, B= (Bh)h≥1 and C = (Ch)h≥0 be sequences of finite sets. An

(A,B,C)-labelled Motzkin path of length nnn is a pair (ω,ξ ) where ω = (ω0, . . . ,ωn)

is a Motzkin path of length n, and ξ = (ξ1, . . . ,ξn) is a sequence satisfying

ξi ∈


A(hi−1) if step i is a rise (i.e. hi = hi−1 +1)

B(hi−1) if step i is a fall (i.e. hi = hi−1−1)

C(hi−1) if step i is a level step (i.e. hi = hi−1)

(2.37)

where hi−1 (resp. hi) is the height of the Motzkin path before (resp. after) step i. [For

typographical clarity we have here written A(h) as a synonym for Ah, etc.] We call

ξi the label associated to step i. We call the pair (ω,ξ ) an (A,B)-labelled Dyck

path if ω is a Dyck path (in this case C plays no role). We denote byMn(A,B,C)

the set of (A,B,C)-labelled Motzkin paths of length n, and by D2n(A,B) the set of

(A,B)-labelled Dyck paths of length 2n.

We define a (A,B,C)-labelled Schröder path in an analogous way; now the sets

Ch refer to long level steps. We denote by S2n(A,B,C) the set of (A,B,C)-labelled

Schröder paths of length 2n.

Let us stress that the setsAh, Bh and Ch are allowed to be empty. Whenever this

happens, the path ω is forbidden to take a step of the specified kind starting at the

specified height.

Remark. What we have called an (A,B,C)-labelled Motzkin path is (up to small

changes in notation) called a path diagramme by Flajolet [Fla80, p. 136] and a

history by Viennot [Vie83, p. II-9]. Often the label sets Ah,Bh,Ch are intervals of

integers, e.g. Ah = {1, . . . ,Ah} or {0, . . . ,Ah}; in this case the triplet (A,B,C) of
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sequences of maximum values is called a possibility function. On the other hand, it is

sometimes useful to employ labels that are pairs of integers (e.g. [SZ22, Section 6.2]

and Section 4.6 below). It therefore seems preferable to state the general theory

without any specific assumption about the nature of the label sets. �

Following Flajolet [Fla80, Proposition 7A], we can state a “master J-fraction”

for (A,B,C)-labelled Motzkin paths. Let a= (ah,ξ )h≥0, ξ∈A(h), b= (bh,ξ )h≥1, ξ∈B(h)

and c = (ch,ξ )h≥0, ξ∈C(h) be indeterminates; we give an (A,B,C)-labelled Motzkin

path (ω,ξ ) a weight W (ω,ξ ) that is the product of the weights for the individual

steps, where a rise starting at height h with label ξ gets weight ah,ξ , a fall starting at

height h with label ξ gets weight bh,ξ , and a level step at height h with label ξ gets

weight ch,ξ . Then:

Theorem 2.2.7 (Flajolet’s master theorem for labelled Motzkin paths). We have

∞

∑
n=0

tn
∑

(ω,ξ )∈Mn(A,B,C)
W (ω,ξ ) =

1

1− c0t−
a0b1t2

1− c1t−
a1b2t2

1− c2t−
a2b3t2

1−·· ·

(2.38)

as an identity in Z[a,b,c][[t]], where

ah = ∑
ξ∈A(h)

ah,ξ , bh = ∑
ξ∈B(h)

bh,ξ , ch = ∑
ξ∈C(h)

ch,ξ . (2.39)

This is an immediate consequence of Theorem 2.2.6 together with the definitions.

By specializing to c = 000 and replacing t2 by t, we obtain the corresponding

theorem for (A,B)-labelled Dyck paths:
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Corollary 2.2.8 (Flajolet’s master theorem for labelled Dyck paths). We have

∞

∑
n=0

tn
∑

(ω,ξ )∈D2n(A,B)
W (ω,ξ ) =

1

1−
a0b1t

1−
a1b2t

1−
a2b3t

1−·· ·

(2.40)

as an identity in Z[a,b][[t]], where ah and bh are defined by (2.39).

Similarly, for labelled Schröder paths we have:

Theorem 2.2.9 (Flajolet’s master theorem for labelled Schröder paths). We have

∞

∑
n=0

tn
∑

(ω,ξ )∈S2n(A,B,C)
W (ω,ξ ) =

1

1− c0t−
a0b1t

1− c1t−
a1b2t

1− c2t−
a2b3t

1−·· ·

(2.41)

as an identity in Z[a,b,c][[t]], where ah,bh,ch are defined by (2.39), with ch,ξ now

referring to long level steps.

2.3 Some sufficient conditions for coefficientwise

Hankel-total positivity
In Section 2.1.4 we discussed the total positivity of Hankel matrices. In Theo-

rem 2.1.2 we saw that the existence of a Stieltjes-type continued fraction is an equiva-

lent condition for a Hankel matrix of real numbers to be totally positive. This equiva-

lence does not hold in the coefficientwise setting; however, we saw in Theorem 2.1.3

that the existence of an S-fraction with α0,α1, . . . that are coefficientwise-positive

polynomials is a sufficient condition for coefficientwise Hankel-total positivity, al-

though it is far from necessary. We will now see some more general sufficient

conditions for the coefficientwise total positivity of Hankel matrices.
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We begin with aaa which is a sequence of coefficientwise-positive polynomials.

Also, let α1,α2, . . . and δ1,δ2, . . . be two more sequences of coefficientwise-positive

polynomials. We will now state a result which will be very useful in this thesis:

it generalises Theorem 2.1.3 from S-fractions to T-fractions. It was first found by

Sokal (unpublished) in 2015; it is also a special case obtained by setting m = 1 in a

far more general result by Pétréolle, Sokal and Zhu [PSZ18, Theorem 9.9] which we

will also state in a while (see Theorem 2.3.3 below):

Theorem 2.3.1 (Coefficientwise Hankel-total postivity of T-fractions). Let aaa =

(an)n≥0, α1, . . . and δ1,δ2, . . . be three sequences of polynomials with a0 = 1. If the

polynomials α1,α2, . . . and δ1,δ2, . . . are coefficientwise-positive and they satisfy the

following power series identity:

∞

∑
n=0

antn =
1

1−δ1t−
α1t

1−δ2t−
α2t

. . .

(2.42)

then aaa is coefficientwise-Hankel totally positive.

It is clear that if we set δn = 0 for all n≥ 1, we obtain Theorem 2.1.3 as a special

case. We have stated Theorem 2.3.1 separately as we will use it several times in this

thesis.

We will now state another generalisation of Theorem 2.1.3 for which we need

to recall a few definitions from [PSZ18]. Let m≥ 1 be a fixed integer. An mmm-Dyck

path is a path in the upper half-plane Z×N, starting and ending on the horizontal

axis, using steps (1,1) [“rise” or “up step”] and (1,−m) [“m-fall” or “down step”].

Since the number of up steps must equal m times the number of down steps, the

length of an m-Dyck path must be a multiple of m+1. Thus, a 1-Dyck path is simply

a Dyck path.

Now let ααα = (αi)i≥m be an infinite set of indeterminates. Then [PSZ18] the

mmm-Stieltjes–Rogers polynomial of order n, denoted S(m)
n (ααα), is the generating poly-

nomial for m-Dyck paths from (0,0) to ((m+1)n,0) in which each rise gets weight 1
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and each m-fall from height i gets weight αi. Clearly S(m)
n (ααα) is a homogeneous

polynomial of degree n with nonnegative integer coefficients. Thus, the 1-Stieltjes–

Rogers polynomial of order n is the polynomial ∑ω∈D2n W (ω) in the left-hand side

of equation (2.35). We are now ready to state [PSZ18, Theorem 9.8]:

Theorem 2.3.2 ([PSZ18, Theorem 9.8]). For each integer m ≥ 1, the sequence

SSS(m) =
(

S(m)
n (ααα)

)
n≥0

of m-Stieltjes–Rogers polynomials is coefficientwise Hankel-

totally positive sequence with respect to the indeterminates ααα .

Finally, for the sake of completeness let us also introduce the mmm-Thron–Rogers

polynomials, even though we will not use them in this thesis. An mmm-Schröder

path is a path in the upper half-plane Z×N, starting and ending on the horizontal

axis, using steps (1,1) [“rise” or “up step”], (1,−m) [“m-fall” or “down step”] and

(2,−(m−1)) [“m-long step”]. We define the length of an m-Schröder path to be the

number of rises plus the number of m-falls plus twice the number of m-long steps.

It is not difficult to see that the length of an m-Schröder path must be a multiple of

m+1. Also, it is clear that a 1-Schröder path is simply a Schröder path.

Now let ααα = (αi)i≥m and δδδ = (δi)i≥m be infinite sets of indeterminates. Then

[PSZ18] the mmm-Thron–Rogers polynomial of order n, denoted T (m)
n (ααα,δδδ ), is the

generating polynomial for m-Schröder paths from (0,0) to ((m+1)n,0) in which

each rise gets weight 1, each m-fall from height i gets weight αi, and each m-long

step from height i gets weight δi+1. Thus, the 1-Thron–Rogers polynomial of order

n is the polynomial ∑ω∈S2n W (ω) in the left-hand side of equation (2.36). We are

now ready to state [PSZ18, Theorem 9.9] which is a common generalisation of

Theorems 2.1.3, 2.3.1 and 2.3.2:

Theorem 2.3.3 ([PSZ18, Theorem 9.9]). For each integer m ≥ 1, the sequence

TTT (m) =
(

T (m)
n (ααα,δδδ )

)
n≥0

of m-Thron–Rogers polynomials is coefficientwise Hankel-

totally positive sequence with respect to the indeterminates ααα and δδδ .
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2.4 Genocchi, median Genocchi numbers, and

D-permutations

The Genocchi numbers appear already in Euler’s book Foundations of Differential

Calculus, with Applications to Finite Analysis and Series, first published in 1755

[Eul55b, paragraphs 181 and 182]; this book is E212 in Eneström’s [Ene13] cata-

logue. These numbers were revisited by Genocchi [Gen52] in 1852. The beautiful

survey article of Viennot [Vie] contains a wealth of useful information.

Our notation for the Genocchi and median Genocchi numbers is nonstandard

but, we believe, sensible and logical. Later we will present a translation dictionary

with respect to (the plethora of) previous notations: see footnotes 3 and 5.

We will work with objects enumerated by the Genocchi and median Genocchi

numbers in Chapters 4 and 5. In this section, we first introduce the Genocchi

numbers in Subsection 2.4.1. We then introduce the median Genocchi numbers in

Section 2.4.2. Finally, we will define D-permutations and its various subclasses in

Section 2.4.3 which will be one of our primary objects of study.

2.4.1 Genocchi numbers

The Genocchi numbers [OEI19, A110501]3

(gn)n≥0 = 1,1,3,17,155,2073,38227,929569,28820619,1109652905, . . .

(2.43)

3Our gn is usually written by combinatorialists as G2n+2. However, many texts — particularly
older ones, or those in the analysis and special-functions literature — define the (signed) Genocchi
numbers (Gn)n≥0 by [OLBC10, 24.15.1]

2t
et +1

=
∞

∑
n=1

Gn
tn

n!
,

which leads to G0 = 0, G1 = 1, Gn = 0 for odd n≥ 3, and G2n+2 = (−1)n+1gn.
Warning: Our gn is denoted gn+1 by Lazar and Wachs [LW22, Laz20] and Eu, Fu, Lai and Lo

[EFLL22].
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are odd positive integers [Luc77, Bar81, HL18] [FH08, pp. 217–218] defined by the

exponential generating function

t tan(t/2) =
∞

∑
n=0

gn
t2n+2

(2n+2)!
. (2.44)

The ordinary generating function of the Genocchi numbers has a classical S-fraction

expansion [Vie, eq. (7.5)] [Vie83, p. V-9] [DZ94, eqns. (1.4) and (3.9)]

∞

∑
n=0

gn tn =
1

1−
1 ·1t

1−
1 ·2t

1−
2 ·2t

1−
2 ·3t

1−·· ·

(2.45)

with coefficients

α2k−1 = k2 , α2k = k(k+1) . (2.46)

It then follows from Proposition 2.2.5 that the once-shifted Genocchi numbers

(gn+1)n≥0 have a T-fraction

∞

∑
n=0

gn+1 tn =
1

1− t−
1 ·2t

1−
2 ·2t

1−
2 ·3t

1−
3 ·3t

1−·· ·

(2.47)

with coefficients

α2k−1 = k(k+1) , α2k = (k+1)2 , δ1 = 1 , δn = 0 for n≥ 2 . (2.48)
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Remark. Some generalizations of (2.45)/(2.46), incorporating additional pa-

rameters, are known in a variety of algebraic or combinatorial models: see [Dum86,

Section 6] [DR95] [Zen96, eq. (3.3) and Corollaire 8] [RZ96b, Théorème 3 and

Proposition 13] [RZ96a, Proposition 10] [Ran97, Théorème 1.2] [HZ99b, eq. (5)

and Théorème 2]. See also [HZ99b, Corollaire 3] for a generalization of the T-

fraction (2.47)/(2.48).4 �

2.4.2 Median Genocchi numbers

The median Genocchi numbers (or Genocchi medians for short) [OEI19, A005439]5

are defined by [HZ99a, p. 63]

hn =
n−1

∑
i=0

(−1)i
(

n
2i+1

)
gn−1−i . (2.49)

The Genocchi medians

(hn)n≥0 = 1,1,2,8,56,608,9440,198272,5410688,186043904,7867739648, . . .

(2.50)

do not have any known exponential generating function. However, their ordinary

generating function has a nice classical S-fraction expansion [Vie, eq. (9.7)] [Vie83,

p. V-15] [DZ94, eqns. (1.5) and (3.8)]:

∞

∑
n=0

hn tn =
1

1−
1t

1−
1t

1−
4t

1−
4t

1−·· ·

(2.51)

4There is a typographical error in [HZ99b, eq. (12)]: on the left-hand side, tn should be tn−1.
5Our hn is usually written by combinatorialists as H2n+1.

Warning: Lazar and Wachs’ [LW22, Laz20] hn equals our hn+1. Pan and Zeng’s [PZ23] hn is our
hn+1 divided by 2n.
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with coefficients

α2k−1 = α2k = k2 . (2.52)

It then follows from Corollary 2.2.3 that the once-shifted median Genocchi numbers

(hn+1)n≥0 have an S-fraction

∞

∑
n=0

hn+1 tn =
1

1−
2t

1−
2t

1−
6t

1−
6t

1−·· ·

(2.53)

with coefficients

α2k−1 = α2k = k(k+1) . (2.54)

Moreover, from Proposition 2.2.5 they also a T-fraction

∞

∑
n=0

hn+1 tn =
1

1− t−
1t

1−
4t

1−
4t

1−
9t

1−·· ·

(2.55)

with coefficients

α2k−1 = k2 , α2k = (k+1)2 , δ1 = 1 , δn = 0 for n≥ 2 . (2.56)

Finally, let us define, for future reference, the sequence (h[n+1)n≥0 corresponding
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to the S-fraction underlying (2.55):

∞

∑
n=0

h[n+1 tn =
1

1−
1t

1−
4t

1−
4t

1−
9t

1−·· ·

(2.57)

with coefficients

α2k−1 = k2 , α2k = (k+1)2 . (2.58)

This sequence begins

(h[n+1)n≥0 = 1,1,5,41,493,8161,178469,4998905,174914077,7487810257, . . .

(2.59)

and cannot be found, at present, in [OEI19]. In Section 4.2.2 we will give its

combinatorial interpretation. Using Proposition 2.2.5, we also get a T-fraction for

the once-shifted sequence (h[n+2)n≥0:

∞

∑
n=0

h[n+2 tn =
1

1− t−
4t

1−
4t

1−
9t

1−·· ·

(2.60)

with coefficients

α2k−1 = (k+1)2 , α2k = (k+1)2 , δ1 = 1 , δn = 0 for n≥ 2 . (2.61)

Remark. Some generalizations of (2.51)/(2.52) or (2.53)/(2.54), incorporating

additional parameters, are known in a variety of algebraic or combinatorial mod-
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els: see [Dum86, Section 6] [DR95] [Zen96, eq. (3.3) and Corollaire 8] [RZ96b,

Théorème 3 and Proposition 13] [RZ96a, Proposition 10 and Corollary 13] [Fei12,

Theorem 0.1] [PZ23, Corollary 6]. �

2.4.3 D-permutations

The median Genocchi numbers enumerate a class of permutations called D-

permutations (short for Dumont-like permutations), they were introduced by Lazar

and Wachs in [LW22, Laz20]. A permutation of [2n] is called a D-permutation in case

2k−1≤ σ(2k−1) and 2k≥ σ(2k) for all k, i.e., it contains no even excedances and

no odd anti-excedances. Let us say also that a permutation is an e-semiderangement

(resp. o-semiderangement) in case in contains no even (resp. odd) fixed points;

it is a derangement in case it contains no fixed points at all. A D-permutation

that is also an e-semiderangement (resp. o-semiderangement, derangement) will

be called a D-e-semiderangement (resp. D-o-semiderangement, D-derangement).6

A D-permutation that contains exactly one cycle is called a D-cycle. Notice that

a D-cycle is also a D-derangement. Let D2n (resp. De
2n,D

o
2n,D

eo
2n,DC2n) denote

the set of all D-permutations (resp. D-e-semiderangements, D-o-semiderangements,

D-derangements, D-cycles) of [2n]. For instance,

D2 = {12, 21eo} (2.62a)

D4 = {1234, 1243, 2134, 2143eo, 3142eo, 3241o, 4132e, 4231} (2.62b)

DC2 = {21} (2.62c)

DC4 = {3142} (2.62d)

6In the past, D-o-semiderangements have been called Genocchi permutations [RZ96a, Ran97,
HZ99b] or excedance-alternating permutations [ES00]; D-e-semiderangements [Dum74, p. 316,
Corollaire 1] have been called Dumont permutations [LW22, Laz20, PZ23] or Dumont permutations
of the second kind [BEM06, BJ21]; D-derangements have been called Dumont derangements [LW22,
Laz20, PZ23]. D-permutations that are not semiderangements were apparently first considered in the
recent work of Lazar and Wachs [LW22, Laz20].

Note also that the involution of S2n defined by σ 7→ R ◦σ ◦R, where R(i) = 2n+ 1− i is the
reversal map, takes D-permutations into D-permutations and interchanges e-semiderangements
with o-semiderangements; it therefore yields a bijection between D-e-semiderangements and D-o-
semiderangements. Therefore, any result about one of the two types of D-semiderangements can be
expressed equivalently in terms of the other.
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where e denotes e-semiderangements that are not derangements, o denotes o-semide-

rangements that are not derangements, and eo denotes derangements.

Remark. Three natural variants of this setup lead to nothing new:

1) In a D-permutation of [2n+1], 2n+1 must be a fixed point, and the rest

is a D-permutation of [2n].

2) Suppose we define an anti-D-permutation to be one in which 2k−1≥

σ(2k−1) and 2k ≤ σ(2k) for all k. Then, in an anti-D-permutation of

[2n], 1 and 2n must be fixed points, and the rest is, after renumbering, a

D-permutation of [2n−2].

3) In an anti-D-permutation of [2n+1], 1 must be a fixed point, and the rest

is, after renumbering, a D-permutation of [2n].

So there is no loss of generality in studying only D-permutations of [2n]. �

It is known [Dum74, DR94, LW22, Laz20] — and we will recover as part of

our work — that

|D2n| = hn+1 (2.63a)

|De
2n| = |Do

2n| = gn (2.63b)

|Deo
2n| = hn (2.63c)

|DC2n| = gn−1 (2.63d)

2.5 Permutation statistics
We will define various permutation statistics which will play an important role in

this thesis, especially in Chapters 4 and 5. We intend this section to be useful as

a glossary of statistics should the reader need to check the description of the large

number of statistics which we will later simultaneously study. We will introduce

our record and cycle classification in Section 2.5.1. Then we will define nesting and

crossing statistics in Section 2.5.2.
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2.5.1 Record and cycle classification

Given a permutation σ ∈ SN , we will introduce various ways of classifying the

indices and values i ∈ [N].

Cycle classification:

Given a permutation σ ∈SN , an index i ∈ [N] is called

• cycle peak (cpeak) if σ−1(i)< i > σ(i);

• cycle valley (cval) if σ−1(i)> i < σ(i);

• cycle double rise (cdrise) if σ−1(i)< i < σ(i);

• cycle double fall (cdfall) if σ−1(i)> i > σ(i);

• fixed point (fix) if σ−1(i) = i = σ(i).

Clearly every index i belongs to exactly one of these five types; we refer to this

classification as the cycle classification.

Now suppose that σ is a D-permutation. Then the cycle classification of a

non-fixed-point index i is equivalent to recording the parities of σ−1(i) and i:

• cycle peak: σ−1(i)< i > σ(i) =⇒ σ−1(i) odd, i even

• cycle valley: σ−1(i)> i < σ(i) =⇒ σ−1(i) even, i odd

• cycle double rise: σ−1(i)< i < σ(i) =⇒ σ−1(i) odd, i odd

• cycle double fall: σ−1(i)> i > σ(i) =⇒ σ−1(i) even, i even

(2.64)

For a fixed point i, we will later in (2.65) explicitly record the parity of i by

distinguishing even and odd fixed points.

Record classification:

An index i ∈ [N] is called a

• record (rec) (or left-to-right maximum) if σ( j)< σ(i) for all j < i

[note in particular that the indices 1 and σ−1(N) are always records];

• antirecord (arec) (or right-to-left minimum) if σ( j)> σ(i) for all j > i



2.5. Permutation statistics 75

[note in particular that the indices N and σ−1(1) are always antirecords];

• exclusive record (erec) if it is a record and not also an antirecord;

• exclusive antirecord (earec) if it is an antirecord and not also a record;

• record-antirecord (rar) if it is both a record and an antirecord;

• neither-record-antirecord (nrar) if it is neither a record nor an antirecord.

Every index i thus belongs to exactly one of the latter four types; we refer to this

classification as the record classification.

Record-and-cycle classification:

One can apply the record and cycle classifications simultaneously, to obtain 10, and

not 20, disjoint categories which we name in Table 2.1.

cpeak cval cdrise cdfall fix
erec ereccval ereccdrise
earec eareccpeak eareccdfall
rar rar

nrar nrcpeak nrcval nrcdrise nrcdfall nrfix

Table 2.1: The 10 types in record-and-cycle classification

Clearly every index i belongs to exactly one of these 10 types; we call this the

record-and-cycle classification.

Variant record-and-cycle classification:

We will also use a variant of this classification involving record and antirecord values

rather than indices. A value i ∈ [N] is called a

• record value (rec′) (or left-to-right maximum value) if σ( j)< i for all

j < σ−1(i) [note in particular that the values σ(1) and N are always record

values];

• antirecord value (arec′) (or right-to-left minimum value) if σ( j)> i for all

j > σ−1(i) [note in particular that the values σ−1(N) and 1 are always an-

tirecord values];
We also analogously define exclusive record value (erec′), exclusive antirecord value

(earec′), record-antirecord value (rar′), neither-record-antirecord value (nrar′). Every
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index i thus belongs to exactly one of these four types; we refer to this classification

as the variant record classification.

We can similarly introduce the variant record-and-cycle classification consist-

ing of the 10 disjoint categories which we mention in Table 2.2.

cpeak cval cdrise cdfall fix
erec′ ereccpeak′ ereccdrise′

earec′ eareccval′ eareccdfall′

rar′ rar′

nrar′ nrcpeak′ nrcval′ nrcdrise′ nrcdfall′ nrfix′

Table 2.2: The 10 types in variant record-and-cycle classification

Notice that in record-and-cycle classification, cycle valleys (cycle peaks) can be

exclusive record (exclusive anti-record) indices, whereas in the variant record-and-

cycle classification, cycle valleys (cycle peaks) can now be exclusive anti-record

(exclusive record) values.

Parity-refined record-and-cycle classification (for D-permutations):

Now let σ ∈D2N be a D-permutation. We further refine the fixed points according

to their parity.

• even fixed point (evenfix): σ−1(i) = i = σ(i) is even

• odd fixed point (oddfix): σ−1(i) = i = σ(i) is odd
(2.65)

We therefore refine the record-and-cycle classification by distinguishing even

and odd fixed points which we mention in table 2.3.

even odd
rar evenrar oddrar

nrfix evennrfix oddnrfix

Table 2.3: Distinguishing fixed points by parity and record status

This leads to the parity-refined record-and-cycle classification, in which each

index i belongs to exactly one of 12 types. More precisely, each even i belongs to

exactly one of the 6 types
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eareccpeak, nrcpeak, eareccdfall, nrcdfall, evenrar, evennrfix,

while each odd i belongs to exactly one of the 6 types

ereccval, nrcval, ereccdrise, nrcdrise, oddrar, oddnrfix.

We can also similarly introduce variant parity-refined record-and-cycle classifica-

tion where each even i belongs to exactly one of the 6 types

ereccpeak′, nrcpeak′, eareccdfall′, nrcdfall′, evenrar′, evennrfix′,

while each odd i belongs to exactly one of the 6 types

eareccval′, nrcval′, ereccdrise′, nrcdrise′, oddrar′, oddnrfix′.

Minimum and maximum elements in a cycle:

Notice that each non-singleton cycle in a permutation σ ∈SN consists of exactly

one minimum element, which must be a cycle valley, and one maximum element,

which must be a cycle peak. With this observation, we introduce the following four

statistics:

• cycle valley minimum (minval): cycle valley that is the minimum in its cycle;

• cycle peak maximum (maxpeak): cycle peak that is the maximum in its cycle;

• cycle valley non-mimimum (nminval): cycle valley that is not the minimum in

its cycle;

• cycle peak non-maximum (nmaxpeak): cycle peak that is not the maximum in

its cycle.

Convention for set of elements:

Whenever we use the name of a statistic but with its first letter in capital, we will

refer to the set of elements that belong to that statistic (in case that makes sense). For

example, we use Cval to denote the set of all cycle valleys, and Evenfix to denote

the set of even fixed points.
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Figure 2.3: An example of a permutation σ = 7192548610311121413 =
(1,7,8,6,4,2)(3,9,10)(5)(11)(12)(13,14) ∈ S14. Notice that σ is
also a D-permutation.

2.5.2 Crossings and nestings

We now define (following [SZ22]) some permutation statistics that count crossings

and nestings.

Pictorial representation for permutations:

First we associate to each permutation σ ∈SN a pictorial representation by placing

vertices 1,2, . . . ,N along a horizontal axis and then drawing an arc from i to σ(i)

above (resp. below) the horizontal axis in case σ(i)> i [resp. σ(i)< i]; if σ(i) = i

we do not draw any arc. This idea was first introduced by Corteel in [Cor07]. See

Figure 2.3 for an example. Each vertex thus has either out-degree = in-degree = 1

(if it is not a fixed point) or out-degree = in-degree = 0 (if it is a fixed point). Of

course, the arrows on the arcs are redundant, because the arrow on an arc above (resp.

below) the axis always points to the right (resp. left); we therefore omit the arrows

for simplicity.

Crossings and nestings:

We say that a quadruplet i < j < k < l forms an

• upper crossing (ucross) if k = σ(i) and l = σ( j);

• lower crossing (lcross) if i = σ(k) and j = σ(l);

• upper nesting (unest) if l = σ(i) and k = σ( j);

• lower nesting (lnest) if i = σ(l) and j = σ(k).
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Notice that for any such quadruplet, none of the four indices i, j,k, l is a fixed point.

We also additionally consider the following degenerate cases where j = k is a fixed

point, we say that a triple i < j < l forms an:

• upper pseudo-nesting (upsnest) if l = σ(i) and j = σ( j);

• lower pseudo-nesting (lpsnest) if i = σ(l) and j = σ( j).

Note that upsnest(σ) = lpsnest(σ) for all σ , since for each fixed point j, the

number of pairs (i, l) with i < j < l such that l = σ(i) has to equal the number of

such pairs with i = σ(l); we therefore write these two statistics simply as

psnest(σ)
def
= upsnest(σ) = lpsnest(σ) . (2.66)

If σ is a D-permutation, then its diagram has a special property: all arrows

emanating from odd (resp. even) vertices are upper (resp. lower) arrows. Otherwise

put, the leftmost (resp. rightmost) vertex of an upper (resp. lower) arc is always

odd (resp. even). It follows that in an upper crossing or nesting i < j < k < l, the

indices i and j must be odd; and in a lower crossing or nesting i < j < k < l, the

indices k and l must be even. Similar comments apply to upper and lower joinings

and pseudo-nestings.

We can further refine the four crossing/nesting categories by examining more

closely the status of the inner index ( j or k) whose outgoing arc belonged to the

crossing or nesting: that is, j for an upper crossing or nesting, and k for a lower

crossing or nesting. We state this in table 2.4.

ucross unest lcross lnest
j ∈ Cval ucrosscval unestcval

j ∈ Cdrise ucrosscdrise unestcdrise
k ∈ Cpeak lcrosscpeak lnestcpeak
k ∈ Cdfall lcrosscdfall lnestcdfall

Table 2.4: We consider a quadruplet i < j < k < l and refine the four crossing/nesting
categories by considering the status of j for upper crossings/nestings and k for
lower crossings/nestings.
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Index-refined crossing and nesting statistics:

A central role in our work will be played (just as in [SZ22]) by a refinement of

these statistics: rather than counting the total numbers of quadruplets i < j < k < l

that form upper (resp. lower) crossings or nestings, we will count the number of

upper (resp. lower) crossings or nestings that use a particular vertex j (resp. k) in

second (resp. third) position. More precisely, we define the index-refined crossing

and nesting statistics

ucross( j,σ) = #{i < j < k < l : k = σ(i) and l = σ( j)} (2.67a)

unest( j,σ) = #{i < j < k < l : k = σ( j) and l = σ(i)} (2.67b)

lcross(k,σ) = #{i < j < k < l : i = σ(k) and j = σ(l)} (2.67c)

lnest(k,σ) = #{i < j < k < l : i = σ(l) and j = σ(k)} (2.67d)

Note that ucross( j,σ) and unest( j,σ) can be nonzero only when j is an ex-

cedance (that is, a cycle valley or a cycle double rise), while lcross(k,σ) and

lnest(k,σ) can be nonzero only when k is an anti-excedance (that is, a cycle peak or

a cycle double fall). In a D-permutation, this means that ucross( j,σ) and unest( j,σ)

can be nonzero only when j is odd and not a fixed point, while lcross(k,σ) and

lnest(k,σ) can be nonzero only when k is even and not a fixed point.

When j is a fixed point, we also define the analogous quantity for pseudo-

nestings:

psnest( j,σ)
def
= #{i < j : σ(i)> j} = #{i > j : σ(i)< j} . (2.68)

(Here the two expressions are equal because σ is a bijection from [1, j)∪ ( j,n] to

itself.) In [SZ22, eq. (2.20)] this quantity was called the level of the fixed point j and

was denoted lev( j,σ). Here we prefer psnest.

Variant index-refined crossing and nesting statistics

We also use a variant of (2.67) in which the roles of second and third position are
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interchanged:

ucross′(k,σ) = #{i < j < k < l : k = σ(i) and l = σ( j)} (2.69a)

unest′(k,σ) = #{i < j < k < l : k = σ( j) and l = σ(i)} (2.69b)

lcross′( j,σ) = #{i < j < k < l : i = σ(k) and j = σ(l)} (2.69c)

lnest′( j,σ) = #{i < j < k < l : i = σ(l) and j = σ(k)} (2.69d)

We remark that since nestings join the vertices in second and third positions, we have

unest′(k,σ) = unest(σ−1(k),σ) (2.70a)

lnest′( j,σ) = lnest(σ−1( j),σ) (2.70b)

Note that ucross′(k,σ) and unest′(k,σ) can be nonzero only when σ−1(k) is an

excedance (that is, when k is a cycle peak or a cycle double rise), while lcross′( j,σ)

and lnest′( j,σ) can be nonzero only when σ−1( j) is an anti-excedance (that is, j is a

cycle valley or a cycle double fall). In a D-permutation, this means that ucross′(k,σ)

and unest′(k,σ) can be nonzero only when σ−1(k) is odd and not a fixed point,

while lcross′( j,σ) and lnest′( j,σ) can be nonzero only when σ−1( j) is even and

not a fixed point. We call (2.69) the variant index-refined crossing and nesting

statistics.

We can also analogously define the statistics ucrosscpeak′, unestcpeak′,

lcrosscval′, lnestcval′, lcrosscdfall′, lnestcdfall′, ucrosscdrise′, ucrosscdrise′. We

omit the details.



Chapter 3

Coefficientwise total positivity of

some matrices defined by linear

recurrences 1

In Chapter 1 we have seen that many interesting lower-triangular matrices (hereafter

simply referred to as triangles) that arise in combinatorics have been shown to be

totally positive: well-known examples include the binomial coefficients
(n

k

)
, the

Stirling cycle numbers
[n

k

]
, and the Stirling subset numbers

{n
k

}
.

But there are also many other combinatorially interesting triangles that appear

to be totally positive but for which we have no proof. Foremost among these is what

we call the “clean Eulerian triangle”

AAA =

(〈
n
k

〉clean)
n,k≥0

=



1

1 1

1 4 1

1 11 11 1

1 26 66 26 1

1 57 302 302 57 1
...

...
...

...
...

... . . .


, (3.1)

which was conjectured by Brenti [Bre96] to be totally positive, already a quarter

1The work in this chapter was done largely in collaboration with Xi Chen, Alexander Dyachenko,
Tomack Gilmore and Alan D. Sokal. See pp. 11-13 for details.
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of a century ago.23 Here
〈n

k

〉clean is the number of permutations of [n+ 1] with k

excedances (or k descents), or the number of increasing binary trees on the vertex set

[n+1] with k left children. These numbers satisfy the recurrence

〈
n
k

〉clean

= (n− k+1)
〈

n−1
k−1

〉clean

+ (k+1)
〈

n−1
k

〉clean

(3.2)

for n≥ 1, with initial condition
〈0

k

〉clean
= δk0.

Conjecture 3.0.1 ([Bre96, Conjecture 6.10]). The clean Eulerian triangle AAA is totally

positive.

A similar problem concerns the reversed Stirling subset triangle. Recall that

the Stirling subset number
{n

k

}
is the number of partitions of an n-element set into k

non-empty blocks [OEI19, A048993/A008277]. We then write
{n

k

}rev
=
{ n

n−k

}
. The

reversed Stirling subset triangle is [OEI19, A008278]

SSSrev =

({
n
k

}rev)
n,k≥0

=



1

1 0

1 1 0

1 3 1 0

1 6 7 1 0

1 10 25 15 1 0
...

...
...

...
...

... . . .


. (3.3)

These numbers satisfy the recurrence

{
n
k

}rev

= (n− k)
{

n−1
k−1

}rev

+

{
n−1

k

}rev

(3.4)

for n≥ 1, with initial condition
{0

k

}rev
= δk0. Please note that the total positivity of a

lower-triangular matrix does not in general imply the total positivity of its reversal.
2Note that there exist several different conventions for the Eulerian triangle. For our purposes, the

“clean” version defined here is the most convenient, as it has 1’s both on the diagonal and in the zeroth
column and is reversal-symmetric (i.e.

〈n
k

〉clean
=
〈 n

n−k

〉clean). It is easy to see that the other versions
are totally positive if and only if the “clean” one is.

3Dyachenko [Dya] has verified this conjecture for the first 512× 512 submatrix of the matrix(〈n+1
k

〉)
n,k≥0

.
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Nevertheless we conjecture:

Conjecture 3.0.2. The reversed Stirling subset triangle SSSrev is totally positive.

In this chapter we present a more general triangle comprised of polynomial

entries in six indeterminates that appears empirically to be coefficientwise totally

positive and that yields, under suitable specialisations, both AAA and SSSrev. We do not

yet have any proof that this more general triangle is totally positive; indeed, we do

not yet have any proof of Conjecture 3.0.1. But we are able to prove a special case

that includes a generalisation of Conjecture 3.0.2.

Comparing recurrences (3.2) and (3.4) invites us to consider the more general

linear recurrence

T (n,k) = [a(n− k)+ c]T (n−1,k−1) + (dk+ e)T (n−1,k) (3.5)

for n≥ 1, with initial condition T (0,k) = δk0. Here a,c,d,e could be integers or real

numbers, but we prefer to treat them as algebraic indeterminates. Thus, the elements

of the matrix TTT = (T (n,k))n,k≥0 belong to the polynomial ring Z[a,c,d,e], and we

conjecture:

Conjecture 3.0.3. The lower-triangular matrix TTT =
(
T (n,k)

)
n,k≥0 defined by (3.5)

is coefficientwise totally positive in the indeterminates a,c,d,e.

In particular, Conjecture 3.0.1 would follow by specialising (a,c,d,e) = (1,1,1,1),

while Conjecture 3.0.2 would follow by specialising (a,c,d,e) = (1,0,0,1).

This, however, is not the end of the story. Inspired partly by the work of

Brenti [Bre95] and partly by our own experiments, we were led to consider the more

general recurrence

T (n,k) = [a(n− k)+ c]T (n−1,k−1) + (dk+ e)T (n−1,k)

+ [ f (n−2)+g]T (n−2,k−1) (3.6)

for n≥ 1, with initial conditions T (0,k) = δk0 and T (−1,k) = 0.
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Again, we treat a,c,d,e, f ,g as algebraic indeterminates, so that the matrix

elements T (n,k) belong to the polynomial ring Z[a,c,d,e, f ,g]. Note that this family

is invariant under the reversal k→ n−k by interchanging (a,c)↔ (d,e) and leaving

f and g unchanged:

T (n,k; a,c,d,e, f ,g) = T (n,n− k; d,e,a,c, f ,g) . (3.7)

Our main conjecture is the following:

Conjecture 3.0.4. The lower-triangular matrix TTT =
(
T (n,k)

)
n,k≥0 defined by (3.6)

is coefficientwise totally positive in the indeterminates a,c,d,e, f ,g.

Unfortunately, for the time being, Conjectures 3.0.1, 3.0.3 and 3.0.4 remain

unproven. (We have verified Conjecture 3.0.4 up to 13×13; this computation took

109 days CPU time.) The rest of this extended abstract is devoted to proving the

following special case of Conjecture 3.0.3, which is of some interest in its own right:

Theorem 3.0.5. The matrix TTT = (T (n,k))n,k≥0 specialised to d = f = g = 0 is

coefficientwise totally positive.

The triangle that appears in Theorem 3.0.5 is a generalisation of the reversed

Stirling subset triangle, and reduces to it when (a,c,e) = (1,0,1); this proves Con-

jecture 3.0.2. In what follows we write TTT (a,c,d,e, f ,g) for the matrix defined by

(3.6), and TTT (a,c,d,e) = TTT (a,c,d,e,0,0) for the matrix defined by (3.5).

It is possible to prove Theorem 3.0.5 in at least two different ways: one algebraic

(unpublished [CDD+]), the other combinatorial.

Section 3.1 establishes combinatorial interpretations of the entries of TTT (a,c,0,e)

and TTT (0,c,d,e) as generating polynomials for set partitions with suitable weights. In

Section 3.2 we present a planar network D′ and show — by two different arguments

— that the corresponding path matrix is equal to TTT (a,c,0,e); Theorem 3.0.5 then

follows by the Lindström–Gessel–Viennot lemma.
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3.1 Set partitions and the matrices T (a,c,0,e) and

T (0,c,d,e)

From the fundamental recurrence
{n

k

}
=
{n−1

k−1

}
+ k

{n−1
k

}
for the Stirling subset

numbers and its consequence (3.4) for the reversed Stirling subset numbers, we see

that the Stirling and reversed Stirling numbers correspond to the matrix TTT (a,c,d,e)

with (a,c,d,e) = (0,1,1,0) and (1,0,0,1), respectively. Moreover, if one considers

instead
{n+1

k+1

}
and

{n+1
k

}rev
, then these matrices correspond to TTT (a,c,d,e) with

(a,c,d,e) = (0,1,1,1) and (1,1,0,1), respectively. We will now show how to

generalise the combinatorial interpretations of
{n+1

k+1

}
and

{n+1
k

}rev
in terms of set

partitions to TTT (0,c,d,e) and TTT (a,c,0,e).

We write Πn (resp. Πn,k) for the set of all partitions of the set [n] into nonempty

blocks (resp. into exactly k nonempty blocks). For i ∈ [n] and π ∈ Πn, we write

smallest(π, i) for the smallest element of the block of π that contains i. We then

have:

Proposition 3.1.1 (Interpretation of TTT (0,c,d,e) and TTT (a,c,0,e) in terms of set

partitions).

(i) The matrix TTT = TTT (0,c,d,e) has the combinatorial interpretation

T (n,k) = ∑
π∈Πn+1,k+1

n+1

∏
i=2

wπ(i) (3.8)

where

wπ(i) =


e if smallest(π, i) = 1

c if smallest(π, i) = i

d if smallest(π, i) 6= 1, i

(3.9)

(ii) The matrix TTT = TTT (a,c,0,e) has the combinatorial interpretation

T (n,k) = ∑
π∈Πn+1,n+1−k

n+1

∏
i=2

wπ(i) (3.10)
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where

wπ(i) =


c if smallest(π, i) = 1

e if smallest(π, i) = i

a if smallest(π, i) 6= 1, i

(3.11)

Please note that if one restricts a partition π ∈Πn+1 to [m] for some m < n+1

— let us call the result πm ∈ Πm — then wπ(i) = wπm(i) for 2 ≤ i ≤ m, because

smallest(π, i) = smallest(πm, i). This fact will play a key role in justifying the

recurrences.

PROOF OF PROOF OF PROPOSITION 3.1.1. To prove (i) we will show that the

quantities T (n,k) defined by (3.8)/(3.9) satisfy the desired recurrence. Part (ii)

follows immediately from (i) by way of the reversal identity (3.7) with f = g = 0.

In a partition π ∈Πn+1,k+1, consider the status of the element n+1 and what

remains when it is deleted. If n+1 is a singleton, then it gets a weight c, and what

remains is a partition of [n] with k blocks, in which each element gets the same

weight as it did in π . This gives a term cT (n− 1,k− 1). If instead n+ 1 belongs

to the block containing 1, then it gets a weight e, and what remains is a partition

of [n] with k+1 blocks, in which each element gets the same weight as it did in π .

This gives a term eT (n−1,k). Finally, if n+1 belongs to a block whose smallest

element lies in {2,3, . . . ,n}, then it gets a weight d, and what remains is a partition

of [n] with k+ 1 blocks, in which each element gets the same weight as it did in

π . There are k blocks not containing 1 to which the element n+1 could have been

attached. This gives a term dk T (n−1,k). Summing these terms gives the desired

recurrence. �

Here is another recurrence satisfied by these matrices, which will be useful

later:

Lemma 3.1.2 (Alternate recurrences for TTT (0,c,d,e) and TTT (a,c,0,e)).
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(i) The matrix TTT = TTT (0,c,d,e) satisfies the recurrence

T (n,k) = eT (n−1,k) +
n−1

∑
m=0

(
n−1

m

)
dmcT (n−1−m,k−1) (3.12)

for n≥ 1, where T (n,k) def
= 0 if n < 0 or k < 0.

(ii) The matrix TTT = TTT (a,c,0,e) satisfies the recurrence

T (n,k) = cT (n−1,k−1) +
n−1

∑
m=0

(
n−1

m

)
ameT (n−1−m,k−m) (3.13)

for n≥ 1, where T (n,k) def
= 0 if n < 0 or k < 0.

PROOF. (i) Use the interpretation of Proposition 3.1.1(i), and consider the status of

element n+1. If it belongs to the block containing 1, then it gets a weight e, and

what remains is a partition of [n] with k+1 blocks; this gives a term eT (n−1,k).

Otherwise, it belongs to a block of size m+1 where 0≤ m≤ n−1. We choose the

other m elements of this block in
(n−1

m

)
ways; then the smallest element of this block

gets weight c, and the other m elements get weight d. What remains is a partition of

an (n−m)-element set with k blocks, corresponding to T (n−1−m,k−1).

(ii) follows immediately from (i) by the reversal identity. �

We remark that these recurrences, supplemented by the initial condition

T (0,k) = δk0, completely determine the matrices.

3.2 Planar networks and total positivity
Figure 3.1(a) shows what we call the standard binomial-like planar network, which

we denote D. We label the vertices of D by pairs (i, j) with 0 ≤ i ≤ j, where i

increases from right to left and j increases from bottom to top. The horizontal

directed edge from (i, j) to (i− 1, j) [where 1 ≤ i ≤ j] is given a weight αi, j−i+1,

while the diagonal directed edge from (i, j) to (i− 1, j− 1) [where 1 ≤ i ≤ j] is

given a weight βi, j−i. The source vertices are un = (n,n) and the sink vertices are

vk = (0,k).
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It is easy to see that if the weights are purely i-dependent, then

P(un→ vk) = αn,•P(un−1→ vk−1) + βn,•P(un−1→ vk) , (3.14)

so that the entries of the corresponding path matrix satisfy a purely n-dependent

linear recurrence. Similarly, if the weights are purely j-dependent, then

P(un→ vk) = α•,kP(un−1→ vk−1) + β•,kP(un−1→ vk) , (3.15)

so that the entries of the corresponding path matrix satisfy a purely k-dependent

recurrence. In particular, by setting αi, j = 1 and βi, j = j, we recover a digraph

yielding the Stirling subset triangle P(un→ vk) =
{n

k

}
; and more generally, by setting

αi, j = c and βi, j = jd + e, we recover TTT (0,c,d,e) and prove its coefficientwise total

positivity. This too goes back to Brenti [Bre95].

3.2.1 The planar network D′

We will now describe a digraph D′ that is obtained from D by deleting certain edges

(or equivalently, setting their weights to 0), setting some of the other weights to 1, and

relabelling the remaining weights. A special role will be played by the triangular

numbers 4(n) :=
(n+1

2

)
. We also define the “triangular ceiling” dketri to be the

smallest triangular number that is ≥ k, and the “triangular defect” {k}tri := dketri−k.

For the diagonal edges, we set

βi,l =


e4−1(i+l−1)−l, l if i+ l−1 is triangular and i+ l−1≥4(l)

1 if i+ l−1 is not triangular and i+ l−1≥4(l)

0 in all other cases

(3.16)
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Figure 3.1: (a) The standard binomial-like planar network D (above), and (b) the planar
network D′ (below), each shown up to source u4 and sink v4.

for i≥ 1 and l ≥ 0. For the horizontal edges, we set

αi,l =


a4−1(di+l−1etri)−l,{i+l−1}tri, l−1 if4−1(di+ l−1etri)− l ≥ {i+ l−1}tri

1 if i+ l−1 is triangular and i+ l−1 <4(l)

0 in all other cases
(3.17)

for i, l ≥ 1. We then delete the edges with zero weight. Finally, we take the source

vertices to be un := (4(n),4(n)) and the sink vertices to be vk := (0,4(k)). The

resulting planar network D′ is shown in Figure 3.1(b).

It is clear that every edge of D′ either has weight 1 (we call these black edges) or
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else has a unique weight in the setA∪E , whereA := {ai, j,l : (i, j, l)∈N3 and j≤ i}

and E := {ei,l : (i, l)∈N2} (we call these coloured edges). Each path P has a weight

w(P) that is a monomial in Z[A,E ].

Let PPPn,k be the set of all paths in D′ from un to vk. It is easy to see that PPPn,k is

nonempty if and only if n≥ k. Furthermore, for any two distinct paths P,P ′ from U

to V in D′, we have w(P) 6= w(P ′). Lastly, note that each path P ∈ PPPn,k traverses

precisely n coloured edges, so w(P) is a monomial of total degree n.

Applying the Lindström–Gessel–Viennot lemma to the digraph D′, we can

immediately conclude:

Proposition 3.2.1. The matrix TTT =(T (n,k))n,k≥0 defined by T (n,k)=∑P∈PPPn,k
w(P),

with entries in Z[A,E ], is coefficientwise totally positive.

The trouble with Proposition 3.2.1 — as with many applications of Lindström–

Gessel–Viennot — is that the set of paths in a digraph can be a rather complicated

object; our goal is to find a simpler combinatorial interpretation. This can be done

either by obtaining a recurrence that can be compared with Lemma 3.1.2, or by

constructing an explicit bijection between paths and set partitions. We shall now

describe these approaches.

3.2.2 Proof by recurrence

For 0 ≤ m ≤ n, let un,m
def
= (4(n)−m,4(n)) be the vertex that lies m steps to the

right of un. We observe that the subnetwork of D′ reachable from un,m is isomorphic

— after contraction of some black edges, relabelling un → un−m and vk → vk−m

of source and sink vertices, and relabelling of edge weights — to the subnetwork

reachable from un−m. It follows that

P(un,m→ vk) = P(un−m→ vk−m)
∣∣
ai, j,l→ai, j,l+m, ei,l→ei,l+m

. (3.18)

Now consider a path P from un to vk. If the first step is to the right, we obtain

an−1,0,0 times P(un,1→ vk). If the first step is diagonally downwards, we enter a

binomial-like network of size n−1, from which we can emerge on the right wall

at some point ûn−1,m
def
= (4(n− 1),4(n− 1)+m) for 0 ≤ m ≤ n− 1; from there
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we follow edges diagonally downwards, arriving at the point un−1,m and picking

up an extra factor en−1−m,m. The contribution of the binomial-like network is a

bit complicated, but if we make the specialisation ai, j,l → a whenever j > 0, then

its weight is just
(n−1

m

)
am. We also specialise ai,0,l → ci and ei,l → ei in order to

trivialise the relabellings in (3.18). It follows that with these specialisations the

matrix TTT satisfies the recurrence

T (n,k) = cn−1 T (n−1,k−1) +
n−1

∑
m=0

(
n−1

m

)
am en−1−m T (n−1−m,k−m)

(3.19)

for n≥ 1. In particular, if ci = c and ei = e for all i, then we recover the recurrence

(3.13). Applying Lemma 3.1.2(ii), we conclude:

Theorem 3.2.2. The path matrix TTT = (T (n,k))n,k≥0 defined by T (n,k) =

∑P∈PPPn,k
w(P), with the specialisations ei,l → e, ai,0,l → c, and ai, j,l → a for j > 0,

coincides with the matrix TTT (a,c,0,e).

Combining Proposition 3.2.1 with Theorem 3.2.2 proves Theorem 3.0.5. More

generally, Proposition 3.2.1 shows that the matrix TTT defined by the recurrence (3.19)

is coefficientwise totally positive in the indeterminates a, (ci)i≥0 and (ei)i≥0.

3.2.3 Proof by bijection between paths and set partitions

We now provide a bijective proof of Theorem 3.2.2. Our proof will consist of the

following steps:

1. The first step is provided by Lemma 3.2.3 in which we characterise wt(P),

the non-commutative product of the weights of a path P , taken in the order of

traversal (thus wt(P) is a word in the alphabet A∪E). This will enable us to

represent paths in D′ as a class of words and we will then construct a bijection

between these words and set partitions. We will use WWW n,k to denote the set of

words in bijective correspondence with the paths in PPPn,k.

2. In our second step, we will associate to every set partition π ∈Πn+1,n−k+1 a

word W (π). We will then show in Lemma 3.2.4 that W (π) ∈WWW n,k. By doing
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this, we will construct a map (via Lemma 3.2.3) Φn,k : Πn+1,n−k+1→ PPPn,k.

We will also show in Lemma 3.2.5 that the map π 7→W (π) is injective.

3. Then in our third step, for every word www∈WWW n,k we will construct a set partition

S(www).

4. Finally in our fourth step, we will show that the map π 7→W (π) and the map

www 7→ S(www) are inverses of each other. As a consequence, this will also prove

that the map Φn,k that we constructed in Step 2 is a bijection. We will state

this in Theorem 3.2.7. We will then obtain our second proof of Theorem 3.2.2.

The reader might find it convenient to refer to Figure 3.1(b) while reading the

rest of this section.

Step 1: Characterisation of words wt(((P)))

We recall that wt(P) denotes the non-commutative product of the weights of P ,

taken in the order of traversal. We will now characterise these words which is based

on a detailed analysis of the paths in the set PPPn,k.

Lemma 3.2.3. Fix integers n ≥ k ≥ 0, and let www be a word in the alphabet A∪E .

Then www = wt(P) for some path P ∈ PPPn,k if and only if and all of the following

conditions hold:

(i) The first letter of www is either en−1,0 or an−1, j,0 where 0≤ j ≤ n−1.

(ii) The last letter of www is either e0,k or a0,0,k−1.

(iii) The letter following ai, j,l is either ei−1,l+1 or ai−1, j′,l+1 where j ≤ j′ ≤ i−1.

(iv) The letter following ei,l is either ei−1,l or ai−1, j,l where 0≤ j ≤ i−1.

Furthermore, in this case the word www has length n and the path P is unique.

PROOF. Parts (i) and (ii) follow from examining the indices of the first (resp. last)

coloured edge in P . Parts (iii) and (iv) follow from the observation that whenever

a horizontal coloured edge is traversed, l increases by 1 and i decreases by 1; and
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similarly, when a diagonal coloured edge is traversed, l remains unchanged and

i decreases by 1. Furthermore, whenever a horizontal coloured edge is followed

immediately by another horizontal coloured edge, the index j is weakly increasing.

This shows the necessity for conditions (i)-(iv).

On the other hand, if we have a word www satisfying conditions (i)-(iv) then we

can construct a path P that starts at un and ends at vk. The letters in the word www will

correspond to the coloured edges traversed in order and it is not difficult to see from

the description (i)-(iv) that the black edges between two consecutive coloured edges

given by letters in www are uniquely determined. This shows the sufficiency and also

that P is unique. Finally, notice that the first indices in www start at n− 1, end at 0

and decrease by 1 as we go from one letter to the next in the word and thus, www has

length n. �

Henceforth, we let WWW n,k
def
= {wt(P) : P ∈ PPPn,k}.

Step 2: Construction of the map πππ 7 7 7→→→WWW (((πππ)))

We will now describe a map W : Πn+1,n−k+1 → WWW n,k. For a set partition

π ∈ Πn+1,n−k+1, we will first define a total order <π on [n+1]. We will then use

this total order to describe a word W (π). Then in Lemma 3.2.4 we will show that

W (π) ∈WWW n,k. Finally, we will finish this Step by showing that the map π 7→W (π)

is injective (Lemma 3.2.5).

We first introduce some terms for set partitions following [SZ22, Section 3.1].

Given a set partition π ∈Πn, we say that an element i ∈ [n] is

• an opener if it is the smallest element of a block of size ≥ 2;

• a closer if it is the largest element of a block of size ≥ 2;

• an insider if it is a non-opener non-closer element of a block of size ≥ 3;

• a singleton if it is the sole element of a block of size 1.

Also, for i ∈ [n] and π ∈Πn, we write smallest(π, i) for the smallest element of the

block of π that contains i.

Given a set partition π ∈ Πn+1,k consisting of blocks B1, . . . ,Bk, we define a

total order <π on [n+ 1] by the following procedure: start by taking the block
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containing 1 (we call it B1) together with the largest elements of all the other blocks,

and put them in increasing order; then insert all the remaining elements of each block

(other than B1) in increasing order immediately preceding its largest element. For

example, for π = {{1,5,8},{2,3,9},{4,7},{6}} ∈ Π9,4, the order is 156478239,

where we have underlined each of the blocks other than B1.

Under this total order, 1 is the smallest element and n+1 is the largest; it can

therefore be written as 1p1 p2 · · · pn where pn = n+ 1. We then define the word

associated to a set partition π ∈Πn+1,n−k+1 to be W (π)
def
= wn · · ·w1 where

wi
def
=


ei−1, li if smallest(π, pi) = pi

ai−1,0, li if pi ∈ B1 [i.e. smallest(π, pi) = 1]

ai−1, j, li if smallest(π, pi) 6= 1, pi and largest(ppp, i) j = pi−1

(3.20)

Here largest(ppp, i) j denotes the jth largest element of the set [2,n+1]\{pi, . . . , pn}.

The index li is defined recursively: we set ln = 0, and for i < n we define li−1 =

li if smallest(π, pi) = pi, and li−1 = li + 1 otherwise. We say that the letter pi

(2≤ pi ≤ n+1) has type e,a0,a 6=0 depending on whether wi is ei−1,li,ai−1,0,li or

ai−1, j,li for j 6= 0, respectively. Thus, pi has type e if it is the smallest in its block

(note that pi 6= 1); pi has type a0 if it is in block B1 (note again that pi 6= 1); and pi

has type a 6=0 otherwise.

For example, consider again π = {{1,5,8},{2,3,9},{4,7},{6}} ∈Π9,4 with

total order 156478239. Table 3.1 illustrates how we obtain the word W (π).

Thus, we get that

W (π) = a7,6,0 a6,6,1 e5,2 a4,0,2 a3,3,3 e2,4 e1,4 a0,0,4 . (3.21)

We can check that here W (π) ∈WWW 8,5. In fact, this is true in general due to the

following lemma:

Lemma 3.2.4. Given π ∈Πn+1,n−k+1, the word W (π) consists of letters fromA∪E

and satisfies the conditions in Lemma 3.2.3, and thus we have W (π) ∈WWW n,k.
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i pi i−1 Type li [2,n+1]\{pi, . . . , pn} j wi
(First (Last (Middle
index) index) index)

8 9 7 a 6=0 0 {8,7,6,5,4,3,2} 6 a7,6,0
7 3 6 a 6=0 1 {8,7,6,5,4,2} 6 a6,6,1
6 2 5 e 2 {8,7,6,5,4} e5,2
5 8 4 a0 2 {7,6,5,4} 0 a4,0,2
4 7 3 a 6=0 3 {6,5,4} 3 a3,3,3
3 4 2 e 4 {6,5} e2,4
2 6 1 e 4 {5} e1,4
1 5 0 a0 4 ∅ 0 a0,0,4

Table 3.1: Obtaining the word W (π) when π = {{1,5,8},{2,3,9},{4,7},{6}} ∈ Π9,4.
Here pi−1 has been underlined whenever pi is of type a6=0.

PROOF. To check that wi ∈ A∪E , we need only verify that if wi = ai−1, j,l then

j ≤ i− 1. This is clearly true if pi ∈ B1, in which case j = 0. Otherwise, since

[2,n+ 1] \ {pi, . . . , pn} has cardinality i− 1, and largest(ppp, i) j = pi−1 is the j-th

largest element in this set, j can be at most i−1. Now we check the four conditions

of Lemma 3.2.3.

(i) The element pn = n+ 1 is the largest element of some block B. If it is a

singleton we have wn = en−1,0, and if B = B1 we have wn = an−1,0,0. Otherwise, the

next-largest element in B is pn−1 = n+1− j for some 1≤ j ≤ n−1, so pn−1 is the

j-th largest element in [2,n+1]\{n+1}= [2,n], and wn = an−1, j,0.

(ii) Since π comprises n− k+1 blocks (one of which is B1), there are exactly

n− k indices i for which smallest(π, pi) = pi. These are exactly the indices for

which li−1 = li; and for them we have wi = ei−1,li . Note that p1 is either the smallest

element of its block or the second-smallest element of B1. In the first case l1 = k and

w1 = e0,k, while in the second case l1 = k−1 and w1 = a0,0,k−1.

(iii) If wi+1 = ai, j,l (where l = li+1), we have smallest(π, pi+1) 6= pi+1 and

hence li = l +1; we also have largest(ppp, i+1) j = pi. We treat the cases j = 0 and

j 6= 0 separately. If j = 0, then pi+1 ∈ B1. If pi is a singleton, then wi = ei−1,l+1.

Otherwise, wi = ai−1, j′,l+1 for some 0 ≤ j′ ≤ i− 1, where the inequality follows

from the fact that wi ∈ A. If instead j 6= 0, then pi+1 is contained in a block B 6= B1

and min(B) 6= pi+1. The element pi is thus the next-largest element of B (just below
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pi+1). If pi = min(B), then wi = ei−1,l+1. Otherwise, we have pi−1 < pi and we

have wi = ai−1, j′,l+1. Now we only need to check that j ≤ j′ ≤ i− 1. The upper

bound is clearly true since wi ∈ A. For the lower bound, if we instead have j′ < j,

then largest(ppp, i+ 1) j′ > pi, which implies largest(ppp, i) j′ = largest(ppp, i+ 1) j′ , that

is, pi−1 > pi, a contradiction.

(iv) If wi+1 = ei,l (where l = li+1), we have smallest(π, pi+1) = pi+1 and hence

li = l. If pi is a singleton, then wi = ei−1,l; otherwise, wi = ai−1, j,l , where 0≤ j ≤

i−1 because wi ∈ A. This completes the proof. �

Thus, we have that Lemmas 3.2.3 and 3.2.4 together define a map

Φn,k : Πn+1,n−k+1→ PPPn,k. We will now also show that this map is injective.

Lemma 3.2.5. The map π 7→W (π) is injective.

PROOF. Let π and π ′ be set partitions with W (π) =W (π ′) = www, and let ppp and ppp′ be

the sequences associated to the total orders <π and <π ′ , respectively. We will show

inductively that pi = p′i and π|{1, pi, . . . , pn}= π ′|{1, p′i, . . . , p′n}.

For the base case i = n, pn = p′n = n+ 1 is obvious. Moreover, from Lem-

mas 3.2.4 and 3.2.3, wn is either en−1,0 or an−1, j,0 for 0≤ j ≤ n−1. From (3.20), if

wn is of type e or a6=0, then π|{1, pn}= {{1},{n+1}}= π ′|{1, p′n}; and if wn is of

type a0, then π|{1, pn}= {{1,n+1}}= π ′|{1, p′n}. This settles the base case.

Now consider i < n: we have two cases, depending on whether wi+1 is of type

a 6=0 or types a0,e.

• If wi+1 = ai, j,l for some 1≤ j ≤ i, then pi = p′i is clearly determined by the

induction hypothesis and (3.20); moreover, pi = p′i and pi+1 = p′i+1 are in the same

block B 6= B1, which establishes π|{1, pi, . . . , pn}= π ′|{1, p′i, . . . , p′n}.

• If wi+1 is of type e or a0, then by definition of the total order, pi and p′i are

both equal to the largest element of [2,n+1]\{pi, . . . , pn}; furthermore, this element

pi = p′i can either be in B1 or else be the largest element of some block B 6= B1. From

(3.20), we see that the former (resp. latter) will be true if wi is of type a0 (resp. e or

a 6=0). In both cases we have π|{1, pi, . . . , pn} = π ′|{1, p′i, . . . , p′n}. This concludes

the proof. �
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Step 3: Construction of the map www 7 7 7→→→ SSS(((www)))

Given a word www ∈WWW n,k with www = wn · · ·w1 (i.e., each letter wi ∈ A∪E and the

word www satisfies the conditions in Lemma 3.2.3), we will construct a set partition

S(www). Our construction here will comprise of two steps:

(a) We will first construct a sequence qqq = qn · · ·q1 where qi ∈ [2,n+1] and qn =

n+1. Every time we read a letter wi, we will choose qi ∈ [2,n+1].

(b) We will build up S(www) by inserting elements into its blocks, one at a time. We

begin from µ0 = {{1}} and end with µn = S(www). We will obtain µn−i+1 by

inserting qi into µn−i.

Construction of sequence qqq = qn · · ·q1 :

We start from qn = n+1. Then, for i < n, we proceed inductively: if wi+1 = ai, j,l

with j > 0, we set qi to be the jth largest element of the set [2,n+1]\{qi+1, . . . ,qn};

otherwise we set qi to be the largest element of [2,n+1]\{qi+1, . . . ,qn}.

Construction of S(www):

We will build up S(www) by inserting elements into its blocks, one at a time, as we read

the word www from left to right, beginning from µ0 = {{1}} and ending with µn = S(www).

Each block will be built up in decreasing order, starting with its largest element;

indeed, each block other than B1 will be built from start to finish in successive stages

of the algorithm. Whenever we insert an element qi ∈ [2,n+1] into a block B 6= B1,

we will also declare whether that block is finished (i.e. qi is an opener or a singleton

in S(www)) or unfinished (i.e. qi is a closer or an insider in S(www)).

Every time we read a letter wi we insert qi into µn−i in one of five ways:

(i) insert qi into the block B1;

(ii) insert qi as an opener into an unfinished block B 6= B1 (thereby declaring the

block finished);

(iii) insert qi as an insider into an unfinished block B 6= B1 (thereby declaring the

block still unfinished);
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(iv) create a new block containing qi as a singleton (thereby declaring the block

finished);

(v) or create a new block containing qi as a closer (thereby declaring the block

unfinished).

The result is called µn−i+1.

We now explain how the elements qn, . . . ,q1 will be inserted into the set partition.

At stage i (starting from i = n and proceeding downwards), by Lemma 3.2.3 there are

three possibilities for the letter wi: ei−1,l , ai−1,0,l , or ai−1, j,l for some 1≤ j ≤ i−1.

Case 1: wi = ei−1,l . If there is an unfinished block, we insert qi into that block

as an opener; otherwise, we create a new block with qi as a singleton. In both cases

the block is declared finished.

Case 2: wi = ai−1,0,l . We insert qi into block B1. (We remark that whenever

this happens, πn−i has no unfinished blocks.)

Case 3: wi = ai−1, j,l for some 1≤ j ≤ i−1. If there is an unfinished block, we

insert qi into that block as an insider; otherwise, we create a new block with qi as a

closer. In both cases the block is declared unfinished.

It is clear that each stage there is at most one unfinished block, so the algorithm

is well-defined. Moreover, Lemma 3.2.3(iii) guarantees that last ai, j,l with j > 0

must be immediately followed by an ei−1,l+1, so the algorithm will terminate with

all blocks finished; and an element qi inserted as an insider, closer, etc. will indeed

have that status in the final set partition πn.

Thus, for a word www ∈WWW n,k, we have constructed a map www 7→ S(www) where

www ∈Πn+1,n−k+1.

Step 4: Proof of bijection

We will now prove that the map π 7→W (π), constructed in Step 2, and the map

www 7→ S(π), constructed in Step 3, are bijective inverses of each other. However, we

first require the following lemma:

Lemma 3.2.6. Given a word www ∈WWW n,k, the sequence qqq (in the construction of S(www))

coincides with the sequence ppp associated to the total order <S(www).
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PROOF. For blocks B 6= B1, we observe from Lemma 3.2.3(iii) that each maximal

subword of www consisting of letters ai, j,l with j > 0 must be immediately followed by

an ei′,l′ , and in this subword the indices j must be weakly increasing. These facts

ensure that the elements of B are inserted in decreasing order, and in successive

stages. (The first element of B was the largest available element at the time of its

insertion, because the letter wi+1 immediately preceding this subword was not of the

form ai, j,l with j > 0.) For the block B1, elements (other than 1) were also inserted

in decreasing order: by Lemma 3.2.3(iii), ai−1,0,l cannot be immediately preceded

by ai, j,l with j > 0, so again each element inserted into B1 was the largest available

element. Finally, the union of B1 with the largest elements of the remaining blocks

was also inserted in decreasing order, because each such element was the largest

available element at the time of its insertion. All this taken together shows that the

sequence qqq coincides with the sequence ppp associated to the total order <S(www). �

We are now ready to establish our bijection.

Theorem 3.2.7. The maps W and S are bijective inverses of each other. Thus, the

map Φn,k is a bijection of Πn+1,n−k+1 onto PPPn,k.

PROOF. From Lemma 3.2.5, we know that the map W is injective. Thus, it suffices

to show that W (S(www)) = www which will show that W is surjective and that S is the

bijective inverse of W .

From Lemma 3.2.6 we know that the sequence qqq for the word www coincides

with the sequence ppp associated to the total order <S(www). Thus, we have qi = pi.

Also, Cases 1–3 of construction of S(www) correspond to inserting qi with a status that

corresponds to the three cases of (3.20). Thus, the type of wi — that is, e, a0 or a6=0

— coincides with that of W (S(www))i.

We will now show that the indices i, j, l match. Lemmas 3.2.3 and 3.2.4

guarantee that the indices i and l in both www and W (S(www)) are determined by the types,

and therefore agree. The indices j matter only in the type a 6=0, and the third case of

(3.20) coincides with how qi−1 is chosen. This proves that W (S(www)) = www. �

Everything is now in place for us to prove Theorem 3.2.2 bijectively.
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PROOF. [Second proof of Theorem 3.2.2] The definition (3.20) tells us that, within

each word www ∈WWW n,k (we know from Theorem 3.2.7 and Lemma 3.2.3 that these are

in bijection with paths PPPn,k and that their weights match), the letters ai,0,l correspond

to elements in B1, and the letters ei,l (resp. ai, j,l for j > 0) correspond to minimal

(resp. non-minimal) elements of blocks B 6= B1. After the specialisations ei,l → e,

ai,0,l→ c, and ai, j,l→ a for j > 0, by Proposition 3.1.1(ii) this is precisely the matrix

TTT (a,c,0,e). �



Chapter 4

Classical continued fractions for

some multivariate polynomials

generalising the Genocchi and

median Genocchi numbers1

4.1 Introduction

Our purpose here is to present continued fractions for some multivariate polynomi-

als that generalize either the Genocchi numbers [OEI19, A110501] introduced in

Section 2.4.1

(gn)n≥0 = 1,1,3,17,155,2073,38227,929569,28820619,1109652905, . . . (4.1)

or the median Genocchi numbers [OEI19, A005439] introduced in Section 2.4.2

(hn)n≥0 = 1,1,2,8,56,608,9440,198272,5410688,186043904, . . . . (4.2)

The present chapter can be viewed as a sequel to a recent paper by Sokal and Zeng

[SZ22] in which they presented Stieltjes-type and Jacobi-type continued fractions

1The work in this chapter was largely in collaboration with Alan D. Sokal. See pp. 14-15 for
details.
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for some “master polynomials” that enumerate permutations, set partitions or per-

fect matchings with respect to a large (sometimes infinite) number of independent

statistics. These polynomials systematize the “linear family”: namely, sequences in

which the Stieltjes continued-fraction coefficients (αn)n≥1 grow linearly in n. More

precisely, in the simplest case [SZ22, Theorem 2.1] the even and odd coefficients

grow affinely in n:

α2k−1 = x+(k−1)u, α2k = y+(k−1)v (4.3)

When x = y = u = v = 1, these coefficients α2k−1 = α2k = k correspond to Euler’s

[Eul60, section 21] continued fraction (1.1) for the sequence an = n!; so it is natural to

expect that the resulting polynomials Pn(x,y,u,v) can be interpreted as enumerating

permutations of [n] with respect to some suitable statistics. The purpose of [SZ22]

was to exhibit explicitly those statistics, and then to present some generalizations

involving more refined statistics.

In the present chapter we take one step up in complexity, to consider the

“quadratic family”, in which the (αn)n≥1 grow quadratically in n. For instance, we

could consider

α2k−1 = [x1 +(k−1)u1] [x2 +(k−1)u2] (4.4a)

α2k = [y1 +(k−1)v1] [y2 +(k−1)v2] (4.4b)

With all parameters set to 1, these coefficients α2k−1 = α2k = k2 correspond to the

continued fraction (2.51) [Vie, eq. (9.7)] [Vie83, p. V-15] for the median Genocchi

numbers; so it is natural to seek a combinatorial model that is enumerated by

the median Genocchi numbers. Many such models are known. In this chapter

we shall focus on a class of permutations of [2n] called D-permutations [LW22,

Laz20], which were defined in Section 2.4.3. We recall that a permutation is a

D-permutation in case 2k− 1 ≤ σ(2k− 1) and 2k ≥ σ(2k) for all k. Let us also

recall that a permutation is an e-semiderangement (resp. o-semiderangement) in case

in contains no even (resp. odd) fixed points; it is a derangement in case it contains
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no fixed points at all. A D-permutation that is also an e-semiderangement (resp.

o-semiderangement, derangement) will be called a D-e-semiderangement (resp. D-

o-semiderangement, D-derangement).A D-permutation that contains exactly one

cycle is called a D-cycle. We also recall that D2n (resp. De
2n,D

o
2n,D

eo
2n,DC2n) denotes

the set of all D-permutations (resp. D-e-semiderangements, D-o-semiderangements,

D-derangements, D-cycles) of [2n].

It is known [Dum74, DR94, LW22, Laz20] — and we will recover as part of

our work — that

|D2n| = hn+1 (4.5a)

|De
2n| = |Do

2n| = gn (4.5b)

|Deo
2n| = hn (4.5c)

|DC2n| = gn−1 (4.5d)

This suggests that we can obtain continued fractions for multivariate polynomials

enumerating D-permutations, D-semiderangements, D-derangements or D-cycles by

generalizing the known continued fractions for the Genocchi and median Genocchi

numbers, analogously to what was done in [SZ22] by generalizing Euler’s continued

fraction for the factorials. That is, indeed, what we shall do in this chapter. These

continued fractions will be of Stieltjes and Thron types; they can also be transformed

by contraction into Jacobi type.2 Our principal results will be:

1) A Thron-type continued fraction in 12 variables (Theorem 4.2.3) that enumer-

ates D-permutations with respect to the parity-refined record-and-cycle classi-

fication (defined in Section 2.5.1). Specializations of this continued fraction

give Stieltjes-type continued fractions that enumerate D-semiderangements

and D-derangements.

2) A Thron-type continued fraction in 22 variables (Theorem 4.2.7) that gener-

2We call these classical continued fractions, in order to contrast them with the recently-introduced
branched continued fractions [PSZ18], which are believed to apply to certain higher-order generaliza-
tions of the Genocchi numbers [PSZ18, Conjecture 16.1].
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alizes the previous T-fraction by including four pairs of (p,q)-variables that

count crossings and nestings and a pair of variables that count pseudo-nestings

of fixed points (defined in Section 2.5.2).

3) A Thron-type continued fraction in six infinite families of indeterminates

(Theorem 4.2.9) that generalizes the preceding two by further refining the

counting of crossings, nestings and pseudo-nestings.

We call these the three versions of our “first T-fraction”. Already the first version

(Theorem 4.2.3) contains several known continued fractions for the Genocchi and

median Genocchi numbers as special cases. We also have three variant versions of

the first T-fraction (Theorems 4.2.10 and 4.2.11) using slightly different statistics.

We will also have three versions of a “second T-fraction” (Theorems 4.3.2, 4.3.6

and 4.3.9) that includes the counting of cycles, at the expense of partially renouncing

the counting of records; as a corollary we obtain a continued fraction for D-cycles

(Corollary 4.3.5). The second T-fractions look less symmetrical than the first ones;

this defect seems to be inherent in including the counting of cycles (just as in [SZ22]).

The proofs of both the first and second T-fractions will be based on bijections from

D-permutations to labelled Schröder paths.

Our continued fractions will imply that our multivariate polynomial sequences

generalising the Genocchi and median Genocchi numbers are coefficientwise-Hankel

totally positive with respect to a large number of variables.

Before proceeding with the rest of this chapter, the reader may refer back to

Section 2.4 to recall the necessary definitions and facts concerning the Genocchi and

median Genocchi numbers; Sections 2.2.1, 2.2.2 and 2.2.3 for continued fractions,

and transformation and contraction formulae, respectively; and Section 2.5 for

various permutation statistics. The plan of this chapter is as follows: In Section 4.2

we state the three versions of the first T-fraction and note some of their corollaries,

and in Section 4.3 we do the same for the second T-fraction. Then in Section 4.4

we write the consequence of our continued fractions to coefficientwise-Hankel total

positivity of our polynomial sequences. In Section 4.5 we prove the first T-fraction
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by a bijection that combines ideas of Randrianarivony [Ran97] and Foata–Zeilberger

[FZ90] together with some new ingredients. In Section 4.6 we prove the second

T-fraction by a variant bijection that analogously combines ideas of Randrianarivony

[Ran97] and Biane [Bia93].3 Our proofs are based on the combinatorial theory of

continued fractions introduced in Sections 2.2.4, 2.2.5. We conclude (Section 4.7)

with some brief remarks on the relation of our work to [SZ22].

4.2 First T-fraction and its generalizations

In this section we state our first T-fraction for D-permutations, in three increasingly

more general versions. The first and most basic version (Theorem 4.2.3) is a T-

fraction in 12 variables that enumerates D-permutations with respect to the parity-

refined record-and-cycle classification; it includes many previously known results

as special cases. The second version (Theorem 4.2.7) is a (p,q)-generalization

of the first one: it is a T-fraction in 22 variables that enumerates D-permutations

with respect to the parity-refined record-and-cycle classification together with four

pairs of (p,q)-variables counting the refined categories of crossing and nesting as

well as two variables corresponding to pseudo-nestings of fixed points. Finally, our

third version — what we call the “first master T-fraction” (Theorem 4.2.9) — is a

T-fraction in six infinite families of indeterminates that generalizes the preceding

two by employing the index-refined crossing and nesting statistics defined in (2.67).

The plan of this section is as follows: We begin (Section 4.2.1) by establishing

some easy but important preliminary results concerning record-antirecord fixed

points. Then, in Sections 4.2.2–4.2.4 we state the three versions of our first T-

fraction and note some of their corollaries. Finally, in Section 4.2.5 we state variant

forms of the three T-fractions. All these results will be proven in Section 4.5.

3Randrianarivony’s proof [Ran97, Section 6] is already motivated by ideas of Foata and Zeilberger
[FZ90], as Randrianarivony himself points out [Ran97, pp. 78, 88]. By contrast, our work here seems
to be the first to apply a Biane-like [Bia93] bijection to D-permutations, D-semiderangements or
D-derangements.
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4.2.1 Preliminaries on record-antirecords

An important role in our study of D-permutations will be played by record-

antirecords, i.e. indices i that are both a record and an antirecord. It is easy to

see that, in any permutation, a record-antirecord must be a fixed point. More pre-

cisely:

Lemma 4.2.1. Consider a permutation σ ∈ SN . An index i ∈ [N] is a record-

antirecord if and only if σ maps each of the sets {1, . . . , i−1}, {i} and {i+1, . . . ,N}

onto itself.

PROOF. If i is a record, then σ maps {1, . . . , i−1} injectively into {1, . . . ,σ(i)−1},

so that σ(i) ≥ i. If i is an antirecord, then σ maps {i+ 1, . . . ,N} injectively into

{σ(i)+1, . . . ,N}, so that σ(i) ≤ i. So if i is a record-antirecord, then i must be a

fixed point and σ must map both {1, . . . , i−1} and {i+1, . . . ,N} bijectively onto

themselves.

The converse is obvious. �

For D-permutations, record-antirecords can occur only in pairs:

Lemma 4.2.2. Let σ ∈D2n and let i ∈ [n]. Then the following are equivalent:

(a) 2i−1 is a record-antirecord.

(b) 2i is a record-antirecord.

(c) σ maps each of the sets {1, . . . ,2i−1} and {2i, . . . ,2n} onto itself.

(d) σ maps each of the sets {1, . . . ,2i− 2}, {2i− 1}, {2i} and {2i+ 1, . . . ,2n}

onto itself.

PROOF. By Lemma 4.2.1, (d)⇐⇒ “(a) and (b)”, and “(a) or (b)” =⇒ (c). On the

other hand, if σ is a D-permutation, then σ(2i− 1) ≥ 2i− 1 and σ(2i) ≤ 2i, so

(c) =⇒ (d). �
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Let us say that a permutation is pure if it has no record-antirecords. We write

D
pure
2n for the set of pure D-permutations of [2n]. From Lemma 4.2.1 we have

De
2n

⊆ ⊆

DC2n ⊆ Deo
2n =De

2n∩Do
2n De

2n∪Do
2n

⊆ ⊆
Do

2n

⊆ D
pure
2n ⊆ D2n . (4.6)

These inclusions are strict for n≥ 2:

DC2n Deo
2n D

e/o
2n De

2n∪Do
2n D

pure
2n D2n

n gn−1 hn gn 2gn−hn h[n+1 hn+1

0 0 1 1 1 1 1
1 1 1 1 1 1 2
2 1 2 3 4 5 8
3 3 8 17 26 41 56
4 17 56 155 254 493 608
5 155 608 2073 3538 8161 9440
6 2073 9440 38227 67014 178469 198272

For instance, the permutation 4231 belongs to D
pure
4 \ (De

4∪Do
4): it has both even

and odd fixed points, but they are not record-antirecords. Likewise, the permutation

513462 belongs to D
pure
6 \ (De

6∪Do
6): it has an odd-even pair of fixed points 34, but

they are not record-antirecords. We will show later that |Dpure
2n | = h[n+1; we recall

that these numbers were defined by the S-fraction (2.57)/(2.58).
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4.2.2 First T-fraction

We now introduce a polynomial in 12 variables that enumerates D-permutations

according to the parity-refined record-and-cycle classification:

Pn(x1,x2,y1,y2,u1,u2,v1,v2,we,wo,ze,zo) =

∑
σ∈D2n

xeareccpeak(σ)
1 xeareccdfall(σ)

2 yereccval(σ)
1 yereccdrise(σ)

2 ×

unrcpeak(σ)
1 unrcdfall(σ)

2 vnrcval(σ)
1 vnrcdrise(σ)

2 ×

wevennrfix(σ)
e woddnrfix(σ)

o zevenrar(σ)
e zoddrar(σ)

o . (4.7)

Thus, the variables x1 and u1 are associated to cycle peaks, y1 and v1 to cycle valleys,

x2 and u2 to cycle double falls, y2 and v2 to cycle double rises, we and wo to neither-

record-antirecord fixed points, and ze and zo to record-antirecord fixed points. We

remark that (4.7) is the same as the polynomial introduced in [SZ22, eq. (2.19)], but

restricted to D-permutations and refined to record the parity of fixed points. Since in

a D-permutation each even (resp. odd) index i ∈ [2n] belongs to exactly one of the

6 types mentioned at the end of Section 2.5.1, it follows that the polynomial Pn is

homogeneous of degree n in x1,x2,u1,u2,we,ze and also homogeneous of degree n

in y1,y2,v1,v2,wo,zo.

The polynomials (4.7) have a beautiful T-fraction:

Theorem 4.2.3 (First T-fraction for D-permutations). The ordinary generating func-
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tion of the polynomials (4.7) has the T-type continued fraction

∞

∑
n=0

Pn(x1,x2,y1,y2,u1,u2,v1,v2,we,wo,ze,zo) tn =

1

1− zezo t−
x1y1 t

1−
(x2+we)(y2+wo) t

1−
(x1+u1)(y1+v1) t

1−
(x2+u2+we)(y2+v2+wo) t

1−
(x1+2u1)(y1+2v1) t

1−
(x2+2u2+we)(y2+2v2+wo) t

1−·· ·
(4.8)

with coefficients

α2k−1 = [x1 +(k−1)u1] [y1 +(k−1)v1] (4.9a)

α2k = [x2 +(k−1)u2 +we] [y2 +(k−1)v2 +wo] (4.9b)

δ1 = zezo (4.9c)

δn = 0 for n≥ 2 (4.9d)

We will prove Theorem 4.2.3 in Section 4.5.

Note that each of the coefficients αi and δi is homogeneous of degree 1 in x1,x2,

u1,u2,we,ze and also homogeneous of degree 1 in y1,y2,v1,v2,wo,zo. This reflects

the homogeneities of the Pn.

Note also that the involution of D2n defined by σ 7→ R ◦σ ◦R where R(i) =

2n+ 1− i is the reversal map, interchanges x1 ↔ y1, x2 ↔ y2, u1 ↔ v1, u2 ↔ v2,

ze↔ zo, we↔ wo. The T-fraction (4.8)/(4.9) is invariant under these simultaneous

interchanges.

The T-fraction (4.8)/(4.9) has numerous interesting specialisations:
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1) With all variables equal to 1, it gives the T-fraction (2.55)/(2.56) for the

once-shifted median Genocchi numbers, and confirms that |D2n|= hn+1.

2) With ze = 0 and/or zo = 0 and all other variables equal to 1, it gives the

S-fraction (2.57)/(2.58) and shows that |Dpure
2n |= h[n+1. More generally, with ze = 0

and/or zo = 0 and the other variables retained, it gives an S-fraction for pure D-

permutations according to the parity-refined record-and-cycle classification. Note

that since record-antirecords occur in pairs by Lemma 4.2.2, setting either ze = 0

or zo = 0 suffices to suppress them; this explains why these variables occur in the

T-fraction only as a product zezo.

3) With ze = we = 0 (resp. zo = wo = 0) and all other variables equal to 1,

it gives the S-fraction (2.45)/(2.46) for the Genocchi numbers, and confirms that

|De
2n|= |Do

2n|= gn. More generally, with ze = we = 0 (resp. zo = wo = 0) and the

other variables retained, it gives an S-fraction for D-e-semiderangements (resp. D-o-

semiderangements) according to the parity-refined record-and-cycle classification.

4) With ze = zo = we = wo = 0 and all other variables equal to 1, it gives

the S-fraction (2.51)/(2.52) for the median Genocchi numbers, and confirms that

|Deo
2n| = hn. More generally, with ze = zo = we = wo = 0 and the other variables

retained, it gives an S-fraction for D-derangements according to the parity-refined

record-and-cycle classification; this S-fraction is of precisely the form (4.4) that was

proposed in the Introduction of this chapter.

5) If we specialise to x1 = u1, y1 = v1, x2 = u2, y2 = v2 — that is, renounce the

counting of records — then the coefficients (4.9a,b) simplify to

α2k−1 = k2 x1y1 (4.10a)

α2k = (kx2 +we)(ky2 +wo) (4.10b)

Using Proposition 2.2.5, we can alternatively rewrite the T-fraction (4.8) as an

S-fraction for the ogf of an “augmented” sequence:
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Corollary 4.2.4 (First S-fraction for augmented D-permutations). The ordinary

generating function of the “augmented” sequence of polynomials (4.7) has the

S-type continued fraction

1 + zezot
∞

∑
n=0

Pn(x1,x2,y1,y2,u1,u2,v1,v2,we,wo,ze,zo) tn =

1

1−
zezo t

1−
x1y1 t

1−
(x2+we)(y2+wo) t

1−
(x1+u1)(y1+v1) t

1−
(x2+u2+we)(y2+v2+wo) t

1−
(x1+2u1)(y1+2v1) t

1−
(x2+2u2+we)(y2+2v2+wo) t

1−·· ·
(4.11)

with coefficients

α1 = zezo (4.12a)

α2k−1 = [x2 +(k−2)u2 +we] [y2 +(k−2)v2 +wo] for k ≥ 2 (4.12b)

α2k = [x1 +(k−1)u1] [y1 +(k−1)v1] (4.12c)

With all variables equal to 1, this gives (since |D2n| = hn+1) the S-fraction

(2.51)/(2.52) for the sequence (hn)n≥0.

Also, using Proposition 2.2.5 in the other direction, we can rewrite the T-fraction

(4.8) specialised to ze = 0 and/or zo = 0 as a T-fraction for the ogf of the “restricted”

sequence:

Corollary 4.2.5 (First T-fraction for restricted pure D-permutations). The ordinary

generating function of the “restricted” sequence of polynomials (4.7) specialised to
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ze = 0 and/or zo = 0 has the T-type continued fraction

∞

∑
n=0

Pn+1(x1,x2,y1,y2,u1,u2,v1,v2,we,wo,0,zo) tn =

∞

∑
n=0

Pn+1(x1,x2,y1,y2,u1,u2,v1,v2,we,wo,ze,0) tn =

x1y1

1− x1y1 t−
(x2+we)(y2+wo) t

1−
(x1+u1)(y1+v1) t

1−
(x2+u2+we)(y2+v2+wo) t

1−
(x1+2u1)(y1+2v1) t

1−
(x2+2u2+we)(y2+2v2+wo) t

1−·· ·
(4.13)

with coefficients

α2k−1 = [x2 +(k−1)u2 +we] [y2 +(k−1)v2 +wo] (4.14a)

α2k = [x1 + k u1] [y1 + k v1] (4.14b)

δ1 = x1y1 (4.14c)

δn = 0 for n≥ 2 (4.14d)

With all variables equal to 1, this gives (since |Dpure
2n | = h[n+1) the T-fraction

(2.60)/(2.61) for the sequence (h[n+2)n≥0. With we = 0 (or wo = 0) and all other

variables equal to 1, this gives the T-fraction (2.47)/(2.48) for the once-shifted

Genocchi numbers. And finally, with we = wo = 0 and all other variables equal to 1,

this gives the T-fraction (2.55)/(2.56) for the once-shifted median Genocchi numbers.

If we specialise the polynomials (4.7) to x1 = x2, u1 = u2, ze = we and all other
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variables to 1, we obtain the polynomial P?
n (x,u,we)

P?
n (x,u,we) = ∑

σ∈D2n

xearec(σ)unrcpeak(σ)+nrcdfall(σ)wevenfix(σ)
e . (4.15)

We have the following S-fraction:

Corollary 4.2.6 (S-fraction for specialised D-permutations). The ordinary generat-

ing function of the polynomials P?
n (x,u,we) defined in (4.15) has the S-type continued

fraction
∞

∑
n=0

P?
n (x,u,we) tn =

1

1−
(x+we)t

1−
2xt

1−
2(x+u+we)t

1−
3(x+u)t

1−·· ·

(4.16)

with coefficients

α2k−1 = k [x+(k−1)u+we] (4.17a)

α2k = (k+1) [x+(k−1)u] (4.17b)

PROOF. It suffices to verify that the two T-fractions, the first obtained by special-

ising x1 = x2, u1 = u2, ze = we and all other variables to 1, and the second given

by (4.16)/(4.17) contract by Proposition 2.2.1 to the same J-fraction. �

Remarks. 1. Specializing to x = u = we = 1 gives the S-fraction (2.53)/(2.54)

for the once-shifted median Genocchi numbers.

2. Specializing to x = u = 1, we = 0 gives the S-fraction (2.45)/(2.46) for the

Genocchi numbers.

3. See also the generalization in Corollary 4.3.3, as well as Open Problem 4.3.4.

�
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4.2.3 ppp,,,qqq-generalizations of the first T-fraction

We can extend Theorem 4.2.3 by introducing a p,q-generalization. Recall that for

integer n≥ 0 we define

[n]p,q =
pn−qn

p−q
=

n−1

∑
j=0

p jqn−1− j (4.18)

where p and q are indeterminates; it is a homogeneous polynomial of degree n−1

in p and q, which is symmetric in p and q. In particular, [0]p,q = 0 and [1]p,q = 1;

and for n≥ 1 we have the recurrence

[n]p,q = p [n−1]p,q + qn−1 = q [n−1]p,q + pn−1 . (4.19)

If p = 1, then [n]1,q is the well-known q-integer

[n]q = [n]1,q =
1−qn

1−q
=

0 if n = 0

1+q+q2 + . . .+qn−1 if n≥ 1
(4.20)

If p = 0, then

[n]0,q =

0 if n = 0

qn−1 if n≥ 1
(4.21)

The statistics on permutations corresponding to the variables p and q will be

crossings and nestings, as defined in Section 2.5.2. More precisely, we define the

following polynomial in 22 variables that generalizes (4.7) by including four pairs of

(p,q)-variables corresponding to the four refined types of crossings and nestings, as
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well as two variables corresponding to pseudo-nestings of fixed points:

Pn(x1,x2,y1,y2,u1,u2,v1,v2,we,wo,ze,zo, p−1, p−2, p+1, p+2,q−1,q−2,q+1,q+2,se,so)

= ∑
σ∈D2n

xeareccpeak(σ)
1 xeareccdfall(σ)

2 yereccval(σ)
1 yereccdrise(σ)

2 ×

unrcpeak(σ)
1 unrcdfall(σ)

2 vnrcval(σ)
1 vnrcdrise(σ)

2 ×

wevennrfix(σ)
e woddnrfix(σ)

o zevenrar(σ)
e zoddrar(σ)

o ×

plcrosscpeak(σ)
−1 plcrosscdfall(σ)

−2 pucrosscval(σ)
+1 pucrosscdrise(σ)

+2 ×

qlnestcpeak(σ)
−1 qlnestcdfall(σ)

−2 qunestcval(σ)
+1 qunestcdrise(σ)

+2 ×

sepsnest(σ)
e sopsnest(σ)

o (4.22)

where

epsnest(σ) = ∑
i∈Evenfix

psnest(i,σ) , opsnest(σ) = ∑
i∈Oddfix

psnest(i,σ) .

(4.23)

We remark that (4.22) is essentially the same as the polynomial introduced in [SZ22,

eq. (2.51)], but restricted to D-permutations and refined to record the parity of fixed

points.4

We then have the following p,q-generalization of Theorem 4.2.3:

Theorem 4.2.7 (First T-fraction for D-permutations, p,q-generalization). The ordi-

4The polynomial in [SZ22, eq. (2.51)] also included a more refined stratification of fixed points
by level (= psnest) as defined in (2.68) above. That refined stratification is omitted here for simplicity
— instead we include only the simple factors spsnest — but it is included in (4.31) below.
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nary generating function of the polynomials (4.22) has the T-type continued fraction

∞

∑
n=0

Pn(x1,x2,y1,y2,u1,u2,v1,v2,we,wo,ze,zo, p−1, p−2, p+1, p+2,q−1,q−2,q+1,q+2,se,so) tn =

1

1− zezo t−
x1y1 t

1−
(x2+sewe)(y2+sowo) t

1−
(p−1x1+q−1u1)(p+1y1+q+1v1) t

1−
(p−2x2+q−2u2+s2

ewe)(p+2y2+q+2v2+s2
owo) t

1−
(p2
−1x1+q−1[2]p−1,q−1u1)(p2

+1y1+q+1[2]p+1,q+1v1) t

1−
(p2
−2x2+q−2[2]p−2,q−2u2+s3

ewe)(p2
+2y2+q+2[2]p+2,q+2v2+s3

owo) t

1−·· ·
(4.24)

with coefficients

α2k−1 =
(

pk−1
−1 x1 +q−1[k−1]p−1,q−1u1

) (
pk−1
+1 y1 +q+1[k−1]p+1,q+1v1

)
(4.25a)

α2k =
(

pk−1
−2 x2 +q−2[k−1]p−2,q−2u2 + sk

ewe
)
×(

pk−1
+2 y2 +q+2[k−1]p+2,q+2v2 + sk

owo
)

(4.25b)

δ1 = zezo (4.25c)

δn = 0 for n≥ 2 (4.25d)

We will prove Theorem 4.2.7 in Section 4.5. Of course we reobtain Theorem 4.2.3

by making the specialisation p−1 = p−2 = p+1 = p+2 = q−1 = q−2 = q+1 = q+2 =

se = so = 1.

Remarks. 1. If we specialise to x1 = u1, y1 = v1, x2 = u2, y2 = v2 — that is,

renounce the counting of records — then the coefficients (4.25) simplify to

α2k−1 = [k]p−1,q−1 [k]p+1,q+1 x1y1 (4.26a)

α2k =
(
[k]p−2,q−2x2 + sk

ewe
) (

[k]p+2,q+2y2 + sk
owo
)

(4.26b)

δ1 = zezo (4.26c)

δn = 0 for n≥ 2 (4.26d)
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2. If we further specialise to x1 = 1, x2 = y1 = y2 = q, p−1 = p−2 = p+1 =

p+2 = q and q−1 = q−2 = q+1 = q+2 = se = so = q2 and recall [SZ22, Proposi-

tion 2.24] that the number of inversions (inv) of a permutation satisfies

inv = cval+ cdrise+ cdfall+ucross+ lcross+2(unest+ lnest+psnest) , (4.27)

we obtain a T-fraction for D-permutations according to the number of even and

odd fixed points and number of inversions, with coefficients α2k−1 = q2k−1[k]2q,

α2k = q2k([k]q +qkwe)([k]q +qkwo), δ1 = zezo.

3. And if we further specialise to wo = zo = 0, we reobtain the S-fraction

for D-o-semiderangements according to the number of fixed points and number

of inversions [Ran97, Théorème 1.2], with coefficients α2k−1 = q2k−1[k]2q, α2k =

q2k[k]q([k]q +qkwe). �

We now give the p,q-generalization of Corollary 4.2.6. We need to make the

specialisations y1 = y2 = v1 = v2 = wo = zo = p+1 = p+2 = q+1 = q+2 = so = 1

— that is, set all the weights associated to odd indices to 1 — and also specialise

x1 = x2, u1 = u2, ze = we, p−1 = p−2, q−1 = q−2 and se = 1:

Corollary 4.2.8 (S-fraction for specialised D-permutations, p,q-generalization).

The ordinary generating function of the polynomials P?
n (x,u,we, p−,q−) defined by

P?
n (x,u,we, p−,q−) = ∑

σ∈D2n

xearec(σ)unrcpeak(σ)+nrcdfall(σ)wevenfix(σ)
e plcross(σ)

− qlnest(σ)
−

(4.28)

has the S-type continued fraction

∞

∑
n=0

P?
n (x,u,we) tn =

1

1−
(x+we)t

1−
2xt

1−
2(p−x+q−u+we)t

1−
3(p−x+q−u)t

1−·· ·

(4.29)
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with coefficients

α2k−1 = k
(

pk−1
− x+q−[k−1]p−,q−u+we

)
(4.30a)

α2k = (k+1)
(

pk−1
− x+q−[k−1]p−,q−u

)
(4.30b)

PROOF. It suffices to verify that the T-fraction (4.24)/(4.25) with the given special-

isations and the S-fraction (4.29)/(4.30) contract by Proposition 2.2.1 to the same

J-fraction. �

4.2.4 First master T-fraction

In fact, we can go farther, and introduce a polynomial in six infinite families of

indeterminates a = (a`,`′)`,`′≥0, b = (b`,`′)`,`′≥0, c = (c`,`′)`,`′≥0, d = (d`,`′)`,`′≥0,

e = (e`)`≥0, f = (f`)`≥0 that will have a nice T-fraction and that will include the

polynomials (4.7) and (4.22) as specialisations.

Using the index-refined crossing and nesting statistics defined in (2.67), we

define the polynomial Qn(a,b,c,d,e, f) by

Qn(a,b,c,d,e, f) =

∑
σ∈D2n

∏
i∈Cval(σ)

aucross(i,σ),unest(i,σ) ∏
i∈Cpeak(σ)

blcross(i,σ), lnest(i,σ) ×

∏
i∈Cdfall(σ)

clcross(i,σ), lnest(i,σ) ∏
i∈Cdrise(σ)

ducross(i,σ),unest(i,σ) ×

∏
i∈Evenfix(σ)

epsnest(i,σ) ∏
i∈Oddfix(σ)

fpsnest(i,σ) . (4.31)

where Cval(σ) = {i : σ−1(i)> i < σ(i)} and likewise for the others. We remark that

(4.31) is the same as the polynomial introduced in [SZ22, eq. (2.77)], but restricted

to D-permutations and refined to record the parity of fixed points.

The polynomials (4.31) then have a beautiful T-fraction:

Theorem 4.2.9 (First master T-fraction for D-permutations). The ordinary generating



4.2. First T-fraction and its generalizations 120

function of the polynomials Qn(a,b,c,d,e, f) has the T-type continued fraction

∞

∑
n=0

Qn(a,b,c,d,e, f) tn =
1

1− e0f0t−
a00b00t

1−
(c00 + e1)(d00 + f1)t

1−
(a01 +a10)(b01 +b10)t

1−
(c01 + c10 + e2)(d01 +d10 + f2)t

1−·· ·
(4.32)

with coefficients

α2k−1 =

(k−1

∑
ξ=0

ak−1−ξ ,ξ

)(k−1

∑
ξ=0

bk−1−ξ ,ξ

)
(4.33a)

α2k =

(
ek +

k−1

∑
ξ=0

ck−1−ξ ,ξ

)(
fk +

k−1

∑
ξ=0

dk−1−ξ ,ξ

)
(4.33b)

δ1 = e0f0 (4.33c)

δn = 0 for n≥ 2 (4.33d)

We will prove this theorem in Section 4.5; it is our “master” version of the first

T-fraction. It implies Theorems 4.2.3 and 4.2.7 by straightforward specialisations.

4.2.5 Variant forms of the first T-fractions

Our first T-fractions (Theorems 4.2.3, 4.2.7 and 4.2.9) have variant forms in which

we use the variant index-refined crossing and nesting statistics (2.69) in place of the

original index-refined crossing and nesting statistics (2.67).

It is convenient to start with the master T-fraction. Introducing indeterminates
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a,b,c,d,e, f as before, we define the variant polynomial Q′n(a,b,c,d,e, f) by

Q′n(a,b,c,d,e, f) =

∑
σ∈D2n

∏
i∈Cval(σ)

alcross′(i,σ), lnest′(i,σ) ∏
i∈Cpeak(σ)

bucross′(i,σ),unest′(i,σ) ×

∏
i∈Cdfall(σ)

clcross′(i,σ), lnest′(i,σ) ∏
i∈Cdrise(σ)

ducross′(i,σ),unest′(i,σ) ×

∏
i∈Evenfix(σ)

epsnest(i,σ) ∏
i∈Oddfix(σ)

fpsnest(i,σ) . (4.34)

Note that for cycle valleys and cycle peaks, the “u” and “l” have here been inter-

changed relative to (4.31); this is in accordance with the explanation after (2.69)

about which types of indices can have nonzero values for the primed crossing and

nesting statistics.

We then have the following variant of Theorem 4.2.9:

Theorem 4.2.10 (Variant first master T-fraction for D-permutations). The ordinary

generating function of the polynomials Q′n(a,b,c,d,e, f) has the same T-type con-

tinued fraction (4.32)/(4.33) as the polynomials Qn(a,b,c,d,e, f). Therefore

Qn(a,b,c,d,e, f) = Q′n(a,b,c,d,e, f) . (4.35)

We will prove this theorem in Section 4.5.5.

Next we define the variant p,q-generalized polynomials P′n:

P′n(x1,x2,y1,y2,u1,u2,v1,v2,we,wo,ze,zo, p−1, p−2, p+1, p+2,q−1,q−2,q+1,q+2,se,so)

= ∑
σ∈D2n

xereccpeak′(σ)
1 xeareccdfall′(σ)

2 yeareccval′(σ)
1 yereccdrise′(σ)

2 ×

unrcpeak′(σ)
1 unrcdfall′(σ)

2 vnrcval′(σ)
1 vnrcdrise′(σ)

2 ×

wevennrfix(σ)
e woddnrfix(σ)

o zevenrar(σ)
e zoddrar(σ)

o ×

pucrosscpeak′(σ)
−1 plcrosscdfall′(σ)

−2 plcrosscval′(σ)
+1 pucrosscdrise′(σ)

+2 ×

qunestcpeak′(σ)
−1 qlnestcdfall′(σ)

−2 qlnestcval′(σ)
+1 qunestcdrise′(σ)

+2 ×

sepsnest(σ)
e sopsnest(σ)

o (4.36)
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where the statistics have been defined in Sections 2.5.1/2.5.2, in particular see

Table 2.2. We define

ucrosscpeak′(σ) = ∑
k∈Cpeak(σ)

ucross′(k,σ) (4.37a)

unestcpeak′(σ) = ∑
k∈Cpeak(σ)

unest′(k,σ) (4.37b)

where ucross′ and unest′ have been defined in (2.69a,b), and likewise for the others.

We then have the following variant of Theorem 4.2.7:

Theorem 4.2.11 (Variant first T-fraction for D-permutations, p,q-generalization).

The ordinary generating function of the polynomials P′n has the same T-type continued

fraction (4.24)/(4.25) as the polynomials Pn. Therefore

Pn(x1,x2,y1,y2,u1,u2,v1,v2,we,wo,ze,zo, p−1, p−2, p+1, p+2,q−1,q−2,q+1,q+2,se,so)

= P′n(x1,x2,y1,y2,u1,u2,v1,v2,we,wo,ze,zo, p−1, p−2, p+1, p+2,q−1,q−2,q+1,q+2,se,so) .

(4.38)

And finally, we can define variant polynomials P′n(x1,x2,y1,y2,u1,u2,v1,v2,

we,wo,ze,zo) by specialising p−1 = p−2 = p+1 = p+2 = q−1 = q−2 = q+1 = q+2 =

se = so = 1, and thereby obtain a variant version of Theorem 4.2.3. We leave the

details to the reader.

Remark. A four-variable special case of Theorem 4.2.11 was found by Randri-

anarivony and Zeng [RZ96a, Proposition 10] for D-o-semiderangements. Note first

that for a D-o-semiderangement, each fixed point (which is necessarily even) must

be a neither-record-antirecord: for if a fixed point i were a record or antirecord, then

it would be both; but by Lemma 4.2.2, i−1 would then also be a record-antirecord

fixed point, which is impossible since σ is a D-o-semiderangement.

Let us now look at the statistics defined by Randrianarivony and Zeng [RZ96a,

p. 2]. Their statistic “lema” is a left-to-right maximum (i.e. a record) whose value

is even: thus we can say that σ−1(i) is a record position and that i is even. But a
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record is always a weak excedance, hence σ−1(i)≤ i; and i is even, hence i≥ σ(i).

Since i is a record, it cannot be a fixed point, so it must be a cycle peak, and we have

lema = ereccpeak′. Similarly, their statistic “remi” (resp. “romi”) is a right-to-left

minimum (i.e. an antirecord) whose value is even (resp. odd); by similar reasoning

we obtain remi = eareccdfall′ and romi = eareccval′. Their polynomial [RZ96a,

eq. (3.3)]

Rn(x,y, x̄, ȳ) = ∑
σ∈Do

2n

xlema(σ)yromi(σ)x̄fix(σ)ȳremi(σ) (4.39)

thus corresponds to our P′n specialised to x1 = x, y1 = y, we = x̄, x2 = ȳ, wo = zo = 0,

and all other variables equal to 1. Their S-fraction [RZ96a, Proposition 10] is then a

special case of Theorem 4.2.11. We will use this in Chapter 5. �

4.3 Second T-fraction and its generalizations
It is natural to want to refine the foregoing polynomials by keeping track also of the

number of cycles (cyc). Unfortunately, cyc does not seem to mesh well with the

record classification: even the three-variable polynomials

Pn(x,y,λ ) = ∑
σ∈D2n

xarec(σ)yerec(σ)
λ

cyc(σ) (4.40)

do not have a J-fraction with polynomial coefficients (see Appendix of this chapter).

Using the contraction formula (Proposition 2.2.1), it follows from this that Pn(x,y,λ )

also cannot have a T-fraction with polynomial coefficients and δ2 = δ4 = . . .= 0.5

Nevertheless, it turns out that cyc almost meshes with the complete parity-

refined record-and-cycle classification: it suffices to make one (stated here but

proved later in Chapter 5) or two specialisations in which we partially renounce

5This does not exclude that Pn(x,y,λ ) might have a general T-fraction with polynomial coeffi-
cients. Indeed, it is easy to see [Sok] that, for any sequence aaa = (an)n≥0 with a0 = 1 in a commutative
ring R, and any sequence ααα = (αn)n≥1 of invertible elements of R, there exists a unique sequence
δδδ = (δn)n≥1 in R such that the ordinary generating function ∑

∞
n=0 antn is represented by the T-fraction

with coefficients ααα and δδδ . So the polynomials Pn(x,y,λ ) are in fact represented by uncountably many
different T-fractions with coefficients αn ∈ Z\{0} (or even αn ∈ {1,2}) and δn ∈Q[x,y,λ ]. Further-
more, such T-fractions might exist also for certain noninvertible ααα , subject to suitable divisibility
conditions. But it is far from clear whether any of these T-fractions are simple enough to be found
explicitly.
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recording the record status. We explain this in the next subsection.

4.3.1 Second T-fraction

4.3.1.1 Statement of a T-fraction and main theorem

We begin by introducing a polynomial in 13 variables that generalizes (4.7) by

keeping track also of the number of cycles (cyc):

P̂n(x1,x2,y1,y2,u1,u2,v1,v2,we,wo,ze,zo,λ ) =

∑
σ∈D2n

xeareccpeak(σ)
1 xeareccdfall(σ)

2 yereccval(σ)
1 yereccdrise(σ)

2 ×

unrcpeak(σ)
1 unrcdfall(σ)

2 vnrcval(σ)
1 vnrcdrise(σ)

2 ×

wevennrfix(σ)
e woddnrfix(σ)

o zevenrar(σ)
e zoddrar(σ)

o λ
cyc(σ) . (4.41)

Of course there is no hope that P̂n has a J-fraction (or a T-fraction with δ2 = δ4 =

. . .= 0) with polynomial coefficients, because even the specialisation (4.40) does

not have one. Nevertheless, we find empirically that we need to make only one

specialisation — either u1 = x1 or v1 = y1 — to obtain a good T-fraction. In other

words, it suffices to renounce distinguishing either the antirecord status of cycle

peaks or the record status of cycle valleys. For concreteness we show the second of

these:

Theorem 4.3.1. The ordinary generating function of the polynomials (4.41) spe-
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cialised to v1 = y1 has the T-type continued fraction

∞

∑
n=0

P̂n(x1,x2,y1,y2,u1,u2,y1,v2,we,wo,ze,zo,λ ) tn =

1

1−λ 2zezo t−
λx1y1 t

1−
(x2+λwe)(y2+λwo) t

1−
(λ +1)(x1+u1)y1 t

1−
(x2+u2+λwe)(y2+v2+λwo) t

1−
(λ +2)(x1+2u1)y1 t

1−
(x2+2u2+λwe)(y2+2v2+λwo) t

1−·· ·
(4.42)

with coefficients

α2k−1 = (λ + k−1) [x1 +(k−1)u1] y1 (4.43a)

α2k = [x2 +(k−1)u2 +λwe] [y2 +(k−1)v2 +λwo] (4.43b)

δ1 = λ
2zezo (4.43c)

δn = 0 for n≥ 2 (4.43d)

The full theorem 4.3.1 will only be proved in Chapter 5. Our approach in

this chapter will only be able to prove a weaker version in which we make the

two specialisations v1 = y1 and v2 = y2, i.e. we renounce distinguishing the record

status of cycle valleys and cycle double rises. However, we can do better than this:

namely, we replace the pair y2,v2 by a pair of new variables ŷ2, v̂2 that measure, not

whether a cycle double rise i is a record position, but rather whether it is a record

value, i.e. whether σ−1(i) is a record. We use the statistics ereccdrise′ and nrcdrise′,
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defined in Section 2.5.1 and define the modified polynomials

̂̂Pn(x1,x2,y1, ŷ2,u1,u2,v1, v̂2,we,wo,ze,zo,λ ) =

∑
σ∈D2n

xeareccpeak(σ)
1 xeareccdfall(σ)

2 yereccval(σ)
1 ŷereccdrise′(σ)

2 ×

unrcpeak(σ)
1 unrcdfall(σ)

2 vnrcval(σ)
1 v̂nrcdrise′(σ)

2 ×

wevennrfix(σ)
e woddnrfix(σ)

o zevenrar(σ)
e zoddrar(σ)

o λ
cyc(σ) . (4.44)

We are then able to prove:

Theorem 4.3.2 (Second T-fraction for D-permutations). The ordinary generating

function of the polynomials (4.44) specialised to v1 = y1 has the T-type continued

fraction

∞

∑
n=0

̂̂Pn(x1,x2,y1, ŷ2,u1,u2,y1, v̂2,we,wo,ze,zo,λ ) tn =

1

1−λ 2zezo t−
λx1y1 t

1−
(x2+λwe)(ŷ2+λwo) t

1−
(λ +1)(x1+u1)y1 t

1−
(x2+u2+λwe)(ŷ2+v̂2+λwo) t

1−
(λ +2)(x1+2u1)y1 t

1−
(x2+2u2+λwe)(ŷ2+2v̂2+λwo) t

1−·· ·
(4.45)

with coefficients

α2k−1 = (λ + k−1) [x1 +(k−1)u1] y1 (4.46a)

α2k = [x2 +(k−1)u2 +λwe] [ŷ2 +(k−1)v̂2 +λwo] (4.46b)

δ1 = λ
2zezo (4.46c)

δn = 0 for n≥ 2 (4.46d)



4.3. Second T-fraction and its generalizations 127

This continued fraction has exactly the same form as Theorem 4.3.1, except that

y2,v2 are replaced by ŷ2, v̂2. We will prove Theorem 4.3.2 in Section 4.6.

Note that each of the coefficients αi and δi in (4.46) is homogeneous of degree 1

in x1,x2, u1,u2,we,ze and also homogeneous of degree 1 in y1, ŷ2, v̂2,wo,zo. As

before, this reflects the homogeneities of the ̂̂Pn.

Remark. Specializing Theorem 4.3.2 to we = wo = ze = zo = 0 and all other

variables except λ to 1, we obtain an S-fraction with α2k−1 = k(λ +k−1), α2k = k2

for counting D-derangements by number of cycles [PZ23, eq. (4.4)]. �

It is perhaps worth observing that, in view of Theorem 4.3.2, Theorem 4.3.1 is

equivalent to the following assertion about the equidistribution of statistics:

Theorem 4.3.1.′ There exists a bijection ψn : D2n→D2n that maps the 12-tuple

(eareccpeak,eareccdfall,cval,ereccdrise,nrcpeak,nrcdfall,nrcdrise,

evennrfix,oddnrfix,evenrar,oddrar,cyc)

onto

(eareccpeak,eareccdfall,cval,ereccdrise′,nrcpeak,nrcdfall,nrcdrise′,

evennrfix,oddnrfix,evenrar,oddrar,cyc) .

4.3.1.2 Specialisation leading to S-fraction

We now give the cycle-counting generalization of Corollary 4.2.6. If in the T-fraction

(4.45)/(4.46) we specialise y1 = ŷ2 = v̂2 = 1 = zo = wo = 1 — that is, all the weights

associated to odd indices are set to 1 — and also specialise ze = we, x1 = x2 and

u1 = u2, the resulting T-fraction can be rewritten as an S-fraction by noticing that

both of them contract (Proposition 2.2.1) to the same J-fraction, and we obtain a

generalization of Corollary 4.2.6 that includes counting the number of cycles:

Corollary 4.3.3 (S-fraction for specialised D-permutations, counting number of

cycles). The ordinary generating function of the polynomials P?
n (x,u,we,λ ) defined
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by

P?
n (x,u,we,λ ) = ∑

σ∈D2n

xearec(σ)unrcpeak(σ)+nrcdfall(σ)wevenfix(σ)
e λ

cyc(σ) (4.47)

has the S-type continued fraction

∞

∑
n=0

P?
n (x,u,we,λ ) tn =

1

1−
λ (x+λwe)t

1−
(λ +1)xt

1−
(λ +1)(x+u+λwe)t

1−
(λ +2)(x+u)t

1−·· ·

(4.48)

with coefficients

α2k−1 = (λ + k−1) [x+(k−1)u+λwe] (4.49a)

α2k = (λ + k) [x+(k−1)u] (4.49b)

Of course there is also an analogous S-fraction in which the roles of odd and even

indices are reversed.

Remarks. 1. Setting x = u = 1 and we = 0 in (4.48)/(4.49), we obtain the S-

fraction for D-semiderangements enumerated by number of cycles, with coefficients

α2k−1 = k(λ + k−1) and α2k = k(λ + k), which was found a quarter-century ago

by Randrianarivony and Zeng [RZ96a, Corollary 13].

2. Setting x = u = we = 1 in (4.48)/(4.49), we obtain an S-fraction for D-

permutations enumerated by number of cycles, with coefficients α2k−1 = α2k =

k(λ +k). This S-fraction appeared in [HZ99b, eq. (14)] (in fact in a q-generalization),

but with a different combinatorial interpretation. Further specialising to λ = 1, we

obtain the S-fraction (2.53)/(2.54) for the once-shifted Genocchi medians hn+1. �

Since the once-shifted Genocchi medians hn+1 count D-permutations of [2n],
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the preceding remark suggests that one should try to find an S-fraction for D-

permutations that generalizes (2.53)/(2.54):

Open Problem 4.3.4. Find the statistics on D-permutations that would lead to a

more general S-fraction of the form

α2k−1 = [x1 +(k−1)u1] [x2 + ku2] (4.50a)

α2k = [y1 +(k−1)v1] [y2 + kv2] (4.50b)

or

α2k−1 = [x1 +(k−1)u1] [x2 +(k−1)u2 +w] (4.51a)

α2k = [y1 +(k−1)v1] [y2 +(k−1)v2 +w′] (4.51b)

�

4.3.1.3 Reformulation using cycle valley minima

We can rephrase Theorems 4.3.1 and 4.3.2 in a more suggestive form by observing

that each non-singleton cycle contains precisely one maximum element, which is

necessarily a cycle peak, and precisely one minimum element, which is necessarily a

cycle valley. We use the statistics minval, maxpeak, nminval, nmaxpeak introduced

in Section 2.5.1. We now introduce a polynomial that is similar to (4.7) except that

the classification of cycle valleys as records or non-records — which we have already

renounced in Theorem 4.3.1 — is replaced by the classification of cycle valleys as

minima or non-minima:

P̃n(x1,x2, ỹ1,y2,u1,u2, ṽ1,v2,we,wo,ze,zo) =

∑
σ∈D2n

xeareccpeak(σ)
1 xeareccdfall(σ)

2 ỹminval(σ)
1 yereccdrise(σ)

2 ×

unrcpeak(σ)
1 unrcdfall(σ)

2 ṽnminval(σ)
1 vnrcdrise(σ)

2 ×

wevennrfix(σ)
e woddnrfix(σ)

o zevenrar(σ)
e zoddrar(σ)

o . (4.52)
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Then the factor (λ + k−1)y1 in Theorem 4.3.1 and Theorem 4.3.2 is replaced by

ỹ1 +(k−1)ṽ1, and Theorem 4.3.1 can be rewritten as:

Theorem 4.3.1.′′ The ordinary generating function of the polynomials (4.52) has the

T-type continued fraction

∞

∑
n=0

P̃n(x1,x2, ỹ1,y2,u1,u2, ṽ1,v2,we,wo,ze,zo) tn =

1

1− zezo t−
x1ỹ1 t

1−
(x2+we)(y2+wo) t

1−
(x1+u1)(ỹ1 + ṽ1) t

1−
(x2+u2+we)(y2+v2+wo) t

1−
(x1+2u1)(ỹ1 +2ṽ1) t

1−
(x2+2u2+we)(y2+2v2+wo) t

1−·· ·
(4.53)

with coefficients

α2k−1 = [x1 +(k−1)u1] [ỹ1 +(k−1)ṽ1] (4.54a)

α2k = [x2 +(k−1)u2 +we] [y2 +(k−1)v2 +wo] (4.54b)

δ1 = zezo (4.54c)

δn = 0 for n≥ 2 (4.54d)

Note that the factors of λ multiplying we,wo,ze,zo in Theorem 4.3.1 have now

disappeared because we are no longer giving such factors to singleton cycles. Even

more strikingly, Theorem 4.3.1′′ now looks identical to Theorem 4.2.3 except that

y1,v1 have been replaced by ỹ1, ṽ1. Moreover, Theorem 4.3.2 can be rewritten in a

similar way, replacing y1,v1 by ỹ1, ṽ1 as in (4.52) and replacing y2,v2 by ŷ2, v̂2 as in

(4.44); for brevity we leave this reformulation to the reader.
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4.3.1.4 S-fraction for D-cycles

We can also enumerate D-cycles by extracting the coefficient of λ 1 in Theorem 4.3.2.

We begin by defining the polynomials analogous to (4.44) but restricted to D-cycles

(which we recall have no fixed points):

̂̂PDC
n (x1,x2,y1, ŷ2,u1,u2,v1, v̂2) =

∑
σ∈DC2n

xeareccpeak(σ)
1 xeareccdfall(σ)

2 yereccval(σ)
1 ŷereccdrise′(σ)

2 ×

unrcpeak(σ)
1 unrcdfall(σ)

2 vnrcval(σ)
1 v̂nrcdrise′(σ)

2 . (4.55)

Theorem 4.3.2 implies the following:

Corollary 4.3.5 (S-fraction for D-cycles). The ordinary generating function of the

polynomials (4.55) specialised to v1 = y1 has the S-type continued fraction

∞

∑
n=0

̂̂PDC
n+1(x1,x2,y1, ŷ2,u1,u2,y1, v̂2) tn =

x1y1

1−
x2ŷ2 t

1−
(x1+u1)y1 t

1−
(x2+u2)(ŷ2+v̂2) t

1−
(x1+2u1)2y1 t

1−
(x2+2u2)(ŷ2+2v̂2) t

1−·· ·
(4.56)

with coefficients

α2k−1 = [x2 +(k−1)u2] [ŷ2 +(k−1)v̂2] (4.57a)

α2k = [x1 + ku1] ky1 (4.57b)

Specializing Corollary 4.3.5 by setting all variables equal to 1, we obtain an

S-fraction with α2k−1 = k2 and α2k = k(k+1), which we recognize as the S-fraction

(2.45)/(2.46) for the Genocchi numbers gn. We have therefore recovered the known

fact [Laz20, LW22] that |DC2n+2|= gn, or equivalently that |DC2n|= gn−1.
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4.3.2 ppp,,,qqq-generalizations of the second T-fraction

We can also make a p,q-generalization of the second T-fraction in Theorem 4.3.2.

Let us define the polynomial in 23 variables that generalizes (4.44) by including

four pairs of (p,q)-variables corresponding to the four refined types of crossings and

nestings as well as two variables corresponding to pseudo-nestings of fixed points:

̂̂Pn(x1,x2,y1, ŷ2,u1,u2,v1, v̂2,we,wo,ze,zo, p−1, p−2, p+1, p̂+2,q−1,q−2,q+1, q̂+2,se,so,λ ) =

∑
σ∈D2n

xeareccpeak(σ)
1 xeareccdfall(σ)

2 yereccval(σ)
1 ŷereccdrise′(σ)

2 ×

unrcpeak(σ)
1 unrcdfall(σ)

2 vnrcval(σ)
1 v̂nrcdrise′(σ)

2 ×

wevennrfix(σ)
e woddnrfix(σ)

o zevenrar(σ)
e zoddrar(σ)

o ×

plcrosscpeak(σ)
−1 plcrosscdfall(σ)

−2 pucrosscval(σ)
+1 p̂ucrosscdrise′(σ)

+2 ×

qlnestcpeak(σ)
−1 qlnestcdfall(σ)

−2 qunestcval(σ)
+1 q̂unestcdrise′(σ)

+2 ×

sepsnest(σ)
e sopsnest(σ)

o λ
cyc(σ) . (4.58)

This is the same as (4.22), except for the inclusion of the factor λ cyc(σ)

and the replacement of yereccdrise(σ)
2 ,vnrcdrise(σ)

2 , pucrosscdrise(σ)
+2 ,qunestcdrise(σ)

+2 by

ŷereccdrise′(σ)
2 , v̂nrcdrise′(σ)

2 , p̂ucrosscdrise′(σ)
+2 , q̂unestcdrise′(σ)

+2 , respectively, where the statis-

tics ucrosscdrise′ and unestcdrise′ are defined as

ucrosscdrise′(σ) = ∑
k∈Cdrise(σ)

ucross′(k,σ) (4.59a)

unestcdrise′(σ) = ∑
k∈Cdrise(σ)

unest′(k,σ) (4.59b)

[These statistics have already been used in (4.36).]

We now state the p,q-generalization of Theorem 4.3.2 that we are able to prove.

It turns out that we need to make the specialisations v1 = y1 and q+1 = p+1. The

result is then the following:

Theorem 4.3.6 (Second T-fraction for D-permutations, p,q-generalization). The

ordinary generating function of the polynomials (4.58) specialised to v1 = y1 and
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q+1 = p+1 has the T-type continued fraction

∞

∑
n=0

̂̂Pn(x1,x2,y1, ŷ2,u1,u2,y1, v̂2,we,wo,ze,zo, p−1, p−2, p+1, p̂+2,q−1,q−2, p+1, q̂+2,se,so,λ ) tn =

1

1−λ 2zezo t−
λx1y1 t

1−
(x2+λ sewe)(ŷ2+λ sowo) t

1−
(λ +1)p+1y1(p−1x1+q−1u1) t

1−
(p−2x2+q−2u2+λ s2

ewe)(p̂+2ŷ2+q̂+2v̂2+λ s2
owo) t

1−
(λ +2)p2

+1y1(p2
−1x1+q−1[2]p−1,q−1u1) t

1−
(p2
−2x2+q−2[2]p−2,q−2u2+λ s3

ewe)(p̂2
+2ŷ2+q̂+2[2]p̂+2,q̂+2 v̂2+λ s3

owo) t

1−·· ·
(4.60)

with coefficients

α2k−1 = (λ + k−1) pk−1
+1 y1

(
pk−1
−1 x1 +q−1[k−1]p−1,q−1u1

)
(4.61a)

α2k =
(

pk−1
−2 x2 +q−2[k−1]p−2,q−2u2 +λ sk

ewe
)
×(

p̂k−1
+2 ŷ2 + q̂+2[k−1]p̂+2,q̂+2 v̂2 +λ sk

owo
)

(4.61b)

δ1 = λ
2zezo (4.61c)

δn = 0 for n≥ 2 (4.61d)

We will prove Theorem 4.3.6 in Section 4.6. Of course we reobtain Theorem 4.3.2 by

making the specialisation p−1 = p−2 = p+1 = p̂+2 = q−1 = q−2 = q̂+2 = se = so = 1.

Remark. If we specialise to x1 = u1, x2 = u2, ŷ2 = v̂2 — that is, renounce the

counting of records — then the coefficients (4.61) simplify to

α2k−1 = (λ + k−1) pk−1
+1 y1 [k]p−1,q−1x1 (4.62a)

α2k =
(
[k]p−2,q−2x2 +λ sk

ewe
) (

[k]p̂+2,q̂+2 ŷ2 +λ sk
owo
)

(4.62b)

δ1 = zezo (4.62c)

δn = 0 for n≥ 2 (4.62d)

�
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We can also obtain a p,q-generalization of Corollary 4.3.3, or equivalently a

cycle-counting generalization of Corollary 4.2.8. If in the T-fraction (4.60)/(4.61)

we specialise zo = wo = y1 = ŷ2 = v̂2 = p+1 = p̂+2 = q̂+2 = so = 1 — that is, all

the weights associated to odd indices are set to 1 — and also specialise ze = we,

x1 = x2, u1 = u2, p−1 = p−2, q−1 = q−2 and se = 1, the resulting T-fraction can be

rewritten as an S-fraction by noticing that they contract (Proposition 2.2.1) to the

same J-fraction:

Corollary 4.3.7 (S-fraction for D-permutations counting number of cycles,

p,q-generalization). The ordinary generating function of the polynomials

P?
n (x,u,we, p−,q−,λ ) defined by

P?
n (x,u,we, p−,q−,λ ) =

∑
σ∈D2n

xearec(σ)unrcpeak(σ)+nrcdfall(σ)wevenfix(σ)
e plcross(σ)

− qlnest(σ)
− λ

cyc(σ) (4.63)

has the S-type continued fraction

∞

∑
n=0

P?
n (x,u,we, p−,q−,λ ) tn =

1

1−
λ (x+λwe)t

1−
(λ +1)xt

1−
(λ +1)(p−x+q−u+λwe)t

1−
(λ +2)(p−x+q−u)t

1−·· ·

(4.64)

with coefficients

α2k−1 = (λ + k−1)
(

pk−1
− x+q−[k−1]p−,q−u+λwe

)
(4.65a)

α2k = (λ + k)
(

pk−1
− x+q−[k−1]p−,q−u

)
(4.65b)

Finally, we can enumerate D-cycles by extracting the coefficient of λ 1 in

Theorem 4.3.6. We begin by defining the polynomials analogous to (4.58) but
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restricted to D-cycles (which we recall have no fixed points):

̂̂PDC
n (x1,x2,y1, ŷ2,u1,u2,v1, v̂2, p−1, p−2, p+1, p̂+2,q−1,q−2,q+1, q̂+2,λ ) =

∑
σ∈DC2n

xeareccpeak(σ)
1 xeareccdfall(σ)

2 yereccval(σ)
1 ŷereccdrise′(σ)

2 ×

unrcpeak(σ)
1 unrcdfall(σ)

2 vnrcval(σ)
1 v̂nrcdrise′(σ)

2 ×

plcrosscpeak(σ)
−1 plcrosscdfall(σ)

−2 pucrosscval(σ)
+1 p̂ucrosscdrise′(σ)

+2 ×

qlnestcpeak(σ)
−1 qlnestcdfall(σ)

−2 qunestcval(σ)
+1 q̂unestcdrise′(σ)

+2 λ
cyc(σ) . (4.66)

Theorem 4.3.6 then implies the following generalization of Corollary 4.3.5:

Corollary 4.3.8 (S-fraction for D-cycles, p,q-generalization). The ordinary generat-

ing function of the polynomials (4.66) specialised to v1 = y1 and q+1 = p+1 has the

S-type continued fraction

∞

∑
n=0

̂̂PDC
n+1(x1,x2,y1, ŷ2,u1,u2,y1, v̂2, p−1, p−2, p+1, p̂+2,q−1,q−2, p+1, q̂+2) tn =

x1y1

1−
x2ŷ2 t

1−
(p−1x1+q−1u1)p+1y1 t

1−
(p−2x2+q−2u2)(p̂+2ŷ2+q̂+2v̂2) t

1−
2(p2
−1x1+q−1[2]p−1,q−1u1)p2

+1y1 t

1−
(p2
−2x2+q−2[2]p−2,q−2u2)(p2

+2ŷ2+q+2[2]p+2,q+2 v̂2) t

1−·· ·
(4.67)

with coefficients

α2k−1 =
(

pk−1
−2 x2 +q−2[k−1]p−2,q−2u2

)
×(

p̂k−1
+2 ŷ2 + q̂+2[k−1]p̂+2,q̂+2 v̂2

)
(4.68a)

α2k = k
(

pk
−1x1 +q−1[k]p−1,q−1u1

)
pk
+1y1 (4.68b)
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4.3.3 Second master T-fraction

As with the first T-fraction, we can go much farther, and obtain a T-fraction in six

infinite families of indeterminates: a = (a`)`≥0, b = (b`,`′)`,`′≥0, c = (c`,`′)`,`′≥0,

d= (d`,`′)`,`′≥0, e= (e`)`≥0, f = (f`)`≥0; please note that a now has one index rather

than two. We now define a sequence of polynomials that will include the polynomials

(4.44) and (4.58) as specialisations:

̂̂Qn(a,b,c,d,e, f,λ ) =

∑
σ∈D2n

λ
cyc(σ)

∏
i∈Cval(σ)

aucross(i,σ)+unest(i,σ) ∏
i∈Cpeak(σ)

blcross(i,σ), lnest(i,σ) ×

∏
i∈Cdfall(σ)

clcross(i,σ), lnest(i,σ) ∏
i∈Cdrise(σ)

ducross′(i,σ),unest′(i,σ) ×

∏
i∈Evenfix(σ)

epsnest(i,σ) ∏
i∈Oddfix(σ)

fpsnest(i,σ) . (4.69)

We remark that (4.69) is almost the same as the polynomial introduced in [SZ22,

eq. (2.100)], but restricted to D-permutations and refined to record the parity of fixed

points; the main difference is that the treatment of d is a bit nicer here, using the

statistics ucross′ and unest′.

Note that here, in contrast to the first master T-fraction, ̂̂Qn depends on

ucross(i,σ) and unest(i,σ) only via their sum: that is the price we have to pay

in order to include the statistic cyc. Furthermore, the indices of d involve ucross′ and

unest′ instead of ucross and unest.

The polynomials (4.69) then have a nice T-fraction:

Theorem 4.3.9 (Second master T-fraction for D-permutations). The ordinary gen-

erating function of the polynomials ̂̂Qn(a,b,c,d,e, f,λ ) has the T-type continued
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fraction

∞

∑
n=0

̂̂Qn(a,b,c,d,e, f) tn =
1

1−λ 2e0f0t−
λa0b00t

1−
(c00 +λe1)(d00 +λ f1)t

1−
(λ +1)a1(b01 +b10)t

1−
(c01 + c10 +λe2)(d01 +d10 +λ f2)t

1−·· ·
(4.70)

with coefficients

α2k−1 = (λ + k−1)ak−1

(k−1

∑
ξ=0

bk−1−ξ ,ξ

)
(4.71a)

α2k =

(
λek +

k−1

∑
ξ=0

ck−1−ξ ,ξ

)(
λ fk +

k−1

∑
ξ=0

dk−1−ξ ,ξ

)
(4.71b)

δ1 = λ
2e0f0 (4.71c)

δn = 0 for n≥ 2 (4.71d)

We will prove this theorem in Section 4.6. It implies Theorems 4.3.2 and 4.3.6 by

straightforward specialisations.

4.4 Coefficientwise Hankel-total positivity of the

multivariate polynomial sequences
Given indeterminates x = (x1,x2, . . .) and a sequence of polynomials (qn(x))n≥0,

we know from Theorem 2.3.1 that if the ordinary generating function ∑
∞
n=0 qn(x)

has a Thron-type continued fraction with coefficientwise-positive coefficients then

the Hankel matrix (qn+k(x))n,k≥0 is coefficientwise-totally positive with respect

to the variables x. Thus, the following theorem is an easy corollary of our first

Theorems 4.2.3, 4.2.7, 4.2.9, 4.2.10 and 4.2.11, and of our second Theorems 4.3.2,

4.3.6 and 4.3.9:

Theorem 4.4.1. Let (Rn)n≥0 be the polynomial sequence defined by one of the
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following equations in Section 4.2: (4.7), (4.22),(4.31), (4.34), and (4.36); or by

one of the following equations in Section 4.3: (4.44) with the specialisation v1 = y1,

(4.58) specialised to v1 = y1 and q+1 = p+1, and (4.69). Then the sequence (Rn)n≥0

is coefficientwise-totally positive with respect to all of their corresponding variables.

4.5 First T-fraction: Proof of Theorems 4.2.3, 4.2.7,

4.2.9, 4.2.10 and 4.2.11

In this section we prove the first master T-fraction (Theorem 4.2.9) by a bijection

from D-permutations to labelled Schröder paths. Our construction combines ideas

of Randrianarivony [Ran97] with a variant [SZ22, Section 6.1] of Foata–Zeilberger

[FZ90], together with some new ingredients. After proving Theorem 4.2.9, we

deduce Theorems 4.2.3 and 4.2.7 by specialisation. Then, in Section 4.5.5, we prove

the variant T-fractions of Theorems 4.2.10 and 4.2.11.

Let us define an almost-Dyck path of length 2n to be a path ω = (ω0, . . . ,ω2n)

in the right half-plane N×Z, starting at ω0 = (0,0) and ending at ω2n = (2n,0),

using the steps (1,1) and (1,−1), that stays always at height ≥ −1. Thus, an

almost-Dyck path is like a Dyck path except that a down step from height 0 to

height −1 is allowed; note, however, that it must be immediately followed by an

up step back to height 0. Each non-Dyck part of the path is therefore of the form

(h2i−2,h2i−1,h2i) = (0,−1,0). We write D]
2n for the set of almost-Dyck paths of

length 2n.

Next let us define a 0-Schröder path to be a Schröder path in which long level

steps, if any, occur only at height 0. We write S0
2n for the set of 0-Schröder paths

of length 2n. There is an obvious bijection ψ : D]
2n→S0

2n from almost-Dyck paths

to 0-Schröder paths: namely, we replace each down-up pair starting and ending at

height 0 with a long level step at height 0.

In this section we will construct a bijection from D-permutations of [2n] onto

labelled 0-Schröder paths of length 2n, as follows: We first define the path by

constructing an almost-Dyck path ω and then transforming it into a 0-Schröder path
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ω̂ = ψ(ω). Then we define the labels ξi, which will lie in the sets

Ah = {0, . . . ,dh/2e} for h≥ 0 (4.72a)

Bh = {0, . . . ,d(h−1)/2e} for h≥ 1 (4.72b)

C0 = {0} (4.72c)

Ch = ∅ for h≥ 1 (4.72d)

We also interpret our crossing, nesting and record statistics in terms of the heights

and labels. Next we prove that the map σ 7→ (ω̂,ξ ) really is a bijection from the

set D2n of D-permutations of [2n] onto the set S2n(A,B,C) of (A,B,C)-labelled

Schröder paths of length 2n. Finally, we sum over the labels ξ to obtain the weight

W (ω̂) associated to a Schröder path ω̂ , which upon applying (2.36) will yield

Theorem 4.2.9.

4.5.1 Step 1: Definition of the almost-Dyck path

Given a D-permutation σ ∈ D2n, we define a path ω = (ω0, . . . ,ω2n) starting at

ω0 = (0,0), with steps s1, . . . ,s2n as follows:

• If σ−1(i) is even, then si is a rise. (Note that in this case we must have

σ−1(i)≥ i, by definition of D-permutation.)

• If σ−1(i) is odd, then si is a fall. (Note that in this case we must have

σ−1(i)≤ i, by definition of D-permutation.)

(See Figure 4.1 for an example.) An alternative way of saying this is:

• If σ−1(i)> i, then si is a rise. (In this case σ−1(i) must be even.)

• If σ−1(i)< i, then si is a fall. (In this case σ−1(i) must be odd.)

• If i is a fixed point, then si is a rise if i is even, and a fall if i is odd.

Yet another alternative way of saying this is:

• If i is a cycle valley, cycle double fall or even fixed point, then si is a rise.
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Figure 4.1: Almost-Dyck path ω corresponding to the D-permutation σ =
7192548610311121413 = (1,7,8,6,4,2)(3,9,10)(5)(11)(12)(13,14).
This is the same D-permutation that was illustrated in Figure 2.3.
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Figure 4.2: Bipartite digraph representing the permutation σ =
7192548610311121413 = (1,7,8,6,4,2)(3,9,10)(5)(11)(12)(13,14).
Arrows run from the top row to the bottom row and are suppressed for clarity.

• If i is a cycle peak, cycle double rise or odd fixed point, then si is a fall.

Of course we need to prove that this ω is indeed an almost-Dyck path, i.e. that all

the heights hi are ≥ −1 and that h2n = 0. We will do this by obtaining a precise

interpretation of the heights hi.

In what follows, it will be convenient to represent a permutation σ ∈SN by

a bipartite digraph Γ = Γ(σ) in which the top row of vertices is labelled 1, . . . ,N

and the bottom row 1′, . . . ,N′, and we draw an arrow from i to j′ in case σ(i) = j

(see Figure 4.2). For k ∈ [N], we denote by Γk the induced subgraph of Γ on the

vertex set {1, . . . ,k}∪{1′, . . . ,k′}. Thus, the edges of Γk are arrows i→ j′ drawn

whenever σ(i) = j and i≤ k and j ≤ k. We say that a vertex of Γk is free if no arrow



4.5. First T-fraction: Proof of Theorems 4.2.3, 4.2.7, 4.2.9, 4.2.10 and 4.2.11 141

is incident on it. We write

fk
def
= # of free vertices in the top row of Γk (4.73a)

= #{i≤ k : σ(i)> k} . (4.73b)

Of course, we also have

fk = # of free vertices in the bottom row of Γk (4.74a)

= #{ j ≤ k : σ
−1( j)> k} . (4.74b)

The total number of free vertices in Γk is therefore 2 fk. Note that fk = 0 if and only

if σ maps {1, . . . ,k} onto itself. Note also that

fk− fk−1 =


+1 if k is a cycle valley

−1 if k is a cycle peak

0 if k is a cycle double rise, cycle double fall, or fixed point
(4.75)

Remark. The sequence ( f0, . . . , f2n) is a Motzkin path; in fact, it is precisely

the Motzkin path associated to the permutation σ by the Foata–Zeilberger (or Biane)

bijection. To see this, compare (4.73)/(4.74) with [SZ22, eq. (6.4)]; or equivalently,

compare (4.75) with [SZ22, definition of steps si preceding (6.2)]. �

We can now give the promised interpretation of the heights:

Lemma 4.5.1 (Interpretation of the heights). For k ∈ [2n] we have

hk =

2 fk−1 if k is odd

2 fk if k is even
(4.76)

In particular, hk ≥−1 and h2n = 0, so that ω is an almost-Dyck path.

Furthermore, we have (h2i−2,h2i−1,h2i) = (0,−1,0) if and only if 2i−1 and 2i

are record-antirecords.
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Please note that, by (4.76), the parity of hk equals the parity of k; this reflects the fact

that ω is an almost-Dyck path. Note also that (4.76) can be rewritten as

fk =

⌈
hk

2

⌉
=


(hk +1)/2 if k is odd

hk/2 if k is even
(4.77)

And recall, finally, from Lemma 4.2.2 that record-antirecords come in pairs: 2i−1

is a record-antirecord if and only if 2i is a record-antirecord.

PROOF OF LEMMA 4.5.1. We have

hk = #{ j ≤ k : σ
−1( j) is even} − #{ j ≤ k : σ

−1( j) is odd} (4.78a)

= 2#{ j ≤ k : σ
−1( j) is even} − k (4.78b)

= 2
[
#{ j ≤ k : σ

−1( j)> k} + #{ j ≤ k : k ≥ σ
−1( j)> j}

+#{ j ≤ k : σ
−1( j) = j is even}

]
− k (4.78c)

= 2
[
#{ j ≤ k : σ

−1( j)> k} + #{i≤ k : i > σ(i)}

+#{i≤ k : σ(i) = i is even}
]
− k (4.78d)

= 2
[
#{ j ≤ k : σ

−1( j)> k} + #{i≤ k : i is even}
]
− k (4.78e)

= 2 fk + 2
⌈

k−1
2

⌉
− k , (4.78f)

which is (4.76).

Furthermore, hk = −1 occurs when and only when k is odd (say, k = 2i− 1)

and fk = 0. The latter statement means that σ maps {1, . . . ,2i− 1} onto itself.

By Lemma 4.2.2(c) =⇒ (a,b) this means that 2i−1 and 2i are record-antirecords.

Conversely, if 2i−1 is a record-antirecord, then by Lemma 4.2.2(a) =⇒ (d) we have

f2i−2 = f2i−1 = f2i = 0, so that (h2i−2,h2i−1,h2i) = (0,−1,0). �

Remarks. 1. Randrianarivony [Ran97, Section 6] considered the special case

of this construction in which σ is a D-o-semiderangement (in his terminology, a
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“Genocchi permutation”); in this case ω is a Dyck path. Our proof of Lemma 4.5.1

is a very slight modification of his, designed to allow for fixed points of both parities.

See also Han and Zeng [HZ99b, pp. 126–127] for the interpretation in terms of

bipartite graphs and free vertices.

2. The number of almost-Dyck paths of length 2n is Cn+1, where Cn =
1

n+1

(2n
n

)
is the nth Catalan number: it suffices to observe that an almost-Dyck path of

semilength n can be converted to a Dyck path of semilength n+ 1 by adding a

rise at the beginning and a fall at the end, and conversely. Equivalently, the number

of 0-Schröder paths of length 2n is Cn+1: this follows from (2.36) with δ1 = 1, δn = 0

for n≥ 2, and αn = 1 for n≥ 1 together with the identity

1
1− t− tC(t)

=
C(t)−1

t
(4.79)

for the Catalan generating function C(t) =
∞

∑
n=0

Cn tn = (1−
√

1−4t)/(2t). �

4.5.2 Step 2: Definition of the labels ξξξ iii

We now define

ξi =


#{ j : σ( j)< σ(i)≤ i < j} if i is even

#{ j : j < i≤ σ(i)< σ( j)} if i is odd

(4.80)

Note that the middle inequalities in this definition hold automatically: a D-

permutation always has σ(i)≤ i if i is even, and i≤ σ(i) if i is odd. The definition

(4.80) can be written equivalently as

ξi =


#{2l > 2k : σ(2l)< σ(2k)} if i = 2k

#{2l−1 < 2k−1: σ(2l−1)> σ(2k−1)} if i = 2k−1

(4.81)

since σ( j)< j implies that j is even, and j < σ( j) implies that j is odd.

It is worth remarking that the labels ξi defined in (4.80) are the same as those

in the variant Foata–Zeilberger bijection [SZ22, eq. (6.5)] whenever i is not a fixed
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Figure 4.3: Nestings involved in the definition of the label ξi.

point.6

The label ξi has a simple interpretation in terms of the index-refined nesting

statistics defined in (2.67)/(2.68):

Lemma 4.5.2 (Nesting statistics). We have

ξi =


lnest(i,σ) if i is even and 6= σ(i) [equivalently, i > σ(i)]

unest(i,σ) if i is odd and 6= σ(i) [equivalently, i < σ(i)]

psnest(i,σ) if i = σ(i) (that is, i is a fixed point)

(4.82)

6With the only difference that in [SZ22] the labels were defined to start at 1, whereas here they
start at 0.
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See Figure 4.3. Note also that if i is a fixed point, we have

ξi = fi =

⌈
hi

2

⌉
=


hi/2 if i is even

(hi +1)/2 if i is odd
(4.83)

Now we shall show, as required by (4.72), that the following inequalities hold

true:

Lemma 4.5.3 (Inequalities satisfied by the labels). We have

0 ≤ ξi ≤
⌈

hi−1
2

⌉
=

⌈
hi−1

2

⌉
if σ

−1(i) is even (i.e., si is a rise) (4.84a)

0 ≤ ξi ≤
⌈

hi

2

⌉
=

⌈
hi−1−1

2

⌉
if σ

−1(i) is odd (i.e., si is a fall) (4.84b)

We remark that a fall starting at height hi−1 = 0, or a rise starting at height hi−1 =−1,

always gets the label ξi = 0. When we pass from the almost-Dyck path ω to the

0-Schröder path ω̂ = ψ(ω), these labels become the label ξ = 0 for the long level

step at height 0.

To prove the inequalities (4.84), we will interpret
⌈

hi−1
2

⌉
− ξi when si is a

rise, and
⌈

hi

2

⌉
−ξi when si is a fall, in terms of crossing statistics, as follows:

Lemma 4.5.4 (Crossing statistics).

(a) If si a rise and i (hence also hi) is odd, then

⌈
hi−1

2

⌉
−ξi = ucross(i,σ) . (4.85)

(b) If si a rise and i (hence also hi) is even, then

⌈
hi−1

2

⌉
−ξi = lcross(i,σ) + I[σ(i) 6= i] (4.86a)

= lcross(i,σ) + I[i is a cycle double fall] . (4.86b)
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~σ(i) ~σ( j) ~i ~j

(b,d) When i is even and 6= σ(i)

~
j

~
i

~
σ( j)

~
σ(i)

(a,c) When i is odd and 6= σ(i)

Figure 4.4: Crossings involved in the identities for the label ξi.

(c) If si a fall and i (hence also hi) is odd, then

⌈
hi

2

⌉
−ξi = ucross(i,σ) + I[σ(i) 6= i] (4.87a)

= ucross(i,σ) + I[i is a cycle double rise] . (4.87b)

(d) If si a fall and i (hence also hi) is even, then

⌈
hi

2

⌉
−ξi = lcross(i,σ) . (4.88)

(Here I[proposition] = 1 if proposition is true, and 0 if it is false.)

Since the right-hand sides of (4.85)–(4.88) are manifestly nonnegative,

Lemma 4.5.3 is an immediate consequence of Lemma 4.5.4.

PROOF OF LEMMA 4.5.4. (a,b) If si is a rise, then σ−1(i) is even and i≤ σ−1(i).

We now consider separately the cases of i odd and i even.

(a) If i is odd, then hi is odd; moreover, since σ−1(i) is even, i cannot be a fixed
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point, and we have the strict inequalities i < σ−1(i) and i < σ(i). Then

⌈
hi−1

2

⌉
−ξi =

hi−1
2
− ξi (4.89a)

= fi − 1 − ξi (4.89b)

= #{ j ≤ i : σ( j)> i} − 1 − #{ j : j < i≤ σ(i)< σ( j)} (4.89c)

= #{ j < i : σ( j)> i} − #{ j : j < i < σ(i)< σ( j)} (4.89d)

= #{ j : j < i < σ( j)< σ(i)} (4.89e)

= ucross(i,σ) . (4.89f)

See Figure 4.4(a,c).

(b) If i is even, then hi is even, and σ(i)≤ i. So either i is a fixed point (hence

σ(i) = i = σ−1(i)) or else σ(i)< i < σ−1(i). Then

⌈
hi−1

2

⌉
−ξi =

hi

2
− ξi (4.90a)

= fi − ξi (4.90b)

= #{ j ≤ i : σ
−1( j)> i} − #{ j : σ( j)< σ(i)≤ i < j} (4.90c)

= #{ j < i : σ
−1( j)> i} + I[σ−1(i)> i]

−#{ j : σ( j)< σ(i)≤ i < j} (4.90d)

= #{ j : σ( j)< i < j} + I[σ(i) 6= i]

−#{ j : σ( j)< σ(i)≤ i < j} (4.90e)

= #{ j : σ(i)< σ( j)< i < j} + I[σ(i) 6= i] (4.90f)

= lcross(i,σ) + I[σ(i) 6= i] . (4.90g)

See Figure 4.4(b,d). Note that the identity (4.90) holds also when hi = 0, i.e. when

the step si is a rise from height hi−1 =−1: in this case i is a record-antirecord fixed

point and we have fi = ξi = 0, so that both sides of (4.90) are zero.
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(c,d) If si is a fall, then σ−1(i) is odd and σ−1(i) ≤ i. We again consider

separately the cases of i odd and i even.

(c) If i is odd, then hi is odd, and i ≤ σ(i). So either i is a fixed point (hence

σ−1(i) = i = σ(i)) or else σ−1(i)< i < σ(i). Then

⌈
hi

2

⌉
−ξi =

hi +1
2
− ξi (4.91a)

= fi − ξi (4.91b)

= #{ j ≤ i : σ( j)> i} − #{ j : j < i≤ σ(i)< σ( j)} (4.91c)

= #{ j < i : σ( j)> i} + I[σ(i) 6= i]

−#{ j : j < i < σ(i)< σ( j)} (4.91d)

= #{ j : j < i < σ( j)< σ(i)} + I[σ(i) 6= i] (4.91e)

= ucross(i,σ) + I[σ(i) 6= i] . (4.91f)

See again Figure 4.4(a,c). Note that the identity (4.91) holds also when hi =−1, i.e.

when the step si is a fall from height hi−1 = 0; in this case i is a record-antirecord

fixed point and we have fi = ξi = 0, so that both sides of (4.91) are zero.

(d) If i is even, then hi is even; moreover, since σ−1(i) is odd, i cannot be a

fixed point, and we have the strict inequalities σ−1(i)< i and σ(i)< i. Then

⌈
hi

2

⌉
−ξi =

hi

2
− ξi (4.92a)

= fi − ξi (4.92b)

= #{ j ≤ i : σ
−1( j)> i} − #{ j : σ( j)< σ(i)≤ i < j} (4.92c)

= #{ j < i : σ
−1( j)> i} − #{ j : σ( j)< σ(i)< i < j} (4.92d)

= #{ j : σ( j)< i < j} − #{ j : σ( j)< σ(i)< i < j} (4.92e)

= #{ j : σ(i)< σ( j)< i < j} (4.92f)

= lcross(i,σ) . (4.92g)
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See again Figure 4.4(b,d). �

We now consider the four possible combinations of si (rise or fall) and parity of

hi (odd or even), and determine in each case the cycle classification of the index i.

By definition si tells us the parity of σ−1(i), while the parity of hi equals the parity

of i. So these two pieces of information tell us what was recorded in (2.64)/(2.65):

• σ−1(i) even and i odd ⇐⇒ i is a cycle valley

• σ−1(i) even and i even ⇐⇒ i is either a cycle double fall or an even fixed

point

• σ−1(i) odd and i odd ⇐⇒ i is either a cycle double rise or an odd fixed point

• σ−1(i) odd and i even ⇐⇒ i is a cycle peak

So we need only disambiguate the fixed points from the cycle double falls/rises in

the middle two cases; we will see that in these cases i is a fixed point if and only if ξi

takes its maximum allowed value. More precisely:

Lemma 4.5.5 (Cycle classification).

(a) If si a rise and hi is odd (hence hi−1 is even), then i is a cycle valley.

(b) If si a rise and hi is even (hence hi−1 is odd), then i is an even fixed point in

case ξi =

⌈
hi−1

2

⌉
(= hi/2 = fi); otherwise it is a cycle double fall.

(c) If si is a fall and hi is odd (hence hi−1 is even), then i is an odd fixed point in

case ξi =

⌈
hi

2

⌉
(= (hi +1)/2 = fi); otherwise it is a cycle double rise.

(d) If si is a fall and hi is even (hence hi−1 is odd), then i is a cycle peak.

PROOF. (a,d) follow immediately from (2.64)/(2.65).

(b) If si a rise and hi is even (hence i is even), then by (4.86) we have

⌈
hi−1

2

⌉
−ξi = lcross(i,σ) + I[σ(i) 6= i] , (4.93)
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so i is a fixed point if and only if ξi =

⌈
hi−1

2

⌉
. Otherwise i is a cycle double fall.

(c) If si is a fall and hi is odd (hence i is odd), by (4.87) we have

⌈
hi

2

⌉
−ξi = ucross(i,σ) + I[σ(i) 6= i] , (4.94)

so i is a fixed point if and only if ξi =

⌈
hi

2

⌉
. Otherwise i is a cycle double rise. �

Remark. We already saw in (4.83) that if i is a fixed point, then ξi takes the

value specified in (b) or (c), which is also the maximum allowed value according to

(4.84). Now we see the converse. �

At the other extreme, it is easy to see that the index i is a record or antirecord if

and only if ξi takes its minimum allowed value (namely, zero):

Lemma 4.5.6 (Record statistics).

(a) If i is odd, then the index i is a record if and only if ξi = 0.

(b) If i is odd, then the index i is an antirecord if and only if hi =−1 and ξi = 0,

in which case i is a record-antirecord fixed point.

(c) If i is even, then the index i is an antirecord if and only if ξi = 0.

(d) If i is even, then the index i is a record if and only if hi = 0 and ξi = 0, in

which case i is a record-antirecord fixed point.

PROOF. (a,c) This is an immediate consequence of the definition (4.80).

(b) Every antirecord is a weak anti-excedance, so an odd index in a D-

permutation can be an antirecord only if it is a fixed point, in which case it is

a record-antirecord fixed point. This happens if and only if hi =−1 and ξi = 0.

(d) Similar to (b), using the fact that every record is a weak excedance. �
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4.5.3 Step 3: Proof of bijection

We prove that the map σ 7→ (ω,ξ ) is a bijection by explicitly describing the inverse

map. That is, we let ω be any almost-Dyck path of length 2n and let ξ be any set of

labels satisfying the inequalities (4.84), and we show how to reconstruct the unique

D-permutation σ that gives rise to (ω,ξ ) by the foregoing construction.

First, some preliminaries: Given a D-permutation σ ∈D2n we can define four

subsets of [2n]:

F = {2,4, . . . ,2n} = even positions (4.95a)

F ′ = {i : σ
−1(i) is even} = {σ(2),σ(4), . . . ,σ(2n)} (4.95b)

G = {1,3, . . . ,2n−1} = odd positions (4.95c)

G′ = {i : σ
−1(i) is odd} = {σ(1),σ(3), . . . ,σ(2n−1)} (4.95d)

Note that F ′ (resp. G′) are the positions of the rises (resp. falls) in the almost-Dyck

path ω .

Let us observe that

F ∩F ′ = cycle double falls and even fixed points (4.96a)

G∩G′ = cycle double rises and odd fixed points (4.96b)

F ∩G′ = cycle peaks (4.96c)

F ′∩G = cycle valleys (4.96d)

F ∩G = ∅ (4.96e)

F ′∩G′ = ∅ (4.96f)

Let us also recall the notion of an inversion table: Let S be a totally ordered

set of cardinality k, and let xxx = (x1, . . . ,xk) be a permutation of S (i.e., a word in

which each element of S occurs exactly once); then the (left-to-right) inversion table

corresponding to xxx is the sequence ppp = (p1, . . . , pk) of nonnegative integers defined

by pα = #{β < α : xβ > xα}. Note that 0≤ pα ≤ α−1 for all α ∈ [k], so there are

exactly k! possible inversion tables. Given the inversion table ppp, we can reconstruct



4.5. First T-fraction: Proof of Theorems 4.2.3, 4.2.7, 4.2.9, 4.2.10 and 4.2.11 152

the sequence xxx by working from right to left, as follows: There are pk elements of

S larger than xk, so xk must be the (pk +1)th largest element of S. Then there are

pk−1 elements of S\{xk} larger than xk−1, so xk−1 must be the (pk−1 +1)th largest

element of S \ {xk}. And so forth. [Analogously, the right-to-left inversion table

corresponding to xxx is the sequence qqq = (q1, . . . ,qk) of nonnegative integers defined

by qα = #{β > α : xβ < xα}.]

With these preliminaries out of the way, we can now describe the map

(ω,ξ ) 7→ σ . Given the almost-Dyck path ω , we can immediately reconstruct the sets

F,F ′,G,G′. We now use the labels ξ to reconstruct the maps σ � F : F → F ′ and

σ � G : G→ G′ as follows: The even subword σ(2)σ(4) · · ·σ(2n) is a listing of F ′

whose right-to-left inversion table is given by qα = ξ2α ; this is the content of (4.81a).

Similarly, the odd subword σ(1)σ(3) · · ·σ(2n−1) is a listing of G′ whose left-to-

right inversion table is given by pα = ξ2α−1; this is the content of (4.81b). See

Figure 4.5 for an example.

The only thing that remains to be shown is that the σ thus constructed is indeed

a D-permutation. For this, we need to show that the following inequalities hold:

σ(2k) ≤ 2k (4.97a)

σ(2k−1) ≥ 2k−1 (4.97b)

Let us do a double counting of the number of rises occuring after the step s2k.

As 2n− 2k is the total number of steps after 2k, the number of rises after s2k is

(n− k)−h2k/2. Thus, we have that

(n− k) − h2k

2
= #{i > 2k : σ

−1(i) is even} (4.98a)

≥ #{i > 2k : σ
−1(i)> 2k and σ

−1(i) is even} (4.98b)

= #{2l > 2k : σ(2l)> 2k} (4.98c)

= (n− k) − #{2l > 2k : σ(2l)≤ 2k} (4.98d)
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F = {2i | 1≤ i≤ 7}

F ′ = {σ(2i) | 1≤ i≤ 7}

Right-to-left inversion table: ξ2i


2 4 6 8 10 12 14

1 2 4 6 3 12 13

0 0 1 1 0 0 0



G = {2i−1 | 1≤ i≤ 7}

G′ = {σ(2i−1) | 1≤ i≤ 7}

Left-to-right inversion table: ξ2i−1


1 3 5 7 9 11 13

7 9 5 8 10 11 14

0 0 2 1 0 0 0



2i ξ2i F ′\{σ(2), . . . ,σ(2i−2)} σ(2i)
2 0 {1,2,3,4,6,12,13} 1

4 0 {2,3,4,6,12,13} 2

6 1 {3,4,6,12,13} 4

8 1 {3,6,12,13} 6

10 0 {3,12,13} 3

12 0 {12,13} 12

14 0 {13} 13

2i−1 ξ2i−1 G′\{σ(13), . . . ,σ(2i+1)} σ(2i−1)
13 0 {5,7,8,9,10,11,14} 14

11 0 {5,7,8,9,10,11} 11

9 0 {5,7,8,9,10} 10

7 1 {5,7,8,9} 8

5 2 {5,7,9} 5

3 0 {7,9} 9

1 0 {7} 7

Figure 4.5: Reconstruction of the permutation σ = 7192548610311121413 =
(1,7,8,6,4,2)(3,9,10)(5)(11)(12)(13,14) from its almost-Dyck path ω and
labels ξ . The value σ(2i) is chosen so that it has ξ2i entries to its left in the
remaining subset of F ′ in increasing order; the value σ(2i−1) is chosen so that
it has ξ2i−1 entries to its right in the remaining subset of G′ in increasing order.
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and hence,
h2k

2
≤ #{2l > 2k : σ(2l)≤ 2k} . (4.99)

If k is such that σ(2k)> 2k, then (4.99) becomes strict [because i=σ(2k) contributes

to (4.98a) but not to (4.98b)]. Furthermore, if σ(2k)> 2k, we also have

#{2l > 2k : σ(2l)≤ 2k} ≤ #{2l > 2k : σ(2l)< σ(2k)} = ξ2k (4.100)

by (4.81). In this situation, equations (4.99) and (4.100) together give

ξ2k >
h2k

2
=

⌈
h2k

2

⌉
=

⌈
h2k−1

2

⌉
, (4.101)

where the equalities occur because h2k is even. This contradicts (4.84a,b), and proves

that σ(2k)≤ 2k.

The proof that σ(2k−1)≥ 2k−1 uses a similar double-counting argument for

the number of falls before s2k−1. �

4.5.4 Step 4: Computation of the weights

We can now compute the weights associated to the 0-Schröder path ω̂ in Theo-

rem 2.2.9, which we recall are ah,ξ for a rise starting at height h with label ξ , bh,ξ for

a fall starting at height h with label ξ , and ch,ξ for a long level step at height h with

label ξ . (Of course, in the present case we have long level steps only at height 0.)

We do this by putting together the information collected in Lemmas 4.5.2–4.5.6:

(a) Rise from height hi−1 = 2k to height hi = 2k+1 (hence i odd):

– By Lemma 4.5.3, the label satisfies 0≤ ξi ≤ k.

– By Lemma 4.5.5(a), this is a cycle valley.

– By Lemma 4.5.2, unest(i,σ) = ξi.

– By Lemma 4.5.4(a), ucross(i,σ) = k−ξi.

Therefore, from (4.31), the weight for this step is

a2k,ξ = ak−ξ ,ξ . (4.102)
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(b) Rise from height hi−1 = 2k−1 to height hi = 2k (hence i even):

– By Lemma 4.5.3, the label satisfies 0≤ ξi ≤ k.

– By Lemma 4.5.5(b), this is a cycle double fall if 0≤ ξi < k, and a fixed

point if ξi = k.

– By Lemma 4.5.2, ξi =

lnest(i,σ) if i is not a fixed point

psnest(i,σ) if i is a fixed point

– By Lemma 4.5.4(b), lcross(i,σ) = k−1−ξi when i is not a fixed point.

Therefore, from (4.31), the weight for this step is

a2k−1,ξ =


ck−1−ξ ,ξ if 0≤ ξ < k

ek if ξ = k
(4.103)

(c) Fall from height hi−1 = 2k to height hi = 2k−1 (hence i odd):

– By Lemma 4.5.3, the label satisfies 0≤ ξi ≤ k.

– By Lemma 4.5.5(c), this is a cycle double rise if 0≤ ξi < k, and a fixed

point if ξi = k.

– By Lemma 4.5.2, ξi =

unest(i,σ) if i is not a fixed point

psnest(i,σ) if i is a fixed point

– By Lemma 4.5.4(c), ucross(i,σ) = k−1−ξi when i is not a fixed point.

Therefore, from (4.31), the weight for this step is

b2k,ξ =


dk−1−ξ ,ξ if 0≤ ξ < k

fk if ξ = k
(4.104)

(d) Fall from height hi−1 = 2k+1 to height hi = 2k (hence i even):

– By Lemma 4.5.3, the label satisfies 0≤ ξi ≤ k.

– By Lemma 4.5.5(d), this is a cycle peak.
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– By Lemma 4.5.2, lnest(i,σ) = ξi.

– By Lemma 4.5.4(d), lcross(i,σ) = k−ξi.

Therefore, from (4.31), the weight for this step is

b2k+1,ξ = bk−ξ ,ξ . (4.105)

(e) Long level step at height 0:

This corresponds in the almost-Dyck path ω to a fall from height 0 to height−1,

followed by a rise from height −1 to height 0. Applying case (d) with k = 0

and ξ = 0, followed by case (b) with k = 0 and ξ = 0, we obtain a weight

c0,0 = e0f0 . (4.106)

Putting this all together in Theorem 2.2.9, we obtain a T-fraction with

α2k−1 = (rise from 2k−2 to 2k−1) × (fall from 2k−1 to 2k−2)

=

(k−1

∑
ξ=0

ak−1−ξ ,ξ

)(k−1

∑
ξ=0

bk−1−ξ ,ξ

)
(4.107)

α2k = (rise from 2k−1 to 2k) × (fall from 2k to 2k−1)

=

(
ek +

k−1

∑
ξ=0

ck−1−ξ ,ξ

)(
fk +

k−1

∑
ξ=0

dk−1−ξ ,ξ

)
(4.108)

δ1 = e0f0 (4.109)

δn = 0 for n≥ 2 (4.110)

This completes the proof of Theorem 4.2.9. �

We can now deduce Theorem 4.2.7 as a corollary:

PROOF OF THEOREM 4.2.7. Comparing (4.22) with (4.31) and using Lemma 4.5.6,
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we see that the needed weights in (4.31) are

ak−1−ξ ,ξ = pk−1−ξ

+1 qξ

+1 ×

y1 if ξ = 0

v1 if 1≤ ξ ≤ k−1
(4.111)

bk−1−ξ ,ξ = pk−1−ξ

−1 qξ

−1 ×

x1 if ξ = 0

u1 if 1≤ ξ ≤ k−1
(4.112)

ck−1−ξ ,ξ = pk−1−ξ

−2 qξ

−2 ×

x2 if ξ = 0

u2 if 1≤ ξ ≤ k−1
(4.113)

dk−1−ξ ,ξ = pk−1−ξ

+2 qξ

+2 ×

y2 if ξ = 0

v2 if 1≤ ξ ≤ k−1
(4.114)

ek =


ze if k = 0

sk
ewe if k ≥ 1

(4.115)

fk =


zo if k = 0

sk
owo if k ≥ 1

(4.116)

Inserting these into (4.107)–(4.110) yields the continued-fraction coefficients (4.25).

�

PROOF OF THEOREM 4.2.3. Specialize Theorem 4.2.7 to p−1 = p−2 = p+1 =

p+2 = q−1 = q−2 = q+1 = q+2 = se = so = 1. �

4.5.5 An alternative label ξ̂ξξ iii: Proof of Theorems 4.2.10 and

4.2.11

As mentioned earlier, Randrianarivony [Ran97, Section 6] employed a very similar

construction in the special case where σ is a D-o-semiderangement. Our definition

of the almost-Dyck path ω is essentially the same as his Dyck path, modified slightly
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to allow for fixed points of both parities. However, he used a very different definition

of the labels, namely [Ran97, eq. (6.2)]

ξ̂i =


#{2l > 2k : σ(2l)< σ(2k)} if i = σ(2k)

#{2l−1 < 2k−1: σ(2l−1)> σ(2k−1)} if i = σ(2k−1)

(4.117a)

=


#{ j : j < i≤ σ−1(i)< σ−1( j)} if σ−1(i) is even

#{ j : σ−1( j)< σ−1(i)≤ i < j} if σ−1(i) is odd

(4.117b)

We would now like to show how the alternative label ξ̂i can be use to prove the

variant forms of our T-fractions (Theorems 4.2.10 and 4.2.11).

Just as the labels ξi are related to the index-refined crossing and nesting statistics

(2.67), so the alternative labels ξ̂i are related to the variant index-refined crossing

and nesting statistics (2.69). For the nesting statistics this is immediate from the

definition (4.117b):

Lemma 4.5.7 (Nesting statistics for the alternative labels). We have

ξ̂i =


lnest′(i,σ) if σ−1(i) is even (i.e., si is a rise) and 6= i

unest′(i,σ) if σ−1(i) is odd (i.e., si is a fall) and 6= i

psnest(i,σ) if σ−1(i) = i (i.e., i is a fixed point)

(4.118)

Remarks. 1. By comparing (4.117b) with (4.80), we see that

ξ̂i = ξσ−1(i) . (4.119)

This explains (4.118): combine (4.82) with (2.70).

2. The distinction between ξi and ξ̂i is also related to the distinction between

two different notions of “inversion table”. In the approach used here and in [SZ22,

Section 6.1, Step 3], the label ξi is the number of inversions associated to the position

i. By contrast, in [Ran97, p. 88] and [FZ90, p. 51], the label ξ̂i is the number of
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inversions associated to the value i, i.e. to the position σ−1(i). Thus, whenever i

is not a fixed point, ξ̂i corresponds to the original Foata–Zeilberger [FZ90] labels,

while ξi corresponds to the modified labels used in [SZ22, Section 6.1]. �

The alternative labels ξ̂i satisfy the same inequalities as the original labels ξi:

Lemma 4.5.8 (Inequalities satisfied by the alternative labels). We have

0 ≤ ξ̂i ≤
⌈

hi−1
2

⌉
=

⌈
hi−1

2

⌉
if σ

−1(i) is even (i.e., si is a rise) (4.120a)

0 ≤ ξ̂i ≤
⌈

hi

2

⌉
=

⌈
hi−1−1

2

⌉
if σ

−1(i) is odd (i.e., si is a fall) (4.120b)

Lemma 4.5.8 will be an immediate consequence of the following identities:

Lemma 4.5.9 (Crossing statistics for the alternative labels).
(a) If si a rise (i.e. σ−1(i) is even), then

⌈
hi−1

2

⌉
− ξ̂i = lcross′(i,σ) + I[i is even and σ(i) 6= i] (4.121a)

= lcross′(i,σ) + I[i is a cycle double fall] .(4.121b)

(b) If si a fall (i.e. σ−1(i) is odd), then

⌈
hi

2

⌉
− ξ̂i = ucross′(i,σ) + I[i is odd and σ(i) 6= i] (4.122a)

= ucross′(i,σ) + I[i is a cycle double rise] . (4.122b)
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~j ~i = σ(2k) ~σ−1( j) ~σ−1(i) = 2k

When σ−1(i) is even

~
σ−1(i) = 2k−1

~
j

~
i = σ(2k−1)

~
σ( j)

When σ−1(i) is odd

Figure 4.6: Crossings involved in the inequalities for the label ξ̂i.

PROOF. (a) If si is a rise, then σ−1(i) is even, and i ≤ σ−1(i). We now consider

separately the cases of i odd and i even.

(i) If i is odd, then hi is odd; moreover, we have the strict inequality i < σ−1(i)

(hence i is not a fixed point). Then

⌈
hi−1

2

⌉
− ξ̂i =

hi−1
2
− ξ̂i (4.123a)

= fi − 1 − ξ̂i (4.123b)

= #{ j ≤ i : σ
−1( j)> i} − 1

−#{ j < i : σ
−1( j)> σ

−1(i)} (4.123c)

= #{ j < i : σ
−1( j)> i} − #{ j < i : σ

−1( j)> σ
−1(i)} (4.123d)

= #{ j : j < i < σ
−1( j)≤ σ

−1(i)} (4.123e)

= #{ j : j < i < σ
−1( j)< σ

−1(i)}

since j 6= i implies σ−1( j) 6= σ−1(i) (4.123f)

= lcross′(i,σ) . (4.123g)

See Figure 4.6(a).
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(ii) If i is even, then hi is even, and

⌈
hi−1

2

⌉
− ξ̂i =

hi

2
− ξ̂i (4.124a)

= fi − ξ̂i (4.124b)

= #{ j ≤ i : σ
−1( j)> i} − #{ j < i : σ

−1( j)> σ
−1(i)} (4.124c)

= #{ j < i : σ
−1( j)> i} + I[σ(i) 6= i]

−#{ j < i : σ
−1( j)> σ

−1(i)} (4.124d)

= #{ j : j < i < σ
−1( j)≤ σ

−1(i)} + I[σ(i) 6= i] (4.124e)

= #{ j : j < i < σ
−1( j)< σ

−1(i)} + I[σ(i) 6= i]

since j 6= i implies σ−1( j) 6= σ−1(i) (4.124f)

= lcross′(i,σ) + I[σ(i) 6= i] . (4.124g)

See again Figure 4.6(a). Note that the identity (4.124) holds also when hi = 0,

i.e. when the step si is a rise from height hi−1 =−1; in this case i is a record-

antirecord fixed point and we have ξ̂i = 0, so that both sides of (4.124) are

zero.

Combining (4.123) and (4.124) yields (4.121).

(b) If si is a fall, then σ−1(i) is odd, and σ−1(i) ≤ i. We again consider

separately the cases of i odd and i even.

(i) If i is odd, then hi is odd, and

⌈
hi

2

⌉
− ξ̂i =

hi +1
2
− ξ̂i (4.125a)

= fi − ξ̂i (4.125b)

= #{ j ≤ i : σ( j)> i} − #{ j : σ
−1( j)< σ

−1(i)≤ i < j}(4.125c)

= #{ j ≤ i : σ( j)> i} − #{ j < σ
−1(i) : σ( j)> i} (4.125d)

= #{ j : σ
−1(i)≤ j ≤ i < σ( j)} (4.125e)

= #{ j : σ
−1(i)< j ≤ i < σ( j)}

since i 6= σ( j) implies j 6= σ−1(i) (4.125f)

= #{ j : σ
−1(i)< j < i < σ( j)} + I[σ−1(i)< i < σ(i)] (4.125g)

= ucross′(i,σ) + I[σ(i) 6= i] . (4.125h)
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See Figure 4.6(b). Note that the identity (4.125) holds also when hi = −1,

i.e. when the step si is a fall from height hi−1 = 0; in this case i is a record-

antirecord fixed point and we have ξ̂i = 0, so that both sides of (4.125) are

zero.

(ii) If i is even, then hi is even; moreover, we have the strict inequality σ−1(i)< i

(hence i is not a fixed point). Then

⌈
hi

2

⌉
− ξ̂i =

hi

2
− ξ̂i (4.126a)

= fi − ξ̂i (4.126b)

= #{ j ≤ i : σ( j)> i} − #{ j < σ
−1(i) : σ( j)> i} (4.126c)

= #{ j : σ
−1(i)≤ j ≤ i < σ( j)} (4.126d)

= #{ j : σ
−1(i)< j ≤ i < σ( j)}

since i 6= σ( j) implies j 6= σ−1(i) = σ−1(i) (4.126e)

= #{ j : σ
−1(i)< j < i < σ( j)} since i≥ σ(i) (4.126f)

= ucross′(i,σ) . (4.126g)

See again Figure 4.6(b).

Combining (4.125) and (4.126) yields (4.122). �

Lemma 4.5.10 (Cycle classification for the alternative labels).

(a) If si a rise and hi is odd (hence hi−1 is even), then i is a cycle valley.

(b) If si a rise and hi is even (hence hi−1 is odd), then i is an even fixed point in

case ξ̂i =

⌈
hi−1

2

⌉
(= hi/2 = fi); otherwise it is a cycle double fall.

(c) If si is a fall and hi is odd (hence hi−1 is even), then i is an odd fixed point in

case ξ̂i =

⌈
hi

2

⌉
(= (hi +1)/2 = fi); otherwise it is a cycle double rise.

(d) If si is a fall and hi is even (hence hi−1 is odd), then i is a cycle peak.

PROOF. Completely analogous to the proof of Lemma 4.5.5: just use Lemma 4.5.9

in place of Lemma 4.5.4. �
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Lemma 4.5.11 (Record statistics for the alternative labels).

(a) If σ−1(i) is odd, then the index σ−1(i) is a record if and only if ξ̂i = 0.

(b) If σ−1(i) is even, then the index σ−1(i) is an antirecord if and only if ξ̂i = 0.

PROOF. This is an immediate consequence of the definition (4.117b). �

Proof of bijection. The proof is similar to that presented in Section 4.5.3, but

using a value-based rather than position-based notion of inversion table. Recall

that if S = {s1 < s2 < .. . < sk} is a totally ordered set of cardinality k, and xxx =

(x1, . . . ,xk) is a permutation of S, then the (left-to-right) (position-based) inversion

table corresponding to xxx is the sequence ppp = (p1, . . . , pk) of nonnegative integers

defined by pα = #{β < α : xβ > xα}. We now define the (left-to-right) value-based

inversion table ppp′ by p′xi
= pi; note that ppp′ is a map from S to {0, . . . ,k−1}, such

that p′xi
is the number of entries to the left of xi (in the word xxx) that are larger than

xi. In particular, 0≤ p′si
≤ k− i. Given the value-based inversion table ppp′, we can

reconstruct the sequence xxx by working from largest to smallest value, as follows

[Knu98, section 5.1.1]: We start from an empty sequence, and insert sk. Then we

insert sk−1 so that the resulting word has p′sk−1
entries to its left. Next we insert sk−2

so that the resulting word has p′sk−2
entries to its left, and so on. [The right-to-left

value-based inversion table qqq′ is defined analogously, and the reconstruction proceeds

from smallest to largest.]

We now recall the definitions

F = {2,4, . . . ,2n} = even positions (4.127a)

F ′ = {i : σ
−1(i) is even} = {σ(2),σ(4), . . . ,σ(2n)} (4.127b)

G = {1,3, . . . ,2n−1} = odd positions (4.127c)

G′ = {i : σ
−1(i) is odd} = {σ(1),σ(3), . . . ,σ(2n−1)} (4.127d)

Note that F ′ (resp. G′) are the positions of the rises (resp. falls) in the almost-Dyck

path ω .
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We can now describe the map (ω, ξ̂ ) 7→ σ . Given the almost-Dyck path ω , we

can immediately reconstruct the sets F,F ′,G,G′. We now use the labels ξ̂ to recon-

struct the maps σ � F : F → F ′ and σ � G : G→ G′ as follows: The even subword

σ(2)σ(4) · · ·σ(2n) is a listing of F ′ whose right-to-left value-based inversion table

is given by q′i = ξ̂i for all i ∈ F ′; this is the content of (4.117a). Similarly, the odd

subword σ(1)σ(3) · · ·σ(2n− 1) is a listing of G′ whose left-to-right value-based

inversion table is given by p′i = ξ̂i for all i ∈ G′; this again is the content of (4.117a).

See Figure 4.7 for an example.

The only thing that remains to be shown is that the σ thus constructed is indeed

a D-permutation. For this, we need to show that the following inequalities hold:

σ(2k−1) ≥ 2k−1 (4.128a)

σ(2k) ≤ 2k (4.128b)

We begin with a lemma:

Lemma 4.5.12.

(a) Let f1 < f2 < .. . < fn be the elements of F ′ in increasing order. Then f j ≤ 2 j

for every j ∈ [n].

(b) Let g1 < g2 < .. . < gn be the elements of G′ in increasing order. Then

g j ≥ 2 j−1 for every j ∈ [n].

PROOF. (a) Notice that the number of rises among the steps s1,s2, . . . ,si is (i+hi)/2

(and the number of falls is (i−hi)/2). As there are exactly j rises among the steps

s1,s2, . . . ,s f j , we have
f j +h f j

2
= j (4.129)

and hence

f j = 2 j−h f j ≤ 2 j (4.130)

since h f j ≥ 0.

The proof of (b) is similar, using the fact that hg j ≥−1. �



4.5. First T-fraction: Proof of Theorems 4.2.3, 4.2.7, 4.2.9, 4.2.10 and 4.2.11 165

F = {2i | 1≤ i≤ 7}

F ′ = {σ(2i) | 1≤ i≤ 7}

Right-to-left inversion table: ξ̂σ(2i)


2 4 6 8 10 12 14

1 2 4 6 3 12 13

0 0 1 1 0 0 0



G = {2i−1 | 1≤ i≤ 7}

G′ = {σ(2i−1) | 1≤ i≤ 7}

Left-to-right inversion table: ξ̂σ(2i−1)


1 3 5 7 9 11 13

7 9 5 8 10 11 14

0 0 2 1 0 0 0



fi ξ̂ fi Partial subword of F ′

1 0 1

2 0 1 2

3 0 1 2 3

4 1 1 2 4 3

6 1 1 2 4 6 3

12 0 1 2 4 6 3 12

13 0 1 2 4 6 3 12 13

gi ξ̂gi Partial subword of G′

14 0 14

11 0 11 14

10 0 10 11 14

9 0 9 10 11 14

8 1 9 8 10 11 14

7 0 7 9 8 10 11 14

5 2 7 9 5 8 10 11 14

Figure 4.7: Reconstruction of the permutation σ = 7192548610311121413 =
(1,7,8,6,4,2)(3,9,10)(5)(11)(12)(13,14) from its almost-Dyck path ω and
labels ξ̂ . The value fi is inserted so that it has ξ̂ fi entries to its right in the partial
subword; the value gi is inserted so that it has ξ̂gi entries to its left in the partial
subword.
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Now consider any index k ∈ [n]. Let j′ be the index for which f j′ = σ(2k).

From the definition of right-to-left inversion table, we know that there are ξ̂σ(2k)

elements to the right of σ(2k) in the word σ(2)σ(4) · · ·σ(2n) which are smaller

than σ(2k). On the other hand, there are n− k elements to the right of σ(2k) in the

word σ(2)σ(4) · · ·σ(2n); and there are n− j′ elements in F ′ that are larger than f j′ .

Therefore, there are at least (n− k)− (n− j′) = j′− k elements to the right of σ(2k)

in the word σ(2)σ(4) · · ·σ(2n) that are smaller than f j′ = σ(2k). Therefore,

ξ̂σ(2k) ≥ j′− k (4.131a)

=
f j′+h f j′

2
− k [by (4.129)] (4.131b)

=
hσ(2k)

2
+

σ(2k)−2k
2

. (4.131c)

On the other hand, from (4.120a) we know that

ξ̂σ(2k) ≤
⌈

hσ(2k)−1
2

⌉
≤

hσ(2k)

2
. (4.132)

Combining these two inequalities, we conclude that σ(2k)≤ 2k.

The proof that σ(2k−1)≥ 2k−1 is similar, using (4.120b). �

Remark. This proof of bijection is very close in spirit to that of Randrianarivony

[Ran97, pp. 89–90]. �

PROOF OF THEOREM 4.2.10. The computation of the weights is completely

analogous to what was done in Section 4.5.4, but using Lemmas 4.5.7–4.5.11 in

place of Lemmas 4.5.2–4.5.6. We leave the details to the reader: the upshot is

that for cycle valleys and cycle peaks, “u” and “l” are interchanged compared to

Section 4.5.4, and all statistics are primed. This is exactly what we have in (4.34). It

therefore completes the proof of Theorem 4.2.10. �

PROOF OF THEOREM 4.2.11. Comparing (4.36) with (4.34) and using
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Lemma 4.5.11, we see that the needed weights in (4.34) are the same as given

in (4.111)–(4.116). Inserting these into Theorem 4.2.10 gives Theorem 4.2.11. �

4.6 Second T-fraction: Proof of Theorems 4.3.2,

4.3.6 and 4.3.9

In this section we prove the second master T-fraction (Theorem 4.3.9) by a bijection

from D-permutations to labelled Schröder paths. Our construction combines ideas

of Randrianarivony [Ran97] and Biane [Bia93] together with some new ingredients.

After proving Theorem 4.3.9, we deduce Theorems 4.3.2 and 4.3.6 by specialisation.

Here we need to construct a bijection that will allow us to count the number

of cycles (cyc), which is a global variable. To do this, we employ a modification

of the Biane [Bia93] bijection, just as in Section 4.5 we employed a modification

of the Foata–Zeilberger [FZ90] bijection. Our bijection maps D2n to the set of

(((A,,,B,,,C)))-labelled 0-Schröder paths of length 222nnn, where each label ξi is a pair of

nonnegative integers ξi = (ξ ′i ,ξ
′′
i ) as follows:

Ah = {0}×{0} for h≥ 0 and h even (4.133a)

Ah = {0}×{0, . . . ,dh/2e} for h≥ 0 and h odd (4.133b)

Bh = {0, . . . ,d(h−1)/2e}×{0} for h≥ 1 and h even (4.133c)

Bh = {0, . . . ,d(h−1)/2e}2 for h≥ 1 and h odd (4.133d)

C0 = {0}×{0} (4.133e)

Ch = ∅ for h≥ 1 (4.133f)
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or equivalently

Ah = {0}×{0} for h≥ 0 and h = 2k (4.134a)

Ah = {0}×{0, . . . ,k} for h≥ 0 and h = 2k−1 (4.134b)

Bh = {0, . . . ,k}×{0} for h≥ 1 and h = 2k (4.134c)

Bh = {0, . . . ,k}2 for h≥ 1 and h = 2k+1 (4.134d)

C0 = {0}×{0} (4.134e)

Ch = ∅ for h≥ 1 (4.134f)

Our presentation of this bijection will follow the same steps as in Section 4.5.

4.6.1 Step 1: Definition of the almost-Dyck path

The almost-Dyck path ω associated to a D-permutation σ ∈D2n is identical to the

one employed in Section 4.5. That is:

• If σ−1(i) is even, then si is a rise.

• If σ−1(i) is odd, then si is a fall.

The interpretation of the heights hi is thus exactly as in Lemma 4.5.1. We then define

the 0-Schröder path ω̂ = ψ(ω) as before.

4.6.2 Step 2: Definition of the labels ξξξ iii === (((ξξξ
′′′
iii,,,ξξξ
′′′′′′
iii )))

We define the labels ξi = (ξ ′i ,ξ
′′
i ) as follows:

ξ
′
i =


0 if σ−1(i) is even

#{ j : σ−1( j)< σ−1(i)≤ i < j} if σ−1(i) is odd
(4.135)

ξ
′′
i =


0 if i is odd

#{ j : σ( j)< σ(i)≤ i < j} if i is even
(4.136)

These labels ξ ′i ,ξ
′′
i needed for the proof of the second T-fraction are related to the

labels ξi, ξ̂i defined in (4.80) and (4.117) and employed in Section 4.5 for the proof
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of the first T-fraction, as follows:

σ
−1(i) is odd ⇐⇒ i ∈ Cpeak∪Cdrise∪Oddfix:

ξ
′
i (Second) = ξ̂i(First) = ξσ−1(i)(First) (4.137a)

i is even ⇐⇒ i ∈ Cpeak∪Cdfall∪Evenfix:

ξ
′′
i (Second) = ξi(First) (4.137b)

Note that (4.137a) refers to the cases (4.133c,d) where ξ ′i is nontrivial [σ−1(i) odd

means that si is a fall], while (4.137b) refers to the cases (4.133b,d) where ξ ′′i is

nontrivial [i even ⇐⇒ hi even ⇐⇒ h = hi−1 odd]. Note in particular that cycle

peaks belong to both cases [cf. (4.133d)], while cycle valleys belong to neither

[cf. (4.133a)].

It is worth remarking that these labels ξi = (ξ ′i ,ξ
′′
i ) are the same as those in the

Biane bijection [SZ22, Section 6.2, Step 2] whenever i is not a fixed point. Compare

also (4.137) to [SZ22, eq. (6.24)].

We can give these labels a nice interpretation by using (as in Section 4.5) the

representation of a permutation σ ∈SN by a bipartite digraph Γ = Γ(σ) in which

the top row of vertices is labelled 1, . . . ,N and the bottom row 1′, . . . ,N′, and we

draw an arrow from i to j′ in case σ(i) = j. Recall that, for k ∈ [N], we denote

by Γk the induced subgraph of Γ on the vertex set {1, . . . ,k}∪{1′, . . . ,k′}. We can

consider the “history” ∅= Γ0 ⊂ Γ1 ⊂ Γ2 ⊂ . . .⊂ ΓN = Γ as a process of building

up the permutation σ by successively considering the status of indices 1,2, . . . ,N.

Since we have here a D-permutation σ ∈D2n, we will have vertices 1, . . . ,2n

and 1′, . . . ,2n′. First recall from (4.73)/(4.74) that fi−1 is the number of free vertices

in the top row of Γi−1, and also the number of free vertices in the bottom row of

Γi−1; and recall from (4.77) that fi−1 = dhi−1/2e. We index the free vertices on each

row of Γi−1 starting from 0: the indices are thus 0, . . . , fi−1−1. We then start from

the digraph Γi−1 and look at what happens at stage i (see Figure 4.8):

• If i is a cycle valley, then at stage i we add no arrows. Since no choices are

being made at this stage, we set ξ ′i = ξ ′′i = 0.
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• If i is a cycle double fall or an even fixed point, then at stage i we add an

arrow from i on the top row to an unconnected dot j′ on the bottom row,

where j = σ(i) ≤ i; then ξ ′′i is the index (left-to-right, counting from 0) of

the unconnected dot j′ among all the unconnected dots on the bottom row

(together with the new dot i′) — that is the content of (4.136). Note that j = i

(an even fixed point) corresponds to ξ ′′i = fi−1.

Since no unconnected dot on the top row was touched, we set ξ ′i = 0.

• Similarly, if i is a cycle double rise or an odd fixed point, we add an arrow

from an unconnected dot j on the top row to i′ on the bottom row, where

j = σ−1(i) ≤ i; then ξ ′i is the index (left-to-right, counting from 0) of the

unconnected dot j among all the unconnected dots on the top row (together

with the new dot i) — that is the content of (4.135). Note that j = i (an odd

fixed point) corresponds to ξ ′i = fi−1.

Since no unconnected dot on the bottom row was touched, we set ξ ′′i = 0.

• If i is a cycle peak, then we add two arrows: from i on the top row to the

unconnected dot j′ on the bottom row, where j = σ(i)< i; and also from the

unconnected dot k on the top row to i′ on the bottom row, where k = σ−1(i)< i.

Then ξ ′i (resp. ξ ′′i ) is the index of k (resp. j′) among the unconnected dots on

the top (resp. bottom) row — that is the content of (4.135)/(4.136).

All this is closely analogous to what was done in [SZ22, Section 6.2, Step 2], but

with fixed points treated differently.
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ξ1 = (0,0)

ξ2 = (0,0)

ξ3 = (0,0)

ξ4 = (0,0)

ξ5 = (2,0)

ξ6 = (0,1)

ξ7 = (0,0)

ξ8 = (1,1)

ξ9 = (0,0)

ξ10 = (0,0)

ξ11 = (0,0)

ξ12 = (0,0)

ξ13 = (0,0)

ξ14 = (0,0)

Figure 4.8: History of the permutation σ = 7192548610311121413 =
(1,7,8,6,4,2)(3,9,10)(5)(11)(12)(13,14) ∈ D14 for the second bijec-
tion. Each stage of the construction shows: the partial almost-Dyck path
(ω0, . . . ,ωi), with the most recent step in pink; the label ξi = (ξ ′i ,ξ

′′
i ), with

entries ξ ′i or ξ ′′i corresponding to new edges in the bipartite digraph being
underlined; and the bipartite digraph Γi, with the new vertices and edges shown
in pink. Note that the final almost-Dyck path is that of Figure 4.1, and the final
bipartite digraph is that of Figure 4.2.
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Lemma 4.6.1 (Nesting statistics for the second labels).

(a) If σ−1(i) is odd (i.e., si is a fall), then

ξ
′
i =


unest′(i,σ) if i is not a fixed point

psnest(i,σ) if i is a fixed point
(4.138)

(b) If i is even, then

ξ
′′
i =


lnest(i,σ) if i is not a fixed point

psnest(i,σ) if i is a fixed point
(4.139)

PROOF. (a) follows from (4.137a) and (4.118).

(b) follows from (4.137b) and (4.82). �

Lemma 4.6.2 (Inequalities satisfied by the second labels).

(a) If σ−1(i) is odd (i.e., si is a fall), then

0 ≤ ξ
′
i ≤

⌈
hi

2

⌉
=

⌈
hi−1−1

2

⌉
(4.140)

(b) If i is even, then

0 ≤ ξ
′′
i ≤

hi

2
=


⌈

hi−1

2

⌉
if σ−1(i) is even (i.e., si is a rise)

hi−1−1
2

if σ−1(i) is odd (i.e., si is a fall)

(4.141)

Lemma 4.6.2 will be an immediate consequence of the following identities:

Lemma 4.6.3 (Crossing statistics for the second labels).

(a) If σ−1(i) is odd (i.e., si is a fall), then

⌈
hi

2

⌉
− ξ

′
i = ucross′(i,σ) + I[i is odd and σ(i) 6= i] (4.142a)

= ucross′(i,σ) + I[i is a cycle double rise] . (4.142b)
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(b) If i is even, then

hi

2
− ξ

′′
i = lcross(i,σ) + I[σ−1(i)is even and σ(i) 6= i] (4.143a)

= lcross(i,σ) + I[i is a cycle double fall] . (4.143b)

PROOF. (a) Combining (4.137a) with (4.122) yields (4.142).

(b) If i is even, then hi is also even. Combining (4.137b) with (4.86)/(4.88)

yields (4.143). �

We now consider the four possible combinations of si (rise or fall) and parity of

hi (odd or even), and determine in each case the cycle classification of the index i.

Exactly as with the first bijection, si tells us the parity of σ−1(i), while the parity of

hi equals the parity of i. So these two pieces of information again tell us what was

recorded in (2.64)/(2.65):

• σ−1(i) even and i odd ⇐⇒ i is a cycle valley

• σ−1(i) even and i even ⇐⇒ i is either a cycle double fall or an even fixed

point

• σ−1(i) odd and i odd ⇐⇒ i is either a cycle double rise or an odd fixed point

• σ−1(i) odd and i even ⇐⇒ i is a cycle peak

So, once again, we need only disambiguate the fixed points from the cycle double

falls/rises in the middle two cases. We have:

Lemma 4.6.4 (Cycle classification for second bijection).

(a) If si a rise and hi is odd (hence hi−1 is even), then i is a cycle valley.

(b) If si a rise and hi is even (hence hi−1 is odd), then i is an even fixed point in

case ξ ′′i =

⌈
hi−1

2

⌉
(= hi/2 = fi); otherwise it is a cycle double fall.

(c) If si is a fall and hi is odd (hence hi−1 is even), then i is an odd fixed point in

case ξ ′i =

⌈
hi

2

⌉
(= (hi +1)/2 = fi); otherwise it is a cycle double rise.
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(d) If si is a fall and hi is even (hence hi−1 is odd), then i is a cycle peak.

We remark that (b) also includes the case in which (hi−1,hi) = (−1,0), and (c) also

includes the case in which (hi−1,hi) = (0,−1).

PROOF. (a,d) follow immediately from (2.64)/(2.65).

(b) From Lemma 4.6.3(b), we have

hi

2
− ξ

′′
i

≥ 1 if i is a cycle double fall

= 0 if i is an even fixed point
(4.144)

(c) Lemma 4.6.3(a), we have

⌈
hi

2

⌉
− ξ

′
i

≥ 1 if i is a cycle double rise

= 0 if i is an odd fixed point
(4.145)

�

Lemma 4.6.5 (Record statistics for the second bijection).

(a) If σ−1(i) is odd, then the index σ−1(i) is a record if and only if ξ ′i = 0.

(b) If i is even, then the index i is an antirecord if and only if ξ ′′i = 0.

PROOF. This is an immediate consequence of the definitions (4.135) and (4.136). �

4.6.3 Step 3: Proof of bijection

We prove that the map σ 7→ (ω,ξ ) is a bijection by explicitly describing the inverse

map. That is, we let ω be any almost-Dyck path of length 2n and let ξ be any set of

labels satisfying the inequalities (4.133)/(4.134), and we show how to reconstruct

the unique D-permutation σ that gives rise to (ω,ξ ) by the foregoing construction.

In fact, the interpretation as a bipartite digraph shows how to build the digraph,

and hence reconstruct the D-permutation σ , by successively reading the steps si and

labels ξi. Specifically, at stage i one starts from the digraph Γi−1 and proceeds as

follows (see again Figure 4.8):
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(i) If si is a rise from height hi−1 = 2k to height hi = 2k+1 (by Lemma 4.6.4(a)

this corresponds to i being a cycle valley), then we add no arrows.

(ii) If si is a rise from height hi−1 = 2k−1 to height hi = 2k and ξi = (0,k) [by

Lemma 4.6.4(b) this corresponds to i being an even fixed point], we add an

arrow from i to i′.

(iii) If si is a rise from height hi−1 = 2k−1 to height hi = 2k with ξi = (0,m) with

0 ≤ m < k (by Lemma 4.6.4(b) this corresponds to i being a cycle double

fall), we add an arrow from i on the top row to the m-th free vertex (counting

from 0) on the bottom row, call it j′. Of course j < i, because these are the

only vertices visible in the digraph Γi−1.

(iv) If si is a fall from height hi−1 = 2k to height hi = 2k− 1 and ξi = (k,0) [by

Lemma 4.6.4(c) this corresponds to i being an odd fixed point], we add an

arrow from i to i′.

(v) If si is a fall from height hi−1 = 2k to height hi = 2k−1 and ξi = (l,0) with

0≤ l < k (by Lemma 4.6.4(c) this corresponds to i being a cycle double rise),

we add an arrow from the l-th free vertex (counting from 0) on the top row

(which is of course < i) to i′ on the bottom row.

(vi) If si is a fall from height hi−1 = 2k+1 to height hi = 2k and ξ = (l,m) with

0 ≤ l,m ≤ k (by Lemma 4.6.4(d) this corresponds to i being a cycle peak),

we add two arrows: one going from i on the top row to the m-th free vertex

(counting from 0) on the bottom row (which is of course < i); and the other

going from the l-th free vertex (counting from 0) on the top row to i′ on the

bottom row.

Clearly, once a vertex has become the source or sink of an arrow, it plays no

further role in the construction and in particular receives no further arrows. Moreover,

since h2n = 0, at the end of the construction there are no unconnected vertices. The

final result of the construction thus corresponds to a bijection between {1, . . . ,2n}

and {1′, . . . ,2n′}, or in other words to permutation σ ∈S2n.
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Note now that a free vertex i in the top row can be created only in situations (i)

and (v), and in this case i is always odd. This means that a free vertex on the top row

is always odd. Therefore, when in situations (v) and (vi) we connect a vertex r < i

on the top row to i′ on the bottom row, r is always odd. On the other hand, we have

already seen that in situations (iii) and (vi) when we connect the vertex i on the top

row to a vertex j′ with j < i on the bottom row, i is always even. These two facts

together show that σ is a D-permutation.

4.6.4 Step 4: Translation of the statistics

We begin by compiling the interpretations of heights and labels in terms of crossing

and nesting statistics:

Lemma 4.6.6 (Crossing and nesting statistics). We have

(a) When i is even and hi = 2k,

ξ
′′
i = lnest(i,σ) if i ∈ Cpeak∪Cdfall (4.146a)

k−ξ
′′
i = lcross(i,σ) if i ∈ Cpeak (4.146b)

k−1−ξ
′′
i = lcross(i,σ) if i ∈ Cdfall (4.146c)

ξ
′′
i = k = psnest(i,σ) if i ∈ Evenfix (4.146d)

ξ
′
i = unest′(i,σ) if i ∈ Cpeak (4.146e)

k−ξ
′
i = ucross′(i,σ) if i ∈ Cpeak (4.146f)

(b) When i is odd and hi−1 = 2k,

ξ
′
i = unest′(i,σ) if i ∈ Cdrise (4.147a)

k−1−ξ
′
i = ucross′(i,σ) if i ∈ Cdrise (4.147b)

k = ucross(i,σ)+unest(i,σ) if i ∈ Cval (4.147c)

ξ
′
i = k = psnest(i,σ) if i ∈ Oddfix (4.147d)

PROOF. (a) When i is even, i can either be a cycle peak, a cycle double fall or an

even fixed point.
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• When i is a cycle double fall, σ−1(i) is even, so si is a rise from height

hi−1 = 2k−1 to height hi = 2k. Then (4.146a) follows from Lemma 4.6.1(b),

and (4.146c) follows from Lemma 4.6.3(b).

• When i is a cycle peak, σ−1(i) is odd, so si is a fall from height hi−1 = 2k+1

to height hi = 2k. Then (4.146a) follows from Lemma 4.6.1(b), (4.146b)

follows from Lemma 4.6.3(b), (4.146e) follows from Lemma 4.6.1(a), and

(4.146f) follows from Lemma 4.6.3(a).

• When i is an even fixed point, σ−1(i) is even, so si is a rise from height

hi−1 = 2k−1 to height hi = 2k. Then (4.146d) follows from Lemmas 4.6.1(b)

and 4.6.4(b).

(b) When i is odd, i can either be a cycle valley, a cycle double rise or an odd

fixed point.

• When i is a cycle double rise, σ−1(i) is odd, so si is a fall from height

hi−1 = 2k to height hi = 2k−1. Then (4.147a) follows from Lemma 4.6.1(a),

and (4.147b) follows from Lemma 4.6.3(a).

• When i is a cycle valley, σ−1(i) is even, so si is a rise from height hi−1 = 2k to

height hi = 2k+1. As the almost-Dyck path is the same as in the first bijection,

we can use Lemmas 4.5.2 and 4.5.4(a) to obtain k = ucross(i,σ)+unest(i,σ),

which is 4.147c).

• When i is an odd fixed point, σ−1(i) is odd, so si is a fall from height hi−1 = 2k

to height hi = 2k− 1. Then (4.147d) follows from Lemmas 4.6.1(a) and

4.6.4(c).

�

Remarks. 1. When i is a cycle valley, σ−1(i) is even and i is odd, so

Lemmas 4.6.1 and 4.6.3 tell us nothing about ucross and unest; and the labels

ξ ′i = ξ ′′i = 0 carry no information. That is why in this case we learn only about the

sum ucross+unest, which can be deduced from the heights alone.
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2. Our treatment of cycle double rises is slightly nicer than that achieved in

[SZ22, Lemma 6.4], thanks to the introduction of ucross′ and unest′.

3. In (4.146c) or (4.147b), k = 0 is impossible. These would correspond,

respectively, to a rise from height −1 or a fall from height 0, which by Lemma 4.5.1

occur only when i is a record-antirecord fixed point, not when it is a cycle double

fall or cycle double rise. �

Finally, and most crucially, we come to the counting of cycles (cyc). We use

the term cycle closer to denote the largest element in a non-singleton cycle. (This is

the same as the “cycle peak maximum” defined in Section 2.5.1.) Obviously every

non-singleton cycle has precisely one cycle closer. A cycle closer is always a cycle

peak, but not conversely. So we need to know how many of the cycle peaks are the

cycle closers. The answer is as follows:

Lemma 4.6.7 (Counting of cycles). Fix i = 2k such that k ∈ [n], and fix (s1, . . . ,si−1)

and (ξ1, . . . ,ξi−1). Consider all permutations σ ∈D2n that have those given values

for the first i−1 steps and labels and for which i is a cycle peak. Then:

(a) The value of ξi = (ξ ′i ,ξ
′′
i ) completely determines whether i is a cycle closer or

not.

(b) For each value ξ ′i ∈ [0,(hi−1 − 1)/2] there is precisely one value ξ ′′i ∈

[0,(hi−1−1)/2] that makes i a cycle closer, and conversely.

The proof is similar to the proof of [SZ22, Lemma 6.5].

PROOF. We use once again the bipartite digraph of Figure 4.2, and let us also draw a

vertical dotted line (with an upwards arrow) to connect each pair j′→ j. Now con-

sider the restriction of this digraph to the vertex set {1, . . . , i−1,1′, . . . ,(i−1)′}: as

discussed in Step 3, this restriction can be reconstructed from the steps (s1, . . . ,si−1)

and the labels (ξ1, . . . ,ξi−1). The connected components of this restriction are of

two types: complete directed cycles and directed open chains; they correspond to

cycles of σ whose cycle closers are, respectively, ≤ i−1 and > i−1. Each directed

open chain runs from an unconnected dot on the bottom row to an unconnected dot

on the top row.
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Now suppose that i is a cycle peak. Then at stage i we add two arrows: from

i on the top row to an unconnected dot j′ on the bottom row; and also from an

unconnected dot k on the top row to i′ on the bottom row. Here ξ ′i (resp. ξ ′′i ) is the

index of k (resp. j′) among the unconnected dots on the top (resp. bottom) row.

Now the point is simply this: i is a cycle closer if and only if j′ and k belong

to the same directed open chain (with j′ being its starting point and k being its

ending point). So for each value ξ ′i ∈ [0,(hi−1−1)/2] there is precisely one value

ξ ′′i ∈ [0,(hi−1−1)/2] that makes i a cycle closer, and conversely. �

4.6.5 Step 5: Computation of the weights

We can now compute the weights associated to the 0-Schröder path ω̂ in Theo-

rem 2.2.9, which we recall are ah,ξ for a rise starting at height h with label ξ , bh,ξ for

a fall starting at height h with label ξ , and ch,ξ for a long level step at height h with

label ξ . (Of course, in the present case we have long level steps only at height 0.)

We do this by putting together the information collected in Lemmas 4.6.2, 4.6.4,

4.6.6 and 4.6.7:

(a) Rise from height hi−1 = 2k to height hi = 2k+1 (hence i odd):

– By (4.134a), the label is ξi = (0,0).

– By Lemma 4.6.4(a), this is a cycle valley.

– By (4.147c), k = ucross(i,σ)+unest(i,σ).

Therefore, from (4.69), the weight for this step is

a2k,(0,0) = ak . (4.148)

(b) Rise from height hi−1 = 2k−1 to height hi = 2k (hence i even):

– By (4.134b) and Lemma 4.6.2(b), the label is ξi = (0,ξ ′′i ) with 0≤ ξ ′′i ≤

k.

– By Lemma 4.6.4(b), this is a cycle double fall if 0≤ ξ ′′i < k, and an even

fixed point if ξ ′′i = k.
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– By (4.146a,d),

ξ
′′
i =

lnest(i,σ) if i is a cycle double fall

psnest(i,σ) if i is an even fixed point
(4.149)

– By (4.146c), lcross(i,σ) = k−1−ξ ′′i when i is a cycle double fall.

Therefore, from (4.69), the weight for this step is

a2k−1,(0,ξ ′′) =


ck−1−ξ ′′,ξ ′′ if 0≤ ξ ′′ < k

λek if ξ ′′ = k
(4.150)

(c) Fall from height hi−1 = 2k to height hi = 2k−1 (hence i odd):

– By (4.134c) and Lemma 4.6.2(a), the label is ξi = (ξ ′i ,0) with 0≤ ξ ′i ≤ k.

– By Lemma 4.6.4(c), this is a cycle double rise if 0≤ ξ ′i < k, and an odd

fixed point if ξ ′i = k.

– By (4.147a,d),

ξ
′
i =

unest′(i,σ) if i is a cycle double rise

psnest(i,σ) if i is an odd fixed point
(4.151)

– By (4.147b), ucross′(i,σ) = k−1−ξ ′i when i is a cycle double rise.

Therefore, from (4.69), the weight for this step is

b2k,(ξ ′,0) =


dk−1−ξ ′,ξ ′ if 0≤ ξ ′ < k

λ fk if ξ ′ = k
(4.152)

(d) Fall from height hi−1 = 2k+1 to height hi = 2k (hence i even):

– By (4.134d) and Lemma 4.6.2(a,b), the label is ξi = (ξ ′i ,ξ
′′
i ) with 0 ≤

ξ ′i ≤ k and 0≤ ξ ′′i ≤ k.
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– By Lemma 4.6.4(d), this is a cycle peak.

– By (4.146a), ξ ′′i = lnest(i,σ).

– By (4.146b), k−ξ ′′i = lcross(i,σ).

For each choice of ξ ′′i ∈ [0,k] there are k+1 possible choices of ξ ′i , of which

one closes a cycle and the rest don’t; this is the content of Lemma 4.6.7.

Therefore, from (4.69), the total weight of all such steps is

b2k+1
def
= ∑

ξ ′,ξ ′′
b2k+1,(ξ ′,ξ ′′) = (λ + k)

k

∑
ξ ′′=0

bk−ξ ′′,ξ ′′ . (4.153)

(e) Long level step at height 0:

This corresponds in the almost-Dyck path ω to a fall from height 0 to height−1,

followed by a rise from height −1 to height 0. Applying case (c) with k = 0

and ξ = 0, followed by case (b) with k = 0 and ξ = 0, we obtain a weight

c0,0 = λ
2e0f0 . (4.154)

Putting this all together in Theorem 2.2.9, we obtain a T-fraction with

α2k−1 = (rise from 2k−2 to 2k−1) × (fall from 2k−1 to 2k−2)

= ak−1 (λ + k−1)
(k−1

∑
ξ=0

bk−1−ξ ,ξ

)
(4.155)

α2k = (rise from 2k−1 to 2k) × (fall from 2k to 2k−1)

=

(
λek +

k−1

∑
ξ=0

ck−1−ξ ,ξ

)(
λ fk +

k−1

∑
ξ=0

dk−1−ξ ,ξ

)
(4.156)

δ1 = λ
2e0f0 (4.157)

δn = 0 for n≥ 2 (4.158)

This completes the proof of Theorem 4.3.9. �
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PROOF OF THEOREM 4.3.6. Comparing (4.58) with (4.69) and using Lemma 4.6.5,

and recalling that we are making the specialisations v1 = y1 and q+1 = p+1, we see

that the needed weights in (4.69) are

ak = pk
+1 y1 (4.159)

bk−1−ξ ,ξ = pk−1−ξ

−1 qξ

−1 ×

x1 if ξ = 0

u1 if 1≤ ξ ≤ k−1
(4.160)

ck−1−ξ ,ξ = pk−1−ξ

−2 qξ

−2 ×

x2 if ξ = 0

u2 if 1≤ ξ ≤ k−1
(4.161)

dk−1−ξ ,ξ = p̂k−1−ξ

+2 q̂ξ

+2 ×

ŷ2 if ξ = 0

v̂2 if 1≤ ξ ≤ k−1
(4.162)

ek =


ze if k = 0

sk
ewe if k ≥ 1

(4.163)

fk =


zo if k = 0

sk
owo if k ≥ 1

(4.164)

Inserting these into (4.155)–(4.158) yields the continued-fraction coefficients (4.61).

�

Remarks. 1. We needed to make the specialisation v1 = y1 because

Lemma 4.6.5 tells us nothing about the record status of cycle valleys, for which

σ−1(i) is even and i is odd. Similarly, we needed to make the specialisation

q+1 = p+1 because, for cycle valleys, Lemma 4.6.6(b) does not tell us about ucross

and unest individually, but only their sum.

2. There is a variant master polynomial that we could have treated: instead of

weighting cycle peaks using blcross(i,σ), lnest(i,σ) as in (4.69), we could instead weight

them as bucross′(i,σ),unest′(i,σ). Then we would use (4.146e,f) instead of (4.146a,b);
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the resulting T-fraction would be the same. �

PROOF OF THEOREM 4.3.2. Specialize Theorem 4.3.6 to p−1 = p−2 = p+1 =

p̂+2 = q−1 = q−2 = q̂+2 = se = so = 1. �

4.7 Some final remarks
When we began this work, we envisioned it as analogous to, though probably more

complicated than, the study of the “linear family” [cf. (4.3)] that was undertaken

in [SZ22]: our goal was to make a corresponding study of the “quadratic family”

[cf. (4.4)]. What has surprised us is that the final results, as well as the associated

methods of proof, turned out to be, not merely analogous to those of [SZ22], but in

fact very closely parallel — much more closely parallel than we expected.

The key objects of [SZ22] were permutations of [n]; the key results were J-

fractions; and the proofs involved bijections from permutations of [n] to labelled

Motzkin paths of length n, using the Foata–Zeilberger bijection for the first J-fraction

(which did not involve the counting of cycles) and the Biane bijection for the second

J-fraction (which involved the counting of cycles). The two bijections have the same

paths but different labels.

By contrast, the key objects of the present chapter are D-permutations of [2n];

the key results are 0-T-fractions (that is, T-fractions that have δi = 0 for all i≥ 2);

and the proofs involve bijections from D-permutations of [2n] to labelled 0-Schröder

paths (or equivalently, labelled almost-Dyck paths) of length 2n. Once again, the

bijections for the first and second continued fractions have the same paths but

different labels. Since these 0-Schröder paths are very different from the Motzkin

paths of [SZ22], the definitions of the paths must also be very different, and indeed

they are. The surprise was that the definitions of the labels in our constructions

turned out to be almost identical to those employed in [SZ22] (where “almost” means

that fixed points are treated differently): once again, we use the Foata–Zeilberger

labels for the first T-fraction (which does not involve the counting of cycles) and the

Biane labels for the second T-fraction (which involves the counting of cycles).
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The final results also turned out to be amazingly similar. Compare, for instance,

Theorem 4.2.7 with [SZ22, Theorem 2.7]: our coefficient α2k−1 is identical to

the coefficient βk in [SZ22, eq. (2.53c)]; our coefficient α2k includes the same

ingredients as the coefficient γk in [SZ22, eq. (2.53b)], but combined as a product

rather than a sum. An analogous comparison holds between our first master T-fraction

(Theorem 4.2.9) and the first master J-fraction in [SZ22, Theorem 2.9]. Furthermore,

an analogous comparison holds between our T-fraction in Theorem 4.3.1 and the

conjectured second J-fraction found [SZ22, Conjecture 2.3] (we will prove both of

these in Chapter 5), and between our proved second T-fraction (Theorem 4.3.2) when

specialised to v̂2 = ŷ2 and the proved second J-fraction found in [SZ22, Theorem 2.4].

Finally, an almost analogous comparison holds between our second master T-fraction

(Theorem 4.3.9) and the second master J-fraction [SZ22, Theorem 2.14], the only

difference being that the treatment of d looks a bit more natural in the present work.

All this suggests to us that D-permutations are, among all the combinatorial

models of the Genocchi and median Genocchi numbers, a particularly well-behaved

one, which is closely analogous to ordinary permutations. It would be interesting

to know whether similar continued fractions, in a large (or infinite) number of

independent indeterminates, can be found for some of the other models of the

Genocchi and median Genocchi numbers. Our approach in the present chapter

has been to introduce a natural classification of indices into mutually exclusive

categories — here the parity-refined record-and-cycle classification (Section 2.5.1) —

and to build a homogeneous multivariate generating polynomial implementing this

classification. It would be interesting to find analogous natural classifications for the

other combinatorial models.

Appendix: J-fraction for the polynomials (4.40)

The first few polynomials

Pn(x,y,λ ) = ∑
σ∈D2n

xarec(σ)yerec(σ)
λ

cyc(σ) (4.165)
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are too complicated to print even at n = 3. But we can give the first few J-fraction

coefficients: they are

γ0 = λx(λx+ y) (4.166a)

β1 = λxy(λ + x)(λ + y) (4.166b)

γ1 = (1+λ )(λ + x+ y+ xy) (4.166c)

β2 = λ
3(1+ xy)+λ

2(2+ x+ x2 + y+4xy+ y2)+

λ (1+3x+ x2 +3y+4xy+ x2y+ y2 + xy2 + x2y2)+

2(x+ y+ x2y+ xy2) (4.166d)

followed by

γ2 =
N
D

(4.167)

where

N = (1+λ )
[
λ

4 (1+ xy) + λ
3 (5+ x+2x2 + y+10xy+2y2 + x2y2)

+ λ
2 (7+8x+8x2 +8y+26xy+4x2y+2x3y+8y2 +4xy2 +7x2y2 +2xy3)

+ λ (3+15x+8x2 +2x3 +15y+22xy+18x2y+5x3y+8y2 +18xy2

+13x2y2 + x3y2 +2y3 +5xy3 + x2y3)

+ (8x+2x2 +2x3 +8y+5xy+18x2y+ x3y+2y2 +18xy2 +4x2y2 +4x3y2

+2y3 + xy3 +4x2y3 + x3y3)
]

(4.168)

and

D = λ
3 (1+ xy) + λ

2 (2+ x+ x2 + y+4xy+ y2)

+ λ (1+3x+ x2 +3y+4xy+ x2y+ y2 + xy2 + x2y2) + 2(x+ y)(1+ xy)

(4.169)

It can then be shown that

(a) γ2 is not a polynomial in x (when y and λ are given fixed real values) unless

λ ∈ {−2,−1,+1} or y ∈ {−1,+1}.
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(b) γ2 is not a polynomial in y unless λ ∈ {−2,−1,+1} or x ∈ {−1,+1}.

(c) γ2 is not a polynomial in λ unless x ∈ {−1,+1} or y∈ {−1,+1} or x = y = 0.

We state the polynomials obtained from the foregoing specialisations of γ2:

Specialization γ2

λ =+1 2(2+ x)(2+ y)

λ =−1 0

λ =−2 −1+ x+ y+ xy/2

x =+1 (2+λ )(3+λ +2y)

x =−1 (1+λ )(4+λ −2y)

y =+1 (2+λ )(3+λ +2x)

y =−1 (1+λ )(4+λ −2x)

x = y = 0 (1+λ )(3+λ )

These give rise to continued fractions as follows:

λλλ ===+++111. By Theorem 4.2.3 specialised to x1 = x2 = ze = zo = x, y1 = y2 = y,

u1 = u2 = v1 = v2 =we =wo = 1, we obtain a T-fraction with α2k−1 = (x+k−1)(y+

k−1), α2k = (x+ k)(y+ k), δ1 = x2 and hence by contraction (Proposition 2.2.1)

a J-fraction with γ0 = x(x+ y), γn = 2(x+n)(y+n) for n≥ 1, βn = (x+n−1)(x+

n)(y+n−1)(y+n).

xxx === +++111. By the reversal map i 7→ 2n+ 1− i, the weight xarec(σ)yerec(σ) is

equivalent to xrec(σ)yearec(σ). Now apply Theorem 4.3.2 specialised to x1 = x2 = y,

y1 = ŷ2 = u1 = u2 = v1 = v̂2 = we = wo = ze = zo = 1: we obtain a T-fraction with

α2k−1 =(λ +k−1)(y+k−1), α2k =(λ +k)(y+k−1+λ ), δ1 = λ 2. By contraction

this yields a J-fraction with γ0 = λ (λ + y), γn = (λ +n)(λ +2n−1+2y) for n≥ 1,

βn = (λ +n−1)(λ +n)(y+n−1)(y+n−1+λ ).

yyy === +++111. By Theorem 4.3.2 specialised to x1 = x2 = ze = zo = x, y1 =

ŷ2 = u1 = u2 = v1 = v̂2 = we = wo = 1, we obtain a T-fraction with α2k−1 =

(λ + k−1)(x+ k−1), α2k = (λ + k)(x+ k− 1+ λ ), δ1 = λ 2x2. By contraction

this yields a J-fraction with γ0 = λx(1+ λx), γn = (λ + n)(λ + 2n− 1+ 2x) for

n≥ 1, βn = (λ +n−1)(λ +n)(x+n−1)(x+n−1+λ ).
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λλλ === −−−111. We conjecture a J-fraction with γ0 = x(x− y), γn = 0 for n ≥ 1,

βn =−xy(1− x)(1− y). We have proved this conjecture along with other continued

fractions for permutations and D-permutations with weight λ =−1 in [DS23].

λλλ ===−−−222, xxx ===−−−111, yyy ===−−−111. These are polynomial through γ2 and β3, but we are

unable to guess the general formula, and indeed we do not know whether they will

continue to be polynomial at higher orders.

xxx === 000. For all n ≥ 1 and all σ ∈Sn, the index n is an antirecord. Therefore,

setting x = 0 suppresses all permutations for n ≥ 1, and we have Pn(0,y,λ ) = δn0

(Kronecker delta). The value of γ2 stated in the table above is completely irrelevant,

because β1 = 0.

yyy === 000. It is not difficult to show that the only permutation σ ∈ Sn with no

exclusive records is the identity permutation. (The index 1 is always a record, so

if there are no exclusive records it must be a fixed point; then the index 2 will be a

record, and so forth.) Therefore Pn(x,0,λ ) = λ 2nx2n. This gives an S-fraction with

α1 = λ 2x2 and αn = 0 for n≥ 2. Equivalently, it gives a J-fraction with γ0 = λ 2x2

and all other coefficients zero. The value of γ2 stated in the table above is again

completely irrelevant, because β1 = 0.



Chapter 5

Continued fractions using a Laguerre

digraph interpretation of the

Foata–Zeilberger bijection and its

variants

5.1 Introduction

5.1.1 Foreword

This chapter will introduce new results to the combinatorial theory of continued

fractions for multivariate polynomials generalising the following three sequences of

integers: factorials (n!)n≥0, the Genocchi numbers [OEI19, A110501] introduced in

Section 2.4.1

(gn)n≥0 = 1,1,3,17,155,2073,38227,929569,28820619,1109652905, . . . (5.1)

and the median Genocchi numbers [OEI19, A005439] introduced in Section 2.4.2

(hn)n≥0 = 1,1,2,8,56,608,9440,198272,5410688,186043904, . . . . (5.2)

We shall use permutations for studying factorials, and D-permutations [LW22,

Laz20] and its subclasses (they were introduced in Section 2.4.3) for studying
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the Genocchi and median Genocchi numbers.

We shall consider continued fractions of Stieltjes-type (S-fraction),

∞

∑
n=0

antn =
1

1−
α1t

1−
α2t

1−·· ·

, (5.3)

as well as Jacobi-type and Thron-type (defined in (2.20),(2.21)). The ordinary

generating functions of our integer sequences have S-fractions with coefficients

α2k−1 = α2k = k for factorials [Eul60, section 21] (we saw this in equation (1.1)),

α2k−1 = k2 and α2k = k(k+1) for the Genocchi numbers [Vie, eq. (7.5)] [Vie83, p. V-

9] [DZ94, eqns. (1.4) and (3.9)] (we saw this in equation (2.45)), and α2k−1 = α2k =

k2 for the Genocchi medians [Vie, eq. (9.7)] [Vie83, p. V-15] [DZ94, eqns. (1.5) and

(3.8)] (we saw this in equation (2.51)).

A systematic study of some combinatorial families whose associated S-fraction

coefficients (αn)n≥0 grow linearly in n was carried out by Sokal and Zeng in [SZ22].

They introduced various “master polynomials” enumerating permutations, set par-

titions and perfect matchings with respect to a large (sometimes infinite) number

of simultaneous statistics. We carried out a similar study for D-permutations and

its subclasses in Chapter 4: the associated T-fraction coefficients (αn)n≥0 for these

families grow quadratically in n. The continued fractions in [SZ22] and in our

Chapter 4 were classified as “first” or “second” depending on whether they did not

or did involve the count of cycles. Both in [SZ22] and in Chapter 4, the “second”

continued fractions were proven using two specialisations. They were conjectured

with only one specialisation ([SZ22, Conjecture 2.3] and Theorem 4.3.1), but a proof

was lacking. Here we prove these conjectures. We will also prove a conjectured

continued fraction of Randrianarivony and Zeng from 1996 [RZ96a, Conjecture 12]

for D-o-semiderangements1 (a subclass of D-permutations also introduced in Sec-

tion 2.4.3).

1In their paper [RZ96a], Randrianarivony and Zeng call these Genocchi permutations. See
Section 2.4.3 for our nomenclature.
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Our proofs bring a surprising twist to this story. A common feature in the

work of Sokal–Zeng [SZ22] and our work in Chapter 4 is that the proofs of the first

and second continued fractions involve two different bijections: the first continued

fractions were proved using bijections motivated from the Foata–Zeilberger bijection

[FZ90], whereas the second continued fractions used the Biane bijection [Bia93] or a

Biane-like bijection. However, in this chapter we will prove these conjectured second

continued fractions by precisely the same bijections that were used to prove the first

bijections in these papers. We will show, perhaps surprisingly, that these variants of

the Foata–Zeilberger bijection can be used to obtain the counting of cycles.

Let us mention the historical context for our bijections. The Foata–Zeilberger

bijection [FZ90] is a bijection between permutations and labelled Motzkin paths

that has been very successfully employed to obtain continued fractions involving

polynomial coefficients counting various permutation statistics (see for example

[Ran98, Cor07, BS21, SZ22]). In a similar essence to the Foata–Zeilberger bijection,

Randrianarivony [Ran97] introduced a bijection between D-o-semiderangements

and labelled Dyck paths to obtain continued fractions counting various statistics on

D-o-semiderangements. Motivated by Randrianarivony’s bijection, in Section 4.5 we

introduced two new bijections involving all D-permutations, one of which extends

Randrianarivony’s bijection.

The fundamental idea in this chapter is that we interpret the intermediate steps

in these existing bijections in a new light in terms of Laguerre digraphs. A Laguerre

digraph of size n is a directed graph where each vertex has a distinct label from the

label set [n] and has indegree 0 or 1 and outdegree 0 or 1.2 Thus, the connected

components in a Laguerre digraph are either directed paths or directed cycles. A

path with one vertex and no edges will be called an isolated vertex, and a cycle with

one vertex and one edge will be called a loop.

The Sokal–Zeng conjecture [SZ22, Conjecture 2.3] is a multivariate continued

fraction containing 8 variables along with a one-parameter family of infinitely many

2Foata and Strehl [FS84] introduced an equivalent class of combinatorial objects called Laguerre
configurations as a combinatorial interpretation of the Laguerre polynomials. Laguerre digraphs in
the form that we use in this chapter were first introduced in [Sok22]. Also see [DDPS].
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variables (the latter associated to fixed points) counting various simultaneous statis-

tics for permutations. Our continued fraction in Theorem 4.3.1 is a multivariate

continued fraction with 12 variables counting similar simultaneous statistics for

D-permutations. The Randrianarivony–Zeng conjecture from 1996 [RZ96a, Conjec-

ture 12] is a 4-variable continued fraction for D-o-semiderangements. In the same

spirit as [PS20, SZ22] and Chapter 4, we will generalise these conjectured continued

fractions and use our proofs to churn out continued fractions containing an infinite

number of variables.

Before proceeding with the rest of this chapter, the reader may refer back to Sec-

tion 2.2.1 to recall the necessary definitions and facts about continued fractions, Sec-

tion 2.4 for the Genocchi numbers, median Genocchi numbers and D-permutations;

and Section 2.5 for various permutation statistics. The rest of the introduction is or-

ganised as follows: We state the conjecture for permutations [SZ22, Conjecture 2.3]

in Section 5.1.2. We then state the associated conjecture for Genocchi and median

Genocchi numbers ([RZ96a, Conjecture 12] and Theorem 4.3.1) in Section 5.1.3.

Then, in Section 5.1.4, we summarise our main ideas by providing an overview of

the Foata–Zeilberger bijection and our interpretation of this bijection using Laguerre

digraphs. The outline of the rest of this chapter is mentioned in Section 5.1.5.

5.1.2 Permutations: Statement of conjecture

The polynomial Q̂n was defined in [SZ22, Equation (2.29)]

Q̂n(x1,x2,y1,y2,u1,u2,v1,v2,w,λ ) =

∑
σ∈Sn

xeareccpeak(σ)
1 xeareccdfall(σ)

2 yereccval(σ)
1 yereccdrise(σ)

2 ×

unrcpeak(σ)
1 unrcdfall(σ)

2 vnrcval(σ)
1 vnrcdrise(σ)

2 wfix(σ)
λ

cyc(σ) (5.4)

where wfix(σ) as defined in [SZ22, Equation (2.22)] is

wfix(σ) = ∏
i∈Fix

wpsnest(i,σ). (5.5)



5.1. Introduction 192

Sokal and Zeng stated the following conjecture in their paper:

Conjecture 5.1.1 ([SZ22, Conjecture 2.3]). The ordinary generating function of the

polynomials Q̂n specialised to v1 = y1 has the J-type continued fraction

∞

∑
n=0

Q̂n(x1,x2,y1,y2,u1,u2,y1,v2,w,λ ) tn =

1

1−λw0t−
λx1y1t2

1− (x2+y2+λw1)t−
(λ+1)(x1+u1)y1t2

1− (x2+y2+u2+v2+λw2)t−
(λ+2)(x1+2u1)y1t2

1−·· ·

(5.6)

with coefficients

γ0 = λw0 (5.7a)

γn = [x2+(n−1)u2]+ [y2+(n−1)v2]+λwn for n≥ 1 (5.7b)

βn = (λ +n−1)[x1+(n−1)u1]y1 (5.7c)

Sokal and Zeng [SZ22, Theorem 2.4] proved this continued fraction subject to

the further specialisation v2 = y2 using the Biane bijection. Here we will prove the

full conjecture by using the Foata–Zeilberger bijection, suitably reinterpreted.

In Section 5.2, we will see that this conjecture is a special case of a more general

J-fraction involving five families of infinitely many indeterminates and one additional

variable. We will prove these results in Section 5.4.
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5.1.3 D-Permutations: Statements of conjectures

In [RZ96a], Randrianarivony and Zeng introduced two sequences of polynomials

for D-o-semiderangements [RZ96a, eq. (3.3)]

Rn(x,y, x̄, ȳ) = ∑
σ∈Do

2n

xlema(σ)yromi(σ)x̄fix(σ)ȳremi(σ) (5.8)

(we saw this polynomial in equation (4.39)) and [RZ96a, p. 9]

Gn(x,y, x̄, ȳ) = ∑
σ∈Do

2n

xcomi(σ)ylema(σ)x̄cemi(σ)ȳremi(σ) (5.9)

where the statistics lema, romi, remi,comi,cemi are defined as follows:

• lema – left-to-right maxima whose value is even,

• romi – right-to-left minima whose value is odd,

• remi – right-to-left minima whose value is even,

• comi – odd cycle minima,

• cemi – even cycle minima;

for a permutation σ , lema(σ) denotes the number of left-to-right maxima (i.e. record)

whose value σ(i) is even, etc. See [RZ96a, p. 2] for a full description of these

statistics.

In their paper, Randrianarivony and Zeng stated the following conjecture which

we shall prove:

Conjecture 5.1.2 ([RZ96a, Conjecture 12]). For n ≥ 1 we have Rn(x,y, x̄, ȳ) =

Gn(x,y, x̄, ȳ).

Using [RZ96a, Proposition 10], Conjecture 5.1.2 can be equivalently stated as

Conjecture 5.1.2.′ The ordinary generating function of the polynomials Gn(x,y, x̄, ȳ)
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defined in (5.8) has the S-type continued fraction

1+
∞

∑
n=1

Gn(x,y, x̄, ȳ)tn =
1

1−
xyt

1−
1(x̄+ ȳ)t

1−
(x+1)(y+1)t

1−
2(x̄+ ȳ+1)

1−
(x+2)(y+2)t

1−
3(x̄+ ȳ+2)t

· · ·

(5.10)

It is worthwhile to translate the statistics of Randrianarivony and Zeng to the

statistics we introduced in Section 2.5.1. This was already done for the statistics

involved in the polynomials Rn(x,y, x̄, ȳ) in Remark of Section 4.2.5; the following

statistics are identical for D-o-semiderangements:

• lema = ereccpeak′

• remi = eareccdfall′

• romi = eareccval′

• fix = evennrfix.

It remains to translate the statistics cemi and comi.

Notice that the smallest element i of a cycle with at least two elements must be

a cycle valley, and hence must be odd. As D-o-semiderangements do not have any

odd fixed points, the cycle minima for fixed points are necessarily even. On the other

hand, the smallest element i of a cycle with at least two elements must be a cycle

valley, and hence must be odd. Thus, i is an even cycle minima if and only if it is an

even fixed point, and i is an odd cycle minima if and only if it is the minimum valley

of cycle with at least two elements. Thus, we have shown that

• cemi = evennrfix

• comi = minval.
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This shows that

Gn(x,y, x̄, ȳ) = ∑
σ∈Do

2n

xminval(σ)yereccpeak′(σ)x̄evennrfix(σ)ȳeareccdfall′(σ). (5.11)

We will also look at the polynomials (4.41) introduced in Chapter 4 which we

copy here for the convenience of the reader:

P̂n(x1,x2,y1,y2,u1,u2,v1,v2,we,wo,ze,zo,λ ) =

∑
σ∈D2n

xeareccpeak(σ)
1 xeareccdfall(σ)

2 yereccval(σ)
1 yereccdrise(σ)

2 ×

unrcpeak(σ)
1 unrcdfall(σ)

2 vnrcval(σ)
1 vnrcdrise(σ)

2 ×

wevennrfix(σ)
e woddnrfix(σ)

o zevenrar(σ)
e zoddrar(σ)

o λ
cyc(σ) . (5.12)

We will prove the Thron-type continued fraction in Theorem 4.3.1 involving the

polynomials (5.12) which we also copy here:

Theorem 5.1.1. The ordinary generating function of the polynomials (5.12) spe-

cialised to v1 = y1 has the T-type continued fraction

∞

∑
n=0

P̂n(x1,x2,y1,y2,u1,u2,y1,v2,we,wo,ze,zo,λ ) tn =

1

1−λ 2zezo t−
λx1y1 t

1−
(x2+λwe)(y2+λwo) t

1−
(λ +1)(x1+u1)y1 t

1−
(x2+u2+λwe)(y2+v2+λwo) t

1−
(λ +2)(x1+2u1)y1 t

1−
(x2+2u2+λwe)(y2+2v2+λwo) t

1−·· ·
(5.13)
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with coefficients

α2k−1 = (λ + k−1) [x1 +(k−1)u1] y1 (5.14a)

α2k = [x2 +(k−1)u2 +λwe] [y2 +(k−1)v2 +λwo] (5.14b)

δ1 = λ
2zezo (5.14c)

δn = 0 for n≥ 2 (5.14d)

If this continued fraction is further specialised to v2 = y2, the resulting continued

fraction is the same as our second T-fraction for D-permutations (Theorem 4.3.2)

in Chapter 4, under the specialisation v̂2 = ŷ2 and then identifying ŷ2 with y2. We

recall that Theorem 4.3.2 was proved using a Biane-like bijection. Here we will

prove Theorem 5.1.1 using a Foata–Zeilberger-like bijection, suitably interpreted.

In Section 5.3, we will see that both Conjecture 5.1.2′ and Theorem 5.1.1

are special cases of general T-fractions involving six families of infinitely many

indeterminates and one additional variable. We will prove these results in Section 5.5.

5.1.4 Overview of proof for results on permutations

We now summarise our proof for permutations (described in Section 5.4). Our results

for D-permutations will also be obtained by using very similar ideas (described in

Section 5.5). We first provide an overview of the Foata–Zeilberger bijection, and then

briefly mention how we reinterpret it to obtain the count of cycles in a permutation.

Let σ ∈Sn be a permutation on n letters. This permutation σ partitions the

set [n] into excedance indices (F = {i ∈ [n] : σ(i) > i}), anti-excedance indices

(G = {i ∈ [n] : σ(i)< i}), and fixed points (H). Similarly, σ also partitions [n] into

excedance values (F ′ = {i ∈ [n] : i > σ−1(i)}), anti-excedance values (G′ = {i ∈

[n] : i < σ−1(i)}), and fixed points. Clearly, σ � F : F → F ′, σ � G : G→ G′, and

σ � H : H → H are bijections, and the permutation σ can be obtained from the

following data:

• Two partitions of the set [n] = F ∪ G ∪ H = F ′ ∪ G′ ∪ H.
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• The two subwords of σ : σ(x1)σ(x2) . . .σ(xm) and σ(y1)σ(y2) . . .σ(yl),

where G = {x1 < x2 < .. . < xm} and F = {y1 < y2 < .. . < yl}.

In their construction, Foata and Zeilberger [FZ90] use these data to describe a

bijection from Sn to a set of labelled Motzkin paths of length n (these have been

defined in Sections 2.2.4, 2.2.5). One then uses Flajolet’s theorem [Fla80] to obtain

continued fractions from this bijection while keeping track of various simultaneous

permutation statistics.

The Foata–Zeilberger bijection consists of the following steps (following

[SZ22]):

• Step 1: A Motzkin path ω is constructed from σ . The path ω is fully deter-

mined by the sets F,F ′,G,G′,H.

• Step 2: The labels ξ associated to ω are constructed from σ . It turns out that

the labels depend on the maps σ � F : F→ F ′ and σ �G : G→G′ and the set

H, separately.

• Step 3: This step describes the construction of the inverse map (ω,ξ ) 7→ σ .

This step is broken down as follows:

– Step 3(a): The sets F,F ′,G,G′,H are read off from the path ω .

– Step 3(b): This description is the crucial part of the construction (at

least for our purposes). We use inversion tables to construct the words

σ(x1)σ(x2) . . .σ(xm) and σ(y1)σ(y2) . . .σ(yl); the former is constructed

using a “right-to-left” inversion table and the latter is constructed using a

“left-to-right” inversion table.

It is, a priori, unclear how one might be able to track the number of cycles of σ

in this construction. We resolve this issue by reinterpreting Step 3(b). We describe a

“history” of this construction using Laguerre digraphs.

Recall that a Laguerre digraph of size n is a directed graph where each vertex

has a distinct label from the label set [n] and has indegree 0 or 1 and outdegree 0

or 1. It follows that the connected components in a Laguerre digraph are either
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directed paths or directed cycles. Clearly, any subgraph of a Laguerre digraph

is also a Laguerre digraph. A permutation σ in cycle notation is equivalent to a

Laguerre digraph L with no paths ([Sta09, pp. 22-23]). The directed edges of L are

precisely u→ σ(u). We will interpret Step 3(b) of the Foata–Zeilberger construction

as building up a permutation as a sequence of Laguerre digraphs, starting from the

empty digraph in which all vertices are isolated (i.e., have no adjacent edges), and

ending with the digraph of the permutation σ in which there are no paths.

For a subset S⊆ [n], we let L|S denote the subgraph of L, containing the same

set of vertices [n], but only the edges u→ σ(u), with u ∈ S (we are allowed to

have σ(u) 6∈ S). Let u1, . . . ,un be a rewriting of [n]. We consider the “history”

L|∅ ⊂ L|{u1} ⊂ L|{u1,u2} ⊂ . . . ⊂ L|{u1,...,un} = L as a process of building up the

permutation σ by successively considering the status of vertices u1,u2, . . . ,un. At

step u, we construct the edge u→ σ(u). Thus, at each step we insert a new edge

into the digraph, and at the end of this process, the resulting digraph obtained is the

digraph of σ .

The crucial part of our construction is that we use a very special order u1, . . . ,un:

we first go through H in increasing order (we call this stage (a)), we then go through

G in increasing order (stage (b)), finally we go through F but in decreasing order

(stage (c)). This total order is suggested by the inversion tables. On building up the

permutation σ using this history, we will see that the cycles can only be obtained

during stage (c) and we can now count the number of cycles.

Our total order on [n] only depends on the sets F,G,H, and hence, only on the

path ω and not on the labels ξ . This is crucial for our proof to work.

5.1.5 Outline of chapter

The plan of this chapter is as follows: In Section 5.2 we state our results for permuta-

tions; this will include the continued fraction [SZ22, Conjecture 2.3] along with its

generalisations. Next, we state our results for D-permutations in Section 5.3; this

will include the continued fractions [RZ96a, Conjecture 12] and Theorem 5.1.1. In

Section 5.4 we prove our continued fractions for permutations by reinterpreting Sokal

and Zeng’s variant of the Foata–Zeilberger bijection [SZ22, Section 6.1] using La-
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guerre digraphs. In Section 5.5 we prove our continued fractions for D-permutations

by reinterpreting the two bijections stated in Sections 4.5.1-4.5.3 and Section 4.5.5

of Chapter 4, again by using Laguerre digraphs. We conclude (Section 5.6) with

some brief remarks on our work.

5.2 Permutations: Statements of results

In this section, we state our continued fractions for permutations, in three increas-

ingly more general versions. The first and most basic version (Theorem 5.2.1 is a

J-fraction in 8 variables and another family of infinitely many variables that enu-

merates permutations with respect to the record-and-cycle classification except for

the segregation of cycle valleys; it resolves [SZ22, Conjecture 2.3]. The second

version (Theorem 5.2.2) is a (p,q)-generalisation of the first one: it is a J-fraction

with 16 variables along with one family of infinitely many variables that enumerates

permutations with respect to the record-and-cycle classification (introduced in Sec-

tion 2.5.1) together with three pairs of (p,q)-variables counting the refined categories

of crossing and nesting except for cycle valleys, and one variable corresponding

to pseudo-nestings of fixed points. Finally, our third version (Theorem 5.2.3) —

is a J-fraction in five infinite families of indeterminates along with one additional

variable that keeps track of the number of cycles; this generalises the previous two by

employing the index-refined crossing and nesting statistics (2.67). All these results

will be proved in Section 5.4.

5.2.1 J-fraction (Sokal–Zeng conjecture)

Recall the polynomial Q̂n defined in equation (5.4)/[SZ22, equation (2.29)]

Q̂n(x1,x2,y1,y2,u1,u2,v1,v2,w,λ ) =

∑
σ∈Sn

xeareccpeak(σ)
1 xeareccdfall(σ)

2 yereccval(σ)
1 yereccdrise(σ)

2 ×

unrcpeak(σ)
1 unrcdfall(σ)

2 vnrcval(σ)
1 vnrcdrise(σ)

2 wfix(σ)
λ

cyc(σ)
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where wfix(σ) is

wfix(σ) = ∏
i∈Fix

wpsnest(i,σ) .

Our first main result for permutations is [SZ22, Conjecture 2.3].

Theorem 5.2.1 ([SZ22, Conjecture 2.3], J-fraction for permutations). The ordinary

generating function of the polynomials Q̂n specialised to v1 = y1 has the J-type

continued fraction

∞

∑
n=0

Q̂n(x1,x2,y1,y2,u1,u2,y1,v2,w,λ ) tn =

1

1−λw0t−
λx1y1t2

1− (x2+y2+λw1)t−
(λ+1)(x1+u1)y1t2

1− (x2+y2+u2+v2+λw2)t−
(λ+2)(x1+2u1)y1t2

1−·· ·

(5.15)

with coefficients

γ0 = λw0 (5.16a)

γn = [x2+(n−1)u2]+ [y2+(n−1)v2]+λwn for n≥ 1 (5.16b)

βn = (λ +n−1)[x1+(n−1)u1]y1 (5.16c)

The continued fraction (5.15)/(5.16) requires only one specialisation, namely

v1 = y1. This clearly generalises the second J-fraction for permutations of Sokal and

Zeng [SZ22, Theorem 2.4] which also requires the specialisation v2 = y2.

We will prove Theorem 5.2.1 in Section 5.4.

5.2.2 p,q-generalisation

We now state a p,q-generalisation for Theorem 5.2.1 which also generalises [SZ22,

Theorem 2.12]. Let us first recall the polynomial Q̂n defined in [SZ22, Equa-
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tion (2.92)]

Q̂n(x1,x2,y1,y2,u1,u2,v1,v2,w, p+1, p+2, p−1, p−2,q+1,q+2,q−1,q−2,s,λ ) =

∑
σ∈Sn

xeareccpeak(σ)
1 xeareccdfall(σ)

2 yereccval(σ)
1 yereccdrise(σ)

2 ×

unrcpeak(σ)
1 unrcdfall(σ)

2 vnrcval(σ)
1 vnrcdrise(σ)

2 wfix(σ) ×

pucrosscval(σ)
+1 pucrosscdrise(σ)

+2 plcrosscpeak(σ)
−1 plcrosscdfall(σ)

−2 ×

qunestcval(σ)
+1 qunestcdrise(σ)

+2 qlnestcpeak(σ)
−1 qlnestcdfall(σ)

−2 spsnest(σ)
λ

cyc(σ) . (5.17)

For the p,q-generalisation of their second J-fraction, involving the polynomials

Q̂n, Sokal and Zeng needed the specialisations v1 = y1, v2 = y2, q+1 = p+1, and

q+2 = p+2. However, we now state a J-fraction that only requires the specialisations

v1 = y1 and q+1 = p+1.

Theorem 5.2.2 (J-fraction with p,q-generalisation for permutations). The ordinary

generating function of the polynomials Q̂n specialised to v1 = y1 and q+1 = p+1 has

the J-type continued fraction

∞

∑
n=0

Q̂n(x1,x2,y1,y2,u1,u2,y1,v2,w, p+1, p+2, p−1, p−2, p+1,q+2,q−1,q−2,s,λ ) tn =

1

1−λw0t−
λx1y1t2

1− (x2+y2+λ sw1)t−
(λ+1)(p−1x1+q−1u1)p+1y1t2

1− (p−2x2+q−2u2+p+2y2+q+2v2+λ s2w2)t−
(λ+2)(p2

−1x1+[q−1 p−1 +q2
−1]u1)p2

+1y1t2

1−·· ·

(5.18)

with coefficients

γ0 = λw0 (5.19a)

γn = (pn−1
−2 x2+q−2[n−1]p−2,q−2u2)+(pn−1

+2 y2+q+2[n−1]p+2,q+2v2)+λ snwn

for n≥ 1 (5.19b)

βn = (λ +n−1)(pn−1
−1 x1+q−1[n−1]p−1,q−1u1)pn−1

+1 y1 (5.19c)
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We will prove this theorem in Section 5.4, as a special case of a more general

result.

5.2.3 Master J-fraction

We can go much farther and obtain a more general J-fraction generalising Theo-

rems 5.2.1 and 5.2.2. We obtain a J-fraction in the following five families of infinitely

many indeterminates: a= (a`)`≥0, b= (b`,`′)`,`′≥0, c= (c`,`′)`,`′≥0, d= (d`,`′)`,`′≥0,

e = (e`)`≥0; please note that a and e have one index while b,c and d have two

indices. Using the index-refined crossing and nesting statistics defined in (2.67), we

define the polynomial Q̂n(a,b,c,d,e,λ ) by

Q̂n(a,b,c,d,e,λ ) =

∑
σ∈Sn

λ
cyc(σ)

∏
i∈Cval(σ)

aucross(i,σ)+unest(i,σ) ∏
i∈Cpeak(σ)

blcross(i,σ), lnest(i,σ) ×

∏
i∈Cdfall(σ)

clcross(i,σ), lnest(i,σ) ∏
i∈Cdrise(σ)

ducross(i,σ),unest(i,σ) ∏
i∈Fix(σ)

epsnest(i,σ)

(5.20)

where recall that Cval(σ) = {i : σ−1(i)> i < σ(i)} and likewise for the others.

The polynomials (5.20) have a beautiful J-fraction:

Theorem 5.2.3 (Master J-fraction for permutations). The ordinary generating func-

tion of the polynomials Q̂n(a,b,c,d,e,λ ) has the J-type continued fraction

∞

∑
n=0

Q̂n(a,b,c,d,e,λ ) tn =

1

1−λe0t−
λa0b00t2

1− (c00 +d00 +λe1)t−
(λ +1)a1(b01 +b10)t2

1− (c01 + c10 +d01 +d10 +λe2)t−
(λ +2)a2(b02 +b11 +b20)t2

1−·· ·
(5.21)
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with coefficients

γ0 = λe0 (5.22a)

γn =

(
n−1

∑
ξ=0

cn−1−ξ ,ξ

)
+

(
n−1

∑
ξ=0

dn−1−ξ ,ξ

)
+λen for n≥ 1 (5.22b)

βn = (λ +n−1) an−1

(
n−1

∑
ξ=0

bn−1−ξ ,ξ

)
(5.22c)

(5.22d)

We will prove this theorem in Section 5.4. It implies Theorems 5.2.1 and 5.2.2

by straightforward specialisations.

Remarks. 1. We remark that (5.20) is almost the same as the polynomial

introduced in [SZ22, eq. (2.77)], except for the extra factor λ cyc(σ) and the index of

a depends on the sum ucross(i,σ)+unest(i,σ). This is the price we have to pay in

order to include the statistic cyc. See [SZ22, p. 13].

2. We also note that (5.20) is almost the same as the polynomial [SZ22,

eq. (2.100)] as well, except our treatment of d is nicer as we are able to recover

both ucross(i,σ), unest(i,σ), and not just their sum. In fact, this separation is what

allows us to prove [SZ22, Conjecture 2.3] by using [SZ22, Lemma 2.10].

3. The continued fraction (5.21)/(5.22) is the same as [SZ22, eqs. (2.101),(2.102)

and (2.103)] except for the indexing of d. �

5.3 D-permutations: Statements of results
In this section, we state our continued fractions for D-permutations. Analogous

to our T-fractions in Theorems 4.2.3, 4.2.7, 4.2.9 and the variant forms in Theo-

rems 4.2.10, 4.2.11, our continued fractions for D-permutations here also have two

variants: the first involve the record classification and the second involve the variant

record classification, both have been introduced in Sections 2.5.1/2.5.2. The most

basic versions in each variant are a T-fraction (Theorems 5.3.1 and 5.3.5) in 12

variables that enumerates D-permutations with respect to the parity-refined record-
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and-cycle classification and the variant parity-refined record-and-cycle classification

respectively; except for the segregation of cycle valleys. Theorem 5.3.1 is the same

as Theorem 4.3.1 and was conjectured in Chapter 4. The second versions (Theo-

rems 5.3.3 and 5.3.6) are respective (p,q)-generalisations of the first versions: they

are a T-fraction with 21 variables that enumerates D-permutations with respect to the

parity-refined record-and-cycle classification and variant parity-refined record-and-

cycle classification respectively, together with three pairs of (p,q)-variables counting

the refined categories of crossings and nestings except for cycle valleys. Finally, our

third versions (Theorems 5.3.4 and 5.3.7) — is a T-fraction in six infinite families

of indeterminates and one additional variable; this generalises the previous versions

by employing the index-refined crossing and nesting statistics (2.67) and the variant

index-refined crossing and nesting statistics (2.69). One of the variables (λ ) in each

version counts the number of cycles.

The first variants will be stated in Section 5.3.1 and will be proved in Sec-

tion 5.5.1. The second variants will be stated in Section 5.3.2 and will be proved in

Section 5.5.2.

We then rephrase Theorems 5.3.1 and 5.3.5 using cycle valley minima in

Section 5.3.3; our approach will be similar to what was done in Section 4.3.1.3 and

will allow us to resolve [RZ96a, Conjecture 12].

5.3.1 Continued fractions using record classification

5.3.1.1 T-fraction

Recall the polynomial P̂n defined in (5.12)/(4.41)

P̂n(x1,x2,y1,y2,u1,u2,v1,v2,we,wo,ze,zo,λ ) =

∑
σ∈D2n

xeareccpeak(σ)
1 xeareccdfall(σ)

2 yereccval(σ)
1 yereccdrise(σ)

2 ×

unrcpeak(σ)
1 unrcdfall(σ)

2 vnrcval(σ)
1 vnrcdrise(σ)

2 ×

wevennrfix(σ)
e woddnrfix(σ)

o zevenrar(σ)
e zoddrar(σ)

o λ
cyc(σ).

We will prove Theorem 4.3.1 as our first main result for D-permutations.
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Theorem 5.3.1. The ordinary generating function of the polynomials (5.12) spe-

cialised to v1 = y1 has the T-type continued fraction

∞

∑
n=0

P̂n(x1,x2,y1,y2,u1,u2,y1,v2,we,wo,ze,zo,λ ) tn =

1

1−λ 2zezo t−
λx1y1 t

1−
(x2+λwe)(y2+λwo) t

1−
(λ +1)(x1+u1)y1 t

1−
(x2+u2+λwe)(y2+v2+λwo) t

1−
(λ +2)(x1+2u1)y1 t

1−
(x2+2u2+λwe)(y2+2v2+λwo) t

1−·· ·
(5.23)

with coefficients

α2k−1 = (λ + k−1) [x1 +(k−1)u1] y1 (5.24a)

α2k = [x2 +(k−1)u2 +λwe] [y2 +(k−1)v2 +λwo] (5.24b)

δ1 = λ
2zezo (5.24c)

δn = 0 for n≥ 2 (5.24d)

We will prove Theorem 5.3.1 in Section 5.5.1.

The continued fraction (5.23)/(5.24) is almost similar to our first T-fraction for

D-permutations in equation (4.8)/(4.9) except for the extra factor λ and the special-

isation v1 = y1. This continued fraction is also the same as our second T-fraction

for D-permutations in equation (4.45)/(4.46) which proves the equidistribution of

statistics for D-permutations in Theorem 4.3.1′.

We can also enumerate D-cycles by extracting the coefficient of λ 1 in Theo-
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rem 5.3.1. The analogous polynomials PDC
n are

PDC
n (x1,x2,y1,y2,u1,u2,v1,v2) =

∑
σ∈DC2n

xeareccpeak(σ)
1 xeareccdfall(σ)

2 yereccval(σ)
1 yereccdrise(σ)

2 ×

unrcpeak(σ)
1 unrcdfall(σ)

2 vnrcval(σ)
1 vnrcdrise(σ)

2 . (5.25)

Corollary 5.3.2 (S-fraction for D-cycles). The ordinary generating function of the

polynomials (5.25) specialised to v1 = y1 has the S-type continued fraction

∞

∑
n=0

PDC
n+1(x1,x2,y1,y2,u1,u2,y1,v2) tn =

x1y1

1−
x2y2 t

1−
(x1+u1)y1 t

1−
(x2+u2)(y2+v2) t

1−
(x1+2u1)2y1 t

1−
(x2+2u2)(y2+2v2) t

1−·· ·
(5.26)

with coefficients

α2k−1 = [x2 +(k−1)u2] [y2 +(k−1)v2] (5.27a)

α2k = [x1 + ku1] ky1 (5.27b)

5.3.1.2 p,q-generalisation

In this subsection, we shall provide a p,q-generalisation for Theorem 5.3.1 by

including four pairs of (p,q)–variables corresponding to the four refined types of

crossings and nestings, as well as two variables corresponding to pseudo-nestings
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for fixed points:

P̂n(x1,x2,y1,y2,u1,u2,v1,v2,we,wo,ze,zo, p−1, p−2, p+1, p+2,q−1,q−2,q+1,q+2,se,so,λ ) =

∑
σ∈D2n

xeareccpeak(σ)
1 xeareccdfall(σ)

2 yereccval(σ)
1 yereccdrise(σ)

2 ×

unrcpeak(σ)
1 unrcdfall(σ)

2 vnrcval(σ)
1 vnrcdrise(σ)

2 ×

wevennrfix(σ)
e woddnrfix(σ)

o zevenrar(σ)
e zoddrar(σ)

o ×

plcrosscpeak(σ)
−1 plcrosscdfall(σ)

−2 pucrosscval(σ)
+1 pucrosscdrise(σ)

+2 ×

qlnestcpeak(σ)
−1 qlnestcdfall(σ)

−2 qunestcval(σ)
+1 qunestcdrise(σ)

+2 ×

sepsnest(σ)
e sopsnest(σ)

o λ
cyc(σ) . (5.28)

This is the same as (4.22) except for the extra factor of λ cyc(σ). We now state a

J-fraction under the specialisations v1 = y1 and q+1 = p+1:

Theorem 5.3.3 (T-fraction for D-permutations, p,q-generalisation). The ordinary

generating function of the polynomials (5.28) specialised to v1 = y1 and q+1 = p+1

has the T-type continued fraction

∞

∑
n=0

P̂n(x1,x2,y1,y2,u1,u2,y1,v2,we,wo,ze,zo, p−1, p−2, p+1, p+2,q−1,q−2, p+1,q+2,se,so,λ ) tn =

1

1−λ 2zezo t−
λx1y1 t

1−
(x2+λ sewe)(y2+λ sowo) t

1−
(λ +1)p+1y1(p−1x1+q−1u1) t

1−
(p−2x2+q−2u2+λ s2

ewe)(p+2y2+q+2v2+λ s2
owo) t

1−
(λ +2)p2

+1y1(p2
−1x1+q−1[2]p−1,q−1u1) t

1−
(p2
−2x2+q−2[2]p−2,q−2u2+λ s3

ewe)(p2
+2y2+q+2[2]p+2,q+2v2+λ s3

owo) t

1−·· ·
(5.29)
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with coefficients

α2k−1 = (λ + k−1) pk−1
+1 y1

(
pk−1
−1 x1 +q−1[k−1]p−1,q−1u1

)
(5.30a)

α2k =
(

pk−1
−2 x2 +q−2[k−1]p−2,q−2u2 +λ sk

ewe

)
×(

pk−1
+2 y2 +q+2[k−1]p+2,q+2v2 +λ sk

owo

)
(5.30b)

δ1 = λ
2zezo (5.30c)

δn = 0 for n≥ 2 (5.30d)

We will prove this theorem in Section 5.5.1, as a special case of a more general

result.

5.3.1.3 Master T-fraction

In this subsection, we shall provide a master T-fraction generalising Theorems 5.3.1

and 5.3.3. Let us introduce a polynomial in six infinite families of indeterminates a=

(a`)`≥0, b = (b`,`′)`,`′≥0, c = (c`,`′)`,`′≥0, d = (d`,`′)`,`′≥0, e = (e`)`≥0, f = (f`)`≥0

that will have a nice T-fraction and that will include the polynomials (5.12) and

(5.28) as specialisations. Please note that a,e and f have one index while b,c and d

have two indices. Using the index-refined crossing and nesting statistics defined in

(2.67), we define the polynomial Q̂n(a,b,c,d,e, f,λ ) by

Q̂n(a,b,c,d,e, f,λ ) =

∑
σ∈D2n

λ
cyc(σ)

∏
i∈Cval(σ)

aucross(i,σ)+unest(i,σ) ∏
i∈Cpeak(σ)

blcross(i,σ), lnest(i,σ) ×

∏
i∈Cdfall(σ)

clcross(i,σ), lnest(i,σ) ∏
i∈Cdrise(σ)

ducross(i,σ),unest(i,σ) ×

∏
i∈Evenfix(σ)

epsnest(i,σ) ∏
i∈Oddfix(σ)

fpsnest(i,σ) . (5.31)

where recall that Cval(σ) = {i : σ−1(i)> i < σ(i)} and likewise for the others.

We remark that (5.31) is almost the same as the polynomial (4.31) except for the

extra factor λ cyc(σ) and the index of a depends on the sum ucross(i,σ)+unest(i,σ).

That is the price we have to pay in order to include the statistic cyc. See Appendix in
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Chapter 4. We also note that (5.31) is almost the same as the polynomial (5.20) as

well, but restricted to D-permutations and refined to record the parity of fixed points.

The polynomials (5.31) have a beautiful T-fraction:

Theorem 5.3.4 (Master T-fraction for D-permutations). The ordinary generating

function of the polynomials Q̂n(a,b,c,d,e, f,λ ) has the T-type continued fraction

∞

∑
n=0

Q̂n(a,b,c,d,e, f,λ ) tn =
1

1−λ 2e0f0t−
λa0b00t

1−
(c00 +λe1)(d00 +λ f1)t

1−
(λ +1)a1(b01 +b10)t

1−
(c01 + c10 +λe2)(d01 +d10 +λ f2)t

1−·· ·
(5.32)

with coefficients

α2k−1 = (λ + k−1)ak−1

(
k−1

∑
ξ=0

bk−1−ξ ,ξ

)
(5.33a)

α2k =

(
λek +

k−1

∑
ξ=0

ck−1−ξ ,ξ

)(
λ fk +

k−1

∑
ξ=0

dk−1−ξ ,ξ

)
(5.33b)

δ1 = λ
2e0f0 (5.33c)

δn = 0 for n≥ 2 (5.33d)

We will prove this theorem in Section 5.5.1. It implies Theorems 5.3.1 and 5.3.3

by straightforward specialisations.

Remark. We remark that (5.31) is almost the same as the polynomial (4.69)

as well, except our treatment of d is different: we are able to recover the statistics

ucross(i,σ), unest(i,σ), and not the statistics ucross′(i,σ), unest′(i,σ). In fact, this

separation is crucial for our work and it allows us to prove this result. �

5.3.2 Continued fractions using variant record classification

Similar to Section 4.2.5 in Chapter 4, our T-fractions for D-permutations (Theo-

rems 5.3.1, 5.3.3, 5.3.4) in this chapter also have variant forms in which we use
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the variant index-refined crossing and nesting statistics (2.69). We shall state these

variants in this subsection.

5.3.2.1 T-fraction

Let P̂′n be the polynomials defined as follows:

P̂′n(x1,x2,y1,y2,u1,u2,v1,v2,we,wo,ze,zo,λ ) =

∑
σ∈D2n

xereccpeak′(σ)
1 xeareccdfall′(σ)

2 yeareccval′(σ)
1 yereccdrise′(σ)

2 ×

unrcpeak′(σ)
1 unrcdfall′(σ)

2 vnrcval′(σ)
1 vnrcdrise′(σ)

2 ×

wevennrfix(σ)
e woddnrfix(σ)

o zevenrar(σ)
e zoddrar(σ)

o λ
cyc(σ). (5.34)

We have the following variant of Theorem 5.3.1.

Theorem 5.3.5. The ordinary generating function of the polynomials P̂′n defined in

(5.34) specialised to v1 = y1 has the same T-type continued fraction (5.23)/ (5.24) as

the polynomials P̂n defined in (5.12). Therefore,

P̂′n(x1,x2,y1,y2,u1,u2,y1,v2,we,wo,ze,zo,λ ) = P̂n(x1,x2,y1,y2,u1,u2,y1,v2,we,wo,ze,zo,λ ) .

(5.35)

We will prove Theorem 5.3.5 in Section 5.5.2.

5.3.2.2 p,q-generalisation

We shall now provide a p,q-generalisation for Theorem 5.3.5 by including four pairs

of (p,q)–variables corresponding to the four variants of the refined types of crossings

and nestings, as well as two variables corresponding to pseudo-nestings for fixed
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points:

P̂′n(x1,x2,y1,y2,u1,u2,v1,v2,we,wo,ze,zo, p−1, p−2, p+1, p+2,q−1,q−2,q+1,q+2,se,so,λ ) =

∑
σ∈D2n

xereccpeak′(σ)
1 xeareccdfall′(σ)

2 yeareccval′(σ)
1 yereccdrise′(σ)

2 ×

unrcpeak′(σ)
1 unrcdfall′(σ)

2 vnrcval′(σ)
1 vnrcdrise′(σ)

2 ×

wevennrfix(σ)
e woddnrfix(σ)

o zevenrar(σ)
e zoddrar(σ)

o ×

pucrosscpeak′(σ)
−1 plcrosscdfall′(σ)

−2 plcrosscval′(σ)
+1 pucrosscdrise′(σ)

+2 ×

qunestcpeak′(σ)
−1 qlnestcdfall′(σ)

−2 qlnestcval′(σ)
+1 qunestcdrise′(σ)

+2 ×

sepsnest(σ)
e sopsnest(σ)

o λ
cyc(σ) .

(5.36)

This is the same as the polynomial (4.36) except for the extra factor of λ cyc(σ).

We now state a J-fraction under the specialisations v1 = y1 and q+1 = p+1:

Theorem 5.3.6. The ordinary generating function of the polynomials P̂′n defined in

(5.36) specialised to v1 = y1 and q+1 = p+1 has the same T-type continued fraction

(5.29)/ (5.30) as the polynomials P̂n defined in (5.28). Therefore

P̂′n(x1,x2,y1,y2,u1,u2,y1,v2,we,wo,ze,zo, p−1, p−2, p+1, p+2,q−1,q−2, p+1,q+2,se,so,λ )

= P̂n(x1,x2,y1,y2,u1,u2,y1,v2,we,wo,ze,zo, p−1, p−2, p+1, p+2,q−1,q−2, p+1,q+2,se,so,λ ) .

(5.37)

We will prove this theorem in Section 5.5.2, as a special case of a more general

result.
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5.3.2.3 Master T-fraction

We introduce a polynomial in six infinite families of indeterminates a,b,c,d,e, f as

before but by using the variant index-refined crossing and nesting statistics (2.69):

Q̂′n(a,b,c,d,e, f,λ ) =

∑
σ∈D2n

λ
cyc(σ)

∏
i∈Cval(σ)

alcross′(i,σ)+ lnest′(i,σ) ∏
i∈Cpeak(σ)

bucross′(i,σ),unest′(i,σ) ×

∏
i∈Cdfall(σ)

clcross′(i,σ), lnest′(i,σ) ∏
i∈Cdrise(σ)

ducross′(i,σ),unest′(i,σ) ×

∏
i∈Evenfix(σ)

epsnest(i,σ) ∏
i∈Oddfix(σ)

fpsnest(i,σ) . (5.38)

We remark that (5.38) is almost the same as the polynomial introduced in

(4.34), except for the extra factor λ cyc(σ) and the index of a depends on the sum

lcross′(i,σ)+ lnest′(i,σ).

We have the following variant of Theorem 5.3.4

Theorem 5.3.7. The ordinary generating function of the polynomials Q̂′n defined in

(5.38) has the same T-type continued fraction (5.32)/ (5.33) as the polynomials Q̂n

defined in (5.31). Therefore

Q̂′n(a,b,c,d,e, f,λ ) = Q̂n(a,b,c,d,e, f,λ ) . (5.39)

Theorem 5.3.7 will be proved in Section 5.5.2. It implies Theorems 5.3.5

and 5.3.6 by straightforward specialisations.

5.3.3 Reformulation of results using cycle valley minima and

the Randrianarivony–Zeng conjecture

We will now rephrase our results in this section by identifying minimum ele-

ments in a cycle; this was introduced in Section 2.5.1. This will help us to prove

Conjecture 5.1.2′ as a corollary. Our approach here will be the same as that in

Section 4.3.1.3.

We notice that the number of cycles in a permutation can be recovered if we
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know the number of (even and odd) fixed points and the number of cycle valley

minima (or the number of cycle peak maxima). We will rephrase our results by

distributing the weight λ , that we had been using for the number of cycles, among

fixed points and cycle valley minima. In Chapter 4 we did this by introducing the

polynomial P̃n in (4.52) which we recall here:

P̃n(x1,x2, ỹ1,y2,u1,u2, ṽ1,v2,we,wo,ze,zo) =

∑
σ∈D2n

xeareccpeak(σ)
1 xeareccdfall(σ)

2 ỹminval(σ)
1 yereccdrise(σ)

2 ×

unrcpeak(σ)
1 unrcdfall(σ)

2 ṽnminval(σ)
1 vnrcdrise(σ)

2 ×

wevennrfix(σ)
e woddnrfix(σ)

o zevenrar(σ)
e zoddrar(σ)

o . (5.40)

We can rephrase Theorem 5.3.1 by replacing the factor (λ + k− 1)y1 with ỹ +

(k− 1)ṽ and removing the factors of λ multiplying we,wo,ze,zo; this will give us

Theorem 4.3.1′′ which we copy here:

Theorem 5.3.1.′ The ordinary generating function of the polynomials (5.40) has the

T-type continued fraction

∞

∑
n=0

P̃n(x1,x2, ỹ1,y2,u1,u2, ṽ1,v2,we,wo,ze,zo) tn =

1

1− zezo t−
x1ỹ1 t

1−
(x2+we)(y2+wo) t

1−
(x1+u1)(ỹ1 + ṽ1) t

1−
(x2+u2+we)(y2+v2+wo) t

1−
(x1+2u1)(ỹ1 +2ṽ1) t

1−
(x2+2u2+we)(y2+2v2+wo) t

1−·· ·
(5.41)
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with coefficients

α2k−1 = [x1 +(k−1)u1] [ỹ1 +(k−1)ṽ1] (5.42a)

α2k = [x2 +(k−1)u2 +we] [y2 +(k−1)v2 +wo] (5.42b)

δ1 = zezo (5.42c)

δn = 0 for n≥ 2 (5.42d)

We leave the rephrasings of Theorems 5.3.3 and 5.3.4 to the reader and di-

rectly proceed to rephrase Theorem 5.3.5. To do this, we introduce the following

polynomial:

P̃′n(x1,x2, ỹ1,y2,u1,u2, ṽ1,v2,we,wo,ze,zo) =

∑
σ∈D2n

xereccpeak′(σ)
1 xeareccdfall′(σ)

2 ỹminval(σ)
1 yereccdrise′(σ)

2 ×

unrcpeak′(σ)
1 unrcdfall′(σ)

2 ṽnminval(σ)
1 vnrcdrise′(σ)

2 ×

wevennrfix(σ)
e woddnrfix(σ)

o zevenrar(σ)
e zoddrar(σ)

o . (5.43)

Theorem 5.3.5 can now simply be restated as follows:

Theorem 5.3.5.′ The ordinary generating function of the polynomials P̃′n defined in

(5.43) has the same T-type continued fraction (5.41)/ (5.42) as the polynomials P̃n

defined in (5.40). Therefore,

P̃′n(x1,x2, ỹ1,y2,u1,u2, ṽ1,v2,we,wo,ze,zo) = P̃n(x1,x2, ỹ1,y2,u1,u2, ṽ1,v2,we,wo,ze,zo) .

(5.44)

Recall that we observed in Section 5.1.3 the equivalence between [RZ96a,

Conjecture 12] and Conjecture 5.1.2′. We now obtain Conjecture 5.1.2′ as a corollary

of Theorem 5.3.5′.
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Corollary 5.3.8 (Conjecture 5.1.2′). Recall the polynomials Gn, defined in

(5.9)/ (5.11),

Gn(x,y, x̄, ȳ) = ∑
σ∈Do

2n

xcomi(σ)ylema(σ)x̄cemi(σ)ȳremi(σ)

= ∑
σ∈Do

2n

xminval(σ)yereccpeak′(σ)x̄evennrfix(σ)ȳeareccdfall′(σ) .

The ordinary generating functions of Gn has the S-type continued fraction

1+
∞

∑
n=1

Gn(x,y, x̄, ȳ)tn =
1

1−
xyt

1−
1(x̄+ ȳ)t

1−
(x+1)(y+1)t

1−
2(x̄+ ȳ+1)

1−
(x+2)(y+2)t

1−
3(x̄+ ȳ+2)t

· · ·

(5.45)

with coefficients

α2k−1 = (x + k−1) (y + k−1) (5.46a)

α2k = k (x̄ + ȳ + k−1) (5.46b)

PROOF. It is evident from (5.11)/(5.43) that Gn can be obtained from P̃′n by special-

ising ỹ1 = x,x1 = y,we = x̄,x2 = ȳ and wo = zo = 0, and setting all other variables

to 1. This along with Theorems 5.3.1′/5.3.5′ proves the result. �



5.4. Permutations: Proof of Theorems 5.2.1, 5.2.2, 5.2.3 216

5.4 Permutations: Proof of Theorems 5.2.1, 5.2.2,

5.2.3

Sokal and Zeng [SZ22, Section 6.1] used a variant of the Foata–Zeilberger bijection

[FZ90] to prove [SZ22, Theorems 2.1(a), 2.2, 2.5, 2.7 and 2.9] i.e., their “first

theorems” for permutations. We will provide a new interpretation to this bijection in

terms of Laguerre digraphs and then use this interpretation to prove our theorems for

permutations.

We first recall Sokal and Zeng’s bijection in Subsection 5.4.1, and then introduce

our interpretation in Subsection 5.4.2. We complete our proofs in Subsection 5.4.3.

5.4.1 Sokal–Zeng variant of the Foata–Zeilberger bijection

Sokal and Zeng employed a variant of the Foata–Zeilberger bijection to prove [SZ22,

Theorems 2.1(a), 2.2, 2.5, 2.7, and 2.9], i.e., their “first theorems” for permutations.

We begin by recalling this bijection which is a correspondence between Sn to the

set of (A,B,C)-labelled Motzkin paths of length n, where the labels ξi lie in the sets

Ah = {0, . . . ,h} for h≥ 0 (5.47a)

Bh = {0, . . . ,h−1} for h≥ 1 (5.47b)

Ch =
(
{1}×C(1)

h

)
∪
(
{2}×C(2)

h

)
∪
(
{3}×C(3)

h

)
for h≥ 0 (5.47c)

where

C(1)
h = {0, . . . ,h−1} for k ≥ 0 (5.48a)

C(2)
h = {0, . . . ,h−1} for k ≥ 0 (5.48b)

C(3)
h = {0} for k ≥ 0 (5.48c)

Notice that our convention for labels introduced in Section 2.2.5 are slightly

different from those in [SZ22]. A key difference is that our label set starts at 0 and

not at 1. A level step that has label ξh ∈ {i}×C(i)
h will be called a level step of type i

(i = 1,2,3).
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We will begin by recalling how the Motzkin path ω is defined; then we will

explain how the labels ξ are defined; next we sketch the proof that the mapping is

indeed a bijection. There were two more steps in [SZ22, Section 6.1] which we will

not recall; these were the translation of the various statistics from Sn to labelled

Motzkin paths; and summing over labels ξ to obtain the weight W (ω).

Step 1: Definition of the Motzkin path. Given a permutation σ ∈ Sn, we

classify the indices i ∈ [n] according to the cycle classification. We then define a

path ω = (ω0, . . . ,ωn) starting at ω0 = (0,0) and ending at ωn = (n,0), with steps

s1, . . . ,sn, as follows:

• If i is a cycle valley, then si is a rise.

• If i is a cycle peak, then si is a fall.

• If i is a cycle double fall, then si is a level step of type 1.

• If i is a cycle double rise, then si is a level step of type 2.

• If i is a fixed point, then si is a level step of type 3.

The fact that the resulting path is indeed a Motzkin path was proved by providing

an interpretation of the height hi which we recall here:

Lemma 5.4.1 ([SZ22, Lemma 6.1]). For i ∈ [n+1] we have

hi−1 = #{ j < i : σ( j)≥ i} (5.49a)

= #{ j < i : σ
−1( j)≥ i}. (5.49b)

We also recall ([SZ22, eq. (6.4)]) which is an equivalent formulation of Equa-

tion (5.49):

hi = #{ j ≤ i : σ( j)> i} (5.50a)

= #{ j ≤ i : σ
−1( j)> i}. (5.50b)

Notice that if i is a fixed point, then by comparing (5.49a)/(5.50a) with (2.68)

we see that the height of the Motzkin path after (or before) step i equals the number
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of pseudo-nestings of the fixed point:

hi−1 = hi = psnest(i,σ) . (5.51)

Step 2: Definition of the labels ξξξ iii. We now recall the definition of the labels

ξi =


#{ j : j < i and σ( j)> σ(i)} if σ(i)> i if i ∈ Cval∪Cdrise

#{ j : j > i and σ( j)< σ(i)} if σ(i)< i if i ∈ Cpeak∪Cdfall

0 if σ(i) = i if i ∈ Fix

(5.52)

where recall that Cval is the set of all cycle valleys of σ and likewise for the others.

For sake of brevity, we are abusing notation for fixed points, cycle double rises and

cycle double falls by dropping the first index of ξi.

Compare our definition (5.52) with [SZ22, (6.5)] and notice the shift from 1

to 0. These definitions have a simple interpretation in terms of the nesting statistics

defined in (2.67b,d):

ξi =


unest(i,σ) if σ(i)> i if i ∈ Cval∪Cdrise

lnest(i,σ) if σ(i)< i if i ∈ Cpeak∪Cdfall

0 if σ(i) = i if i ∈ Fix

(5.53)

To verify that the inequalities (2.37)/(5.47) are satisfied; to do this, we interpret

hi−1−ξi in terms of the crossing statistics defined in (2.67a,c):

Lemma 5.4.2 (Crossing statistics). We have

hi−1−ξi = ucross(i,σ) if i ∈ Cval (5.54)

hi−1−1−ξi = ucross(i,σ) if i ∈ Cdrise (5.55)

hi−1−1−ξi = lcross(i,σ) if i ∈ Cpeak ∪ Cdfall (5.56)

Again compare Lemma 5.4.2 with [SZ22, Lemma 6.2] to see how the shift of 1
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affects these quantities.

Since the quantities (5.54)–(5.56) are manifestly nonnegative, it follows imme-

diately that the inequalities (2.37)/(5.47) are satisfied.

Step 3: Proof of bijection. We recall the description of the inverse map for the

mapping σ 7→ (ω,ξ ).

First, some preliminaries: Given a permutation σ ∈Sn, we define five subsets

of [n]:

F = {i : σ(i)> i} = positions of excedances (5.57a)

F ′ = {i : i > σ
−1(i)} = values of excedances (5.57b)

G = {i : σ(i)< i} = positions of anti-excedances (5.57c)

G′ = {i : i < σ
−1(i)} = values of anti-excedances (5.57d)

H = {i : σ(i) = i} = fixed points (5.57e)

Let us observe that

F ∩F ′ = cycle double rises (5.58a)

G∩G′ = cycle double falls (5.58b)

F ∩G′ = cycle valleys (5.58c)

F ′∩G = cycle peaks (5.58d)

F ∩G = ∅ (5.58e)

F ′∩G′ = ∅ (5.58f)

and of course H is disjoint from F,F ′,G,G′.

Let us also recall the notion of an inversion table: Let S be a totally ordered set

of cardinality k, and let xxx= (x1, . . . ,xk) be an enumeration of S; then the (left-to-right)

inversion table corresponding to xxx is the sequence ppp = (p1, . . . , pk) of nonnegative

integers defined by pα = #{β < α : xβ > xα}. Note that 0 ≤ pα ≤ α − 1 for all

α ∈ [k], so there are exactly k! possible inversion tables. Given the inversion table ppp,
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we can reconstruct the sequence xxx by working from right to left, as follows: There

are pk elements of S larger than xk, so xk must be the (pk +1)th largest element of

S. Then there are pk−1 elements of S \ {xk} larger than xk−1, so xk−1 must be the

(pk−1+1)th largest element of S\{xk}. And so forth. [Analogously, the right-to-left

inversion table corresponding to xxx is the sequence ppp = (p1, . . . , pk) of nonnegative

integers defined by pα = #{β > α : xβ < xα}.]

With these preliminaries out of the way, we can now describe the map (ω,ξ ) 7→

σ . Given the Motzkin path ω , we read off which indices i correspond to cycle valleys,

cycle peaks, cycle double falls, cycle double rises, and fixed points; this allows us to

reconstruct the sets F,F ′,G,G′,H. We now use the labels ξ to reconstruct the maps

σ � F : F → F ′ and σ � G : G→ G′, as follows: Let i1, . . . , ik be the elements of F

written in increasing order; then the sequence j1, . . . , jk defined by jα = σ(iα) is a

listing of F ′ whose inversion table is given by pα = ξiα : this is the content of (5.52)

in the case σ(i)> i. So we can use ξ � F to reconstruct σ � F . In a similar way we

can use ξ � G to reconstruct σ � G, but now we must use the right-to-left inversion

table because of how (5.52) is written in the case σ(i)< i.

5.4.2 Combinatorial interpretation using Laguerre digraphs

We begin with a Motzkin path ω and an assignment of labels ξ satisfying

(2.37)/(5.47). The inverse bijection (Section 5.4.1 Step 3), gives us a permuta-

tion σ . We will now break this process into several intermediate steps and reinterpret

it using Laguerre digraphs. Recall that a Laguerre digraph of size n is a directed

graph where each vertex has a distinct label from the label set [n] and has indegree

0 or 1 and outdegree 0 or 1. Clearly, any subgraph of a Laguerre digraph is also

a Laguerre digraph. The connected components in a Laguerre digraph are either

directed paths or directed cycles, where a path with one vertex is called an isolated

vertex and a cycle with one vertex is called a loop.

Notice that a Laguerre digraph with no paths is a diagrammatic representation

of a permutation in cycle notation (see [Sta09, pp. 22-23]). Let Lσ denote this

Laguerre digraph corresponding to a permutation σ ∈Sn. The directed edges of
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Lσ are precisely u→ σ(u). Also for S ⊆ [n], we let Lσ |S denote the subgraph of

Lσ , containing the same set of vertices [n], but only the edges u→ σ(u), with u ∈ S

(we are allowed to have σ(u) 6∈ S). Thus, Lσ |[n] = Lσ , and Lσ |∅ is the digraph

containing n vertices and no edges. Whenever the permutation σ is understood, we

shall drop the superscript and only write this subgraph as L|S.

Recall that the inverse bijection in Step 3 Section 5.4.1, begins by obtaining the

sets F,F ′,G,G′,H from the Motzkin path ω . We then construct σ � F : F → F ′ and

σ � G : G→ G′ separately by using the labels ξ � F and ξ � G respectively. (Note

that just knowing the set H suffices to reconstruct σ � H.)

In this interpretation, we start with the digraph L|∅. We then go through the set

[n]. However, the crucial part of our approach is that we use the following unusual

total order on [n] (notice that [n] = F ∪G∪H):

Stage (a): We first go through the set H in increasing order.

Stage (b): We then go through the set G in increasing order.

Stage (c): Finally, we go through the set F but in decreasing order.

As F,G and H are entirely determined by the path ω , we call the above order the FZ

order on [n] with respect to the Motzkin path ω . Thus, the FZ order corresponding

to two different permutations σ and σ ′ coming from the same Motzkin path ω are

the same.

Let u1, . . . ,un be a rewriting of [n] as per the FZ order. We now consider the “FZ

history” L|∅ ⊂ L|{u1} ⊂ L|{u1,u2} ⊂ . . .⊂ L|{u1,...,un} = L as a process of building up

the permutation σ by successively considering the status of vertices u1,u2, . . . ,un.

Thus, at step u (where the step number is given by the vertex u ∈ [n]) we use the

inversion tables to construct the edge u→ σ(u). Thus, at each step we insert a new

edge into the digraph, and at the end of this process, the resulting digraph obtained

is the permutation σ in cycle notation.

Let us now look at the intermediate Laguerre digraphs obtained during stages

(a), (b) and (c) more closely.
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Stage (a): Going through HHH:

For each vertex u ∈ H, we introduce a loop edge u→ u thus creating a new loop

at the end of each step. After all steps u ∈ H have been carried out, the resulting

Laguerre digraph L|H consists of loops at all vertices in H. All other vertices are

isolated vertices, i.e., have no adjacent edges.

Stage (b): Going through GGG:

From (5.58), we know that G = Cdfall(σ)∪Cpeak(σ) where σ is the resulting

permutation obtained at the end of the inverse bijection. Let us recall the construction

for this case. We construct σ � G : G→ G′ using the right-to-left inversion table.

Let G = {x1 < x2 < .. . < xk} be the elements of G arranged in increasing order, and

similarly let G′ = {x′1 < x′2 < .. . < x′k}. Then the (p j + 1)th smallest element of

G′\{σ(x1), . . . ,σ(x j−1)} is chosen to be σ(x j) where p j = ξx j .

Let us reinterpret this in terms of Laguerre digraphs. At this stage, the vertices

in G (resp. G′) are our designated starting vertices (ending vertices) arranged in

increasing order. We then look through the starting vertices in increasing order.

At the end of step x j−1, directed edges x1→ σ(x1), . . . ,x j−1→ σ(x j−1) have been

inserted, the available starting vertices are x j, . . . ,xk and the available ending vertices

belong to G′\{σ(x1), . . . ,σ(x j−1)}. We then pick the smallest available starting

vertex, which is x j, and connect it to the (p j +1)th smallest ending vertex available,

i.e., the (p j + 1)th smallest element of the set G′\{σ(x1), . . . ,σ(x j−1)}. (This is

analogous to the partial interpretation of the labels in terms of bipartite digraph for

cycle double falls and cycle peaks on [SZ22, p. 96].)

The vertices in L|H∪{x1,...,x j} have out-edges in the following situations:

• if u ∈ H, u is a loop.

• if u is one of the j smallest elements of G, it has an edge going to some vertex

v 6= u and v ∈ G′.

• All other vertices have no out-edges.

Also, from definition of G in (5.57c), it follows that for any non-loop edge

u→ v, we must have u > v. Thus, the Laguerre digraph L|H∪{x1,...,x j} only consists
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of decreasing directed paths (including isolated vertices) and loops; there are no

non-loop cycles.

Lemma 5.4.3. The Laguerre digraph L|H∪G consists of the following connected

components:

• loops on vertices u ∈ H,

• directed paths with at least two vertices, in which the initial vertex of the path

is a cycle peak in σ (i.e. contained in the set F ′ ∩ G), the final vertex is a cycle

valley in σ (i.e. contained in the set F ∩ G′), and the intermediate vertices (if

any) are cycle double falls (i.e. contained in the set G ∩ G′).

• isolated vertices at u ∈ F ∩ F ′ = Cdrise(σ).

Furthermore, it contains no directed cycles.

PROOF. It suffices to prove that for a directed path with at least two vertices, the

initial vertex is a cycle peak in σ (i.e. contained in the set F ′ ∩ G) and the final

vertex is a cycle valley in σ (i.e. contained in the set F ∩ G′).

Notice that the initial vertex u of such a path must already have an out-neighbour

and hence must belong to the set G as only the elements of the sets G and H have

been assigned out-neighbours. As all vertices in G′ have already been assigned

in-neighbours, u 6∈ G′ and using the fact that G = Cdfall ∪ Cpeak (from (5.58)), we

get that u ∈ Cpeak = F ′ ∩ G. The proof for the final vertex is similar and we omit it.

�

Stage (c): Going through FFF:

Similar to both the previous cases, at each step we introduce edges u→ σ(u).

However, now we go through elements of F in decreasing order.

From (5.58), we know that F =Cdrise∪Cval. Let us now recall the construction

for this case. We construct σ � F : F→ F ′ using the left-to-right inversion table. Let

F = {y1 < y2 < .. . < yl} be the elements of F arranged in increasing order. Then the
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(p j +1)th largest element of F ′\{σ(yl), . . . ,σ(y j+1)} is chosen to be σ(y j) where

p j = ξy j .

We now reinterpret this in terms of Laguerre digraphs. At this stage, the vertices

in F (resp. F ′) are our designated starting vertices (ending vertices). We look through

the starting vertices in decreasing order. At the end of step y j+1, directed edges

yl → σ(yl), . . . ,y j+1→ σ(y j+1) have been inserted, the available starting vertices

are y j, . . . ,y1 and the available ending vertices belong to F ′\{σ(yl), . . . ,σ(y j+1)}.

We then pick the largest available starting vertex, which is y j and connect it to the

(p j +1)th largest ending vertex available, i.e., the (p j +1)th largest element of the

set F ′\{σ(yl), . . . ,σ(y j+1)}.

Lemma 5.4.4. Let u be the final vertex of a path with at least two vertices in

L|H∪G∪{yl ,...,y j}. Then u ∈ Cval = F ∩ G′.

PROOF. Since all vertices in H ∪ G were already assigned out-neighbours during

stages (a) and (b), it must be that u ∈ F . As F = Cdrise∪Cval, u is either a cycle

valley or a cycle double rise in σ .

Let us assume that u is a cycle double rise in σ , i.e., σ−1(u)< u < σ(u). We

know that u must have an in-neighbour v as its path has atleast two vertices. Thus,

v = σ−1(u)< u, which implies v∈ F (from definition of F in (5.57a)). However, this

is a situation where we have two vertices u,v ∈ F with u > v such that the smaller

vertex has an out-neighbour even though the larger vertex does not. This clearly

cannot happen as we assign out-neighbours to vertices in F in descending order.

This is a contradiction and thus u ∈ Cval = F ∩ G′. �

Let u1, . . . ,un be the elements of [n] rearranged as per the FZ order with respect

to Motzkin path ω . We say that u j ∈ [n]\H is a cycle closer if the edge u j→ σ(u j)

is introduced in L|{u1,...,u j−1} as an edge between the two ends of a path turning the

path into a cycle. The following lemma classifies all cycle closers:

Lemma 5.4.5. (Classifying cycle closers) Given a permutation σ , an element u∈ [n]

is a cycle closer if and only if it is a cycle valley minimum, i.e., it is the smallest

element in its cycle.
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PROOF. Let u j be a cycle closer. Notice that u j must have been the final vertex

of a path in L|{u1,...,u j−1} that contains at least two vertices. From Lemma 5.4.4,

u j ∈ F ∩G′ = Cval.

Any other cycle valley v 6= u j in the resulting cycle must have already been

present in this path and hence must have an out-neighbour. Hence, it must be that

v > u j as Cval ⊆ F and we assign out-neighbours to vertices belonging to F in

descending order. Thus, the cycle closer u j is the smallest cycle valley in its cycle in

σ . �

As each non-singleton cycle has exactly one cycle closer, counting cycle closers

will give us the number of non-singleton cycles. This is what we do next. But before

doing that, we require a technical lemma. However, before going into the lemma,

recall that if y j ∈ F ∩ G′ = Cval(σ), step sy j must be a rise from height hy j−1 to

height hy j and hence, hy j−1 +1 = hy j .

Lemma 5.4.6. Given a permutation σ and associated sets F,F ′,G,G′,H with F =

{y1 < y2 < .. . < yl}, and an index j (1 ≤ j ≤ l) such that y j ∈ F ∩ G′. Then the

following is true:

∣∣{u ∈ F ′\{σ(yl), . . . ,σ(y j+1)} : u > y j}
∣∣= hy j−1 +1 = hy j (5.59)

where hi denotes the height at position i of the Motzkin path ω associated to σ in

Step 1.

PROOF. We first establish the following equality of sets:

{u > y j : σ
−1(u)≤ y j} = {u ∈ F ′\{σ(yl), . . . ,σ(y j+1)} : u > y j}. (5.60)

Whenever u ∈ F ′, we have that σ−1(u) ∈ F (by description of F , F ′

in (5.57a,b)). Additionally, if u 6∈ {σ(yl), . . . ,σ(y j+1)} then it must be that

σ−1(u) ≤ y j. This establishes the containment {u > y j : σ−1(u) ≤ y j} ⊇ {u ∈

F ′\{σ(yl), . . . ,σ(y j+1)} : u > y j}.
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On the other hand, if u > y j and σ−1(u) ≤ y j, then u > σ−1(u) and hence

u ∈ F ′. As σ−1(u) ≤ y j < y j+1 < .. . < yl , u cannot be one of σ(y j+1), . . . ,σ(yl).

Therefore, u ∈ F ′\{σ(yl), . . . ,σ(y j+1)}. This establishes (5.60).

To obtain Equation (5.59), it suffices to show that the cardinality of the set

{u > y j : σ−1(u) ≤ y j} is hy j . To do this, recall the interpretation of heights in

Equation (5.50a) and observe that

hy j = #{u≤ y j : σ(u)> y j}

= #{u > y j : σ
−1(u)≤ y j} (5.61)

where the second equality is obtained by replacing u with σ−1(u). �

We are now ready to count the number of cycle closers.

Lemma 5.4.7 (Counting of cycle closers for permutations). Fix a Motzkin path ω of

length n and construct the sets F,F ′,G,G′,H (these are totally determined by ω). Let

F = {y1 < y2 < .. . < yl} and fix an index j (1≤ j ≤ l) such that y j ∈ F ∩ G′. Also

fix labels ξu for vertices u ∈ H ∪ G ∪ {yl,yl−1, . . . ,y j+1} satisfying (2.37)/ (5.47).

Then

(a) The value of ξy j completely determines if y j is a cycle closer or not.

(b) There is exactly one value ξy j ∈ {0,1, . . . ,hy j−1} that makes y j a cycle closer,

and conversely.

PROOF. As y j ∈ F ∩ G′, it must be that y j is a cycle valley in σ . As y j does not

have an out-neighbour in the Laguerre digraph L|H∪G∪{yl ,...,y j+1}, it must be the

final vertex of a path. Let v be the initial vertex of this path. During step y j, we

choose one of the available ending vertices from the set F ′\{σ(yl), . . . ,σ(y j+1)} to

be σ(y j).

For y j to be a cycle closer, it must be that σ(y j) = v (so that inserting the edge

y j → v turns its path into a cycle). As each value for label ξy j ∈ {0,1, . . . ,hy j−1}
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assigns a different vertex to be σ(y j), there is at most one label for which y j is a

cycle closer.

We begin by observing that v 6∈ G′. This is because v does not have an in-

neighbour in L|H∪G∪{yl ,...,y j+1} whereas all v ∈ G′ had in-neighbours at the end

of stage (b). Therefore, v ∈ F ′ and y j 6= v as y j ∈ G′. To show that there is a

ξy j ∈ {0,1, . . . ,hy j−1} which can connect y j to v, we must show that v is among the

largest hy j−1+1 elements of F ′\{σ(yl), . . . ,σ(y j+1)}. However, from Lemma 5.4.6,

we only need to show that v > y j. The remainder of the proof does this.

Let v = v0,v1, . . . ,vα = y j be the vertices of the path containing y j and v with

edges vi→ vi+1. Let β be the smallest index such that vβ ∈ F . Using the description

of G in (5.57c), we get v = v0 > .. . > vβ when β > 0. Thus,

v = v0 ≤ vβ (5.62)

with equality if and only if β = 0. On the other hand, if β < α , then vβ already

has an out-neighbour and thus vβ > y j (as we are going through elements of F in

descending order). Thus,

vβ ≤ vα = y j (5.63)

with equality if and only if β = α . Using (5.62), (5.63) and the fact that v 6= y j, we

obtain v > y j. This completes the proof. �

Remark. Notice that one can also construct a variant of this interpretation where

stage (c) occurs before stage (b). The role of cycle closer will then be played by

cycle peak maxima. �

5.4.3 Computation of weights

We can now compute the weights associated to the Motzkin path ω in Section 5.4.1

Step 1. As our polynomial Q̂ defined in (5.20) is almost the same as the polynomial

introduced in [SZ22, eq. (2.77)] except for the extra factor λ cyc(σ) and the index of a;

the dependence on cycle peaks, cycle double rises, cycle double falls, and fixed points

are same as in [SZ22, eq. (2.77)] but the treatment of cycle valleys is different. As
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we use the same bijection to obtain the continued fraction ([SZ22, eq. (2.78)/(2.79)]),

the computation of weights corresponding to the variables b,c,d,e are going to be

exactly the same.

The only thing that remains is to compute the weights for the variables a. These

correspond to steps si in ω where si is a rise starting at height hi−1 = k (so that

i is a cycle valley). Then from Equations (5.53)/(5.54), we get k = ucross(i,σ)+

unest(i,σ). Also among the possible choices of labels ξ ∈ [0,k] there is exactly one

which closes a cycle and the others don’t (Lemma 5.4.7). Therefore, we obtain

ak
def
= ∑

ξ

ak,ξ = (λ + k)ak. (5.64)

This completes the proof of Theorem 5.2.3. �

PROOF OF THEOREM 5.2.2. We recall [SZ22, Lemma 2.10] which was used to

separate records and antirecords: Let σ ∈Sn and i ∈ [n].

(a) If i is a cycle valley or cycle double rise, then i is a record if and only if

unest(i,σ) = 0; and in this case it is an exclusive record.

(b) If i is a cycle peak or cycle double fall, then i is an antirecord if and only if

lnest(i,σ) = 0; and in this case it is an exclusive antirecord.
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We then specialise Theorem 5.2.3 to

a` = p`+1y1 (5.65a)

b`,`′ = p`−1q`
′
−1×

x1 if `′ = 0

u1 if `′ ≥ 1
(5.65b)

c`,`′ = p`−2q`
′
−2×

x2 if `′ = 0

u2 if `′ ≥ 1
(5.65c)

d`,`′ = p`+2q`
′
+2×

y2 if `′ = 0

v2 if `′ ≥ 1
(5.65d)

e` = s`wl (5.65e)

�

Remark. Notice that the specialisation in the above proof is almost the same as

[SZ22, eq. (2.81)], except for the treatment of a. �

PROOF OF THEOREM 5.2.1. Specialise Theorem 5.2.2 to p+1 = p−1 = p+2 =

p−2 = q−1 = q+2 = q−2 = s = 1. �

5.5 D-permutations: Proofs
Motivated by Randrianarivony’s [Ran97] bijection for D-o-semiderangements, we

came up with two different bijections for D-permutations in Section 4.5. The first of

them was constructed in Sections 4.5.1-4.5.3 and was used to prove Theorems 4.2.3,

4.2.7, 4.2.9, i.e., our “first T-fractions” for D-permutations in Chapter 4. We intro-

duced our second bijection in Section 4.5.5 and used it to prove our “variant forms

of the first T-fractions” for D-permutations; these were Theorems 4.2.10 and 4.2.11.

We will provide new interpretations to both of these bijections and use them to prove

our theorems on D-permutations in this chapter.
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We recall that both bijections had the same path but different description of

labels. In Section 4.5 we introduced almost-Dyck paths. We then constructed a

bijection from σ ∈D2n to labelled 0-Schröder paths of length 2n. We did this by

constructing an almost-Dyck path ω and then transformed it into a 0-Schröder path

ω̂ = ψ(ω) (this is the obvious bijection in which we replace each down-up pair

starting and ending at height 0 with a long level step at height 0). The common

definition of the almost-Dyck path was provided in Section 4.5.1.

Our bijections are correspondences between D2n to the set of (A,B,C)-labelled

0-Schröder paths of length 2n (these were defined in Section 2.2.5). Here A,B,C are

the sets of the labels ξi and they were described in (4.72) which we copy here:

Ah = {0, . . . ,dh/2e} for h≥ 0 (5.66a)

Bh = {0, . . . ,d(h−1)/2e} for h≥ 1 (5.66b)

C0 = {0} (5.66c)

Ch = ∅ for h≥ 1 (5.66d)

For the convenience of the reader, we now recall how the almost-Dyck path was

constructed.

Step 1: Definition of the almost-Dyck path. Given a D-permutation σ ∈D2n,

we define a path ω = (ω0, . . . ,ω2n) starting at ω0 = (0,0), with steps s1, . . . ,s2n as

follows:

• If σ−1(i) is even, then si is a rise. (Note that in this case we must have

σ−1(i)≥ i, by definition of D-permutation.) Alternatively, if i is a cycle valley,

cycle double fall or even fixed point, then si is a rise.

• If σ−1(i) is odd, then si is a fall. (Note that in this case we must have

σ−1(i)≤ i, by definition of D-permutation.) Alternatively, if i is a cycle peak,

cycle double rise or odd fixed point, then si is a fall.

The fact that the resulting path is indeed an almost-Dyck path can be done

by showing that all the heights hi are ≥ −1 and that h2n = 0. This was done by
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obtaining a precise interpretation of the height hi in Lemma 4.5.1; we showed that

for k ∈ [2n] we have

hk =

2 fk−1 if k is odd

2 fk if k is even
(5.67)

where fk was defined in (4.73)/(4.74)

fk = #{i≤ k : σ(i)> k} = #{i≤ k : σ
−1(i)> k} . (5.68)

Also recall that in Lemma 4.2.2 we showed that 2i− 1 and 2i are record-

antirecords if and only if σ maps {1, . . . ,2i− 1} onto itself and this is the only

situation when hk = −1 where k = 2i− 1 and fk = 0. In this situation, f2i−2 =

f2i−1 = f2i = 0, so that (h2i−2,h2i−1,h2i) = (0,−1,0).

5.5.1 Continued fractions using record classification:

Proof of Theorems 5.3.1, 5.3.3, 5.3.4

We first recall the description of labels and the inverse bijection from Section 4.5.1

in Subsection 5.5.1.1. We then reinterpret the inverse bijection described in Sec-

tion 4.5.3 in Subsection 5.5.1.2.

5.5.1.1 Description of labels and inverse bijection

Step 2: Definition of the labels ξξξ iii. We defined the labels in equation (4.80) which

we recall here:

ξi =


#{ j : σ( j)< σ(i)≤ i < j} if i is even

#{ j : j < i≤ σ(i)< σ( j)} if i is odd

(5.69)

In (4.81) we showed that the definition (5.69) can be written equivalently as

ξi =


#{2l > 2k : σ(2l)< σ(2k)} if i = 2k

#{2l−1 < 2k−1: σ(2l−1)> σ(2k−1)} if i = 2k−1

(5.70)
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since σ( j)< j implies that j is even, and j < σ( j) implies that j is odd.

These definitions have a simple interpretation in terms of the nesting statistics

defined in Section 2.5.2

ξi =


lnest(i,σ) if i is even and 6= σ(i) [equivalently, i > σ(i)]

unest(i,σ) if i is odd and 6= σ(i) [equivalently, i < σ(i)]

psnest(i,σ) if i = σ(i) (that is, i is a fixed point)

(5.71)

We then showed in Lemma 4.5.4 that the quantities
⌈

hi−1
2

⌉
−ξi when si is a

rise, and
⌈

hi

2

⌉
−ξi when si is a fall, have the following interpretation in terms of the

crossing statistics (also defined in Section 2.2.5):

(a) If si a rise and i (hence also hi) is odd, then

⌈
hi−1

2

⌉
−ξi = ucross(i,σ) . (5.72)

(b) If si a rise and i (hence also hi) is even, then

⌈
hi−1

2

⌉
−ξi = lcross(i,σ) + I[σ(i) 6= i] (5.73a)

= lcross(i,σ) + I[i is a cycle double fall] . (5.73b)

(c) If si a fall and i (hence also hi) is odd, then

⌈
hi

2

⌉
−ξi = ucross(i,σ) + I[σ(i) 6= i] (5.74a)

= ucross(i,σ) + I[i is a cycle double rise] . (5.74b)

(d) If si a fall and i (hence also hi) is even, then

⌈
hi

2

⌉
−ξi = lcross(i,σ) . (5.75)

(Here I[proposition] = 1 if proposition is true, and 0 if it is false.)
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Since the quantities (5.72)–(5.75) are manifestly nonnegative, we obtain that

the labels ξi satisfy the following inequalities:

0 ≤ ξi ≤
⌈

hi−1
2

⌉
=

⌈
hi−1

2

⌉
if σ

−1(i) is even (i.e., si is a rise) (5.76a)

0 ≤ ξi ≤
⌈

hi

2

⌉
=

⌈
hi−1−1

2

⌉
if σ

−1(i) is odd (i.e., si is a fall) (5.76b)

This was the content of Lemma 4.5.3.

Step 3: Proof of bijection. We recall the description of the inverse map for the

mapping σ 7→ (ω,ξ ).

First, some preliminaries: Given a D-permutation σ ∈D2n we can define four

subsets of [2n]:

F = {2,4, . . . ,2n} = even positions (5.77a)

F ′ = {i : σ
−1(i) is even} = {σ(2),σ(4), . . . ,σ(2n)} (5.77b)

G = {1,3, . . . ,2n−1} = odd positions (5.77c)

G′ = {i : σ
−1(i) is odd} = {σ(1),σ(3), . . . ,σ(2n−1)} (5.77d)

Note that F ′ (resp. G′) are the positions of the rises (resp. falls) in the almost-Dyck

path ω .

Let us observe that

F ∩F ′ = cycle double falls and even fixed points (5.78a)

G∩G′ = cycle double rises and odd fixed points (5.78b)

F ∩G′ = cycle peaks (5.78c)

F ′∩G = cycle valleys (5.78d)

F ∩G = ∅ (5.78e)

F ′∩G′ = ∅ (5.78f)

We can now describe the map (ω,ξ ) 7→ σ . Given the almost-Dyck path ω ,
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we can immediately reconstruct the sets F,F ′,G,G′. We now use the labels ξ to

reconstruct the maps σ � F : F → F ′ and σ � G : G→ G′ as follows: The even

subword σ(2)σ(4) · · ·σ(2n) is a listing of F ′ whose right-to-left inversion table

is given by qα = ξ2α ; this is the content of (5.70a). Similarly, the odd subword

σ(1)σ(3) · · ·σ(2n−1) is a listing of G′ whose left-to-right inversion table is given

by pα = ξ2α−1; this is the content of (5.70b).

5.5.1.2 Combinatorial interpretation using Laguerre digraphs

The construction here will almost mirror the construction in Section 5.4.2. We will

only include the necessary details and state the necessary lemmas and will omit most

of the proofs.

We begin with an almost-Dyck path ω and an assignment of labels ξ satisfying

(5.76). The inverse bijection in Section 5.5.1.1 Step 3, gives us a D-permutation

σ . We will again break this process into several intermediate steps and provide

a reinterpretation using Laguerre digraphs. We will use the same conventions for

denoting Laguerre digraphs as in Section 5.4.2.

Recall that the inverse bijection (Section 5.5.1.1 Step 3) begins by obtaining

the sets F,G (which are fixed for any given n) and F ′,G′ from the almost-Dyck path

ω . We then construct σ � F : F → F ′ and σ � G : G→ G′ separately by using the

labels ξ � F and ξ � G respectively.

We again start with the digraph L|∅ and then go through the set [2n]. However,

we first go through F and then go through G, i.e., the order of our steps is now

2,4, . . . ,2n,2n−1, . . . ,3,1. In this situation, stage (a) will involve going through the

even vertices in increasing order and then stage (b) will involve going through the

odd vertices but in decreasing order. Thus, unlike the situation in Section 5.4.2, the

FZ order corresponding to two different D-permutations σ ,σ ′ ∈D2n are the same,

irrespective of the underlying almost-Dyck path.

Let us now look at the intermediate Laguerre digraphs obtained during stages (a)

and (b).

Stage (a): Going through FFF === {222,,,444,,, . . . ,,,222nnn}:
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We go through the even vertices in increasing order. From (5.78), we know that F =

Cdfall(σ) ∪ Evenfix(σ) ∪ Cpeak(σ) and F ′ = Cdfall(σ) ∪ Evenfix(σ) ∪ Cval(σ)

where σ is the resulting D-permutation obtained at the end of the inverse bijection.

The construction here is similar to the construction in stage (b) Section 5.4.2.

The connected components at the end of this stage can be described as follows:

Lemma 5.5.1. The Laguerre digraph L|F consists of the following connected com-

ponents:

• loops on vertices u ∈ Evenfix,

• directed paths with at least two vertices, in which the initial vertex of the path

is a cycle peak in σ (i.e. contained in the set F ∩ G′), the final vertex is a cycle

valley in σ (i.e. contained in the set F ′ ∩ G), and the intermediate vertices (if

any) are cycle double falls (which belong to the set F ∩ F ′).

• isolated vertices at u ∈ G ∩ G′ = Cdrise(σ) ∪ Oddfix(σ).

Furthermore, it contains no directed cycles.

Stage (b): Going through GGG === {222nnn−−−111,,, . . . ,,,333,,,111}:

We now go through the odd vertices in decreasing order. From (5.78), we know

that G = Cdrise(σ) ∪ Oddfix(σ) ∪ Cval(σ), and G′ = Cdrise(σ) ∪ Oddfix(σ) ∪

Cpeak(σ), where σ is the resulting D-permutation obtained at the end of the inverse

bijection.

The construction here is similar to stage (c) in Section 5.4.2. The final vertices

of a path with at least two vertices have the following description:

Lemma 5.5.2. Let u be the final vertex of a path with at least two vertices in

L|F∪{2n−1,...,2(n− j)+1} for some index j (1≤ j ≤ n). Then u ∈ Cval.

Our definition of cycle closers is again the same as in Section 5.4.2. The

following lemma classifies all cycle closers.

Lemma 5.5.3. (Classifying cycle closers) Given a D-permutation σ , an element

u ∈ [2n] is a cycle closer if and only if it is a cycle valley minimum, i.e., it is the

smallest element in its cycle.
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Next, we will count the number of cycle closers. But before doing that, we

require a technical lemma similar to Lemma 5.4.6 for the case of permutations.

However, first notice that if i ∈ G ∩ F ′ = Cval(σ), step si must be a rise from height

hi−1 to height hi and hence, hi−1+1 = hi. Also, from the interpretation of the heights

in equation (5.67) we must have dhi−1/2e+1 = d(hi +1)/2e= fi.

Lemma 5.5.4. Given a D-permutation σ and associated sets F ′,G′ and an odd

y ∈ {2n−1, . . . ,3,1} such that y ∈ G ∩ F ′ = Cval. Then the following is true:

#{u ∈ G′\{σ(2n−1),σ(2n−3), . . . ,σ(y+2)} : u > y} = dhy−1/2e+1

= d(hy +1)/2e

= fy (5.79)

where hi denotes the height at position i of the almost-Dyck path ω associated to σ

in Step 1, and fi is defined in (5.68).

PROOF. We first establish the following equality of sets:

{u > y : σ
−1(u)≤ y} = {u ∈ G′\{σ(2n−1),σ(2n−3), . . . ,σ(y+2)} : u > y}.

(5.80)

Whenever u ∈ G′, we have that σ−1(u) ∈ G (by description of G, G′ in

(5.77)). Additionally, if u 6∈ {σ(2n− 1),σ(2n− 3), . . . ,σ(y+ 2)} then it must be

that σ−1(u)≤ y. This establishes the containment

{u > y : σ
−1(u)≤ y} ⊇ {u ∈ G′\{σ(2n−1),σ(2n−3), . . . ,σ(y+2)} : u > y}.

On the other hand, if u > y and σ−1(u) ≤ y, then u > σ−1(u) and as σ is a

D-permutation, σ−1(u) must be odd. Therefore, u ∈G′. As σ−1(u)≤ y, u cannot be

one of σ(y+ 2), . . . ,σ(2n− 3),σ(2n− 1). Therefore, u ∈ G′\{σ(2n− 1),σ(2n−

3), . . . ,σ(y+2)}. This establishes (5.80).

To obtain Equation (5.79), it suffices to show that the cardinality of the set

{u > y : σ−1(u)≤ y} is fy. To do this, recall the description of fy in Equation (5.68)
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and observe that

fy = #{u≤ y : σ(u)> y}

= #{u > y : σ
−1(u)≤ y} (5.81)

where the second equality is obtained by replacing u with σ−1(u). �

We are now ready to state the counting of cycle closers.

Lemma 5.5.5 (Counting of cycle closers for D-permutations). Fix an almost-Dyck

path ω of length 2n and construct F ′,G′ (these are completely determined by ω).

Also fix labels ξu for vertices u ∈ {2,4, . . . ,2n} ∪ {2n−1, . . . ,2(n− j)+1} satisfy-

ing (5.76). Also let y = 2(n− j)−1 ∈ G∩F ′ = Cval(σ). Then

(a) The value of ξy completely determines if y is a cycle closer or not.

(b) There is exactly one value ξy ∈ {0,1, . . . ,dhy−1/2e} that makes y a cycle closer,

and conversely.

Remark. Notice that one can also construct a variant of this interpretation where

stage (b) occurs before stage (a). The role of cycle closer will then be played by

cycle peak maximum. �

5.5.1.3 Computation of weights

We can now compute the weights associated to the 0-Schröder path ω̂ in Step 1.

As our polynomial Q̂ defined in (5.31) is almost the same as the polynomial (4.31)

except for the extra factor λ cyc(σ) and the index of a, the dependence on cycle peaks,

cycle double rises, cycle double falls, and even and odd fixed points are the same

in both polynomials but the treatment of cycle valleys is different. As we use the

same bijection used to obtain the continued fraction (4.32)/(4.33) the computation of

weights corresponding to the variables b,c,d,e, f are going to be exactly the same.

The only thing that remains is to compute the weights for the variables a. These

correspond to steps si in ω̂ where si is a rise starting at height hi−1 = 2k (so that
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i is a cycle valley). Then from Equations (5.71)/(5.72) we get d(hi−1− 1)/2e =

dhi/2e= ucross(i,σ)+unest(i,σ) (= k). Also among the possible choices of labels

ξ ∈ [0,k] there is exactly one which closes a cycle and the others don’t (Lemma 5.5.5).

Therefore, we obtain

a2k
def
= ∑

ξ

a2k,ξ = (λ + k)a2k. (5.82)

This completes the proof of Theorem 5.3.4. �

PROOF OF THEOREM 5.3.3. Specialise Theorem 5.3.4 to

ak−1 = pk−1
+1 × y1 (5.83)

bk−1−ξ ,ξ = pk−1−ξ

−1 qξ

−1 ×

x1 if ξ = 0

u1 if 1≤ ξ ≤ k−1
(5.84)

ck−1−ξ ,ξ = pk−1−ξ

−2 qξ

−2 ×

x2 if ξ = 0

u2 if 1≤ ξ ≤ k−1
(5.85)

dk−1−ξ ,ξ = pk−1−ξ

+2 qξ

+2 ×

y2 if ξ = 0

v2 if 1≤ ξ ≤ k−1
(5.86)

ek =


ze if k = 0

sk
ewe if k ≥ 1

(5.87)

fk =


zo if k = 0

sk
owo if k ≥ 1

(5.88)

�

Remark. Notice that the specialisation in the above proof is almost the same as our

specialisation in equations (4.111)-(4.116) except for the treatment of a. �
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PROOF OF THEOREM 5.3.1. Specialise Theorem 5.3.3 to

p+1 = p−1 = p+2 = p−2 = q−1 = q+2 = q−2 = se = so = 1. (5.89)

�

5.5.2 Continued fractions using variant record classification:

Proof of Theorems 5.3.5, 5.3.6, 5.3.7

We first recall the description of the alternate labels and the inverse bijection from

Section 4.5.5 in Subsection 5.5.2.1. We then reinterpret the inverse bijection in

Subsection 5.5.2.2.

5.5.2.1 Description of labels and inverse bijection

Step 2: Definition of the labels ξ̂ξξ iii.

In equation (4.117) we defined our alternate labels for our second bijection and

we recall it here:

ξ̂i =


#{2l > 2k : σ(2l)< σ(2k)} if i = σ(2k)

#{2l−1 < 2k−1: σ(2l−1)> σ(2k−1)} if i = σ(2k−1)

(5.90a)

=


#{ j : j < i≤ σ−1(i)< σ−1( j)} if σ−1(i) is even

#{ j : σ−1( j)< σ−1(i)≤ i < j} if σ−1(i) is odd

(5.90b)

These labels have a simple interpretation in terms of variant nesting statistics defined

in Section 2.2.5

ξ̂i =


lnest′(i,σ) if σ−1(i) is even (i.e., si is a rise) and 6= i

unest′(i,σ) if σ−1(i) is odd (i.e., si is a fall) and 6= i

psnest(i,σ) if σ−1(i) = i (i.e., i is a fixed point)

(5.91)

This was the content of Lemma 4.5.7
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We then showed in Lemma 4.5.9 that the quantities
⌈

hi−1
2

⌉
− ξ̂i when si is a

rise, and
⌈

hi

2

⌉
− ξ̂i when si a fall, have the following interpretation in terms of the

variant crossing statistics (also defined in Section 2.2.5):

(a) If si a rise (i.e. σ−1(i) is even), then

⌈
hi−1

2

⌉
− ξ̂i = lcross′(i,σ) + I[i is even and σ(i) 6= i] (5.92a)

= lcross′(i,σ) + I[i is a cycle double fall] . (5.92b)

(b) If si a fall (i.e. σ−1(i) is odd), then

⌈
hi

2

⌉
− ξ̂i = ucross′(i,σ) + I[i is odd and σ(i) 6= i] (5.93a)

= ucross′(i,σ) + I[i is a cycle double rise] . (5.93b)

Since the quantities (5.92), (5.93) are manifestly nonnegative, we obtain that

the labels ξ̂i satisfy the following inequalities:

0 ≤ ξ̂i ≤
⌈

hi−1
2

⌉
=

⌈
hi−1

2

⌉
if σ

−1(i) is even (i.e., si is a rise) (5.94a)

0 ≤ ξ̂i ≤
⌈

hi

2

⌉
=

⌈
hi−1−1

2

⌉
if σ

−1(i) is odd (i.e., si is a fall) (5.94b)

This was the content of Lemma 4.5.8.

Step 3: Proof of bijection. The proof is similar to that presented in Step

3 Section 5.5.1.1, but using a value-based rather than position-based notion of

inversion table. Recall that if S = {s1 < s2 < .. . < sk} is a totally ordered set

of cardinality k, and xxx = (x1, . . . ,xk) is a permutation of S, then the (left-to-right)

(position-based) inversion table corresponding to xxx is the sequence ppp = (p1, . . . , pk)

of nonnegative integers defined by pα = #{β < α : xβ > xα}. We now define the

(left-to-right) value-based inversion table ppp′ by p′xi
= pi; note that ppp′ is a map from

S to {0, . . . ,k− 1}, such that p′xi
is the number of entries to the left of xi (in the

word xxx) that are larger than xi. In particular, 0≤ p′si
≤ k− i. Given the value-based
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inversion table ppp′, we can reconstruct the sequence xxx by working from largest to

smallest value, as follows [Knu98, section 5.1.1]: We start from an empty sequence,

and insert sk. Then we insert sk−1 so that the resulting word has p′sk−1
entries to its

left. Next we insert sk−2 so that the resulting word has p′sk−2
entries to its left, and so

on. [The right-to-left value-based inversion table qqq′ is defined analogously, and the

reconstruction proceeds from smallest to largest.]

We now recall the definitions

F = {2,4, . . . ,2n} = even positions (5.95a)

F ′ = {i : σ
−1(i) is even} = {σ(2),σ(4), . . . ,σ(2n)} (5.95b)

G = {1,3, . . . ,2n−1} = odd positions (5.95c)

G′ = {i : σ
−1(i) is odd} = {σ(1),σ(3), . . . ,σ(2n−1)} (5.95d)

Note that F ′ (resp. G′) are the positions of the rises (resp. falls) in the almost-Dyck

path ω .

We can now describe the map (ω, ξ̂ ) 7→ σ . Given the almost-Dyck path ω , we

can immediately reconstruct the sets F,F ′,G,G′. We now use the labels ξ̂ to recon-

struct the maps σ � F : F → F ′ and σ � G : G→ G′ as follows: The even subword

σ(2)σ(4) · · ·σ(2n) is a listing of F ′ whose right-to-left value-based inversion table

is given by q′i = ξ̂i for all i ∈ F ′; this is the content of (5.90a). Similarly, the odd

subword σ(1)σ(3) · · ·σ(2n− 1) is a listing of G′ whose left-to-right value-based

inversion table is given by p′i = ξ̂i for all i ∈ G′; this again is the content of (5.90a).

Additionally, we state a lemma which gives an alternate way of constructing a

value-based inversion table for D-permutation.

Lemma 5.5.6. Let σ ∈D2n and let
(

ω, ξ̂
)

be its associated almost-Dyck path with

an assignment of labels determined by (5.90). Also let G′ = {x1 < .. . < xn} and let

F ′ = {y1 < .. . < yn}. Then

(a) For any index j (1 ≤ j ≤ n), σ−1(x j) is the (ξ̂x j + 1)th smallest element of

G\{σ−1(x1), . . . ,σ
−1(x j−1)}.
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(b) For any index j (1 ≤ j ≤ n), σ−1(y j) is the (ξ̂y j + 1)th largest element of

F \{σ−1(yn), . . . ,σ
−1(y j+1)}.

This lemma can be proved using (5.90a) and we omit the details.

5.5.2.2 Combinatorial interpretation using Laguerre digraphs

The construction here will again be similar to those in Sections 5.4.2 and 5.5.1.2. We

will only include the necessary details and state the necessary lemmas, and will omit

most of the proofs.

We begin with an almost-Dyck path ω and an assignment of labels ξ̂ satisfying

(5.94). The inverse bijection in Section 5.5.2.1 Step 3, gives us a D-permutation

σ . We will again break this process into several intermediate steps and provide a

reinterpretation using Laguerre digraphs.

This time however, we will use a different convention for denoting Laguerre

digraphs than the one used in Sections 5.4.2 and 5.5.1.2. Let σ ∈Sn be a permutation

on [n]. For S⊆ [n], we let L′|S denote the subgraph of Lσ , containing the same set

of vertices [n], but only containing the edges σ−1(i)→ i, whenever i ∈ S (we are

allowed to have σ−1(i) 6∈ S). Thus, L′|[n] = Lσ , and L′|∅ = Lσ |∅ is the digraph

containing n vertices and no edges. Whenever the permutation σ is understood, we

shall drop the superscript and denote it as L′|S.

Now, let σ ∈ D2n be a D-permutation. Similar to the construction in Sec-

tion 5.5.1.1, recall that the inverse bijection begins by obtaining the sets F,G,F ′,G′

(the sets F,G are fixed for any given n and the sets F ′,G′ are obtained from the

almost-Dyck path ω). We then construct σ � F : F → F ′ and σ � G : G→ G′

separately but by using the labels ξ̂ � F ′ and ξ̂ � G′ respectively.

In this interpretation, we start with the digraph L′|∅ and then go through the set

[2n]. This time, we first go through the elements of G′ in increasing order (stage (a))

and then through the elements of F ′ in decreasing order (stage (b)). We call this the

variant DS order on the set [2n].

Here however, the history that we consider is different from the one in Sec-

tion 5.5.1.2. Let u1, . . . ,u2n be a rewriting of [2n] as per the variant DS order. We now
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consider the “variant DS history” L′|∅⊂ L′|{u1}⊂ L′|{u1,u2}⊂ . . .⊂ L′|{u1,...,u2n}= L.

Thus, at step u as per the variant DS order, we use the (value-based) inversion tables

and Lemma 5.5.6 to construct the edge σ−1(u)→ u. Similar to the previous histories,

at each step we insert a new edge into the digraph, and at the end of this process, the

resulting digraph obtained is the permutation σ in cycle notation.

Let us now look at the intermediate Laguerre digraphs obtained during stages

(a) and (b).

Stage (a): Going through GGG′′′:

From (5.95), we know that G = Cdrise(σ) ∪ Oddfix(σ) ∪ Cval(σ) and G′ =

Cdrise(σ) ∪ Oddfix(σ) ∪ Cpeak(σ) where σ is the resulting D-permutation ob-

tained at the end of the inverse bijection.

The connected components at the end of this stage can be described as follows:

Lemma 5.5.7. The Laguerre digraph L′|G′ consists of the following connected

components:

• loops on vertices u ∈ Oddfix,

• directed paths with at least two vertices, in which the initial vertex of the path

is a cycle valley in σ (i.e. contained in the set F ′ ∩ G) and the final vertex

is a cycle peak in σ (i.e. contained in the set F ∩ G′), and the intermediate

vertices (if any) are cycle double rises (which belong to the set G ∩ G′).

• isolated vertices at u ∈ F ∩ F ′ = Cdfall(σ) ∪ Evenfix(σ).

Furthermore, it contains no directed cycles.

Stage (b): Going through FFF ′′′:

We now go through the elements of F ′ in decreasing order. From (5.95), we know

that F = Cdfall(σ) ∪ Evenfix(σ) ∪ Cpeak(σ) and F ′ = Cdfall(σ) ∪ Evenfix(σ) ∪

Cval(σ) where σ is the resulting D-permutation obtained at the end of the inverse

bijection. We let F ′ = {y1 < .. . < yn}.

This time, we describe the the initial vertices of paths with at least two vertices

(and not the final vertices):



5.5. D-permutations: Proofs 244

Lemma 5.5.8. Let u be the initial vertex of a path with at least two vertices in

L′|G′∪{yn,...,y j+1} for some index j (1≤ j ≤ n). Then u ∈ Cval.

Our definition of cycle closers here is different. Let u1, . . . ,u2n be the vertices

[2n] arranged according to the variant DS order. We say that u j ∈ [2n] is a cycle

closer if the edge σ−1(u j)→ u j is introduced in L′|{u1,...,u j−1} as an edge between

the two ends of a path turning the path to a cycle. The following lemma classifies all

cycle closers.

Lemma 5.5.9. (Classifying cycle closers) Given a D-permutation σ , an element

u ∈ [2n] is a cycle closer if and only if it is a cycle valley minimum, i.e., it is the

smallest element in its cycle.

Next, we will count the number of cycle closers. But before doing that, we

require a technical lemma similar to Lemmas 5.4.6, 5.5.4. (As before, recall that if

i ∈ G ∩ F ′ = Cval(σ), step si must be a rise from height hi−1 to height hi and hence,

hi−1+1 = hi. Also, from the interpretation of the heights in equation (5.67) we must

have dhi−1/2e+1 = d(hi +1)/2e= fi.)

Lemma 5.5.10. Given a D-permutation σ and associated sets F,G,F ′,G′ where

F ′ = {y1 < .. . < yn}, and an index j (1≤ j≤ n) such that y j ∈G ∩ F ′ = Cval. Then

the following is true:

#{u∈F\{σ−1(yn), . . . ,σ
−1(y j+1)} : u> y j}= dhy j−1/2e+1= d(hy j +1)/2e= fy j

(5.96)

where hi denotes the height at position i of the almost-Dyck path ω associated to σ

in Step 1 and fi is defined in (5.68).

PROOF. Notice the equality of the following sets:

{u ∈ F\{σ−1(yn), . . . ,σ
−1(y j+1)} : u > y j} = {u > y j : σ(u)≤ y j}. (5.97)

Next use (5.68) to notice that the set on the right hand side of (5.97) has cardinality

fy j . �
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We are now ready to count the number of cycle closers.

Lemma 5.5.11 (Counting of cycle closers for D-permutations using variant labels).

Fix an almost-Dyck path ω of length 2n and construct F ′,G′ (these are completely de-

termined by ω). Let y j ∈G∩F ′. Also fix labels ξ̂u for vertices u∈G′ ∪ {yn, . . . ,y j+1}

satisfying (5.94). Then

(a) The value of ξ̂y j completely determines if y j is a cycle closer or not.

(b) There is exactly one value ξ̂y j ∈ {0,1, . . . ,dhy j−1/2e} that makes y j a cycle

closer, and conversely.

5.5.2.3 Computation of weights

PROOF OF THEOREM 5.3.7. The computation of weights is completely analogous

to what was done in Section 5.5.1.3, but using Lemma 5.5.11 in place of Lemma 5.5.5.

We leave the details to the reader: the upshot (similar to the proof of Theorem 4.2.10)

is that for cycle valleys and cycle peaks, “u” and “l” are interchanged compared to

Section 5.5.1.3, and all the statistics are primed. It therefore completes the proof of

Theorem 5.3.7. �

PROOF OF THEOREMS 5.3.6 AND 5.3.5. Comparing (5.36) with (5.38) we see that

the needed specialisation in (5.38) are the same as given in (5.83)–(5.88). Inserting

these into Theorem 5.3.7 gives Theorem 5.3.6.

Similarly, the proof of Theorem 5.3.5 follows by specialising the weights in

Theorem 5.3.6 to (5.89). �

5.6 Final remarks
We began this work only hoping to prove [SZ22, Conjecture 2.3]. Our initial guess

was that this would involve constructing a new bijection from permutations to labelled

Motzkin paths, possibly by tweaking the Biane bijection [Bia93]. However, on

discovering our proof, we were surprised to see that not only did we not construct any
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new bijection, but we used the same variant of the Foata–Zeilberger bijection, which

Sokal and Zeng use to prove their “first” continued fractions for permutations. As

we remarked in Section 4.7, the proofs of our “first” theorems for D-permutations in

Chapter 4 are parallel to the proofs of the “first” theorems in [SZ22] for permutations;

this led us to prove [RZ96a, Conjecture 12] and also Theorem 4.3.1 which we had

only conjectured while working on Chapter 4 and then proved it much later while

working on the present chapter.

We had to introduce a new total order on [n] ([2n] for D-permutations) to

describe histories for these bijections. The crucial reason why our proof works is

that the total order is the same for any given Motzkin path (almost-Dyck path for

D-permutations), and also because the associated weights are commutative. Thus,

the order in which we multiply them has no effect on the product as long as we stick

to the same order for any given path.

On the other hand, Flajolet [Fla80] provides a more general combinatorial

interpretation with non-commutative weights, as long as these weights are multiplied

using the natural order of the path. With this in mind, we think that it will probably not

be too difficult to generalize the “second” theorems for permutations in [SZ22], and

for D-permutations in Chapter 4 to obtain continued fractions with non-commutative

weights. We predict that this will also be possible for continued fractions obtained

using the Françon-Viennot bijection [FV79]. However, why such continued fractions

might be of interest is not immediate to us, and at the present moment, we refrain

from working out the details.



Chapter 6

Higher-order Stirling cycle and

subset triangles: Total positivity,

continued fractions and

real-rootedness1

6.1 Introduction and statement of main results
Let us recall that a (finite or infinite) matrix of real numbers is called totally positive

(TP) if all its minors are nonnegative. A matrix of polynomials with real coefficients

is called coefficientwise-totally positive is all its minors are polynomials with nonneg-

ative coefficients. Let A =
(
an,k
)

n,k≥0 be a lower-triangular matrix of non-negative

real numbers. In Sections 1.1 and 2.1.6 we asked the following four questions:

(a) Is A totally positive?

(b) Is the lower-triangular matrix Arev def
= (an,n−k)n,k≥0 obtained by reversing the

rows of A totally positive? (Here the entry an,n−k := 0 when n < k.)

(c) Let An(x) = ∑
n
k=0 an,kxk denote the row generating polynomial of the n-th row

of A. Are the polynomials An(x) real-rooted? This is equivalent to asking

if the Toeplitz matrix of the n-th row sequence (an,k)k≥0 is totally positive

1The work in this chapter was largely in collaboration with Alan D. Sokal. See pp. 18-19 for
details.
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[ASW52, Edr52]. We then say that the sequence (an,k)k≥0 is Toeplitz-totally

positive2.

(d) Is the Hankel matrix of the polynomial sequence (An(x))n≥0 coefficientwise-

totally positive in the variable x? We then say that the sequence (An(x))n≥0 is

coefficientwise-Hankel-totally positive. One sufficient but far-from-necessary

condition for this to hold is for the ordinary generating function ∑
∞
n=0 An(x)tn

to have a Stieltjes-type continued fraction whose coefficients are polynomials

with variable x with non-negative coefficients, see Theorem 2.1.3.

We then saw a few examples of triangles for which all four of these questions

are either known to be true or are conjectured to be true. Let us recall two of them

here:

(a) When A =
([n

k

])
n,k≥0 is the matrix of Stirling cycle numbers, where the

(n,k)-th entry counts the number of permutations on [n] with k cycles. The

total positivity of the matrix A and its reversal Arev were shown by Brenti in

1995 [Bre95]. The row generating polynomials An(x) = x(x+1) · · ·(x+n−1)

are clearly real-rooted with non-positive roots. The sequence (An(x))n≥0 has a

Stieltjes-type continued fraction discovered by Euler in 1760 [Eul60], also see

[SZ22, eq. (2.2), (2.6)].

(b) When A =
({n

k

})
n,k≥0 is the matrix of Stirling subset numbers, which count

the number of set partitions on [n] with k blocks. The total positivity of the

matrix A is due to Brenti from 1995 [Bre95]. However, the total positivity of

the reversal Arev was only recently shown by Chen et al. in [CDD+21]. The

real-rootedness of the row generating polynomials An(x) is due to Harper from

1967 [Har67]. The sequence (An(x))n≥0 has a Stieltjes-type continued fraction

[SZ22, eq. (3.2), (3.5)].

In this chapter, we introduce two infinite families of lower-triangular matrices

generalising the Stirling cycle and subset triangles; we call these the higher-order

2Sequences whose Toeplitz matrices are totally positive are also known as Pólya frequency
sequences.
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Stirling cycle and subset triangles. The central theme of this chapter is to investigate

the above four questions for these triangular arrays. We have used an experimental

approach for our investigation to obtain our conjectures. Even though we can prove

very few of our conjectures, our results suggest various interesting consequences in

the form of combinatorial interpretations and also new conjectures.

The rest of the introduction is structured as follows: In Section 6.1.1 we define

the r-th order Stirling cycle and subset numbers, we set up basic notation for the rest

of the chapter and state some recurrences that these numbers satisfy. In Section 6.1.2,

we state our main conjectures and theorems. The outline of the rest of the chapter is

then mentioned in Section 6.1.3.

6.1.1 Higher order Stirling cycle and subset numbers

There are several generalisations and extensions of the Stirling cycle and subset

numbers. One such family of generalisations for the Stirling cycle numbers are

the r-associated Stirling cycle numbers
[n

k

]
r, where

[n
k

]
r denotes the number of

permutations on [n] with k cycles such that each cycle has at least r elements (see

[Com74, pp. 256,257,295]). Thus we have
[n

k

]
1 =

[n
k

]
. The first few 2-associated

Stirling cycle numbers starting at n = 2 are given below [OEI19, A008306]:

1

2

6 3

24 20

120 130 15

720 924 210

5040 7308 2380 105

(6.1)

Note that
[n

k

]
r is nonzero only when n≥ rk, or equivalently k ≤ bn/rc.

Similarly, the r-associated Stirling subset numbers
{n

k

}
r are defined to be the

number of set partitions of [n] into k blocks such that each block has at least r

elements (see [Com74, pp. 221,222]). Thus we have
{n

k

}
1 =

{n
k

}
. The first few
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2-associated Stirling subset numbers starting at n = 2 are given below [OEI19,

A008299]:

1

1

1 3

1 10

1 25 15

1 56 105

1 119 490 105

(6.2)

Note that
{n

k

}
r is nonzero only when n≥ rk, or equivalently k ≤ bn/rc.

For r ≥ 2, the Hankel matrices of the sequence of row-generating polynomials

of these triangles are not coefficientwise-totally positive. This is because the n-th

row-generating polynomial is of degree bn/rc— not n — and one can show that

even the 2×2 minors of the Hankel matrix of the row-generating polynomials must

have some negative coefficients.

Instead, we modify these triangles so that the columns are shifted up to make

the diagonal entries nonzero, i.e., for a fixed r ≥ 1, consider the lower-triangular

matrices
([n

k

](r))
n,k≥0

and
({n

k

}(r))
n,k≥0

where the (n,k)-entries are defined by:

[
n
k

](r)
def
=

[
n+(r−1)k

k

]
r

(6.3){
n
k

}(r)
def
=

{
n+(r−1)k

k

}
r

(6.4)

and we set
[0

0

](r)
=
{0

0

}(r)
= 1. We call the numbers

[n
k

](r) and
{n

k

}(r) as the r-th

order Stirling cycle and subset numbers, respectively. We then clearly have,

[
n
k

](1)
=

[
n
k

]
1
=

[
n
k

]
(6.5){

n
k

}(1)

=

{
n
k

}
1
=

{
n
k

}
(6.6)

and thus, the numbers of order 1 of both kinds are the usual Stirling cycle and subset
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numbers, respectively. For the convenience of the reader and for our utility in the

rest of this chapter, we rewrite (6.3)/(6.4) for r = 2:

[
n
k

](2)
=

[
n+ k

k

]
2

(6.7){
n
k

}(2)

=

{
n+ k

k

}
2
. (6.8)

For a fixed r ≥ 1, let C(r) and S(r) be the lower-triangular matrices defined by

C(r) def
=

([
n
k

](r))
n,k≥0

(6.9a)

S(r) def
=

({
n
k

}(r)
)

n,k≥0

. (6.9b)

The triangle C(2) is [OEI19, A259456, A269940, A111999] and its row sums are

[OEI19, A032188]. The triangle S(2) is [OEI19, A134991] and its row sums are

[OEI19, A000311]. The second-order Stirling subset numbers are usually referred

to as the Ward numbers.

We now provide a recurrence relation for the Stirling cycle and subset numbers

of all orders.

Lemma 6.1.1. (a) The numbers
[n

k

](r) satisfy the recurrence relation:

[
n
0

](r)
= δn,0 (6.10a)[

n
k

](r)
= (r−1)!

(
n+(r−1)k−1

r−1

)[
n−1
k−1

](r)
+
(
n+(r−1)k−1

)[n−1
k

](r)
for n,k ≥ 1. (6.10b)
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(b) The numbers
{n

k

}(r) satisfy the recurrence relation:

{
n
0

}(r)

= δn,0 (6.11a){
n
k

}(r)

=

(
n+(r−1)k−1

r−1

){
n−1
k−1

}(r)

+ k
{

n−1
k

}(r)

for n,k ≥ 1. (6.11b)

The recurrences (6.10), (6.11) are straightforward consequences of well-known

recurrences for the r-associated Stirling cycle [Com74, (7) p. 257] and subset

[Com74, p. 222] numbers. However, for the sake of completeness, we provide

a combinatorial proof.

PROOF OF LEMMA 6.1.1. (a) For a fixed r ≥ 1, let
[
[n]
k

]
r

denote the set of all

permutations on [n] with k cycles such that each cycle has at least r elements. Now

let σ ∈
[
[n+(r−1)k]

k

]
r

and consider the status of the cycle containing n: it either

has exactly r elements or it has r + 1 or more elements. In the former case, we

remove the cycle containing n and rename the elements in the other cycles to obtain

a permutation of [(n−1)+(r−1)(k−1)] into k−1 blocks, each containing at least

r elements. In the latter case, we remove n from its cycle to obtain a permutation of

[(n−1)+(r−1)k] into k blocks, each containing at least r elements.

Conversely, to get a permutation σ ∈
[
[n+(r−1)k]

k

]
r

with n in a cycle of size

exactly r, we first pick r− 1 elements from the set [n + (r− 1)k− 1] and then

select a cycle in one of (r − 1)! possible ways, the total number of choices

in this case is (r−1)!
(n+(r−1)k−1

r−1

)[n−1
k−1

](r)
. On the other hand, to get a per-

mutation σ ∈
[
[n+(r−1)k]

k

]
r

with n in a cycle of size at least r + 1, we pick a

permutation τ ∈
[
[n−1+(r−1)k]

k

]
r

and insert n into one of the cycles by picking

σ−1(n) in (n+(r−1)k−1) ways, the total number of choices in this case is

(n+ (r− 1)k− 1)
{n−1

k

}(r)
. Adding the number of choices in both cases proves

the recurrence (6.10).

(b) We leave this as an exercise for the reader. �
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When r = 2, the recurrences (6.10b)/(6.11b) are

[
n
k

](2)
= (n+ k−1)

[
n−1
k−1

](2)
+ (n+ k−1)

[
n−1

k

](2)
(6.12a){

n
k

}(2)

= (n+ k−1)
{

n−1
k−1

}(2)

+ k
{

n−1
k

}(2)

(6.12b)

Note that the coefficients here are affine in n and k (this is no longer the case for

r ≥ 3). It is curious that we see here the combination n+k, in contrast with the n−k

occurring in (3.2)/(3.4)/(3.5).

We use cr,n(x) to denote the row-generating polynomial of the n-th row of the

matrix C(r); we call them the r-th order Stirling cycle polynomials. Similarly, we use

sr,n(x) to denote the row-generating polynomial of the n-th row of the matrix S(r);

we call them the r-th order Stirling subset polynomials. Thus, we have

cr,n(x)
def
=

n

∑
k=0

[
n
k

](r)
xk, (6.13)

sr,n(x)
def
=

n

∑
k=0

{
n
k

}(r)

xk. (6.14)

6.1.2 Statement of main conjecture and results

Having defined the Stirling cycle and subset numbers of all orders r, we are now

ready to state our conjectures, which constitute our main contribution in this chapter.

We will then state which of these cases are known and which of these we can prove

here.

Our conjecture for the Stirling cycle numbers of all orders is the following:

Conjecture 6.1.2 (Conjecture for Stirling cycle numbers of all orders). The follow-

ing are true:

(a) The triangle C(r) is totally positive for all r ≥ 1.

(b) The triangle Č(r) def
=
(

C(r)
)rev

formed by reversing the rows of C(r) is totally

positive for r = 1 and r = 2 and is not totally positive when r ≥ 3.



6.1. Introduction and statement of main results 254

(c) The row-generating polynomials cr,n(x) are real-rooted and have non-positive

zeroes when r = 1 and r = 2, and they have non-real complex zeroes for r ≥ 3.

Also, the row sequences of the matrix C(r) are log-concave for 1≤ r ≤ 5.

(d) The sequence (cr,n(x))n≥0 is coefficientwise-Hankel-totally positive in the

variable x for all r ≥ 1.

As mentioned earlier, the r = 1 cases of Conjecture 6.1.2 are known to be true.

In this chapter, we will prove (c) and (d) for r = 2.

Our conjecture for the Stirling subset numbers of all orders is the following:

Conjecture 6.1.3 (Conjecture for Stirling subset numbers of all orders). The follow-

ing are true:

(a) The triangle S(r) is totally positive for all r ≥ 1.

(b) The triangle Š(r) def
=
(

S(r)
)rev

formed by reversing the rows of S(r) is totally

positive for r = 1 and r = 2 and is not totally positive when r ≥ 3.

(c) The row-generating polynomials sr,n(x) are real-rooted and have non-positive

zeroes when r = 1 and r = 2 and they have non-real complex zeroes for r ≥ 3.

Also, the row sequences of the matrix S(r) are log-concave for 1≤ r ≤ 5.

(d) The sequence (sr,n(x))n≥0 is coefficientwise-Hankel-totally positive in the

variable x for r = 1 and r = 2 and is not coefficientwise-Hankel-totally positive

for r ≥ 3.

As mentioned earlier, the r = 1 cases of Conjecture 6.1.3 are known to be true.

The sequence of polynomials (s2,n(x))n≥0 were studied by Elvey Price and

Sokal in [PS20], they called them the Ward polynomials (compare the recur-

rence (6.12b) with [PS20, eq. (1.7),(1.8)]). It was shown [PS20, Theorem 1.1]

that these polynomials have a Thron-type continued fraction (T-fractions were intro-

duced in Section 2.2.1). It then follows from Theorem 2.3.1 that this sequence of

polynomials (s2,n(x))n≥0 is coefficientwise-Hankel-totally positive in the variable x

and thus, (d) is true for r = 2. In this chapter, we will prove (c) for the case r = 2.
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Our main result on Hankel-total positivity is the following:

Theorem 6.1.4. The sequence of second-order Stirling cycle polynomials

(c2,n(x))n≥0 is coefficientwise-Hankel-totally positive in the variable x.

We will prove Theorem 6.1.4 by bijectively showing that they are equal to cer-

tain multivariate generalisations of the Eulerian polynomials introduced by Pétréolle,

Sokal and Zhu [PSZ18]. We will recall the precise definitions in Section 6.2.2 but

we state our result here:

Proposition 6.1.5. The second-order Stirling cycle polynomial c2,n(x) is equal to the

multivariate Eulerian polynomialP(2)
2 (x,1+x,1+x) (defined in [PSZ18, sec 12.2.1])

i.e.,

c2,n(x) = P(2)
2 (x,1+ x,1+ x) . (6.15)

We will show that Theorem 6.1.4 follows from Proposition 6.1.5 by using

[PSZ18, Equation (12.5), Theorems 12.1(a) and 9.8]; we will state this combina-

tion in Theorem 6.2.2. Our proof of Proposition 6.1.5 will involve two steps: In

Section 6.2.1 we will introduce a second combinatorial interpretation for the num-

bers
[n

k

](2), using Stirling permutations, due to Callan [Cal]. Then in Section 6.2.2,

we will introduce a third combinatorial interpretation for these numbers in terms

of increasing ternary trees, using a well-known bijection to Stirling permutations;

Proposition 6.1.5 and then Theorem 6.1.4 will follow from this.

In Section 6.3, we introduce two more combinatorial interpretations for the

numbers
[n

k

](2); thus, we provide a total of five combinatorial interpretations for

these numbers in this chapter. Even though these interpretations are not necessary

for our proof of Theorem 6.1.4, and we are unable at present to see how to use them

to prove any of our other main conjectures, they are still interesting in their own

right and provide interesting consequences and also suggest new conjectures. In

Section 6.3.1, we introduce our fourth interpretation in terms of certain families of

weighted increasing trees with ordered children, and we provide two different proofs:

one bijective and one using generating functions. Both proofs suggest new lines
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of investigation, and also show that the hypothesis in [PS21, Theorem 1.1] due to

Pétréolle and Sokal is sufficient but far from necessary. In Section 6.3.2 we introduce

our fifth and final interpretation in terms of certain leaf-labelled trees. We then

show the relation to multivariate Ward polynomials introduced by Elvey Price and

Sokal [PS20, pp. 9-11], and we show that these multivariate Ward polynomials are a

common generalisation of both the second-order Stirling cycle polynomials c2,n(x)

and also of the second-order Stirling subset polynomials s2,n(x). This observation

very naturally leads us to another triangle of numbers which also seems to satisfy

our four positivity questions; we state this in Conjecture 6.3.10.

Our second main theorem on real-rootedness is the following:

Theorem 6.1.6. For every n ≥ 1, the polynomials c2,n(x), s2,n(x) have 0 as a root

and the zeroes of the polynomial sequence
(
c2,n(x)/x

)
n≥1, and also the sequence(

s2,n(x)/x
)

n≥1, are simple, interlacing, and they lie in the interval (−1,0).

Thus, in Theorem 6.1.6 we prove that not only are the zeroes non-positive, but

in fact, we show that the zeroes lie in an interval.

As mentioned previously, it follows from the work of Aissen, Schoenberg

and Whitney [ASW52], and Edrei [Edr52] that for any fixed n and for r = 1,2,

the real-rootedness of the polynomial cr,n(x), (or of the polynomial sr,n(x)) implies

that the lower-triangular Toeplitz matrix
([ n

i− j

](r))
i, j≥0

(the matrix
({ n

i− j

}(r))
i, j≥0

,

respectively) is totally positive. The positivity of the contiguous 2× 2 minors of

these Toeplitz matrices gives us the following corollary:

Corollary 6.1.7. The row sequences of the r-th order Stirling cycle and subset

matrices C(r) and S(r) are log-concave for r = 1,2.

One can show that Theorem 6.1.6 follows very easily from a very general

theorem due to Liu and Wang [LW07]. However, for the convenience of the reader,

we will provide a direct proof of our theorem in Section 6.4.

Even though the zeroes of the polynomials cr,n(x) and sr,n(x) do not lie on

the real line for r ≥ 3, it might be worthwhile to try and understand how they are
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distributed on the complex plane. In Section 6.5, we will provide some plots for the

distribution of zeroes of the polynomials for orders r ≥ 3. These plots will suggest

that these zeroes, when correctly normalised, have some mysterious structure; they

seem to accumulate around some limiting curves. However, at this moment we are

unable to provide any proofs describing these distributions.

6.1.3 Structure of chapter

The plan of the rest of this chapter is as follows: In Section 6.2, we prove the

coefficientwise-Hankel-total positivity of the second-order Stirling cycle polynomi-

als (Theorem 6.1.4). Then, in Section 6.3, we provide two further combinatorial

interpretations for the second-order Stirling cycle numbers; this leads us to some

interesting observations and another conjecture. Next, in Section 6.4, we prove

Theorem 6.1.6. Finally, in Section 6.5 we provide some plots for the zeroes of

r-th order Stirling cycle and subset polynomials for orders r ∈ [3,10].

6.2 Coefficientwise Hankel-total positivity of the

second-order Stirling cycle polynomials

We will prove Theorem 6.1.4 in this section. The proof consists of the follow-

ing two steps: In Section 6.2.1 we will first establish our second combinatorial

interpretation for the number
[n

k

](2): it counts Stirling permutations of the multiset

{1,1,2,2, . . . ,n,n} with optional dots at ascents and containing n− k dots. (The

full definitions will be provided in Section 6.2.1.) Then our second step is in Sec-

tion 6.2.2, where we show that ascent-marked Stirling permutations are in bijection

with a certain class of increasing ternary trees on n+ 1 vertices. This will give

us our third combinatorial interpretation for the numbers
[n

k

](2) and will enable

us to prove Proposition 6.1.5. Finally, we will see that the theory of branched

continued fractions [PSZ18] will immediately show that Proposition 6.1.5 implies

Theorem 6.1.4.
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6.2.1 Interpretations of the second-order Stirling cycle

numbers

Let us recall that the numbers
[n

k

](2)
=
[n+k

k

]
2 were defined to be the number of

permutations on [n+ k] containing k cycles, none of which are singletons. These

numbers satisfy the recurrence (6.12a). We will now provide another interpretation

for these numbers: namely, as the number of Stirling permutations with optional dots

in ascents. This interpretation can be guessed from the entries in [OEI19, A032188],

and the ensuing proof is due to David Callan [Cal].

A Stirling permutation of size n is a permutation of the multiset {1,1,2,2, . . . ,n,n}

with the Stirling property — for any i such that 1≤ i≤ n, all entries between the two

occurrences of i exceed i. Equivalently, a Stirling permutation of size n is permuta-

tion of the multiset {1,1,2,2, . . . ,n,n} that avoids the pattern 212. We recall [GS78]

that there are (2n−1)!! Stirling permutations of size n. An ascent-marked Stirling

permutation of size n is a Stirling permutation in which a dot may or may not

be inserted at each ascent. We let Vn,k denote the set of ascent-marked Stirling

permutations of size n with k dots. Thus,

V2,0 = {1122,1221,2211} (6.16a)

V2,1 = {11 ···22,1 ···221}. (6.16b)

Let vn,k =
∣∣Vn,k

∣∣.
We will prove the following lemma:

Lemma 6.2.1. The numbers vn,k satisfy the following recurrence:

vn,k = (2n− k−1)
(
vn−1,k + vn−1,k−1

)
(6.17)

and v0,k = δ0,k, and vn,k = 0 when k < 0. We then have
[n

k

](2)
= vn,n−k.

PROOF. Let σ ∈ Vn,k be an ascent-marked Stirling permutation of size n with k dots.

Deleting the two n’s (which are necessarily adjacent) together with the dot (if any)
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preceding them gives an element of Vn−1,k if there was no dot before nn, and an

element of Vn−1,k−1 if there was a dot before nn. Conversely, to get an element σ of

Vn,k with nn not preceded by a dot from a one-size-smaller ascent-marked Stirling

permutation, nn can be inserted in any of the 2n−1 spaces except those occupied by

a dot in an element of Vn−1,k: thus, there are (2n−1− k) choices. To get a σ with a

dot followed by nn, ···nn can be inserted in any of the 2n−1 spaces except the first

space and those occupied by a dot in an element of Vn−1,k−1: again the number of

choices is (2n−1− k). This proves the recurrence (6.17).

From the recurrence (6.17) it follows that the numbers un,k = vn,n−k satisfy the

recurrence

un,k = (n+ k−1)(un−1,k−1 +un−1,k) (6.18)

which is the same as the recurrence (6.12a) satisfied by the numbers
[n

k

](2). This

finishes the proof. �

6.2.2 Proof of Proposition 6.1.5 and Theorem 6.1.4

We will prove Theorem 6.1.4 in this section. We do this by using the theory of

branched continued fractions introduced in [PSZ18], see Section 2.3 for a summary

of some of the results. Our approach will be as follows: we will first state [PSZ18,

Theorem 6.2.2] and introduce the necessary concepts to understand the statement

of this theorem. We then provide a bijective proof of Proposition 6.1.5. This

proof will involve a bijection between certain increasing ternary trees and ascent-

marked Stirling permutations introduced in Section 6.2.1. Finally, we will see that

Theorem 6.1.4 is an easy consequence of these two results.

For the convenience of the reader, we now state all the necessary details. For a

fixed integer m≥ 2, an m-ary tree is a rooted tree with finitely many vertices such

that each vertex has 0 or 1 first child, 0 or 1 second child, and so on until 0 or 1 m-th

child. An increasing m-ary tree on n+1 vertices is an m-ary tree with n+1 vertices

such that each vertex is given a distinct label from the label set [0,n], such that the

label of a vertex is always larger than the label of its parent. For a fixed integer m≥ 1

and indeterminates x = (x0,x1, . . . ,xm) we let Q(m)
n (x) be the generating polynomial
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for increasing (m+ 1)-ary trees on n+ 1 vertices with labels [0,n] in which each

i-edge, an edge joining a vertex with its (i+1)-th child, gets a weight xi. We then

define P(m)
n (x) by

P(m)
0 (x) = 1 (6.19a)

P(m)
n (x) = x0Q

(m)
n−1(x) for n≥ 1 (6.19b)

Therefore, P(m)
n (x) is the generating polynomial for increasing (m+1)-ary trees on

on n+1 vertices with labels [0,n] such that the only edge (if any) emanating from

the root 0 is a 0-edge and in which each i-edge gets a weight xi. These polynomials

were called the multivariate Eulerian polynomials in [PSZ18].

In [PSZ18, Theorem 9.8], Pétréolle, Sokal and Zhu show that the sequence of

m-Stieltjes–Rogers polynomials (see Section 2.3 for the definition) is coefficientwise

Hankel-totally positive, see Theorem 2.3. Then in [PSZ18, Equation (12.5) and

Theorem 12.1(a)] they prove that the multivariate Eulerian polynomials P(m)
n (x) can

be obtained by specialising m-Stieltjes–Rogers polynomials with coefficientwise-

positive polynomials. This implies that the sequence
(
P(m)

n (x)
)

n≥0
must also be

coefficientwise Hankel-totally positive. We now state the combination [PSZ18,

Equation (12.5), Theorems 12.1(a) and 9.8]:

Theorem 6.2.2 ([PSZ18, Equation (12.5), Theorems 12.1(a) and 9.8]). The polyno-

mials P(m)
n (x) are equal to the m-Stieltjes–Rogers polynomials S(m)

n (ααα) where the

weights ααα = αm,αm+1,αm+2, . . . are given by

αm+ j+pk = (k+1)x j. (6.20)

Thus, the sequence of polynomials
(
P(m)

n (x)
)

n≥0
is coefficientwise-Hankel-totally

positive with respect to the variables x0,x1, . . . ,xm.

Now, let Tn denote the set of all increasing ternary trees (each vertex can have

zero-or-one left, middle or right children) on n+ 1 vertices with labels {0, . . . ,n}

such that the only edge (if any) emanating from the root 0 is a left edge. Thus,
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P(2)
n (x,1+ x,1+ x) is the generating polynomial of trees T ∈ Tn with edge-weights

x to left edges, and 1+ x to middle and right edges. We are now ready to prove

Proposition 6.1.5 where we show that c2,n(x) = P
(2)
n (x,1+ x,1+ x).

PROOF OF PROPOSITION 6.1.5. It is convenient to assign colours to the edges of

our ternary trees in Tn such that each middle or right edge can be coloured either red

or blue but each left edge must always be coloured red. We let T̂n,k denote the set of

such 2-coloured trees containing k red edges.

Thus, to show that equation (6.15) holds, it suffices to show that the cardinality

of the set T̂n,k is
[n

k

](2). We will do this by showing that the set T̂n,k is in bijection

with Vn,n−k, the set of ascent-marked Stirling permutations of size n with n− k dots;

our result will then follow from Lemma 6.2.1.

We must show that ascent-marked Stirling permutations of size n with n− k

dots are in bijection with increasing ternary trees on the vertex set [0,n], coloured

as explained above, containing k red edges. The first step is to use a classical

bijection between Stirling permutations and increasing ternary trees [Par94, JKP11]3.

We now sketch how this bijection is constructed: Let σ = a1 · · ·a2n be any word

on the alphabet Z≥1 such that each letter, if it occurs in σ , occurs exactly twice.

Also assume that σ has the Stirling property, i.e., all entries of σ between the two

occurrences of a exceed a. We then recursively define a ternary tree T (σ) as follows:

• T (σ) is the empty tree if and only if σ is the empty word.

• Otherwise, let a be the smallest letter of σ and also let σ = σ0 aσ1 aσ2. Then

T (σ) is the ternary tree rooted at a with T (σ0),T (σ1) and T (σ2) as the left,

middle and right subtrees of a, respectively.

From the description of this construction, it is clear that σ 7→ T (σ) is a bijection

from Stirling permutations on {1,1,2,2, . . . ,n,n} to increasing ternary trees on [n].

From the description of this bijection, it is clear that the first occurrence of the

letter a is the first element of an ascent pair (a pair ai,ai+1 such that ai < ai+1) if and

3This bijection was first mentioned by Park in [Par94] who attributed it to Gessel. The details of
this bijection were first explicitly stated by Janson, Kuba and Panholzer in [JKP11].
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only if σ1 is not the empty word, which is true if and only if the vertex labelled a has

a middle edge in the ternary tree T (σ). Similarly, the second a is the first element of

an ascent pair if and only if σ2 is not the empty word, which is true if and only if the

vertex labelled a has a right edge in the ternary tree T (σ). Thus, the ascents in σ are

in correspondence with the middle and right edges of T (σ).

Thus, for an ascent-marked Stirling permutation τ ∈ Vn,n−k we begin by con-

structing the ternary tree T (τ ′) where τ ′ is the underlying Stirling permutation of

τ . We then put τ ′ as the left subtree of a root vertex labelled 0. Next, we colour the

middle edge emanating from a vertex i as blue if the first occurrence of the letter i in

τ is immediately followed by a dot, and we colour the right edge emanating from i

blue if the second the vertex labelled i in τ is immediately followed by a dot. The

remaining edges are coloured red. Since τ has n− k dots, the resulting tree has n− k

blue edges and hence k red edges. Thus, we clearly have a bijection between the sets

Vn,k and T̂n,n−k. This finishes the proof. �

PROOF OF THEOREM 6.1.4. This follows by combining Proposition 6.1.5 and

Theorem 6.2.2. �

6.3 Two more combinatorial interpretations of the

second-order Stirling cycle numbers
We will provide two more combinatorial interpretations for the second-order Stirling

cycle numbers in this section. In Section 6.3.1, we introduce an interpretation involv-

ing a class of increasing labelled trees with ordered children. Then in Section 6.3.2,

we introduce some leaf-labelled trees with cyclically-ordered children.

6.3.1 Interpretation as increasing ordered trees

We will now provide another interpretation of the second-order Stirling cycle num-

bers
[n

k

](2) in terms of a different class of increasing trees.

Let In denote the set of increasing trees on the vertex set [0,n] in which the

children of each vertex are linearly ordered. Next, we consider trees S ∈ In and
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colour the vertices with colours red or blue, such that the internal vertices are always

coloured red. Let În,k denote the set of such 2-coloured trees with k red vertices.

In this section, we will show that the the cardinality of the set În,k is
[n

k

](2). As

preparation for this, recall that Tn denotes the set of all increasing ternary trees on

the vertex set [0,n] such that the only edge (if any) emanating from the root 0 is a

left edge. Recall also that T̂n,k denotes the set of trees in Tn along with a colouring of

the edges, either blue or red, such that left edges are always coloured red, and which

contain k red edges.

We will prove the following result:

Proposition 6.3.1. There exists a bijection Φn : Tn→ In such that for every tree

T ∈ Tn, the number of left edges of T is the same as the number of internal vertices

in Φn(T ).

We will provide two proofs of Proposition 6.3.1: we will give a bijective proof

in Section 6.3.1.1 and a proof using generating functions in Section 6.3.1.2. Before

providing the proofs, let us observe that using the bijection and the correspondence

between left edges and internal vertices in Proposition 6.3.1, and we get the following

corollary:

Corollary 6.3.2. The sets T̂n,k and În,k are in bijective correspondence. Thus, the

cardinality of În,k is given by

∣∣∣În,k

∣∣∣ = [
n
k

](2)
. (6.21)

PROOF OF COROLLARY 6.3.2 ASSUMING PROPOSITION 6.3.1. For a tree S ∈ In,

let intvertex(S) denote the number of internal vertices of S and let leaf(S) denote

the number of leaves of S. Also, for a tree T ∈ Tn, let l(T ), m(T ), r(T ) denote the

number of left, middle and right edges of T , respectively. Then we clearly obtain the
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following

n

∑
k=0

∣∣∣În,k

∣∣∣ xk = ∑
S∈In

xintvertex(S) (1+ x)leaf(S) (6.22a)

= ∑
T∈Tn

xl(T ) (1+ x)m(T ) (1+ x)r(T ) (6.22b)

=
n

∑
k=0

∣∣∣T̂n,k

∣∣∣ xk (6.22c)

where (6.22a) follows from the definition of the sets In, În,k, (6.22b) follows from

Proposition 6.3.1, and (6.22c) follows from the definition of the sets Tn, T̂n,k. This

completes the proof. �

We will thus have, once Proposition 6.3.1 is proved, our fourth combinatorial

interpretation for the numbers
[n

k

](2).
6.3.1.1 Bijective proof of Proposition 6.3.1

We will now construct a bijection Φn : Tn → In and provide our first proof of

Proposition 6.3.1. We will first construct the map Φn : Tn → In; we will then

construct another map Ψn : In→ Tn; finally, we will show that the maps Φn and

Ψn are inverses of each other, thus providing a bijective proof of Proposition 6.3.1.

Before doing all of this, we first introduce some terminology on trees T ∈ Tn and

S ∈ In.

Let T ∈ Tn and let j ∈ [0,n] be a vertex of T . Consider the subtree of T rooted

at the vertex j which uses all the middle and right edges but no left edge. We call

this tree the middle-right subtree of j in T . Next we assume that j is the left child of

vertex i. We then use leftT (i) to denote the middle-right subtree of j in T . If instead,

i is a vertex with no left child, we let leftT (i) be the empty tree. For example, in

Figure 6.1(a), the tree leftT (1) is the subtree consisting of the vertex 3, and the tree

leftT (2) is the subtree induced by the vertices 4,8 and 9.

It is easy to see that each vertex of T , other than the root 0, belongs to precisely

one of the subtrees leftT (i); here we have used the fact that the root has no middle or

right edge.

Next, let S ∈ In and let i ∈ [0,n] be a vertex of S. Then we define the child word
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of i, denoted by chS(i), to be the word whose j-th letter is the j-th child of i. Thus,

chS(i) is the empty word when i is a leaf. For example, in Figure 6.1(b), we have

chS(1) = 3 and chS(2) = 849.

0

1

3 2 5

6 4 10

7 8 9

x

yx y

x yx

y yy

(a) An increasing ternary tree T ∈ T10

0

2 10 1 5

8 4 9 3

6 7

xy3

xy2 x

xy

(b) An increasing ordered tree S ∈ I10

Figure 6.1: (a) This tree T ∈ T10 is given edge weights x,y,y for the left, middle and right
edges respectively.
(b) This tree S ∈ I10 has φ0 = 1 and φi = xyi−1 for every i≥ 1, where φi is the
weight of a vertex with i children. The leaves get weight 1.
Both trees have weight x4y6.

We need one more ingredient before describing the map Φn. This is the well-

known correspondence between increasing binary trees on a totally-ordered finite

vertex set A, and words w on the alphabet A with no repeated letters, see for example

[Sta09, pp. 44-45]. However, in our version, instead of using binary trees with left

and right edges, we will use binary trees with middle and right edges: If the word

w =∅, then Tree(w) =∅. Else, w = u · i · v where i is the smallest letter of w. We

recursively define Tree(w) to be the tree with root i whose middle subtree is Tree(u)

and right subtree is Tree(v).

On the other hand, given an increasing binary tree T on the vertex set A

made up of middle and right edges, we define Word(T ) as follows: If T = ∅

then Word(T ) =∅. Else, if T has root i with middle subtree T ′ and right subtree T ′′

(both of which may be empty), we define Word(T ) = Word(T ′) · i ·Word(T ′′).

We now state the following lemma which is clear from the construction of the
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maps w 7→ Tree(w) and T 7→Word(T ):

Lemma 6.3.3. (a) Let w be a word on the alphabet A with no repeated letters.

Then w = Word(Tree(w)).

(b) Let T be an increasing tree on the vertex set A, made up of middle and right

edges. Then T = Tree(Word(T )).

Construction of the map ΦΦΦnnn ::: T nnn→→→Innn.

For a given a tree T ∈ Tn, we will now construct a tree Φn(T ) ∈ In. To do this,

we begin with a tree rooted at 0. We then iterate j from 0 through n and insert the

children of j in Φn(T ) as follows: We first consider the subtree leftT ( j) in T ; it only

consists of middle and right edges. The children of j in Φn(T ) are then the letters of

Word
(
leftT ( j)

)
which are inserted in order from left to right. Thus, we have

chΦn(T )( j) = Word
(
leftT ( j)

)
. (6.23)

See Figure 6.1 for an example of a tree T ∈ T10 and Φ10(T ) ∈ I10.

When n = 0, we clearly have that Φ0(T ) ∈ I0. For n ≥ 1, we will now show

that Φn(T ) ∈ In by showing that every vertex j ∈ [1,n] must have a parent in Φn(T )

with label strictly smaller than j. To do this, we identify the parent of j in Φn(T ).

Consider the unique path from j to the root 0 in the tree T . Clearly, this path must

contain at least one left edge as the root must have a left edge. Let j̃ be the first

vertex on this path which is reached from j using a left edge. We refer to j̃ as the

left-ancestor of j. Thus, we have 0≤ j̃ < j, and also, j is a vertex of left
(

j̃
)
. For

example, in Figure 6.1(a), the left-ancestor of 8 is 2, and the left-ancestor of 10 is 0.

We clearly obtain the following lemma:

Lemma 6.3.4. Let j ∈ [1,n] be a vertex in T and let j̃ be its left-ancestor. Then j̃ is

the parent of j in Φn(T ).

From Lemma 6.3.4 and the fact that 0 ≤ j̃ < j, we get as a corollary the

following:
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Lemma 6.3.5. Given T ∈ Tn, we have Φn(T ) ∈ In.

This shows that Φn is a map from Tn→In.

Construction of the map Ψn : In→Tn.

For a given a tree S ∈ In, we will now construct a tree Ψn(S) ∈ Tn as follows: We

start with a tree rooted at 0. We then iterate through i ∈ [0,n] and look at chS(i), the

childword of i in S. If chS(i) =∅, then i will have no left edge in Ψn(S). Otherwise,

we create a left edge emanating out if i in Ψn(S) and attach to it the binary tree

Tree
(
chS(i)

)
consisting of only middle and right edges. Thus, we have

leftΨn(S)(i) = Tree
(
chS(i)

)
. (6.24)

When n = 0, we clearly have Ψ0(S) ∈ T0. For n ≥ 1, we will now show that

Ψn(S) ∈ Tn. In the construction of Ψn(S), a vertex i gets a left child j only when

chS(i) 6=∅ and when j is the root of Tree
(
chS(i)

)
, or in other words j is the smallest

letter in chS(i) which is the same as saying that j is the smallest-numbered child of

the vertex i in S. Thus, it is clear that every vertex i in Ψn(S) can contain at most

one left child j and that j > i. Next, notice that a vertex i in Ψn(S) gets a middle

(resp. right) child j only if i and j are both letters of the childword chS
(
i[
)
, for some

vertex i[ in T , and j is the middle (resp. right) child of i in Tree
(
chS
(
i[
))

. Thus, it is

clear that every vertex i in Ψn(S) can contain at most one middle child j and at most

one right child j; furthermore, j > i since Tree
(
chS
(
i[
))

is an increasing tree. Also,

0 cannot have any middle or right children in Ψn(S) as it does not have any siblings

in S. This shows that:

Lemma 6.3.6. Given S ∈ In, we have Ψn(T ) ∈ Tn.

We are now ready to prove Proposition 6.3.1.

PROOF OF PROPOSITION 6.3.1 USING BIJECTION. We will now show that the

maps Φn and Ψn are inverses of each other. From equations (6.23), (6.24) and

Lemma 6.3.3, we observe the following:
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(a) For a tree T ∈ Tn and a vertex j ∈ [0,n] of T , we have

leftΨn(Φn(T ))( j) = Tree(chΦn(T )( j)) (6.25a)

= Tree(Word(leftT ( j))) (6.25b)

= leftT ( j) . (6.25c)

Recall that every vertex i 6= 0 belongs to exactly one of the subtrees leftT ( j)

(resp. leftΨn(Φn(T ))( j)) in tree T (resp. Ψn(Φn(T ))). Thus, from equa-

tion (6.25) a vertex i is the middle (resp. right) child of a vertex i[ in tree T

if and only if i is the middle (resp. right) child of i[ in tree Ψn(Φn(T )). Also,

a vertex i is the left child of a vertex i[ in tree T (resp. Ψn(Φn(T ))) if and

only if it is the root of the tree leftT (i[) (resp. leftΨn(Φn(T ))(i
[)). Thus, from

equation (6.25) we also get that a vertex i is the left child of a vertex i[ in tree T

if and only if i is the left child of i[ in tree Ψn(Φn(T )). Thus, Ψn(Φn(T )) = T .

(b) For a tree S ∈ In and a vertex i ∈ [0,n] of S, we have

chΦn(Ψn(S))(i) = Word(leftΨn(S)(i)) (6.26a)

= Word(Tree(chS(i))) (6.26b)

= chS(i) (6.26c)

Equation (6.26) gives us Φn(Ψn(S)) = S.

Thus, Φn and Ψn are inverses of each other.

Finally, notice that a vertex j has a left edge in T ∈ Tn if and only if j has a

non-empty childword in the tree Φn(T ), which is true if and only if i is an internal

vertex of Φn(T ). �

6.3.1.2 Generating functions proof of Proposition 6.3.1

We will now use generating functions to provide an alternate proof of Proposi-

tion 6.3.1. We begin by introducing a framework which was first introduced by

Bergeron, Flajolet and Salvy in [BLL92].
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Let φφφ = (φi)i≥0 be indeterminates and let S ∈ In−1 be an increasing ordered tree

with n labelled vertices with labels in [0,n−1]. To every vertex with i children we

assign the weight φi; the weight of the tree, wt(T ), is the product of the weight of its

vertices. Let F(t;φφφ) be the weighted exponential generating function of increasing

ordered trees on n vertices, i.e.,

F(t;φφφ)
def
=

∞

∑
n=1

(
∑

S∈In−1

wt(S)

)
tn

n!
(6.27)

and thus,

F ′(t;φφφ)
def
=

∞

∑
n=0

(
∑

S∈In

wt(S)

)
tn

n!
. (6.28)

Also let Φ(u) be the ordinary generating function of φφφ given by

Φ(u) def
=

∞

∑
n=0

φiui . (6.29)

We call Φ(u) the degree function. It is known that F(t;φφφ) satisfies the differential

equation [BLL92, Eq. (8)]

d
dt

F(t;φφφ) = Φ(F(t;φφφ)) . (6.30)

Notice that even though we defined the generating function F(t;φφφ) to generate

all increasing ordered trees, this set-up is very general and we can use different

degree functions to denote different families of weighted trees. For example, when

we substitute φi = φ̃i/i!, we may think of F(t;φφφ) as the exponential generating

function enumerating all unordered increasing trees where each vertex with i children

gets weight φ̃i.

We will use this framework to prove the following very general result:

Proposition 6.3.7. Let Φ̂(u) be a formal power series with zero constant term, and

let X (s) be a formal power series satisfying

Φ̂
′(u) = X (Φ̂(u)) . (6.31)
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Now define

Φ(u) def
= 1 + x Φ̂(u) (6.32a)

Ψ(u) def
= (1 + xu)X (u) (6.32b)

Let A(t) def
= F(t;φφφ) with degree function Φ(u), and let B(t) def

= F(t;ψψψ) with degree

function Ψ(u). Then the following identities hold:

B(t) = Φ̂(A(t)) (6.33a)

A′(t) = 1+ xB(t) . (6.33b)

PROOF. From definition of B(t), we know that it satisfies the differential equation

(using equations (6.30) and (6.32b))

B′(t) = Ψ(B(t)) = (1 + xB(t))X (B(t)) . (6.34)

On the other hand,

d
dt

Φ̂(A(t)) = Φ̂
′(A(t))A′(t) (6.35a)

= X (Φ̂(A(t)))Φ(A(t)) (6.35b)

= X (Φ̂(A(t)))
[
1+ xΦ̂(A(t))

]
(6.35c)

So B(t) and Φ̂(A(t)) satisfy the same differential equation with the same initial

condition (namely, vanish at t = 0), so they are equal. This exhibits (6.33a).

Equation (6.33) follows from combining (6.32b) and (6.33a). �

PROOF OF PROPOSITION 6.3.1 USING GENERATING FUNCTIONS. We will now

prove Proposition 6.3.1 by using Proposition 6.3.7. First, consider the exponential

generating function A(t) def
= F

(
t;(δi0 +(1−δi0)xyi−1))i≥0

)
; thus A(t) denotes the

exponential generating function of all increasing ordered trees T ∈ In where each
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leaf is given weight φ0 = 1 and each internal vertex with i (≥ 1) children is given

weight φi = xyi−1. Thus, the degree function is

Φ(u) = 1 +
xu

1− yu
(6.36)

and A(t) satisfies the differential equation

A′ = 1+
xA

1− yA
(6.37)

Thus, we have from (6.27)

∞

∑
n=1

(
∑

S∈In−1

xintvertex(S)yleaf(S)

)
tn

n!
= A(t) (6.38)

where we recall that intvertex(S) and leaf(S) denote the number of internal vertices

and leaves of of a tree S ∈ In−1, respectively.

We use notation from Proposition 6.3.7 to obtain

Φ̂(u) =
u

1− yu
(6.39a)

X (s) = (1+ ys)2 (6.39b)

ψ(u) = (1+ xu)(1+ ys)2 (6.39c)

We then define B(t) def
= F(t;ψψψ) with degree function ψ(u) = (1+ xu)(1+ ys)2.

Here, we have ψ0 = 1, ψ1 = x+2y, ψ2 = 2xy+ y2, ψ3 = xy2, and ψi = 0 for every

i≥ 4. Thus, we can interpret B(t) to be the exponential generating function of all

ternary trees where each left edge gets a weight x, and each middle or right edge gets

a weight y, and the weight of a tree is instead the product of the weights of its edges.

Thus, it is clear that the exponential generating function of trees T ∈ Tn with weights

x for each left edge and weights y for each middle or right edge is simply given by

∞

∑
n=0

(
∑

T∈Tn

xl(T )ym(T )+r(T )

)
tn

n!
= 1+ xB(t) (6.40)
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where we recall that l(T ),m(T ), r(T ) denote the number of left, middle and right

edges of a tree T ∈ Tn.

Finally, we use Proposition 6.3.7 to obtain

A′(t) = 1+ xB(t) (6.41)

Combining equations (6.38), (6.40) and (6.41) finishes the proof. �

We end this section with some interesting remarks.

Final remarks. 1. If we solve equation (6.31) with X (v) = (1+ yv), we get

Φ̂(u) =
(
eyu−1

)
/y. This shows that unordered increasing trees on n+1 vertices are

in bijection with increasing binary trees on n vertices. This bijection is well known,

see for e.g. [Sta09, pp. 44-46]. Furthermore, this also tells us that the left edges in

binary trees are in correspondence with the internal vertices of its corresponding

unordered increasing tree.

2. If we solve equation (6.31) with X (v) = (1+ yv)k with k ≥ 2, we obtain

Φ̂(u) =
[1− (k−1)yu]−1/(k−1)−1

y
. (6.42)

In particular, when k≥ 3, the degree function Φ(u) = 1+xΦ̂(u) obtained from (6.42)

describes increasing ordered trees in which each leaf gets a weight 1, each vertex

with only one child gets a weight x and for i ≥ 2, each vertex with i children gets

a weight xyi−1
∏

i−1
j=1(( j−1)k− j+2). Such trees on n+1 vertices are in bijection

with (k+1)-ary trees on n+1 vertices in which the root can only have a first child.

3. Finally, and more interestingly, if we solve equation (6.31) with X (v) = eyv,

we obtain Φ̂(u) =
(
eyu− 1

)
/y. The consequence of this is that increasing trees

on n+1 vertices where the children of every vertex are cyclically ordered, are in

bijection with trees on n+1 vertices where every vertex has zero or one left child

and an arbitrary number of unordered right children but the root can only have a left

child.
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Problem 6.3.8. Find bijections that explain 2. and 3.

4. On setting y = (1+ x) in the degree function (6.36), we get the sequence

φ0 = 1, and for i≥ 1, φi = x(1+ x)i−1. This sequence is not coefficientwise Toeplitz

totally positive in the variable x. However, by combining Propositions 6.1.5, 6.3.1 and

Theorem 6.1.4, we get that the generating polynomials of weighted trees in In are the

polynomials c2,n(x) and that the sequence c2,n(x) is coefficientwise-Hankel-totally

positive with respect to the variable x. This has a consequence to the understanding

of [PS21, Theorem 1.1]. This shows that even though the sequence φφφ , in this case, is

not Toeplitz totally positive, the resulting sequence in (c) of [PS21, Theorem 1.1] is

still coefficientwise-Hankel-totally positive. Thus, the condition of φφφ being Toeplitz-

totally positive is only a sufficient condition and is far from necessary for [PS21,

Theorem 1.1(c)] to hold. In [DDS], Φ(u) is taken to be a polynomial in u of degrees

3 and 4 and the exact necessary and sufficient conditions under which (c) of [PS21,

Theorem 1.1] holds true is studied. �

6.3.2 Interpretation as cyclically-ordered phylogenetic trees

Here we introduce our fifth and final combinatorial interpretation of the second-order

Stirling cycle numbers. This interpretation will lead us to a common generalisation

of the second-order Stirling numbers of both kinds and also lead us to another

conjecture similar to Conjectures 6.1.2 and 6.1.3.

A phylogenetic tree is a leaf-labelled rooted tree in which all non-leaf vertices

have at least two children. Unless otherwise mentioned, it is assumed that the

children of each vertex of a phylogenetic tree are unordered. However, we will work

with various orders. A cyclically-ordered phylogenetic tree is a phylogenetic tree in

which the children of each vertex are cyclically ordered. These have also been called

series-reduced mobiles [AW]. Let Mn,k denote the set of all cyclically-ordered

phylogenetic trees with n+1 leaves and k internal vertices.

We will now establish the following proposition:

Proposition 6.3.9. The cardinality of the setMn,k of cyclically-ordered phyloge-
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netic trees with n+1 leaves and k internal vertices is given by

∣∣Mn,k
∣∣ = [

n
k

](2)
. (6.43)

We will provide two different proofs of Proposition 6.3.9. Our first proof will be

showing that the numbers
∣∣Mn,k

∣∣ satisfy the recurrence relation (6.12a). Our second

proof will use generating functions for multivariate Ward polynomials introduced by

Elvey Price and Sokal in [PS20].

PROOF OF PROPOSITION 6.3.9 USING RECURRENCE RELATIONS. We will con-

sider the two cases whether or not the leaf labelled n+1 has exactly one sibling.

If the leaf labelled n+ 1 has exactly one sibling, then the tree obtained by

removing it is no longer a cyclically-ordered phylogenetic tree as the parent of n+1

now has only one child. If the parent of n+ 1 was not the root, we can contract

the resulting tree at this internal vertex, to obtain a tree in Mn−1,k−1. Thus, to

insert n+1 back into this tree, we need to select an edge, and elongate it by adding

an extra internal vertex. As there are n+ k− 2 edges, we get a contribution of

(n+ k− 2)|Mn−1,k−1|. If the parent of n+ 1 was the root, we remove the root as

well to obtain a tree rooted at the sibling of n+1. This contributes |Mn−1,k−1|.

If n+1 has at least two siblings, we can remove it and the resulting tree belongs

toMn−1,k. Thus, inserting n+1 back into this tree, it suffices to choose its sibling

that comes immediately before it and we may choose any of the non-root vertices.

This contributes the term (n+ k−1)|Mn−1,k|.

Combining all the contributions, we get

|Mn,k| = (n+ k−2)|Mn−1,k−1| + |Mn−1,k−1| + (n+ k−1)|Mn−1,k| (6.44)

which is exactly the recurrence (6.12a). �

We require the multivariate Ward polynomials introduced in [PS20, pp. 9-11]

for our second proof of Proposition 6.3.9. As mentioned earlier in Section 6.1.2, our



6.3. Two more combinatorial interpretations of the second-order Stirling cycle numbers275

second-order Stirling subset polynomials s2,n(x) are usually referred to as the Ward

polynomials, and the numbers
{n

k

}(2) are the Ward numbers. It is known that the Ward

number
{n

k

}(2) counts the number of phylogenetic trees (with unordered children) on

n+1 leaves and k internal vertices. Thus, the polynomial s2,n(x) is the generating

polynomial of phylogenetic trees on n+1 leaves in which each internal vertex gets a

weight x and each leaf gets a weight 1. Now let x = (xi)i≥1 be an infinite collection

of indeterminates. The multivariate Ward polynomials WWW n(x) =WWW n(x1, . . . ,xn) are

a multivariate generalisation of the polynomials s2,n(x); these are the generating

polynomial for phylogenetic trees on n+1 labelled leaves in which each internal

vertex with i (≥ 2) children gets a weight xi−1. The polynomial WWW n(x) is quasi-

homogeneous of degree n when xi is given weight i. Thus s2,n(x) = WWW n(x, . . . ,x).

The first few WWW n are [OEI19, A134685]. The exponential generating function

W(t;x) def
=

∞

∑
n=0

WWW n(x)
tn+1

(n+1)!
= t +

∞

∑
n=2

WWW n−1(x)
tn

n!
(6.45)

satisfies the functional equation [PS20, eq. (1.18)]

W(t;x) = t +
∞

∑
n=2

xn−1
W(t;x)n

n!
, (6.46)

where the term n in the sum corresponds to the case in which the root has n children.

PROOF OF PROPOSITION 6.3.9 USING GENERATING FUNCTIONS. It is

clear that with the substitution xi 7→ i! · x, the polynomials WWW n(x,2x, . . . ,n! · x)

are the generating polynomials of cyclically-ordered phylogenetic trees with

weight x given to each internal vertex and a weight 1 to each leaf. Thus

we want to show that WWW n(x,2x, . . . ,n! · x) ?
= c2,n(x). We call these polynomials

Wn(x)
def
= WWW n(x,2x, . . . ,n! · x), and the corresponding exponential generating func-

tion is denoted byW(t;x). Thus, the functional equation (6.46) is now

W(t;x) = t +
∞

∑
n=2
W(t;x)n x

n
. (6.47)
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This can be rewritten as

W(t;x) = t− x [log(1−W(t;x))+W(t;x)] (6.48)

and differentiating both sides with respect to t we obtain

W ′ = 1

1− x
W

1−W

= 1+
xW

1− (1+ x)W
. (6.49)

However, this is exactly the same as the differential equation (6.37) with y = 1+ x

which is satisfied by the exponential generating function for increasing ordered trees

on [0,n] where each leaf is given a weight 1 and each vertex with i≥ 1 children is

given a weight x(1+ x)i−1. Thus, the result follows by combining Propositions 6.3.1

and 6.1.5. �

Final remark and conjecture. As mentioned earlier, in [PS20] it has been

noticed that the number of phylogenetic trees on n+ 1 vertices with unordered

children having k internal nodes is the second-order Stirling subset number
{n

k

}(2).
In Proposition 6.3.9, we established that the number of phylogenetic trees on n+1

vertices with cyclically-ordered children having k internal nodes is the second-order

Stirling cycle number
[n

k

](2). The generating polynomials in both cases can be

obtained as specialisations of the multivariate Ward polynomials; the former can be

obtained by setting xi 7→ x, and the latter can be obtained by setting xi 7→ i! · x. After

these two observations, it is very natural to ask what the number of phylogenetic

trees on n+1 vertices with linearly-ordered children having k internal nodes is.

Let
{̂n

k

}
denote the number of phylogenetic trees with ordered children hav-

ing n + 1 vertices and k internal nodes. Their generating polynomials are ob-

tained by setting xi 7→ (i+ 1)! · x in the multivariate Ward polynomials. These

numbers seem to match [OEI19, A357367] and it seems that for k ≤ n, we
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have
{̂n

k

}
=
[
(n+ k)!/k!

](n−1
k−1

)
and the first few rows are

1

2

6 12

24 120 120

120 1080 2520 1680

720 10080 40320 60480 30240

5040 100800 604800 1512000 1663200 665280

(6.50)

Let dn(x) denote the generating polynomials

dn(x)
def
=

n

∑
k=0

{̂
n
k

}
xk (6.51)

and let D be the lower-triangular matrix D =
({̂n

k

})
n,k≥0

.

Similar to Conjectures 6.1.2 and 6.1.3, we have the following conjecture:

Conjecture 6.3.10 (Conjecture for ordered phylogenetic trees). The following are

true:

(a) The triangle D is totally positive.

(b) The triangle Drev formed by reversing the rows of D is totally positive.

(c) The row-generating polynomials dn(x) are real-rooted and their zeroes lie in

the interval (−1,0].

(d) The sequence (dn(x))n≥0 is coefficientwise-Hankel-totally positive in the vari-

able x.

Finally, we leave the further study of the multivariate Ward polynomials as an

open problem. �



6.4. Distribution of zeroes for the second-order Stirling cycle and subset polynomials278

6.4 Distribution of zeroes for the second-order

Stirling cycle and subset polynomials
We will now prove Theorem 6.1.6 in this section.

For r,n≥ 1, it is clear from (6.10a)/(6.11a) that cr,n(0) = sr,n(0) = 0. For n≥ 0

and r = 2, we then define the polynomials ĉn(x) and ŝn(x) by

ĉn(x)
def
=

c2,n+1(x)
x

(6.52a)

ŝn(x)
def
=

s2,n+1(x)
x

. (6.52b)

We will show that the polynomials ĉn(x) and ŝn(x) have simple and interlacing

zeroes in the interval (−1,0). To prove this, we will first obtain recurrences for the

polynomials ĉn(x) and ŝn(x) and then evaluate them at x = 0 and at x =−1.

Lemma 6.4.1. (a) The polynomials ĉn(x) satisfy the recurrence relation

ĉn(x) =
(
(n+2)x+n+1

)
ĉn−1(x) + x(x+1) ĉ′n−1(x) (6.53)

(b) The polynomials ŝn(x) satisfy the recurrence relation

ŝn(x) =
(
(n+2)x+1

)
ŝn−1(x) + x(x+1) ŝ′n−1(x) (6.54)

PROOF. As a consequence of the recurrences (6.12), the polynomials c2,n(x) and

s2,n(x) satisfy the recurrences

c2,n(x) =
(
nx+(n−1)

)
c2,n−1(x) + x(x+1)c′2,n−1(x) (6.55a)

s2,n(x) = nxs2,n−1(x) + x(x+1)s′2,n−1(x) (6.55b)

from which the recurrences (6.53)/(6.54) follow. �

Lemma 6.4.2. For all n ≥ 1, the polynomials ĉn(x) and ŝn(x) have the following
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evaluations at x = 0 and at x =−1:

ĉn(0) = (n+1)! (6.56a)

ŝn(0) = 1 (6.56b)

ĉn(−1) = (−1)n (6.56c)

ŝn(−1) = (−1)n (n+1)! (6.56d)

PROOF. These follow by substituting x = 0 and x = −1 in the recurrences (6.53)

and (6.54) and then using induction. �

We are now ready to prove Theorem 6.1.6.

PROOF OF THEOREM 6.1.6. We prove it for the polynomial sequence ĉ2,n(x). The

proof for the polynomial sequence ŝ2,n(x) is mostly the same and is left to the reader.

We first rewrite equation (6.53) as

ĉn(x) = x
(
(n+2)ĉn−1(x)+(x+1)ĉ′n−1(x)

)
+ (n+1) ĉn−1(x) (6.57)

Now, we use induction on n. For the case n = 0, the polynomial p0(x) = 1 has

no roots and hence the theorem is vacuously true. The case n = 1 can be checked

to be true as well. Let us assume that the zeroes of ĉn−1(x) are distinct and are

contained in the interval (−1,0).

Now let pn(x) := GCD
(
ĉn−1(x),(x+1)ĉ′n−1(x)

)
. By Rolle’s theorem, the ze-

roes of ĉ′n−1(x) interlace those of ĉn−1(x) and thus, lie in the interval (−1,0) and are

simple. Thus we get pn(x) = 1. Thus, there are no common zeroes between ĉn−1(x),

ĉ′n−1(x) and ĉn(x).

Now let −1 < λ
(n−1)
n−1 < .. . < λ

(n−1)
1 < 0 be the zeroes of ĉn−1(x). We then

have ĉ′n−1

(
λ
(n−1)
j

)
> 0 if j is odd, and ĉ′n−1

(
λ
(n−1)
j

)
< 0 if j is even. Hence,

sgn
(

ĉn

(
λ
(n−1)
j

))
= (−1) j . (6.58)
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Furthermore, using Lemma 6.4.2, we also have ĉn(−1) = (−1)n and ĉn(0) = (n+1)!.

Thus, the proof of this theorem follows by using the intermediate value theorem. �

Let us finally conclude this section by mentioning that even though we have

included a proof of Theorem 6.1.6 for the sake of completeness, one can obtain this

result as an immediate consequence of a seminal result due to Liu and Wang [LW07].

6.5 Distribution of zeroes for order 3 and above

We conjectured that the zeroes of any r-th order Stirling cycle or subset polynomials

are not real when r ≥ 3. We already know that cr,n(0) = sr,n(0) = 0 for n ≥ 1. In

this section, we first show that the polynomials cr,3(x)/x and sr,3(x)/x, which are

quadratic polynomials, have a negative discriminant when r ≥ 3 in the cycle case

and r ≥ 4 in the subset case, thus proving that they have non-real complex zeroes.

We will then provide plots for the distribution of these zeroes which suggest that

these zeroes accumulate around some mysterious limiting curves.

Using the recurrences in Lemma 6.10, we obtain the following:

[
3
1

](r)
= (r+1)!,

[
3
2

](r)
=

(2r+1)!
r(r+1)

,

[
3
3

](r)
=

(3r−1)!
2r2 . (6.59)

Thus we get that the discriminant of the polynomial cr,3(x)/x is

D(r) :=
(
(2r+1)!
r(r+1)

)2

− 4 · (r+1)!(3r−1)!
2r2 . (6.60)

Thus for a fixed r ≥ 3, showing that D(r)< 0 will imply that the polynomial cr,3(x)

contains non-real zeroes. We first rewrite D(r) as

D(r) =
(r+1)!(2r+1)!

r2(r+1)2 ·
(
(2r+1)!
(r+1)!

−2(r+1)2 (3r−1)!
(2r+1)!

)
. (6.61)
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Since r ≥ 3, we can further rewrite

D(r) =
(r+1)!(2r+1)!

r2(r+1)2 ·
[
(r+2)(r+3) · (r+4) · · ·(2r+1) (6.62a)

− 2(r+1)2 · (2r+2) · · ·(3r−1)
]

(6.62b)

from which it is clear that D(r)< 0.

One can use a similar argument to show that the discriminant of the quadratic

polynomial sr,3(x)/x is negative when r ≥ 4; we leave the details to the reader. Even

though the zeroes of s3,3(x) are real, using computer algebra one can see that the

zeroes of the polynomial s3,4(x) are however complex.

Let us first establish some notation before we provide the plots for the zeroes of

the polynomials cr,n(x) and sr,n(x). Let A⊂ C be a subset of complex numbers, let

α ∈ R be a real number. We then define the set αA as follows:

αA def
= {αx : x ∈ A} . (6.63)

For a fixed r ≥ 1, we letRCr,n andRSr,n denote the set of zeroes of the r-th order

Stirling cycle polynomial cr,n(x), and of the r-th order Stirling subset polynomial

sr,n(x), respectively. Thus,

RCr,n
def
= {z ∈ C : cr,n(z) = 0} (6.64a)

RSr,n
def
= {z ∈ C : sr,n(z) = 0} . (6.64b)

In Section 6.5.1, we provide some normalised plots forRCr,n for some r,n, and then

in Section 6.5.2 we provide normalised plots forRSr,n. These plots will immediately

suggest some problems and conjectures which we mention.

6.5.1 Third and higher-order Stirling cycle polynomials

We fix r and plot the set nn−rRCr,n for n = 50,100,150,200 using the different

colours red, green, blue and black, respectively. The overlapping plots suggest that

the zeroes have some asymptotic distribution around some limiting curves. We first



6.5. Distribution of zeroes for order 3 and above 282

plot the cases r = 3,4,5,6 in Figure 6.2 and then r = 7,8,9,10 in Figure 6.3.

(a) r = 3-rd order Stirling cycle (b) r = 4-th order Stirling cycle

(c) r = 5-th order Stirling cycle (d) r = 6-th order Stirling cycle

Figure 6.2: We plot nn−rRCr,n with r = 3,4,5,6 in subfigures (a), (b), (c) and (d), respec-
tively, and with n = 50,100,150,200 using the different colours red, green, blue
and black, respectively.
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(a) r = 3-rd order Stirling cycle (b) r = 4-th order Stirling cycle

(c) r = 5-th order Stirling cycle (d) r = 6-th order Stirling cycle

Figure 6.3: We plot nn−rRCr,n with r = 7,8,9,10 in subfigures (a), (b), (c) and (d), respec-
tively, and with n = 50,100,150,200 using the different colours red, green, blue
and black, respectively.

Our plots suggest the following problem:

Problem 6.5.1. For a fixed r ≥ 1, study the asymptotic distribution of the set of

normalised zeroes nr−2RCr,n. Do they accumulate around a curve?

In the case r = 1, we clearly get that the normalised zeroes accumulate uniformly

on the unit interval [−1,0].

When r = 3, we conjecture the following:

Conjecture 6.5.2. The zeroes of the third-order Stirling cycle polynomials c3,n(x)

lie on the left-half plane.
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6.5.2 Third and higher-order Stirling subset polynomials

We fix r and plot the set nn−rRSr,n for n = 50,100,150,200 using the different

colours red, green, blue and black, respectively. The overlapping plots suggest that

the zeroes have some asymptotic distribution around some limiting curves. We first

plot the cases r = 3,4,5,6 in Figure 6.4 and then r = 7,8,9,10 in Figure 6.5.

(a) r = 3-rd order Stirling subset (b) r = 4-th order Stirling subset

(c) r = 5-th order Stirling subset (d) r = 6-th order Stirling subset

Figure 6.4: We plot nn−rRSr,n with r = 3,4,5,6 in subfigures (a), (b), (c) and (d), respec-
tively, and with n = 50,100,150,200 using the different colours red, green, blue
and black, respectively.
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(a) r = 7-th order Stirling subset (b) r = 8-th order Stirling subset

(c) r = 9-th order Stirling subset (d) r = 10-th order Stirling subset

Figure 6.5: We plot nn−rRSr,n with r = 7,8,9,10 in subfigures (a), (b), (c) and (d), respec-
tively, and with n = 50,100,150,200 using the different colours red, green, blue
and black, respectively.

Our plots suggest the following problem:

Problem 6.5.3. For a fixed r ≥ 1, study the asymptotic distribution of the set of

normalised zeroes nr−2RSr,n. Do they accumulate around a curve?

In the case r = 1, the asymptotic distribution of the normalised zeroes of the

Bell polynomials was studied by Elbert [Elb01a, Elb01b].

When r = 3, we conjecture the following:

Conjecture 6.5.4. The zeroes of the third-order Stirling subset polynomials s3,n(x)

lie on the left-half plane.
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Journal d'Analyse Mathématique, 2(1):104–109, December 1952.

[EFLL22] S.-P. Eu, T.-S. Fu, H.-H. Lai, and Y.-H. Lo. Gamma-Positivity for a

Refinement of Median Genocchi Numbers. The Electronic Journal of

Combinatorics, 29(2), April 2022.

[Elb01a] C. Elbert. Strong Asymptotics of the Generating Polynomials of the

Stirling Numbers of the Second Kind. Journal of Approximation Theory,

109:198–217, 2001.

[Elb01b] C. Elbert. Weak Asymptotics for the Generating Polynomials of the

Stirling Numbers of the Second Kind. Journal of Approximation Theory,

109:218–228, 2001.

[Ene13] G. Eneström. Die Schriften Eulers chronologisch nach den Jahren

geordnet, in denen sie verfaßt worden sind, 1913.



Bibliography 290

[ES00] R. Ehrenborg and E. Steingrı́msson. Yet Another Triangle for the Genoc-

chi Numbers. European Journal of Combinatorics, 21(5):593–600,

2000.

[Eul55a] L. Euler. De transformatione seriei divergentis 1−mx+m(m+n)x2−

m(m + n)(m + 2n)x3 + etc. in fractionem continuam. 1755. [Latin

original and English and German translations available at http://

eulerarchive.maa.org/pages/E616.html].

[Eul55b] L. Euler. Methodis summandi superior ulterius promota. 1755. Chapter 7

of Institutiones Calculi Differentialis cum eius Usu in Analysi Finito-

rum ac Doctrina Serierum [Foundations of Differential Calculus, with

Applications to Finite Analysis and Series] (Academiae Imperialis Scien-

tiarum Petropolitanae, Saint Petersburg, 1755), pp. 479–514. Reprinted

in Opera Omnia, ser. 1, vol. 10, pp. 368–395. Latin original available at

http://eulerarchive.maa.org/pages/E212.html; English trans-

lation available at https://www.agtz.mathematik.uni-mainz.de/

algebraische-geometrie/van-straten/euler-kreis-mainz/.

[Eul60] L. Euler. De seriebus divergentibus. 1760. Original at http:

//eulerarchive.maa.org/backup/E247.html, English Translation

at https://arxiv.org/abs/1808.02841.

[Fei12] E. Feigin. The median Genocchi numbers, q-analogues and continued

fractions. European Journal of Combinatorics, 33(8):1913–1918, 2012.
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