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A B S T R A C T 

Astrochemical modelling of the interstellar medium typically makes use of complex computational codes with parameters whose 
values can be varied. It is not al w ays clear what the exact nature of the relationship is between these input parameters and the 
output molecular abundances. In this work, a feature importance analysis is conducted using SHapley Additive exPlanations 
(SHAP), an interpretable machine learning technique, to identify the most important physical parameters as well as their 
relationship with each output. The outputs are the abundances of species and ratios of abundances. In order to reduce the time 
taken for this process, a neural network emulator is trained to model each species’ output abundance and this emulator is used to 

perform the interpretable machine learning. SHAP is then used to further explore the relationship between the physical features 
and the abundances for the various species and ratios we considered. H 2 O and CO’s gas phase abundances are found to strongly 

depend on the metallicity. NH 3 has a strong temperature dependence, with there being two temperature regimes ( < 100 K and 

> 100 K). By analysing the chemical network, we relate this to the chemical reactions in our network and find the increased 

temperature results in increased efficiency of destruction pathways. We investigate the HCN/HNC ratio and show that it can be 
used as a cosmic thermometer, agreeing with the literature. This ratio is also found to be correlated with the metallicity. The 
HCN/CS ratio serves as a density tracer, but also has three separate temperature-dependence regimes, which are linked to the 
chemistry of the two molecules. 
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 I N T RO D U C T I O N  

odelling the interstellar medium and star formation is often a
omplex matter. This is normally done using computational codes
hat take in a number of physical parameters and use these to integrate
he system of coupled ordinary differential equations that represent
 chemical network (Taquet, Ceccarelli & Kahane 2012 ; Ruaud,
akelam & Hersant 2016 ; Holdship et al. 2017 ). Ho we ver, due to the

on-linear nature of the chemistry, it is often unclear what the exact
elationship is between the initial parameters and the output chemical
bundances of the molecules of interest. This is often complicated
y the fact that the various parameters have differing effects on the
utput abundances for different ranges. 
It has been customary in astrochemistry to consider grids of models

n which the various parameters are varied (Taquet et al. 2012 ; Tun-
ard & Greve 2016 ; Viti 2017 ; Bianchi et al. 2019 ; James et al. 2020 ;
oldship & Viti 2022 ; Heyl et al. 2023 ). The time-consuming and

omputationally e xpensiv e nature of man y computational codes often
imits the total number of model e v aluations possible. This makes
rawing conclusions about the importance of various parameters
ifficult. In this work, we look to address both of these issues. We
 E-mail: johannes.heyl.19@ucl.ac.uk (JH); viti@strw .leidenuniv .nl (SV) 
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Published by Oxford University Press on behalf of Royal Astronomical Socie
Commons Attribution License ( https://cr eativecommons.or g/licenses/by/4.0/), whi
ake use of SHapley Additive exPlanations (SHAP) (Lundberg &
ee 2017 ) to help impro v e our understanding of a chemical code.
HAP provides us with a means of understanding why a machine

earning model outputs a particular value. By considering various
ombinations of inputs and outputs, these techniques will tell us
hat the relationship is. This has found use in astrophysics recently

Machado Poletti Valle et al. 2021 ; Ansari et al. 2022 ) in the context
f interpreting the outputs of machine learning models. 
To impro v e the efficienc y of this process, we employ statistical

mulation. The process of statistical emulation involves fitting a
tatistical function to model the relationship between the inputs and
utputs of a forward model (Grow & Hilton 2018 ). A significant
mount of work has been done in recent years in applying statistical
mulation to astrochemistry. de Mijolla et al. ( 2019 ) used a feed-
orward neural network to accelerate the Bayesian inference process,
hile Grassi et al. ( 2011 ) used these to accelerate the forward
odelling. Branca & Pallottini ( 2023 ) considered how a physics-

nformed neural network could be used to reduce the computational
ost of predicting the time evolution of chemistry. Holdship et al.
 2021 ) utilized autoencoders to model temperature and abundance
ime evolution. 

We adopt the approach taken by de Mijolla et al. ( 2019 ) and Grassi
t al. ( 2011 ) in this work by using an emulator to simulate the final
utputs of a chemical code and then e v aluate these a number of times
© The Author(s) 2023. 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 
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Table 1. The range of values used for each parameter as well as their units 
and scales. In the context of the machine learning application in this work, 
we refer to these parameters as the features of the model. 

Parameter ranges 

Parameter Minimum Maximum Unit Scale 

n 10 4 10 7 cm 

−3 Logarithmic 
ζ 1 1000 1.3 × 10 −17 s −1 Logarithmic 
T 10 200 K Linear 
m z 0 2 S olar value Linear 
ψ 1 10 3 Habing Logarithmic 
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or the purposes of the machine learning interpretability algorithm. 
ork has been done in this area to simplify chemical networks to

mpro v e interpretability (Hoffmann, Fr ̈ohner & No ́e 2019 ; Grassi
t al. 2022 ), but this is not an approach we wish to to consider.
nstead, we build on the work done in de Mijolla et al. ( 2019 )
nd look to use the interpretability techniques on these emulators. 
he purpose of using an emulator is that it accurately predicts the
utput of the forward model it is emulating in a fraction of the time.
urthermore, if the emulator is an accurate approximation for the 
orward model output, then it stands to reason that it accurately cap-
ures the mapping between the input parameters and the output. By
sing machine learning interpretability algorithms, we can identify 
hese. 

In Section 2 , we introduce the chemical code that we will be
ooking to emulate. In Section 3 , we introduce statistical emulation 
nd machine learning interpretability. Section 4 is dedicated to 
iscussing the results of the analysis. 

 T H E  C H E M I C A L  C O D E  A N D  N E T WO R K  

n this work, we use the open source publicly available time- 
ependent astrochemical code UCLCHEM (Holdship et al. 2017 ). 
his astrochemical code has been developed with several updates 

Viti et al. 2004 ; Roberts et al. 2007 ; Holdship et al. 2017 ).
CLCHEM is a time-dependent gas–grain astrochemical code. It 
tilizes a rate equation approach to modelling the abundances of the 
as phase and surface species. The initial elemental abundances are 
isted in Table A1 . The default values in the code for the radiation
eld and the cosmic ray ionization rate are ψ = 1 Habing and ζ
 1.3 × 10 −17 s −1 . Radiation is attenuated by the visual extinction.
as anddust are rescaled from solar v alues. Extensi ve documentation 
n the inner workings of UCLCHEM can be found on the GitHub
age. 1 

In this work, we use UCLCHEM in two phases of modelling. Phase
 corresponds to the isothermal gravitational collapse of a diffuse gas 
loud modelled as a Bonnor–Ebert sphere. Ho we ver, this stops once
he internal pressure begins to balance out the gravitational pressure. 
his increase in internal pressure is accompanied by an increase in 

emperature which is when Phase 2 begins, which models a protostar. 
t this point, the temperature continues to increase and grain-surface 

pecies begin to e v aporate as the temperatures near their respective
 v aporation temperatures. 

In Phase 1, the gas cloud collapses isothermally at 10 K from
00 cm 

−3 to some final density, which is left as a free parameter.
hase 2 starts off at this density and begins to heat up. It is Phase 2

hat has a number of physical parameters that can be varied in order
o model various star-forming scenarios. There are a number of free 
arameters that we vary in this work, which are the same as in de
ijolla et al. ( 2019 ). These are: 

(i) Final density of Phase 1 or initial density of Phase 2 (cm 

−3 ). 
(ii) Metallicity (a scaling factor of all abundances). 
(iii) Radiation field (habing). 
(iv) Cosmic ray ionization rate (in units of 1.3 × 10 −17 s −1 ). 
(v) Final temperature of Phase 2 (in Kelvin). 

The ranges o v er which we vary the parameters are summarized in
able 1 . 
The grain-surface network we utilize is the default one in the 

itHub repository that has been able to reproduce the abundances of
 https:// uclchem.github.io/ 

2

l

he main observed grain-surface species for example in Holdship 
t al. ( 2017 ) and Heyl et al. ( 2023 ). The grain-surface reaction
echanisms that are used in UCLCHEM include the Eley–Rideal 
echanism as well as the Langmuir–Hinshel w ood grain-surf ace 

iffusion mechanism. These were implemented into the code in 
u ́enard et al. ( 2018 ), along with the competition formula from
hang, Cuppen & Herbst ( 2007 ) and Garrod & Pauly ( 2011 ). The
inding energies that are required in order to calculate diffusion 
eaction rates are taken from Wakelam et al. ( 2017 ). The gas-phase
etwork is taken from UMIST (McElroy et al. 2013 ). While the
rain network has undergone minor modifications since de Mijolla 
t al. ( 2019 ), the gas network has remained the same. Since we are
nly considering gas-phase species, minor modifications to the grain 
etwork are unlikely to be influential. 

 M AC H I N E  L E A R N I N G  I NTERPRETA BILITY  

N D  STATISTICAL  E M U L AT I O N  

.1 Machine learning interpretability 

t is often unclear why a model provides a certain output for a given
nput. This is not e xclusiv e to machine learning algorithms, but can
lso be an issue with computational codes that integrate systems of
ifferential equations, such as UCLCHEM. As a result, identifying 
he effect that a specific physical parameter, which we refer to as a
eature in this work, has on the output becomes difficult. The concept
f feature importance refers to the size of the contribution of a specific
eature in determining the model output. There e xist man y methods
y which one can interpret the effect of a parameter in making a
ertain prediction value, such as permutation feature importance or 
ocal Surrogate Models. For an o v erview of the various methods,
ee Molnar ( 2022 ). 

We use Shapley values, a method from game theory, to quantify
he importance of the features (Shapley 2016 ). This is the first
uch application in the area of astrochemistry. While we provide 
n o v ervie w of the method we use in this paper belo w, we refer the
eader to Shapley ( 2016 ), Lundberg & Lee ( 2017 ), and Lundberg,
rion & Lee ( 2018 ) for further details. 
The Shapley value of the i th feature, φ

j 

i , 
2 is defined as the

arginal contribution of that feature in mapping the j th data point
n our data set, x j , to its corresponding output f ( x j ) averaged over
ll possible coalitions. A coalition is defined as a subset of the
et of features. Notice that in this case, the function f corresponds
o UCLCHEM and x j corresponds to a particular input vector 
onsisting of one entry for each feature in Table 1 that we modify.
MNRAS 526, 404–422 (2023) 

 Unless otherwise specified, superscripts are used throughout this work as 
abels, not for exponentiation. 
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ach Shapley value, φj 

i , is specific to each parameter of each data
oint. 
Shapley value explanations are given as a linear model (Molnar

022 ). We define a feature explanation model, ˆ g in the following
ay: 

ˆ  ( x ′ j ) = φ0 + 

n ∑ 

i= 1 

φi x 
′ j 
i , (1) 

here φ0 = E [ f ( x)] is the value of the average prediction in our
ata set, φi is the explained feature effect of the i th feature, n is the
umber of features, and x ′ j i is an element of the ‘coalition vector’,
 

′ j , where x ′ j ∈ { 0, 1 } n . The coalition vector is a vector consisting of
eros and ones with a zero indicating that a feature is ‘absent’ and a
ne indicating it is ‘present’. 
One can imagine that this feature explanation model gives us an

nderstanding of what happens when we choose to remo v e certain
eatures, that is set a particular x ′ j i to equal zero. If we want to be
ble to calculate the feature importance of a specific feature, then
e need to be able to selectively ‘remove’ features and see how this

mpacts our model output. When we say that we ‘remo v e’ a feature,
hat we ef fecti vely mean is that we replace that value in the input
ector by a random value from the data set for that feature. The logic
ehind Shapley values is that we wish to see the contribution of a
pecific feature when we include or exclude it from our data point
or varying coalitions of features. 

More formally, we can calculate the feature value importance as
ollows for a data point: 

j 

i = 

∑ 

S⊆N 

| S| !( n − | S| − 1)! 

n ! 
( g( x ′ j i ) − ˆ g ( x ′ j −i )) , (2) 

here N is the set of features, n is the number of features, S is the
ubset, g( x ′ j i ) is the explanatory model e v aluated when the feature
s included, and g( x ′ j −i ) the explanatory model e v aluated when the
eature is not included. We refer to φj 

i as a Shapley value. 
We can specifically make a connection between the function we

re trying to explain, f ( x ), and the explanation function by noting
hat φ0 = E [ f ( x)] = 

1 
d 

∑ d 

j= 1 f ( x j ), where d is the number of data

oints. By setting all x ′ j 
i equal to 1 we obtain: 

 ( x j ) = ˆ g ( x ′ j ) = E [ f ( x)] + 

n ∑ 

i= 1 

φ
j 

i , (3) 

hich implies that the value of a function at a given data point is
qual to the global average of the function (i.e. E [ f ( x)]) plus the
eature value importances we calculate for that data point. 

We now explain what this entails practically. Say that we have a
ata point of the form ( n , ζ , T , m z , and ψ) = (10 3 , 500, 50, 1, and
00) and we are interested in determining the contribution of the
emperature being 50 K in producing an abundance of, say, 10 −6 .

hat this entails is taking all subsets of the set of features. Two of
hese subsets might be: 

(i) All of the original features. 
(ii) All of the original features except the density. 

For the first of these subsets, we consider the change in the value
f the explanatory model, ˆ g , when we include and exclude the
emperature value of x 3 = 50. ‘Excluding’ simply means that we
eplace the 50 K with a randomly drawn temperature value from our
ata set of temperatures. We then compute the feature explanation
odel when this temperature value is included and take the difference

s seen in equation ( 2 ). For the second sample subset, we repeat this
NRAS 526, 404–422 (2023) 
rocess except we al w ays tak e a random value for the density as this
s excluded from this subset. This is done for all subsets to calculate
he feature importance for temperature. 

Ho we v er, observ e that the calculation across all the subsets
ecomes computationally unfeasible as the number of features grows,
ith the number of coalitions growing exponentially. We employ
HAP (Lundberg & Lee 2017 ) to allow us to address this issue.
HAP is particularly useful, as it approximates the Shapley values,
reatly reducing the time taken to compute them. SHAP has been
ound to be the theoretically optimal means of calculating feature
ttribution (Lundberg & Lee 2017 ; Lundberg et al. 2018 ). This is done
hrough the use of the TreeSHAP algorithm (Lundberg et al. 2018 ).
reeSHAP is an algorithm that exactly computes the SHAP values
or tree-based algorithms, such as XGBoost or random forests. One
rawback of TreeSHAP is that it can give unintuitive explanations
hen the features are related (Molnar 2022 ). This is unlikely to be the

ase in this work, as we work with five physically unrelated physical
eatures that we sample independently when we generate our data
et. 

We can also provide a ranking of the various features in terms of
lobal feature importance. As Shapley values can be negative, this
an be achieved by averaging the absolute value of all Shapley values
or each feature across all datapoints. Formally, this is defined as: 

 i = 

1 

d 

d ∑ 

j= 1 

| φj 

i | , (4) 

here d is the number of data points and I j is the average absolute
alue of the j th feature. 

In principle, if we wished to compute the relative importances of
he features we can do this by taking the abo v e-mentioned av erage
f the absolute values for a single feature and normalizing this by
he sum of the average of absolute values for all the features. We can
hen define the ‘relative importance’ for a feature i , ˆ I i , as: 

ˆ 
 i = 

∑ d 

j= 1 | φj 

i | ∑ n 

m = 1 

∑ d 

j= 1 | φj 
m 

| , (5) 

here n is the number of features. This quantity ef fecti vely gi ves us
 fractional contribution of each feature to the average behaviour of
he model. We summarize the relative importance of each parameter
n predicting the outputs we consider in this work in Table A2 . 

.2 Implementation 

hile the use of SHAP greatly reduces the time taken to obtain the
hapley values relative to calculating the Shapley values in full, this
rocess is still likely to take long due to the time taken per e v aluation
f the forward model, i.e. UCLCHEM. Each e v aluation of the
orw ard model tak es on the order of 1–2 min. This makes considering
n ensemble of models with 100 000 runs or more unfeasible. To
ircumvent this, we elect to train a statistical emulator to reproduce
he results of UCLCHEM. If the emulator has a sufficiently high
ccuracy, then it is safe to assume it is able to capture the internal
orkings of the original code, which we wish to probe. We now
iscuss the emulator and how we build it. 
To train the emulator, we generated 120 000 points in parameter

pace using a Latin Hypercube sampling scheme (McKay, Beck-
an & Cono v er 1979 ), which was implemented using the Python

urrogate modelling toolbox (Bouhlel et al. 2019 ). Data points in
arameter space were generated such that all values were in the
anges given in Table 1 . For those features that spanned several
rders of magnitude, we elected to sample in log-space. 
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Table 2. Table of the hyperparameter ranges used when tuning the XGBoost 
regressor. 

Hyperparameter Range of values Data type 

Maximum depth (3, 100) Integer 
Maximum features (0.8, 1.0) Float 
Learning rate (0.01, 1.0) Float 
Number of estimators (80, 150) Integer 
Sub-sample (0.8, 1) Float 
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Each species’ final log-abundance was used as the output of the 
lgorithm. This was to ensure that all orders of magnitude were 
reated equally. The input parameters were also scaled to be in the
ange 0–1. All abundances less than 10 −12 were set equal to 10 −12 

o ensure that the emulator was not being trained to learn what was
f fecti vely numerical noise. This limit was chosen because this is
ypically the lowest observed gas-phase abundance in the literature. 

e summarize the range of outputs for each species and ratio we
onsider in this work in Table A3 . 

An XGBoot regressor was trained for the emulation process (Chen 
 Guestrin 2016 ). XGBoost is a gradient-boosted decision tree 

egressor. We used the Python implementation for XGBoost to train 
ur model. 3 It was found that better performance was obtained if a
eparate emulator was trained for each species, as opposed to having 
ne network trained to predict the final abundances of all 239 species
n the network. While we trained an emulator for every species in
he network, we only present the results of a handful of molecules
n this work. We elected to train an XGBoost model instead of using
 neural network as in de Mijolla et al. ( 2019 ), as XGBoost has
een found to perform better on tabular data sets such as the one
e consider, while also requiring less tuning (Shwartz-Ziv & Armon 
022 ). 
In order to find the best set of hyperparameters for each em-

lator, we utilized Bayesian hyperparameter optimization. Under 
his procedure, we tune the hyperparameters on a validation set 
nd find the best combination of parameters that minimize the 
2 loss. Unlike a grid-search approach to hyperparameter tuning, 
ayesian optimization uses the model performance on previous 
yperparameter combinations to choose a next best option, thereby 
aving a considerable amount of time compared to a grid-search 
pproach. XGBoost has five tunable hyperparameters that we 
aried using the Bayesian Optimization Python library (Nogueira 
014 ). We list the ranges o v er which we varied these in Ta-
le 2 . For integer hyperparameters, we would round to the nearest
nteger. 

When e v aluating the accuracy of each trained emulator, we 
onsidered both the L2 loss obtained obtained from the performance 
f the emulator on the test data set as well as the R 

2 coefficient. All
mulators in this work had R 

2 scores greater than 0.98. 

 RESULTS  

e now look to consider a number of molecules of interest and
xplore how machine learning interpretability adds to our under- 
tanding of their equilibrium abundances in Phase 2. Note that all 
he molecules we will be considering will be gas-phase molecules, 
s they e v aporate during the warm-up phase. We only considered a
mall number of molecules as a proof-concept for this method and 
 https:// xgboost.readthedocs.io/en/ stable/index.html 

E  

A  

s  
rovide the figures for these here. Figures for other molecules can be
ound in the online Supplementary Information. 

.1 Molecules 

e begin by first considering individual molecules of interest to 
emonstrate what can be done with machine learning interpretability. 
e elect to consider three molecules: H 2 O, CO, and NH 3 . CO is

onsidered as it is the most abundant molecule besides H 2 and also
lays a role in molecular gas cooling (Goldsmith 2001 ; Shi et al.
015 ). H 2 O is of interest due to its high abundance in planetary
ystem and of course its importance in the area of astrobiology
Gensheimer , Mauersberger & W ilson 1996 ). NH 3 is speculated to
e one of the main carriers of nitrogen and it often used as a tracer
olecule of cold, dense clouds (Benson & Myers 1989 ; Caselli,
ipil ̈a & Harju 2019 ). 

.1.1 H 2 O 

e now investigate the importance of the various physical parameters 
n the value of the abundance of H 2 O. Fig. 1 is a beeswarm plot,
hich is meant to serve as an information-dense qualitative summary 
f feature importances. Each point in the beeswarm plot represents 
 data point from our test set. The features are arranged from top to
ottom in decreasing order of importance to the model output, which
s measured by equation ( 4 ). Recall that the SHAP value measures the
mpact of each feature on the value of the prediction, relative to some
aseline value, which is simply the global average, i.e. the average
ogarithm of the abundance. Along the horizontal axis, individual 
redictions are plotted in terms of their SHAP value. The points are
olour-coded according to their value with the colour bar indicating 
he value relative to the range of values of that feature. A single
olour bar is used for all the features in order to qualitiatively show
he relationship between the feature value and the SHAP value. It is
or this reason that the colour bar range is from ‘Low’ (indicating
he lo west v alue of the respecti ve feature) to ‘High’ (indicating the
ighest value that the feature can take). Furthermore, the vertical 
lustering of the points indicates the density of the points in a
anner akin to a violin plot. We emphasize again that this plot

s meant to help provide easy-to-use qualitative explanations for 
bservers. 
We also consider a more quantitative plot to delve deeper into

ome of the finer points of the beeswarm plot. This is useful if one
ishes to consider the nature of the relationship between each feature

nd the log-ratio. While one can deduce that for temperature and
etallicity the relationship is monotonic and increasing, this might 

till not be enough. It is for this reason that we can plot dependence
lots such as Fig. 2 , which plots the SHAP value for all the variables
s a function of the indi vidual v ariable. Notice that in the plot for
ach feature i , the SHAP value corresponds to the importance of
nly that feature, φj 

i , for a point j . Ef fecti vely, these dependence
lots gives us the marginal contribution of each feature i to the
utput. 
We can also consider the relationship between the abundance of 

ater (instead of the SHAP value) as a function of each of the
eatures. This is plotted in Fig. 3 . Notice that in order to compute the
bundance, we must utilize equation ( 3 ). This means that to compute
he abundance we must add the mean log-abundance of water, φ0 =
 [ f ( x)], to the SHAP values of each of the features for that data point.
s a result of the explanatory model being linear in nature, we do not

ee the same relationships in Fig. 3 and in fact observe that there is no
MNRAS 526, 404–422 (2023) 
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Figure 1. A beeswarm plot of the various physical parameters demonstrating their relative importance in predicting the log-abundance of H 2 O. The features 
are arranged from top to bottom in decreasing order of importance to the model output, which is measured by the mean of the absolute value of the SHAP value 
averaged across all predictions. Individual predictions are plotted along the horizontal axis according to their SHAP value, which indicates the difference in the 
value of the model output for that prediction relative to the global average. Furthermore, the points are colour-coded in terms of the size of the feature value 
relative to the range of values that the respective feature takes. We observe that metallicity ( ̂  I m z = 0 . 54) has the greatest impact followed by density ( ̂  I n = 0 . 17), 
cosmic ray ionization rate ( ̂  I ζ = 0 . 15), temperature ( ̂  I T = 0 . 17), and radiation field ( ̂  I ψ = 0 . 02). 

Figure 2. A plot of the SHAP values as a function of the feature values used to predict the log-abundance of H 2 O. Unlike the beeswarm plot, these SHAP 
dependence plots allow us to see the exact nature of the relationship between the feature value and SHAP value. Recall that the SHAP value tells us the difference 
in value between the average output value (log-abundance of the water). We see that the logarithms of density and the cosmic ray ionization rate are roughly 
linear with respect to the SHAP value with the same being true for the temperature. For metallicity, we observe a significant decrease in the SHAP value for low 

metallicities, but this seems to level off for values greater than 1. 
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Figure 3. A plot of the log-abundance of H 2 O as a function of the various features. To calculate the log-abundance for a given data point, we needed to sum up 
the importance values of each feature for that data point. We observe that only metallicity maintains a clear trend. For the other features, we have no discernible 
trend, which can be attributed to the feature importances nullifying each other. 
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elationship between all the parameters besides metallicity and the 
og-abundance. This is because many of the SHAP importances can- 
el each other out. Only metallicity still has a noticeable relationship 
ith the log-abundance when we add up the importances of all the
arameters. 
Ho we ver, in the interest of better understanding the impact of

ach parameter’s individual relationship with the log-abundance, 
e consider the marginal effects in Fig. 2 . We would like to

mphasize that it is still useful to consider the marginal effects. 
hile we consider a wide range of physical conditions, many 

bservational and modelling e x ercises relating to tracers will be far
ore restrictive in their parameter ranges as well as the number of

arying parameters. A typical observational environment will not 
ontain the parameter ranges we consider here. It is precisely for
hese tasks that this methodology will be useful. We observe that 
he relationships between thes variables and the log-abundance of 
 2 O are mostly monotonic. Ho we ver, we will only consider the

mpact of metallicity, as this has the strongest impact on the model
utput. The SHAP values for the other features range between −0.4 
nd 0.4 in log-abundance space which corresponds to factors of 2.5 
elative to the average water abundance. Throughout this work, we 
ill only consider features whose SHAP values exceed 1 in log- 

bundance space. It is clear that metallicity will play a significant 
ole in the abundance of water. While there exists some debate as
o what fraction of the ISM oxygen abundance is present in water
van Dishoeck et al. 2021 ), a decrease in the metallicity will result
n a decrease in the amount of oxygen, which in turn will mean
hat less water will be formed, due to greater competition for the
ittle oxygen present. On the other hand, a large amount of oxygen
ill result in the opposite effect, to an extent. Water has several
estruction pathways that impose an upper limit on how much of
t is formed in the g as-phase, reg ardless of how much oxygen is
resent. 

.1.2 CO 

arbon monoxide is an important molecule to consider in astrochem- 
stry. Not only is it an important molecule in the context of grain-
urface chemistry and the formation of various complex organic 
olecules, but it also plays a significant role in gas-phase chemistry.

n particular, it is often considered a molecular gas coolant at low
emperatures and densities (Goldsmith 2001 ; Shi et al. 2015 ). We
re interested in considering how the various parameters we are 
hanging influence its abundance. Fig. 4 is a beeswarm plot of the
arious features and shows that only the metallicity plays a strong
ole in determining the final CO abundance, which has an ˆ I i of 0.91.
n order to investigate the exact nature of the relationship, we plot
he SHAP dependence plots in Fig. 5 . We observe an interesting
elationship between the metallicity and the CO abundance that is 
onotonic in nature. We do not observe any notable relationships 

etween its log-abundance and the other parameters, so we only focus 
n metallicity for now. We observe that for very low metallicities the
O abundance ends up being almost 2 orders of magnitude lower

han the ‘average’ value due to the marginal effect of the metallicity.
n Fig. 6 , we plot the log-abundance of CO as a function of each of
he parameters. As we discussed for H 2 O before, to compute the CO
bundance we must add the contributions of all the features. As a
esult of this, only the metallicity appears to have a strong effect on
he log-abundance. 

Work has been done to consider the impact metallicity on CO.
n Shi et al. ( 2015 ), this was considered in the context of metal-
MNRAS 526, 404–422 (2023) 
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Figure 4. A beeswarm plot of the various physical parameters demonstrating their relative importance in predicting the log-abundance of CO. We observe that 
metallicity is the only parameter with a significant influence on the value ( ̂  I m z = 0 . 91) with the other parameters not being very useful predictors ( ̂  I n = 0 . 01, 
ˆ I ζ = 0 . 04, ˆ I T = 0 . 04, and ˆ I ψ = 0 . 00). 

Figure 5. A plot of the SHAP values for the various features (besides the radiation field) as a function of the feature values used to predict the log-abundance 
of CO. As was observed in the beeswarm plot, only metallicity has a significant effect on the abundance. For low metallicities, we observe a large decrease in 
the SHAP value. The SHAP value monotonically increases with metallicity, eventually levelling off for values greater than 1. 
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oor galaxies. Here, they wished to consider to what extent CO,
nown to be a coolant in metal-rich galaxies, could also serve
he same role in metal-poor ones. It was found that there was
ignificant CO depletion in metal-poor galaxies due to photodis-
ociation. This is unlikely to be the case here as the radiation
eld is found to be the least influential parameter. The radiation
eld is only likely to be ef fecti ve in photodissociation when the
ensity is very low and the radiation field itself is high, which
ill only be the case for a small number of parameter combi-
NRAS 526, 404–422 (2023) 
ations. We must consider other reasons for the importance of
etallicity. 
Within the UCLCHEM code, the metallicity parameter is a scale

actor that scales all elemental abundances of elements heavier
han helium by the same factor. This means that as the metallicity
arameter is reduced, the abundances of some elements will be
educed so there will be greater competition for them. This results in
he abundances of species dropping, as there is simply less of their
onstituent elements. In the case of CO, we know from Table A1 , that
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Figure 6. A plot of the log-abundance of CO as a function of the various features. To calculate the log-abundance for a given data point, we needed to sum 

up the importance values of each feature for that data point. Only metallicity maintains a clear trend compared to Fig. 5 . For the other features, we have no 
discernible trend. This is due to the marginal feature importances nullifying each other. 
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here is less C than O, which means reducing the metallicity results
n C becoming more scarce. It is for this reason that at metallicities
lose to zero the final abundance of CO drops by 2 orders of
agnitude. 

.1.3 NH 3 

e now consider ammonia, which is considered one of the significant 
ources of nitrogen in the interstellar medium. The beeswarm plot in 
ig. 7 shows the ranking of the five features in terms of their relative

mportance. We consider the nature of the relationship through the 
se of the SHAP dependence plots in Fig. 8 with only temperature
eing found to have a consistently significant relationship with the 
og-abundance. Parameters such density and cosmic ray ionization 
ate may have individual points with large SHAP values but these are
ow in frequency compared to the tens of thousands of points plotted,
hich is why we do not discuss them further. The dependence on
etallicity is not as strong as for H 2 O and CO in terms of the tailing-

ff trend as the metallicity approaches zero. This is likely to be due to
he highly non-linear nature of the chemistry. Despite the metallicity 
ecreasing it is likely that there is some reaction that is compensating
or the decrease in NH 3 such that more of the now limited nitrogen
s now hydrogenated. 

The dependence on temperature is quite interesting, as we notice 
hat there are two separate temperature ranges o v er which the abun-
ance takes a different constant value, with the cutoff temperature 
eing 100 K. This is also seen in though Fig. 9 , which is a plot
f the abundances as a function of the individual parameters seems
o indicate two regimes. We deduce that these different regimes are 
elated to the chemistry surrounding NH 3 being very different at these 
tages. The other parameters are of less importance as the deviation 
rom the average NH 3 log-abundance is within about 0.5, or a factor
n 3 in actual abundance. The non-temperature parameters cancel 
ach other out in terms of their contributions when these are added
ogether. 

We can investigate the temperature dependence by considering 
he relative rates of formation and destruction of ammonia at specific
oints in time. Fig. 10 plots the fractional contributions of the various
ormation and destruction routes of NH 3 for an instance where the
eak temperature is 160 K. We only considered the top reactions that
ontributed to 99 per cent of the creation or destruction of NH 3 . The
ain NH 3 formation routes are: 

H + #NH 2 −→ NH 3 (6) 

H 4 
+ + e − −→ NH 3 + H (7) 

NH 3 −→ NH 3 (UV and CR desorption) (8) 

NH 2 + #HCO −→ NH 3 + CO . (9) 

Some of the main destruction mechanisms throughout the hot core 
hase are: 

 3 
+ + NH 3 −→ NH 4 

+ + H 2 (10) 

H 3 + HCO 

+ −→ CO + NH 4 
+ (11) 

H 3 + H 3 O 

+ −→ NH 4 
+ + H 2 O (12) 

H 3 + CN −→ HCN + NH 2 (13) 

H 3 + HNO 

+ −→ NO + NH 4 
+ (14) 

 

+ + NH 3 −→ NH 3 + + H (15) 
MNRAS 526, 404–422 (2023) 
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Figure 7. A beeswarm plot of the various physical parameters demonstrating their relative importance in predicting the log-abundance of NH 3 . We observe 
that temperature has the largest impact with ( ̂  I T = 0 . 54). The temperature relationships does not seem to be monotonic. The next most important features are 
metallicity ( ̂  I m z = 0 . 17), followed by the cosmic ray ionization rate ( ̂  I ζ = 0 . 14), density ( ̂  I n = 0 . 11), and the radiation field ( ̂  I ψ = 0 . 03), with the first three 
also not having monotonic relationships with the SHAP value. 

Figure 8. A plot of the SHAP values for the various features (besides the radiation field) as a function of the feature values used to predict the log-abundance of 
NH 3 . We observe that temperature has an interesting relationship with the SHAP value. What we observe is that there exist three separate temperature regimes 
under which the final abundance is relatively constant. The abundance does show some non-monotonic variance with respect to the other features, but most of 
these are within 0.5 of the average value (or a multiplicative factor of 3). 
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H 3 + HCNH 

+ −→ HCN + NH 4 
+ (16) 

H 3 + HCNH 

+ −→ HNC + NH 4 
+ (17) 

H + S 

+ −→ NH 

+ + S . (18) 
NRAS 526, 404–422 (2023) 

3 3 
When the peak temperature is reached, the only formation reaction
eft is the gas-phase electron addition reaction. This is due to high
emperature making grain-surface chemistry untenable, as most of
he available grain-surface material has e v aporated. In the gas-phase,
he destruction routes are still active and recycle some of the gas-
hase NH 3 and turn it back into NH 4 

+ , but some of it goes on to
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Figure 9. A plot of the log-abundance of NH 3 as a function of the various features. To calculate the log-abundance for a given data point, we needed to sum 

up the importance values of each feature for that data point. We observe that only temperature maintains a clear trend relative to what we observed in Fig. 
8 . Ho we ver, we no w appear to hav e something closer to a two-temperature re gime rather than a three-temperature one. F or the other features, we hav e no 
discernible trend, which can be attributed to the feature importances nullifying each other. 

Figure 10. Top: plot of the fractional contribution of various ammonia formation routes that contribute to 99 per cent of the NH 3 formation at each time. The 
temperature as a function of time is also plotted. Bottom: plot of the fractional contribution of various ammonia destruction routes that contribute to 99 per cent 
of the NH 3 at each moment in time. We only considered the top reactions that contributed to 99 per cent of the creation or destruction to limit the number of 
lines we would have to plot. 
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Figure 11. A beeswarm plot of the various physical parameters demonstrating their relative importance in predicting the log-ratio of HCN to HNC. We observe 
that temperature has the largest impact on the model output with ( ̂  I T = 0 . 70). The fact that temperature is the most important feature is hardly surprising given 
that this ratio is seen as a thermometer. The next most important features are metallicity ( ̂  I m z = 0 . 24), followed by the cosmic ray ionization rate ( ̂  I ζ = 0 . 03), 
density ( ̂  I n = 0 . 03), and the radiation field ( ̂  I ψ = 0 . 00), with the first three also not having monotonic relationships with the SHAP value. 
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orm HCN and other species, resulting in the eventual decrease in
he NH 3 abundance. This is more severe for higher final hot-core
emperatures as these destruction reactions see their rates increase,
esulting in even lower final NH 3 gas-phase abundances. 

.2 Molecular ratios 

hile species may serve as useful tracers for specific energetic
rocesses under certain density and temperature conditions, it is often
ore useful to consider intensity ratios between different molecules,

speially in extragalactic environments (Viti 2017 ; Imanishi, Nakan-
shi & Izumi 2019 ; Butterworth et al. 2022 ). Tracer ratios are often
onsidered in observations to cancel out the beam filling factor. The
wo tracer ratios we consider are HCN/HNC and HCN/CS, both of
hich have been extensively studied in the literature. The former is

onsidered a good tracer of temperature and the latter a dense gas
racer. 

.2.1 HCN/HNC 

e begin by considering the ratio of the abundances of HCN to
NC. The ratio of these two molecules has been e xtensiv ely studied

nd has also been subject to a considerable amount of debate. These
wo molecules are of great interest, due to their high abundances,
heir excitation conditions the areas in which they form as well as the
roximity of their transitions in frequency space (Pety et al. 2017 ;
acar, Bosman & van Dishoeck 2020 ). Recently, this intensity ratio
as suggested as a potential chemical thermometer for the ISM

Hacar et al. 2020 ). 
In Fig. 11 , we observe that temperature is indeed the most impor-

ant feature. We observe that only the temperature and metallicity
ave significant impacts on the value of the ratio with relative
mportance values of ˆ I T = 0 . 7 and ˆ I m z 

= 0 . 24. The other parameters
o not have much influence on the log-abundance, so will not be
iscussed. Looking at the dependence plot for temperature further in
ig. 12 , we observe that the log-ratio increases monotonically with
NRAS 526, 404–422 (2023) 
emperature, with there appearing to be two different temperature
egimes judging by the change in gradient throughout the curve,
hich is also evident in Fig. 13 , which is a plot of the log-ratio

gainst the features. 
Fig. 14 is a plot of the ratio (as opposed to the log-ratio) against

he temperature. We fit a two-part linear function to the data. The
resence of two regimes is in agreement with the literature (Graninger
t al. 2014 ; Hacar et al. 2020 ). In Hacar et al. ( 2020 ), the relationship
etween the temperature and the ratio was described with a two-part
inear function, which is what we roughly observe. The two isomers
re formed in roughly equal proportions through the dissociative
ecombination of HCNH 

+ (Herbst, Terzie v a & Talbi 2000 ). As such,
ny deviation in the ratio from a value of 1 can be attributed to the
estruction routes. The main ones considered in the literature are: 

NC + H −→ HCN + H (19) 

NC + O −→ NH + CO . (20) 

The pre-established energy barriers for both of these reactions
ave been questioned (see Graninger et al. 2014 , for a full discussion
f this). We update these values in line with Hacar et al. ( 2020 ) and
raninger et al. ( 2014 ) to be 200 K and 20 K, respectively. The first

eaction is particularly dominant at high temperature, where we have
 large abundance of atomic H, whereas the second reaction is more
ominant at low temperatures. 
Ho we ver, the second reaction does not appear to be the dominant

NC reaction at low temperatures. This can be seen in Fig. 15 where
e plot the fractional contribution of the reactions that are responsible

or creating and destroying 99 per cent of the HNC at each time step
longside the temperature as a function of time. We see that it is in
act the reaction H 3 

+ + HNC −→ HCNH 

+ + H 2 as well as freeze-
ut responsible for this at low temperatures. As such, we still have an
xplanation for the two regimes observed, but the oxidization reaction
eems to not play as important a role in our model, suggesting further
tudy might be required. Ho we ver, the inflection point in Hacar et al.
 2020 ) is observed to be at 40 K, whereas in this work it is at 65 K.
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Figure 12. A plot of the SHAP values for the various features (besides the radiation field) as a function of the feature values used to predict the log-ratio of 
HCN to HNC. We observe that temperature has an interesting relationship with the SHAP value with there being two regimes under which the ratio increases at 
different rates. This is in line with what was observed in Hacar et al. ( 2020 ) and was approximated there as a two-part linear function. The relationship between 
the SHAP value and metallicity is similar to what we observed in other molecules. 

Figure 13. A plot of the log-abundance of HCN/HNC ratio as a function of the various features. To calculate the log-ratio for a given data point, we needed to 
sum up the importance values of each feature for that data point. We observe that only temperature maintains a clear trend relative to what we observed in Fig. 
12 . For the other features, we have no discernible trend which can be attributed to the feature importances nullifying each other. 
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Figure 14. Scatter plot of the ratio (note: not the log-ratio) as a function of the temperature. We continue to observe an inflection point at 65 K and fit a two-part 
linear function. Below 65 K, the trend line is y = 0.31 x + 16 (black) and abo v e it is y = 0.23 x + 21 (red). For the sake of clarity, we have included the entirety 
of the second part of the red linear function to make the change in gradient easier to see. 
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igure 15. Plot of the fractional contribution of various routes that contribute to 99
unction of time is also plotted. We observe that for low temperatures, the main sou
ell as freeze-out onto the grains, which runs contrary to our expectations of the rea

ncreases we observe that the main destruction mechanism is the isomerization r
ontribution of the freeze-out reaction after 10 3 yr is not due to the increase in tem
ecome far smaller, which leads to its fractional contribution to increase despite the
hat contributed to 99 per cent of the creation or destruction to limit the number of
 per cent of the HNC destruction as a function of time. The temperature as a 
rces of gas-phase HNC destruction are H 3 

+ + HNC −→ HCNH 

+ + H 2 as 
ction HNC + O −→ NH + CO playing a dominant role. As the temperature 
eaction H + HNC −→ HCN + H . Note that the increase in the fractional 
eprature, but rather simply numerical as the other destruction mechanisms 

 absolute contribution being negligible. We only considered the top reactions 
 lines we would have to plot. 
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Figure 16. A beeswarm plot of the various physical parameters demonstrating their relative importance in predicting the log-ratio of HCN to CS. We observe 
that temperature has the largest impact on the model output with ( ̂  I T = 0 . 55). Density is also found to have a significant impact ( ̂  I n = 0 . 16), which makes sense 
as it is seen both HCN and CS are dense gas tracers. The next most important features are cosmic ray ionization rate ( ̂  I ζ = 0 . 15), followed by the metallicity 
( ̂  I m z = 0 . 13) and the radiation field ( ̂  I ψ = 0 . 01). 
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his can be explained by noting that we consider a wider variety of
hysical parameter combinations, whereas the other work considered 
he ones specific to the Orion A Cloud. As such, a quantitative
omparison is difficult to make. However, it is reassuring to observe 
ualitativ e agreement. Similarly, we observ e no real relationship 
etween the cosmic ray ionization rate and the log-ratio, which is
roadly in agreement with the modelling done in Meijerink et al. 
 2011 ). Ho we ver, there is some disagreement with observations as
een in Behrens et al. ( 2022 ), though this can be attributed to them
onsidering a larger range of cosmic ray ionization rates. In that 
aper, the ratio was found to decrease as the cosmic ray ionization
ate increased, though this was only in the presence of mechanical 
eating, which we do not consider here. 
We observe that for metallicity, we have the same ‘tailing- 

f f’ ef fect that we hav e observ ed previously, though this is only
n the marginal case in Fig. 12 . This is the case for metallicity
alues between 0 and 1. Again, we can attribute this to increased
ompetition for the individual atomic species, which results in the 
atio decreasing. 

Bayet et al. ( 2012 ) considered a gas density of 10 4 cm 

−3 , radiation
eld values of 1 Habing, a cosmic ray ionization rate of 5.0 × 10 −17 

 

−1 and metallicities between 1 and 5. For metallicities between 1 
nd 2, we see a roughly linear marginal increase in the log-ratio.
his is in line with what was observed in Bayet et al. ( 2012 ) in
hich an increase in the metallicity results in a linear increase in the

og-abundances of HCN and HNC with the HCN having a steeper 
ncrease with metallicity. This suggests that their ratio would also 
ncrease linearly. 

.2.2 HCN/CS 

e now consider another tracer, the HCN to CS ratio. This ratio has
eceived significant interest in recent years (Izumi et al. 2013 , 2016 ;
utterworth et al. 2022 ), with one of the reasons being the fact that
oth HCN and CS are dense gas tracers (Viti 2017 ), with the HCN(4-
)/CS(2-1) ratio being a good tracer of active galactic nuclei activity. 
ust as for the ratio of HCN to HNC, we now wish to obtain a sense
f the relationship of the five features of interest with this ratio. 
We begin by considering the relative importance of the five 

eatures. Fig. 16 is a beeswarm plot demonstrating this. We observe
hat temperature is once again the most rele v ant feature follo wed by
ensity, cosmic ray ionization rate, metallicity, and radiation field. 
We consider this more in Figs 17 and 18 . There is a clear quasi-

inear relationship between the log-ratio and the log-density, which 
upports the idea that the ratio could serve as a density tracer. The
osmic ray ionization rate and the radiation field do not appear to
ave discernible relationships with the ratio. We find there is not a
onotonic relationship with temperature. In fact, we once again seem 

o observe three separate temperature regimes. The former shows 
he SHAP value as a function of the feature value, which means it
hows the marginal effect of each feature. The latter considers the
bundance as a function of each feature. As we discussed earlier, the
bundances plotted are derived from summing the marginal effects 
f all the features. 
We observe that for the temperature variable there are three 

eparate regimes of interest when it comes to the log-ratio: one
or below 100 K, one for between 100 and 150 K, and another for
bo v e 150 K. To start off with, we plot the temporal evolution of the
bundances of the two molecules and the temperature in Fig. 19 for
hree dif ferent v alues of the final temperature: 47, 105, and 176K.
hese were plotted using UCLCHEM. Note that these temperatures 
re not special in any way, but they are simply chosen as examples to
llustrate the points we wish to discuss. Each of these temperatures
alls within one of the three different regimes we observe in Fig. 17
nd were taken from the data set. We also plot a time series of the
atio in Fig. 20 . 

We observe that at 47 K, we initially have a large build-up of HCN
ntil about 10 5 yr. CS is also b uilt-up, b ut not to the same extent.
fter this point, both abundances drop sharply, though the CS drops

ar more, leading to an increase in the value of the ratio. However,
or 107 K the abundance of CS exceeds that of HCN leading to a
maller HCN/CS ratio. This is still true for 176 K, but CS approaches
CN’s abundance much more closely. 
MNRAS 526, 404–422 (2023) 
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M

Figure 17. A plot of the SHAP values for the various features (besides the radiation field) as a function of the feature values used to predict the log-ratio of 
HCN to CS. What we observe is that there exist three separate temperature regimes under which the final abundance is relatively constant. We also notice an 
increase in the SHAP value as the log-density increases. 

Figure 18. A plot of the log-abundance of HCN/CS ratio as a function of the various features. To calculate the log-ratio for a given data point, we sum up the 
importance values of each feature for that data point. We observe that only temperature maintains a clear trend relative to what we observed in Fig. 17 . For the 
other features, we have no discernible trend, which can be attributed to the feature importances nullifying each other. 
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Figure 19. A plot of the abundances of HCN and CS as a function of time for three different temperatures taken from the data set: 47, 107, and 176 K, each of 
which is within one of the three temperature regimes we observe in the dependence plots for the HCN/CS ratio. 
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In the low-temperature ( < 100 K) regime, the dominant destruction 
eaction of HCN is H 3 

+ + HCN −→ HCNH 

+ + H 2 . Once the 
aximum temperature is reached, the main formation reactions are 

CNH 

+ + E 

− −→ HCN + H (21) 

H + NO −→ HCN + O (22) 

H 3 + CN −→ HCN + NH 2 . (23) 

Ho we ver, the NH 3 -based reaction becomes less efficient o v er time
t this temperature and is replaced by N + HCO −→ HCN + O . 

In the mid-temperature regime (100–150 K), the major formation 
outes are: 

H 3 + CN −→ HCN + NH 2 (24) 

H 3 + HCNH 

+ −→ HCN + NH 4 
+ (25) 

H + NO −→ HCN + O (26) 

CNH 

+ + H 2 CO −→ H 3 CO 

+ + HCN (27) 

 + HCO −→ HCN + O (28) 

N + HCO −→ CO + HCN (29) 

ith the major destruction routes being: 

 3 O 

+ + HCN −→ HCNH 

+ + H 2 O (30) 
CN + CRPHOT −→ CN + H (31) 

 3 
+ + HCN −→ HCNH 

+ + H 2 (32) 

CN + H 3 CO 

+ −→ H 2 CO + HCNH 

+ (33) 

H 3 
+ + HCN −→ CH 3 CNH 

+ + PHOTON (34) 

ith the final reaction becoming less efficient after about 2.3 × 10 5 

r. 
In the high-temperature regime ( > 150 K), the major HCN reserves

re built up until 7.7 × 10 4 yr via these reactions: 

H 3 + CN −→ HCN + NH 2 (35) 

H + NO −→ HCN + O (36) 

CNH 

+ + H 2 CO −→ H 3 CO 

+ + HCN (37) 

CNH 

+ + E 

− −→ HCN + H (38) 

 + HCO −→ HCN + O (39) 

 + H 2 CN −→ HCN + H 2 . (40) 

The reactions primarily responsible for the destruction are: 

 3 O 

+ + HCN −→ HCNH 

+ + H 2 O (41) 
MNRAS 526, 404–422 (2023) 
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Figure 20. A plot of the ratio of HCN to CS as a function of time for three different temperatures taken from the data set: 47, 107, and 176 K, each of which is 
within one of the three temperature regimes we observe in the dependence plots for the HCN/CS ratio. 
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CN + CRPHOT −→ CN + H (42) 

 3 
+ + HCN −→ HCNH 

+ + H 2 . (43) 

The aforementioned destruction mechanisms are more efficient in
he mid-temperature range than in the high-temperature range. This
xplains why the value of the ratio drops between 100 and 150 K. 

We observe a weak linear relationship between the SHAP value
nd the metallicity. This is in line with what has been observed
reviously (Davis et al. 2013 ). In that work, they considered molec-
lar regions of galaxies with metallicities ranging from 0.1 to 0.6,
emperatures between 90 and 220 K with the remainder of conditions
ot listed in the paper. With the exception of the 200–220 K range, the
isted conditions o v erlap with the ones in this work. What they found
s that they were able to obtain a separate linear function fitting the
og-ratio to the metallicity for each visual extinction value. We know
hat the greater the visual extinction, the greater the final density of
he cloud. Furthermore, fixing the visual extinction and therefore the
ensity fixes the final temperature that our cloud reaches during the
arm-up phase. Cosmic ray ionization rates and the radiation field

re also taken to be constant in the observed galaxies. This means
hat each linear relationship provided in Davis et al. ( 2013 ) gives the
elationship between the log-ratio and the metallicity when our other
our parameters are fixed. As such, it is sensible to state that there is
NRAS 526, 404–422 (2023) 
ualitative agreement between the linear marginal SHAP relationship
or metallicity in Fig. 17 and the relationships found in Davis et al.
 2013 ), as both of these assume the other parameters are fixed. Once
gain, it makes little sense to compare the exact numbers as we
onsider a far wider range of conditions. Ho we ver, the qualitati ve
imilarity lends support to the validity of this methodology. The fact
hat the metallicity going to zero does not cause a tail-off in the value
f the ratio suggests that there is another reaction compensating for
he depletion of this ratio. 

 C O N C L U S I O N  

n this work, we present the first application of machine learning
nterpretability techniques to better understand the effect of vari-
us physical parameters on molecular abundances. We trained an
GBoost statistical emulator to replicate the outputs of our chemical
odel, UCLCHEM. From this, we used SHAP to determine a relative

anking of feature importance as well as to identify the nature of the
elationships between the input parameters and the output of interest.
 quantitative measure for the relative feature importance was also
resented. 
This work essentially presents a sensitivity analysis, but is different

n many ways to previous studies. This is the first time that the
oncept of machine learning interpretability has been applied in
strochemistry to consider the impacts of various parameters on
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bundances. Our methodology offers a number of advantages. In the 
rst instance, by training a statistical emulator to replace our forward 
odel, UCLCHEM, we are able to significantly reduce the time 

ak en per forw ard model e v aluation, therefore allo wing for a much
arger grid to be e v aluated. Additionally, we are able to quantify the
elative importances of the various features as well as comment on 
he marginal impacts of each of the features. 

The main tak eaw ays from this work for the various outputs are as
ollows: 

(i) H 2 O and CO’s gas phase abundances depend strongly on the 
etallicity, which we relate to the fact that a low metallicity results

n the production of each molecule being constrained by the amount 
f the less abundant atomic element (O and C, respectively). 
(ii) NH 3 has a strong temperature dependence. There exist two 

emperature ranges ( < 100 K and > 100 K) for which the abundance
s constant. We are able to relate this to the chemical reactions in our
etwork and find that the increased temperature results in an increase 
n the destruction pathways. 

(iii) We are able to confirm that the HCN/HNC ratio can 
erve as a cosmic thermometer and find a two-part lin- 
ar relationship with temperature as in Hacar et al. ( 2020 ).
o we ver, the dominant HNC destruction at low tempera- 

ures is found to be H 3 
+ + HNC −→ HCNH 

+ + H 2 instead of 
NC + O −→ NH + CO . We also find a linear relationship between 

he metallicity and the log-ratio in the range 1–2, which matches what
e find in Bayet et al. ( 2012 ). 
(iv) For the HCN/CS ratio, we observe that it serves as a density

racer, as expected. Furthermore, we once again observe three 
eparate regimes for the temperature dependence, which we are able 
o relate to the chemistry. 

Another point of interest is that the metallicity parameter often, but 
ot al w ays, leads to a ‘tailing-of f ef fect’ in the abundance in the limit
f the metallicity going to zero. This was the case for H 2 O, CO, and
he HCN/HNC ratio. Ho we v er, we did not observ e this for NH 3 and
he HCN/CS ratio. This suggests that despite the scaling down of the

etals, there are other reactions that compensate by creating more 
f the respective molecule from the limited resources. Further work 
hould consider this in more depth potentially by applying SHAP to 
 reaction network. 

Throughout this work, we have observed similarities between 
ur results and what has been discussed in the literature. This is
ncouraging. Ho we ver, it is difficult to make direct quantitative 
omparisons, as we consider a wide range of physical parameter 
ombinations. On the other hand, the literature we cited considered 
ctual observ ations. A follo w-up study would need to sample the
raining data for the machine learning model more precisely in order 
o be able to better model and understand the relationships between 
nputs and outputs for a specific astronomical object. 

C K N OW L E D G E M E N T S  

e thank the anonymous referee for their constructive comments that 
mpro v ed the quality of the manuscript. JH is funded by an STFC
tudentship in Data-Intensive Science (grant number ST/P006736/1). 
V acknowledges support from the European Union’s Horizon 2020 
esearch and innovation programme under the Marie Skłodowska- 
urie grant agreement number 811312 for the project ‘Astro- 
hemical Origins’ (ACO). This w ork w as also supported by the
uropean Research Council (ERC) Advanced Grant MOPPEX 

33460. 
ATA  AVAI LABI LI TY  

he data underlying this article are available in the article and in its
nline supplementary material. 

EFERENCES  

nsari Z. , Gall C., Wesson R., Krause O., 2022, A&A , 666, 24 
ayet E. , Davis T. A., Bell T. A., Viti S., 2012, MNRAS , 424, 2646 
ehrens E. et al., 2022, ApJ , 939, 119 
enson P. J. , Myers P. C., 1989, ApJS , 71, 89 
ianchi E. , Ceccarelli C., Codella C., Enrique-Romero J., Favre C., Lefloch

B., 2019, ACS Earth Space Chem. , 3, 2659 
ouhlel M. A. , Hwang J. T., Bartoli N., Lafage R., Morlier J., Martins J. R.

R. A., 2019, Adv. Eng. Softw. , 135, 102662 
ranca L. , Pallottini A., 2023, MNRAS , 518, 5718 
utterworth J. , Holdship J., Viti S., Garc ́ıa-Burillo S., 2022, A&A , 667, A131
aselli P. , Sipil ̈a O., Harju J., 2019, Philos. Trans. R. Soc., A , 377, 20180401
hang Q. , Cuppen H. M., Herbst E., 2007, A&A , 469, 973 
hen T. , Guestrin C., 2016, XGBoost: A Scalable Tree Boosting Sys-

tem . KDD ’16: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Disco v ery and Data Mining, San Francisco,
California, USA. pp. 785–794. 

avis T. A. , Bayet E., Crocker A., Topal S., Bureau M., 2013, MNRAS , 433,
1659 

e Mijolla D. , Viti S., Holdship J., Manolopoulou I., Yates J., 2019, A&A ,
630, A117 

arrod R. T. , Pauly T., 2011, ApJ , 735, 15 
ensheimer P. D. , Mauersberger R., Wilson T. L., 1996, A&A, 314, 281 
oldsmith P. F. , 2001, ApJ , 557, 736 
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Table A2. Table summarizing the ˆ I i for each parameter i . 

Species/ratio ˆ I n ˆ I ζ ˆ I T ˆ I m z 
ˆ I ψ 

H 2 O 0.17 0.15 0.11 0.54 0.02 
CO 0.01 0.04 0.04 0.91 0.00 
NH 3 0.11 0.14 0.54 0.17 0.03 
HCN/HNC 0.03 0.03 0.70 0.24 0.00 
HCN/CS 0.16 0.15 0.55 0.13 0.01 

Table A3. Table summarizing the range of values of the outputs of the 
abundances and ratios of interest. In the case of NH 3 , the lower bound of 
our values has been clipped at 10 −12 as discussed in the text. 

Species/ratio Range of values 

H 2 O 7.7 × 10 −12 − 3.8 × 10 −6 (relative to n H ) 
CO 9.8 × 10 −11 − 3.4 × 10 −4 (relative to n H ) 
NH 3 1.0 × 10 −12 − 1.2 × 10 −12 (relative to n H ) 
HCN/HNC 1.0 − 2418.0 
HCN/CS 6.0 × 10 −3 − 22091.9 
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PPENDIX  A :  SUPPLEMENTA RY  TA BLES  

Table A1. Initial elemental abundances used in UCLCHEM. 

Species Abundance (relative to H nuclei) 

He 1.00 × 10 −3 

C 1.77 × 10 −4 

O 3.34 × 10 −4 

N 6.18 × 10 −5 

S 3.51 × 10 −6 

Mg 2.25 × 10 −6 

Si 1.78 × 10 −6 

Cl 3.39 × 10 −8 

P 7.78 × 10 −8 

Fe 2.01 × 10 −7 

F 3.60 × 10 −8 
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