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ABSTRACT
Understanding Origin-Destination (O-D) travel demand is cru-
cial for transportation management. However, traditional spatial-
temporal deep learning models grapple with addressing the sparse
and long-tail characteristics in high-resolution O-D matrices and
quantifying prediction uncertainty. This dilemma arises from the
numerous zeros and over-dispersed demand patterns within these
matrices, which challenge the Gaussian assumption inherent to
deterministic deep learning models. To address these challenges,
we propose a novel approach: the Spatial-Temporal Tweedie Graph
Neural Network (STTD). The STTD introduces the Tweedie distri-
bution as a compelling alternative to the traditional ’zero-inflated’
model and leverages spatial and temporal embeddings to param-
eterize travel demand distributions. Our evaluations using real-
world datasets highlight STTD’s superiority in providing accurate
predictions and precise confidence intervals, particularly in high-
resolution scenarios. GitHub code is available online1.
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1 INTRODUCTION
Efficient urban transportation hinges upon a balanced travel sup-
ply and demand, a balance greatly aided by accurate O-D travel
demand forecasting [6, 12, 29]. This precision in prediction allows
for dynamic resource allocation, reducing wait times, and boosting
service provider profitability [7, 9, 16, 33]. Thus, improving the
model accuracy is the main focus of the travel demand prediction
domain. However, the task is not without its challenges, owing to
the intricate spatial-temporal interdependencies [4, 10] and fluctu-
ating nature of travel demand. While regions with dense demand,
like airports and hospitals, generally present data that adheres to
a Gaussian distribution—a core assumption of numerous predic-
tion models—[11, 15], the opposite is true for areas with sparse
and discrete O-D demand, such as educational institutions and
government premises [1, 18]. Such deviations from the Gaussian
assumption further complicate forecasting. Moreover, the problem
of data sparsity is exacerbated when accounting for the disparity
in urban demand across different regions at high spatial-temporal
resolutions, like at 5min intervals [35]. A plethora of zero values,
signifying the absence of trips, along with a long-tail distribution at
higher demand levels, result in the skewness, discrepancy, and large
variance in the data distribution [24, 25, 34]. Hence, accurately inter-
preting zeros, capturing long-tail distributions, and understanding
non-negative discrete values become paramount for robust demand
forecasting. Classic deep learning methods, such as Convolutional
Neural Networks (CNNs) and Long Short-Term Memory networks
(LSTMs), have tackled O-D matrix prediction by exploiting spatial
and temporal dependencies [3, 5, 14, 17, 28, 30, 32]. Recent works
have introduced Graph Neural Networks (GNNs), which leverage
the graph-like structure of O-D matrices to uncover non-Euclidean
correlations [8, 29]. Despite the respective merits, all these models
mainly treat O-D matrix entries as continuous variables, with a
primary focus on coarse temporal resolutions. They usually sim-
plify variance structures by assuming homoskedasticity (constant
variance) and predominantly output expected average travel de-
mand values. These approaches could overlook critical features
and may fail to sufficiently account for potential deviations and
real-world uncertainties [19, 35]. Recent research [23, 35] integrate
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zero-inflation statistic models with deep learning frameworksmight
hold promise for modelling sporadic travel demand, while they still
fall short in long-tail distribution in sparse O-D demand as they
mainly focus on ’happens or not" instead of such actual values.

In this paper, we propose the Spatial-Temporal Tweedie Graph
Neural Network (STTD)—a comprehensive solution designed for
joint numeric prediction and uncertainty quantification. Our main
contributions can be summarized as follows:
• We integrate the Tweedie distribution to model demand, replac-
ing the traditional two-part zero-inflated model, thereby effec-
tively capturing the zero-inflation and long-tail non-zero charac-
teristics of O-D travel data.

• The proposed combination is adept at quantifying the spatial-
temporal uncertainty inherent in sparse travel demand data.

• We validate the superiority of the STTD through experiments
on two real-world travel demand datasets, tested across various
spatial-temporal resolutions and performance metrics.
The paper is organized as follows. Section 2 defines the research

question and develops the model. Section 3 introduces the dataset
used for the case study, the evaluationmetrics, and the experimental
results. Section 4 concludes the paper and discusses future research.

2 METHODOLOGY
2.1 Problem Description
The primary objective of our model is to fit parameters that capture
the future travel demand distributions for each O-D pair over a
span of 𝑘 future time windows. The model accomplishes this by
leveraging data from𝑚 origins, 𝑢 destinations, and the correspond-
ing travel demand within periods of length 𝑇 minutes, rendering
the task essentially a sequence-to-sequence prediction. Unlike pre-
vious work that defined the locations of origins or destinations as
vertices, we adopt a more effective approach and directly construct
the O-D flow graph G = (𝑉 , 𝐸,𝐴). Within this graph, |𝑉 | =𝑚 × 𝑢

signifies the set of O-D pairs, 𝐸 designates the set of edges, and
adjacency matrix 𝐴 ∈ R |𝑉 |× |𝑉 | calculated by geodistance between
O-D pairs, same as [12, 35]. Our approach provides a more nuanced
understanding of the spatial-temporal intricate interrelationships
present in urban travel demand.

We let 𝑥𝑖𝑡 represent the trips that occur at the 𝑖𝑡ℎ O-D pair in the
𝑡𝑡ℎ time window, where 𝑖 ∈ 𝑉 and 𝑥𝑖𝑡 ∈ N. Our approach primarily
considers the individual instances of travel demand at different
intervals, all of which collectively model the term 𝑥𝑖𝑡 . Subsequently,
𝑋𝑡 ∈ N |𝑉 |×𝑇 designates the demand for all O-D pairs in the 𝑡𝑡ℎ time
window, with 𝑥𝑖𝑡 as its entry. The objective is to utilize historical
records𝑋1:𝑡 as the inputs for training data, aided by the graph struc-
ture 𝐴, to predict the probabilistic density function 𝑓 (𝑋𝑡+1:𝑡+𝑘 ) of
the distribution of 𝑋𝑡+1:𝑡+𝑘—that is, the travel demand distribution
for the next 𝑘 time windows. This prediction allows us to analyze
the expected values and confidence intervals of travel demands.

2.2 Tweedie (TD) Distribution
Denote 𝑓𝑇𝐷 as the probability mass function of future O-D travel
demand 𝑥𝑖𝑡 out model outputs. It follows Tweedie distribution,
which is in the form of: 𝑓TD (𝑥𝑖𝑡 |𝜃, 𝜙) ≡ 𝑎(𝑥𝑖𝑡 , 𝜙) exp

[
𝑥𝑖𝑡𝜃−𝜅 (𝜃 )

𝜙

]
.

Here, 𝜃 ∈ R represents the natural parameter, while 𝜙 ∈ R+ is
the dispersion parameter. The normalizing functions 𝑎(·) and 𝜅 (·)

correspond to parameters 𝜙 and 𝜃 , respectively [2, 22]. Functions’
details will be provided later. In the context of the Tweedie distri-
bution, the mean and variance of a random variable 𝑥 are given
by the following expressions: 𝐸 (𝑥) = 𝜇 = 𝜅′ (𝜃 ),𝑉𝑎𝑟 (𝑥) = 𝜙𝜅′′ (𝜃 ),
where 𝜅′ (𝜃 ) and 𝜅′′ (𝜃 ) denote the first and second derivatives of
𝜅 (𝜃 ), respectively. Here, 𝜇 ≥ 0 is the mean parameter. The Tweedie
family incorporates many significant distributions based on differ-
ent index parameter 𝜌 . This includes the Normal (𝜌 = 0), Poisson
(𝜌 = 1), Gamma (𝜌 = 2), Inverse Gaussian (𝜌 = 3), and Compound
Poisson-Gamma distribution (1 < 𝜌 < 2) [20–22]. The Compound
Poisson-Gamma distribution is particularly useful due to its ability
to parameterize zero-inflated and long-tail data. When 1 < 𝜌 < 2,
the demand 𝑥𝑖𝑡 can be expressed as shown in Eq.1:

𝑥𝑖𝑡 =

{
0 if no trips,∑𝐿𝑖𝑡

𝑗=1 𝑙
( 𝑗 )
𝑖𝑡

= 𝑙
(1)
𝑖𝑡

+ 𝑙 (2)
𝑖𝑡

+ · · · + 𝑙 (𝐿𝑖𝑡 )
𝑖𝑡

else. . (1)

where 𝐿𝑖𝑡 , the number of time slices within the time window, fol-
lows a Poisson distribution 𝑃𝑜𝑖𝑠 (𝜆) with mean 𝜆. The number of
trips, 𝑙 ( 𝑗 )

𝑖𝑡
, are independent gamma random variables denoted by

𝐺𝑎𝑚𝑚𝑎(𝛼,𝛾) with mean 𝛼𝛾 and variance 𝛼𝛾2. In this way, 𝑥𝑖𝑡 is
formed by the aggregation of discreet count, and we introduce
𝐿𝑖𝑡 , 𝑙

( 𝑗 )
𝑖𝑡

, and 𝑥𝑖𝑡 =
∑𝐿𝑖𝑡

𝑗=1 𝑙
( 𝑗 )
𝑖𝑡

to align with the Tweedie distribu-
tion definition2. If no trips occur, then 𝑥𝑖𝑡 = 0, and the probability
mass at zero for travel demand is 𝑃 (𝑥𝑖𝑡 = 0) = exp (−𝜆) [2]. Oth-
erwise, 𝑥𝑖𝑡 is computed as the sum of 𝐿𝑖𝑡 independent Gamma
random variables. We re-parameterize the Tweedie distribution
where 𝜃 = 𝜇1−𝜌/(1 − 𝜌), and 𝜅 (𝜃 ) = 𝜇2−𝜌/(2 − 𝜌) as:

𝑓TD (𝑥𝑖𝑡 |𝜃, 𝜙) ≡ 𝑓TD (𝑥𝑖𝑡 |𝜇, 𝜙, 𝜌) = 𝑎(𝑥𝑖𝑡 , 𝜙, 𝜌)𝑒
[
𝑥𝑖𝑡

𝜇1−𝜌
𝜙 (1−𝜌 ) −

𝜇2−𝜌
𝜙 (2−𝜌 )

]
,

with the normalizing function 𝑎(𝑥𝑖𝑡 , 𝜙, 𝜌) defined as: 𝑎(𝑥𝑖𝑡 , 𝜙, 𝜌) ={ 1 if 𝑥𝑖𝑡 = 0,
1
𝑥𝑖𝑡

∑∞
𝑗=1

𝑥
− 𝑗𝛼

𝑖𝑡
(𝜌−1)𝛼 𝑗

𝜙 𝑗 (1−𝛼 ) (2−𝜌 ) 𝑗 𝑗 !Γ (− 𝑗𝛼 ) if 𝑥𝑖𝑡 > 0.
. In this definition,

𝜇, 𝜙 , and 𝜌 are the key parameters determining the probability and
expected value of travel demands. The parameters in the Gamma
and Poisson distributions, namely 𝜆, 𝛼,𝛾 , can be computed using
𝜇, 𝜙 , and 𝜌 : 𝜆 = 1

𝜙

𝜇2−𝜌

2−𝜌 , 𝛼 =
2−𝜌
𝜌−1 , 𝛾 = 𝜙 (𝜌 − 1)𝜇𝜌−1 . The choice of

the Tweedie distribution is driven by the characteristics of travel
demand data. In practical terms, a specific time window may span
different durations, such as 60 minutes, 15 minutes, or even as brief
as 5 minutes. However, the distribution of trips during these periods
can exhibit significant variations in both spatial and temporal di-
mensions. By incorporating more granular intervals into the model,
it is possible to better capture the variability and heterogeneity of
demand within the given time window. The Tweedie distribution
effectively models zero-inflated and long-tail data distributions,
making it particularly suited to this context.
2.3 Learning Framework and Loss Function
We utilize Diffusion Graph Convolution Network (DGCN) and Tem-
poral Convolutional Network (TCN) as Spatial-Temporal Graph
Encoder ST [27, 35]. Thus, node spatial-temporal embedding Z
can be denoted as: Z = STΘ (𝑋1:𝑡 , 𝐴) . where Z𝑖 ∈ R𝐹 ′

is the
2For implementation purposes, 𝑥𝑖𝑡 remains the model input. We clarify the specifics
of 𝑥𝑖𝑡 to align with the structure necessitated by the Tweedie distribution
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Figure 1: Framework of STTD model.

spatial-temporal embedding of the 𝑖𝑡ℎ O-D pair. Thus, the three
parameters 𝜇𝑡+1:𝑡+𝑘 , 𝜙𝑡+1:𝑡+𝑘 , 𝜌𝑡+1:𝑡+𝑘 defining the Tweedie distri-
bution can be computed as:

𝜇𝑡+1:𝑡+𝑘 = ReLU(𝑊𝜇 · Z + 𝑏𝜇 )
𝜙𝑡+1:𝑡+𝑘 = ReLU(𝑊𝜙 · Z + 𝑏𝜙 ) + 𝜖

𝜌𝑡+1:𝑡+𝑘 = Sigmoid(𝑊𝜌 · Z + 𝑏𝜌 ) + 1 + 𝜖

(2)

where 𝜇 ∈ [0, +∞), 𝜙 ∈ (0, +∞), 𝜌 ∈ (1, 2). Learnable weight ma-
trices𝑊𝜙 ,𝑊𝜌 , 𝑏𝜇 , 𝑏𝜙 , 𝑏𝜌 ∈ R𝐹 ′×𝑘 and lim 𝜖 → 0 is the minimum
value. In order to fully predict travel demands, let 𝑥∗ be one of the
predicted travel demand Tweedie distributions from 𝑓𝑇𝐷 (𝑋𝑡+1:𝑡+𝑘 )
with parameters 𝜇, 𝜙, 𝜌 (notations 𝜇, 𝜙, 𝜌 are reused for clearer for-
mula). The learning objective of the whole model can be represented
as the maximum log-likelihood function: max log 𝑓𝑇𝐷 (𝑥∗ |𝜇, 𝜙, 𝜌)
and directly use the negative likelihood as our loss function to
better fit the distribution into the data. The log-likelihood of TD is
composed of the 𝑥∗ = 0 and 𝑥∗ > 0:

L𝑇𝐷 = − log 𝑓𝑇𝐷 (𝑥∗ > 0|𝜇, 𝜙, 𝜌) − log 𝑓𝑇𝐷 (𝑥∗ = 0|𝜇, 𝜙, 𝜌) + 𝜆Θ2 .

where Θ is model parameters and 𝜆 is weight-parameter for L2
Normalization. Moreover, for 𝑥∗ > 0 :

log 𝑓𝑇𝐷 (𝑥∗ > 0|𝜇, 𝜙, 𝜌) = 1
𝜙

(
𝑥∗

𝜇1−𝜌

1 − 𝜌
− 𝜇2−𝜌

2 − 𝜌

)
+ log𝑎(𝑥∗ > 0, 𝜙, 𝜌)

≥ 1
𝜙

(
𝑥∗

𝜇1−𝜌

1 − 𝜌
− 𝜇2−𝜌

2 − 𝜌

)
− log( 𝑗𝑚𝑎𝑥

√
−𝛼𝑥∗) + 𝑗𝑚𝑎𝑥 (𝛼 − 1)

,

where 𝑗𝑚𝑎𝑥 = 𝑥∗2−𝜌

(2−𝜌 )𝜙 , 𝛼 =
2−𝜌
1−𝜌 < 0. As for 𝑥∗ = 0, log 𝑓𝑇𝐷 (𝑥∗ =

0|𝜇, 𝜙, 𝜌) = 1
𝜙

(
− 𝜇2−𝜌

2−𝜌
)
, we select and calculate 𝜇, 𝜙, 𝜌 according to

the index of 𝑥∗ = 0 or 𝑥∗ > 0. We optimize the lower bound of
L𝑇𝐷 during training to avoid calculation of summation formula.
The whole framework is illustrated in Figure 1.

3 NUMERICAL EXPERIMENTS
3.1 Experiment Setup
Datasets: Chicago Data Portal (CDP)3 and Smart Location Data-
base (SLD)4 datasets. The CDP dataset includes trip records of
ride-sharing companies in Chicago’s 77 zones every 15 minutes,
from 01/09/2019 to 30/12/2019. We randomly select 10 × 10 grids
of O-D pairs from CDP. The SLD dataset encapsulates For-Hire
Vehicle trip records in 67 Manhattan administrative zones. We
alter temporal resolution (5/15/ 60-minute intervals) and sample
10 × 10 / 67 × 67 O-D pairs to gauge our model’s performance.
Both datasets were used in previous work [12, 35]. Evaluation
Metrics: (1) Point estimates: Mean Absolute Error (MAE), which
3https://data.cityofchicago.org/Transportation/Transportation-Network-Providers-
Trips/m6dm-c72p
4https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

measures the accuracy of the mean or median value of the pre-
dicted Tweedie distributions. (2) Distributional uncertainty: Mean
Prediction IntervalWidth (MPIW) and Prediction Interval Coverage
Probability (PICP) within the 10%-90% confidence interval. MPIW
averages the width of the confidence interval, while PICP quantifies
the percentage of actual data points within confidence intervals.
Additionally, KL-Divergence is applied to evaluate the similarity
between the predicted and real data distributions. (3) Discrete de-
mand prediction: true-zero rate and F1-score. The true-zero rate
measures the model’s fidelity in reproducing data sparsity, and the
F1-score gauges the accuracy of discrete predictions. In general,
Lower MPIW and KL-Divergence values are favorable while larger
true-zero rate, PICP, and F1-score values denote superior model per-
formance. Baselines: Historical Average (HA), Spatial-Temporal
Graph Convolutional Networks (STGCN)5[31], Spatial-Temporal
Graph Attention Networks (STGAT), the state-of-the-art proba-
bilistic models under zero-inflated negative binomial assumptions
(STZINB) and other methods such as negative binomial (STNB),
truncated normal (STTN) 6. We also evaluate our methods with dif-
ferent index parameter 𝜌 including 𝜌 ∈ [1, 2] (STTD), 𝜌 = 0 (STG),
𝜌 = 1 (STP), 𝜌 = 2 (STGM) and 𝜌 = 3 (STIG). STTD and STZINB are
three-parameter models while other probabilistic components are
two-parameter models. Reproducibility: Parameters of baselines
are optimized using Adam Optimizer[13] with 𝐿2 regularization
and a dropout rate of 0.2. The GNN in STTD and baselines are all
two-layered with hidden unit equal 42. We also employ the early-
stopping strategy with patience equals 10 to avoid over-fitting. We
split the data into 60% for training, 10% for validation, and 30% for
testing. All graph adjacency matrices are built following [35].

3.2 Model Comparison
We carry out experiments on five distinct travel demand scenar-
ios, presenting the prediction results in Table 1. Here, the best and
second-best scores are highlighted with bold and underlined values,
respectively. As a general observation, STTD outperforms all base-
line methods in the majority of cases when 𝜌 ∈ [1, 2]. Other models
from the Tweedie family tend to surpass probabilisticmethodswhile
also exceeding other state-of-the-art deep learning techniques. For
instance, STTD’s numerical accuracy improvements reach up to
3.47% on SLDSAMP10 in terms of Mean Absolute Error (MAE).
Moreover, STTD realizes improvements in Mean Predictive Inter-
val Width (MPIW) of 327.66%, 92.22%, and 67.02% on SLD_15min,
CDPSAMP10, and SLD_5min scenarios respectively, when com-
pared to STZINB and STNB. This suggests that STTD is capable
of generating more precise predictions while maintaining a nar-
rower confidence interval, a conclusion also supported by PICP

5https://github.com/FelixOpolka/STGCN-PyTorch
6https://github.com/ZhuangDingyi/STZINB
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Table 1: Model comparison under different metrics. 𝑋/𝑌 values correspond to the mean/median values of the distribution.

Dataset Metrics
STTD

(1 < 𝜌 < 2)

STG
(𝜌 = 0)

STP
(𝜌 = 1)

STGM
(𝜌 = 2)

STIG
(𝜌 = 3) STZINB STNB STTN STGCN STGAT HA

CDPSAMP10

MAE 0.358/0.363 0.409/0.409 0.429/0.453 0.479/0.472 0.376/0.384 0.368/0.366 0.382/0.379 0.432/0.606 0.395 0.397 0.522
MPIW 0.059 2.407 0.758 1.154 1.032 1.018 1.020 2.089 / / /
PICP 0.976 0.874 0.948 0.792 0.865 0.958 0.957 0.065 / / /

KL-Divergence 0.184/0.228 0.435/0.435 0.138/0.157 0.120/0.128 0.113/0.106 0.291/0.424 0.342/0.478 1.058/0.928 0.897 1.169 1.377
True-zero rate 0.803/0.799 0.790/0.790 0.503/0.552 0.791/0.797 0.797/0.797 0.796/0.788 0.796/0.788 0.758/0.764 0.800 0.787 0.759

F1-Score 0.862/0.844 0.818/0.818 0.619/0.642 0.832/0.843 0.822/0.836 0.848/0.846 0.848/0.841 0.842/0.846 0.840 0.846 0.809

SLDSAMP10

MAE 0.648/0.670 0.627/0.630 0.649/0.654 0.658/0.660 0.638/0.640 0.663/0.666 0.627/0.616 0.695/0.665 0.630 0.678 0.697
MPIW 0.965 2.604 1.063 1.523 1.466 1.310 3.628 1.931 / / /
PICP 0.921 0.811 0.907 0.481 0.502 0.942 0.943 0.219 / / /

KL-Divergence 0.102/0.113 1.022/1.022 0.111/0.122 0.130/0.130 0.123/0.113 0.518/ 0.507 0.980/1.662 3.578/3.052 0.768 0.754 0.978
True-zero rate 0.545/0.529 0.461/0.461 0.504/0.508 0.522/0.531 0.507/0.503 0.499/ 0.502 0.465/0.418 0.308/0.336 0.478 0.508 0.364

F1-Score 0.611/0.605 0.555/0.555 0.568/0.568 0.659/0.661 0.657/0.653 0.567/0.566 0.556/0.552 0.477/0.500 0.563 0.498 0.456

SLD_5min

MAE 0.139/0.147 0.155/0.155 0.146/0.149 0.145/0.139 0.142/0.143 0.149/0.150 0.147/ 0.144 0.155/0.155 0.159 0.162 0.149
MPIW 0.031 0.922 0.016 0.911 1.224 0.094 1.249 0.741 / / /
PICP 0.973 0.895 0.981 0.924 0.888 0.968 0.969 0.037 / / /

KL-Divergence 0.001/0.001 0.001/0.001 0.003/0.004 0.004/0.003 0.003/0.002 0.015/0.014 0.042/0.145 0.001/0.001 0.056 0.053 0.060
True-zero rate 0.884/0.883 0.877/0.877 0.880/0.879 0.878/0.872 0.866/0.871 0.879/0.879 0.875/0.866 0.877/0.877 0.874 0.851 0.874

F1-Score 0.905/0.894 0.879/0.879 0.884/0.839 0.884/0.882 0.884/0.884 0.882/0.882 0.880/0.878 0.879/0.879 0.879 0.868 0.876

SLD_15min

MAE 0.337/0.354 0.356/0.356 0.357/0.360 0.362/0.361 0.360/0.360 0.370/0.372 0.351/ 0.342 0.365/0.356 0.373 0.394 0.418
MPIW 0.141 1.353 1.153 0.623 0.648 0.603 2.283 1.215 / / /
PICP 0.938 0.855 0.962 0.724 0.715 0.956 0.959 0.120 / / /

KL-Divergence 0.058/0.061 0.353/0.353 0.061/0.064 0.063/0.067 0.062/0.071 0.167/ 0.156 0.357/0.704 1.445/1.211 0.395 0.434 0.445
True-zero rate 0.727/0.729 0.709/0.709 0.728/0.721 0.722/0.712 0.724/0.701 0.725/ 0.727 0.710/0.684 0.632/0.648 0.708 0.704 0.703

F1-Score 0.796/0.778 0.750/0.750 0.776/0.722 0.774/0.775 0.772/0.786 0.751/0.750 0.746/0.745 0.716/0.726 0.750 0.753 0.744

SLD_60min

MAE 0.915/0.928 1.199/1.199 0.942/0.956 0.937/0.971 0.952/0.933 1.040/1.067 0.958/ 0.947 1.275/1.254 0.997 0.987 1.014
MPIW 2.241 2.282 2.576 1.372 1.431 3.277 5.753 1.592 / / /
PICP 0.964 0.557 0.872 0.524 0.533 0.947 0.930 0.133 / / /

KL-Divergence 0.337/0.395 2.176/2.176 0.378/0.421 0.363/0.342 0.365/0.352 0.982/1.270 0.926/0.963 4.120/3.734 1.114 2.053 2.421
True-zero rate 0.505/0.488 0.390/0.390 0.474/0.429 0.453/0.449 0.354/0.379 0.458/ 0.476 0.443/0.425 0.288/0.308 0.438 0.416 0.447

F1-Score 0.617/0.608 0.479/0.479 0.610/0.569 0.613/0.609 0.604/0.615 0.536/0.537 0.538/0.534 0.407/0.423 0.538 0.488 0.490

values. Typically, a model necessitating a larger confidence inter-
val is indicative of a higher PICP, aiming to encapsulate all ground
truth data points. However, STTDmanages to sustain strong perfor-
mance in both PICP and MPIW, implying the generated confidence
intervals adeptly capture the underlying data distribution while
remaining relatively narrow. In terms of capturing sparsity, STTD
surpasses other methods on metrics such as KL-Divergence, true-
zero rate, and F1-Score in most cases, signifying STTD’s efficiency
in capturing zero values. This attribute is vital for sparse travel de-
mand prediction tasks where accurate and confident prediction re-
sults are paramount for effective decision-making. Three-parameter
models like STTD and STZINB outshine two-parameter models and
’one-parameter’ methods such as STGCN and STGAT. It’s noted
that no single model dominates others across all resolution levels,
as per Wolpert’s "No Free Lunch" theorem [26].

3.3 Parameters Visualization
We visualize the learned parameters 𝜙, 𝜌, 𝜇 and real values 𝑥 by
3D surface plots in Figure 2 on CDPSAMP10 and SLDSAMP10 test
sets. As the plots provided, it is evident that for long-tailed data,
the learned values of 𝜌 are greater (closer to 2), and a reason stands
that the main part of loss function 𝑥∗ 𝜇

1−𝜌

1−𝜌 (𝑥∗ > 0) will be punished
when predicted 𝑥∗ lies in long-tail while the predict approaches
zero, making the loss function converts sharply. While for zero-
valued data, the learned parameter 𝜙 is huge. Thus it shows that the
model can capture zero-inflated and long-tail data effectively from
uncertainty aspect. Furthermore, as the model parameter 𝜇 serves
as the distribution mean, its color distribution matches the value of
𝑥 , indicating that the model is good at mean point estimation.
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Figure 2: Surface plots for learned STTD parameters (𝜇, 𝜙, 𝜌)
on CDPSAMP10 (left) and SLDSAMP10 (right) test sets.

4 CONCLUSION
In this work, we introduced the Spatial-Temporal Tweedie Distribu-
tion (STTD), a novel neural probabilistic graph-based deep learning
model aimed at quantifying spatial-temporal uncertainty. STTD
leverages the power of the Tweedie distribution, adept at handling
zero-inflated and long-tail data. In conjunction with this, we utilize
the capabilities of Spatial-Temporal Graph Neural Networks to ef-
fectively encode three key uncertainty parameters. This strategy
allows STTD to capture the complex, intertwined spatial-temporal
dependencies, and intrinsic uncertainties at each data point. We
validated the performance through extensive experiments across
five representative scenarios, with a keen focus on point estima-
tion and uncertainty measurement. Our results underscore the
model’s robustness and effectiveness, setting a new benchmark in
the field. Our approach brings to light the significance of rigorous
uncertainty quantification within spatial-temporal deep learning
frameworks, providing a robust platform for future research and
development and also contributing to more efficient and reliable
transport management systems.
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