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A B S T R A C T 

Combining different observational probes, such as galaxy clustering and weak lensing, is a promising technique for unveiling the 
physics of the Universe with upcoming dark energy experiments. The galaxy redshift sample from the Dark Energy Spectroscopic 
Instrument (DESI) will have a significant overlap with major ongoing imaging surveys specifically designed for weak lensing 

measurements: the Kilo-Degree Survey (KiDS), the Dark Energy Surv e y (DES), and the Hyper Suprime-Cam (HSC) surv e y. 
In this work, we analyse simulated redshift and lensing catalogues to establish a new strategy for combining high-quality 

cosmological imaging and spectroscopic data, in view of the first-year data assembly analysis of DESI. In a test case fitting 

for a reduced parameter set, we employ an optimal data compression scheme able to identify those aspects of the data that are 
most sensitive to cosmological information and amplify them with respect to other aspects of the data. We find this optimal 
compression approach is able to preserve all the information related to the growth of structures. 

Key words: gravitational lensing: weak – methods: statistical – large-scale structure of Universe – cosmology: observations. p 
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 I N T RO D U C T I O N  

v er the ne xt fiv e years, the Dark Energy Spectroscopic Instrument
DESI) will map the position of � 30 million galaxies, reconstructing 
he cosmic history from the nearby universe to a distance of 11
illion light-years (DESI Collaboration 2016 ). This unprecedented 
olume of data, 10–15 times the size of current samples, will provide
nsights to fundamental questions unanswered by the current standard 
osmological model. 

Some of the key science questions that DESI aims to address will
enefit from combining DESI data with other cosmological probes. 
n this paper, we focus on the potential of combining DESI and
eak gravitational lensing data. DESI has a significant o v erlap with
ngoing deep imaging surv e ys specifically designed for weak lensing 
easurements: the Kilo-De gree Surv e y (KiDS; de Jong et al. 2013 ),

he Dark Energy Surv e y (DES; Dark Energy Surv e y Collaboration
016 ), and the Hyper Suprime-Cam (HSC) surv e y (Mandelbaum 

t al. 2018 ). The DESI Year 1 data set is expected to have at
east 1000 de g 2 o v erlap with these lensing surv e ys. Combining the
osmological information contained in DESI large-scale structure 
nd external lensing data sets will allow for broader exploration 
f new theories of gravity, by measuring how modifications to the 
urrent theory of gravity would affect light and matter simultaneously 
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e.g. Daniel et al. 2010 ; Joudaki et al. 2018 ; Garcia-Quintero, Ishak &
ing 2020 ). A joint analysis will impro v e measurements of the
arameters of interest, decrease the degeneracies, and help mitigate 
ystematic errors not controlled in an individual analysis. 

Whilst combined analysis of these new data sets will push our
nderstanding of the Universe to the next level, we wish to emphasise
w o k ey link ed challenges to be solved. The first challenge is how to
ptimally weight the data to achieve a given scientific outcome (for
xample, how to weight a DESI galaxy contributing to both galaxy–
alaxy lensing and clustering measurements). The second challenge 
s how to make tractable the big-data volumes produced by DESI
sing techniques such as data compression. In this context, an im-
ortant advantage of data compression is mitigating the challenge of 
he combined-probe covariance. After separating all the tomographic 
nd separation bins, a combined analysis of DESI and weak lensing
ata could utilise many hundreds or even thousands of data points
ith significant inter-correlations. If the covariance is estimated using 
 standard approach of performing similar measurements on mock 
atalogues, an intractable number of mocks may be required to 
aintain a low level of noise (Kaufman 1967 ; Hartlap, Simon &
chneider 2007 ; Ruggeri & Blake 2020b ; Perci v al et al. 2022 ).
hilst analytical covariance estimates are also possible, these may 

ot accurately incorporate details such as the surv e y footprint or
ther effects such as non-linearities or fibre collisions. 
Previous studies have developed optimal weighting schemes for 

ata compression with a focus on measuring the growth rate of
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tructure (Ruggeri et al. 2017 , 2019a , b ; Zhao et al. 2019 ), angular
iameter distance (Zhu et al. 2018 ), primordial non Gaussianity
Castorina et al. 2019 ), and cosmic shear (Bellini et al. 2019 ).

ootoovaloo et al. ( 2020 ) present an application of the MOPED
lgorithm (Heavens, Jimenez & Lahav 2000 ) to weak lensing
easurements. These studies explored optimal weighting for mea-

urements with individual probes, demonstrating how an optimal
eighting scheme applied to a data set gives unbiased results and is

fficient in decreasing the computational costs. 
In Ruggeri & Blake ( 2020a ), we developed and tested an efficient

ay to combine information from galaxies at different epochs in the
volution of the Universe using lensing and clustering statistics in
ourier space, discussing the advantages of such an approach with
espect to the binning of the galaxies adopted by past analyses and
esting the optimal weighting technique on Gaussian realisations. 

In this work, we extend the study of Ruggeri & Blake ( 2020a ) by
pplying the data-compression methodology to configuration-space
tatistics of clustering and g alaxy–g alaxy lensing measured from
ealistic mock simulations modelling the first year of DESI data. For
he purposes of this study we utilise a small parameter set, fixing the

ajority of the cosmological parameters and focusing on fitting for
he o v erall normalisation of the power spectrum σ 8 and the galaxy
ias parameters as a test case, although these techniques can be
eadily extended to a wider parameter set. 

We also derive a weighting scheme that can be applied directly
o galaxies, instead of to the power spectra or correlation function
easurements. In a similar approach to ‘FKP weighting’ (Feldman,
aiser & Peacock 1994 ), by fixing an ef fecti ve scale we generate
eights which can be applied to individual galaxies, provided that

he weights used are a smooth function on the range of scales
onsidered. We hence calculate optimal weights for the lenses for
 combined-probe analysis for the first time, extending FKP weights
o include other probes. If the redshift bins are thin enough that
he evolution in redshift within each bin is negligible, and large
nough that the lensing signal can be measured, galaxy-weighting
nd correlation function weighting give identical results. However,
he galaxy weighting approach is independent of the width of the
edshift bins considered, provided that enough freedom is allowed in
escribing all parameters in the model as a function of redshift. 
The paper is organized as follows: in Section 2.1 , we briefly re vie w

he models of the combined-probes statistics and their covariance
hat we use in our analysis. In Section 3, we derive the optimal
eighting scheme for configuration-space statistics and the weights

o be applied to individual objects with respect to a set of parameters.
ection 4 describes the mock data used for the analysis and the
stimator employed to measure the angular correlation functions in
oth lensing and clustering. In Section 5, we present the test results
rom data-compression, and compare them with an uncompressed
nalysis. We conclude in Section 6 . 

 M O D E L S  A N D  C OVA R I A N C E  

n this section, we summarize our theoretical model for the
ombined-probe statistics we use in this study: the average tangential
hear γ t ( θ ) around lens galaxies and their angular clustering ω( θ ),
long with the covariance of these statistics. 

.1 Angular power spectra for combined probes 

e define the angular (cross-)power spectra between two fields δa ,
b measured in redshift bins i , j , as a function of the projected Fourier
NRAS 525, 3865–3878 (2023) 
ode, � , as 

 

ij 

ab ( � ) = 

∫ 
d χ

q i a ( χ ) q j b ( χ ) 

χ2 
P ab ( �/χ, z( χ )) , (1) 

here P ab ( k , z) is the 3D (cross-)power spectrum of the fields at
edshift z and wavenumber k , and χ ( z) is the comoving distance
Kaiser 1992 ; Hu & Jain 2004 ). We note that equation ( 1 ) is derived
ssuming the Limber and flat-sky approximations (Kilbinger et al.
017 ; Lemos, Challinor & Efstathiou 2017 ). 
The weight function q a,b ( χ ) depends on the field considered. For

he galaxy density field δg , q g ( χ ) is defined as 

 

i 
g ( χ ) = 

n i lens ( z) 

n̄ i lens 

d z 

d χ
, (2) 

here n i lens ( z) is the lens redshift distribution of sample i , with z the
edshift corresponding to χ , and n̄ i lens is the average lens density.
or the convergence field δκ , q κ ( χ ) is determined by the lensing
fficiency, 

 

i 
κ ( χ ) = 

3 H 

2 
0 �m 

2 c 2 
χ

a( χ ) 

∫ χmax 

χ

d χ ′ n 
i 
source ( z) 

n̄ i source 

d z 

d χ ′ 
( χ ′ − χ ) 

χ ′ , (3) 

here H 0 and �m 

denote the values of the present-day Hubble
arameter and matter density, c is the speed of light, χmax is the
aximum comoving distance of the source distribution, n i source ( z)

nd n̄ i source are the source redshift distribution and average density
f sources in sample i , and a ( χ ) is the cosmic scale factor. We
escribe the specific source and lens configurations used in our study
n Section 4.1 below. 

.2 Co v ariance of angular power spectra 

he Gaussian covariance matrix between two angular power spectra
 

ij 

ab ( � 1 ) , C 

kl 
cd ( � 2 ), for samples ( i , j , k , l ), is given by Hu & Jain ( 2004 )

nd Krause & Eifler ( 2017 ), 

 = 

4 πδ� 1 � 2 

�s (2 � 1 + 1) 
� 1 
× [ (

C 

ik 
ac ( � 1 ) + δik δac N 

i 
a 

)(
C 

j l 

bd ( � 2 ) + δjl δbd N 

j 

b 

)
+ 

(
C 

il 
ad ( � 1 ) + δil δad N 

i 
a 

)(
C 

jk 

bc ( � 2 ) + δjk δbc N 

j 

b 

)] 
(4) 

here �s is the angular area of the o v erlapping sample in steradians.
he noise terms are, 

N g = 1 / ̄n lens , 

 κ = σ 2 
e / ̄n source , (5) 

here σ e is the shape noise. 

.3 Configuration-space statistics 

n configuration-space measurements of g alaxy–g alaxy lensing, we
ork with the average tangential shear 〈 γ t ( θ ) 〉 . This quantity defines

he tangential shear of background galaxies at angular separation θ
rom a lens galaxy, and is related to the convergence κ as, 

 γt ( θ ) 〉 = 〈 κ( < θ ) − 〈 κ( θ ) 〉 , (6) 

here κ( < θ ) is the integrated convergence within separation θ . γ t 

an be described in terms of the C g κ power spectrum via, 

t ( θ ) = 

∫ 
d � � 

2 π
C g κ ( � ) J 2 ( �θ ) , (7) 

here J n denotes the Bessel function of the first kind. 
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We also define the angular correlation function ω( θ ) of the lens
alaxies at separation θ , which can be formulated as a function of
he g alaxy–g alaxy angular power spectrum C gg as, 

( θ ) = 

∫ 
d � � 

2 π
C gg ( � ) J 0 ( �θ ) . (8) 

ee e.g. Blake et al. ( 2020 ). 

.4 Co v ariance of configuration-space statistics 

he Gaussian covariance matrix C , between γ t ( θ ) and ω( θ ) for N θ

eparation bins is composed of three main blocks: 

 [ γt ( θi ) , γt ( θj )] = 

1 

�s 

∫ ∞ 

0 

d 2 l 

(2 π ) 2 
J 2 ( lθi ) J 2 ( lθj ) ×{ 

C 2 g κ ( l) + [ C κκ ( l) + N κ ] 
[
C gg ( l) + N g 

]} 

, (9) 

 [ ω ( θi ) , ω ( θj )] = 

2 

�s 

∫ ∞ 

0 

d 2 l 

(2 π ) 2 
J 0 ( lθi ) J 0 ( lθj ) ×{[

C gg ( l) + N g 

] [
C gg ( l) + N g 

]}
, (10) 

 [ ω( θi ) , γt ( θj )] = 

2 

�s 

∫ 
d 2 l 

(2 π ) 2 
J 0 ( lθi ) J 2 ( lθj ) 

× C g κ ( l ) 
[
C gg ( l ) + N g 

]
. (11) 

here for each separation bin, we integrated equations ( 9 ), ( 10 ), and
 11 ) o v er the angular area of the bin (Hu & Jain 2004 ). 

.5 Fiducial cosmology 

e generated the non-linear matter power spectrum used in these 
odel computations using the CAMB software (Lewis & Bridle 

002 ), where we adopted the re-calibrated halofit model of Takahashi 
t al. ( 2012 ). We assumed a fiducial cosmological model consistent
ith the Buzzard simulations (DeRose et al. 2019 ) introduced in 
ection 4.1 , with a matter density �m 

= 0.286, baryon density 
b = 0.047, Hubble parameter h = 0.7, amplitude of matter 

lustering σ 8 = 0.82, and spectral index n s = 0.96. 
To model the g alaxy–g alaxy and galaxy-convergence power spec- 

ra P gg and P g κ , we assume a linear galaxy bias relation where
 gg ∝ b 2 σ 2 

8 and P g κ ∝ bσ 2 
8 . Due to the selection of our mock DESI

amples described in Section 4.1 , the galaxy bias evolves with 
edshift. We describe this redshift-dependent relation using a Taylor 
xpansion up to second order, 

( z) = b 0 + b 1 z + b 2 z 
2 , (12) 

here b 0 , b 1 , and b 2 are free parameters. We tested that a second-order
odel was sufficient to capture the galaxy bias evolution present in 

ur mocks, and adding higher-order terms produced no significant 
hange in our conclusions: see Fig. 3 and related discussion in 
ection 5.3 . 

 DATA  C OMPRESSION  

n this section, we present different types of data compression for
nalysing galaxy surv e ys in various scenarios. In Section 3.1 , we
erive optimal weights to be applied to correlation functions, and 
n Section 3.2 , we explore how these weights may be applied
o individual galaxies using an ‘effective scale’ approximation. 
hese optimal weighting schemes extend to configuration space our 
revious work (Ruggeri & Blake 2020a ) for lensing and clustering 
ptimal compression in Fourier space. 
.1 Weights applied to correlation functions 

ne of the aims of our work is to derive weight functions able to com-
ress galaxy clustering and galaxy–galaxy lensing measurements, 
cross different redshifts z and angles θ , with minimal information 
oss. To do this, we determine optimal redshift weights for the average
angential shear γ t ( θ , z) and angular galaxy correlation ω ( θ , z). 

For clarity before proceeding further, we first summarize the 
ptimal weights derived in the case of a single data vector and
arameter. Given an initial data set x with dimension n , we can
inearly compress it into a single number y , 

 = w 

T x , (13) 

hich contains the same information as x , with respect to a single
arameter λi , if w is an optimal weight function defined as, 

 

T = C 

−1 d , (14) 

here C is the covariance of the data and d indicates the deri v ati ve
f the model μ with respect to the parameter λi at each point,
 = ∂ μ/ ∂ λi . In this work, we focus on linear compression, which

s optimal under the assumption of Gaussianity, alternative non- 
inear optimal compression options for equation ( 13 ) have been
iscussed in Alsing & Wandelt ( 2018 ) and Jeffrey, Alsing & Lanusse
 2021 ). As discussed in Ruggeri et al. ( 2017 ), the compression
s optimal under the assumptions that μ is Gaussian and that the
ovariance matrix does not depend on the parameters of interest, 
.e. ∂ C / ∂ λi = 0. Although covariance generally does depend on
hese parameters, it is usually fixed for the purpose of cosmological
nalyses. Recent lensing–clustering analyses have shown that the 
osmology dependence in the covariance matrix affect the parameter 
onstraints at the level of 0.1 σ–0.2 σ (Kodwani, Alonso & Ferreira
019 ; Friedrich et al. 2021 ; Joachimi et al. 2021 ). The covariances
ssumed here are for Gaussian cases, which means that the weights
re in principle sub-optimal in the presence of non-Gaussianity. We 
nvestigate the impact of these assumptions in Section 5 , where we
ompare the results of the compressed and uncompressed data sets. 
e now discuss optimal weighting for a multidimensional parameter 

pace. We use the example of a combined-probe analysis of galaxy–
alaxy lensing and clustering for two parameters σ 8 and galaxy bias 
 , noting that the same formalism can be applied to different statistics
nd extended to a larger number of parameters. In particular we derive
eights for two scenarios: 

(i) We consider the two statistics measured at a number of redshifts
 z for many scales N θ , optimally compressed across redshift to

he same number of scales, for each of two parameters. We do
ot consider the compression of these statistics across scale (i.e. 
o a single scale) because our model is sensitive to scales, i.e. the
ystematic errors in the model are scale-dependent, and we want to
xplore this aspect. 

(ii) We study a slightly less-than-optimal data compression in- 
olving single-scale weights rather than optimal weights. This is 
n analogy with FKP weighting (Feldman et al. 1994 ) where the
eights used are computed fixing a single scale of interest. In fact,

cale-dependent weights cannot be applied to individual galaxies 
hen working in Fourier space or configuration space with standard 

odes. We will investigate how sub-optimal the fixed-scale weights 
re, compared to scale-dependent optimal weights. 

For clarity, we set out the full mathematical operations used in
hese processes as follows: (see also Zhao et al. 2019 ): 

Case (i) Two statistics measured at different redshifts for many 
cales, compressed to many scales for each of 2 parameters. We
MNRAS 525, 3865–3878 (2023) 
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onstruct the data vector as: 

ata vector X = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

γt ( z 1 , θ1 ) 
γt ( z 1 , θ2 ) 

· · ·
γt ( z 2 , θ1 ) 
γt ( z 2 , θ2 ) 

· · ·
ω( z 1 , θ1 ) 
ω( z 1 , θ2 ) 

· · ·
ω( z 2 , θ1 ) 
ω( z 2 , θ2 ) 

· · ·

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

[ Dim. = N st N z N θ × 1] (15) 

here we also summarize the dimensions of each vector or matrix
or clarity. Here, N st denotes the number of statistics used, in our
ase N st = 2. The covariance matrix C has dimension [ N st N z N θ ×
 st N z N θ ]: 

 = 

⎛ ⎝ 

C [ γt ( θ1 , z 1 ) , γt ( θ1 , z 1 )] ·· C [ γt ( θ1 , z 1 ) , ω t ( θm 

, z n )] 
·· ·· ··

C [ ω( θm 

, z n ) , γt ( θ1 , z 1 )] ·· C [ ω( θm 

, z n ) , ω t ( θm 

, z n )] 

⎞ ⎠ (16) 

ith m = N θ , n = N z , where each term in equation ( 16 ) is derived
rom equations ( 9 ), ( 10 ), or ( 11 ). We then construct the deri v ati ve
atrix D of dimension [ N st N z N θ × N p N θ ] as, 

 [ A,n,i] , [ α,j ] = 

∂ ξA ( θi , z n ) 

∂ p α

δij (17) 

here A is the statistic, n is the redshift bin, α is the parameter, and
 i , j ) are the separation bins, with δij denoting the Kronecker delta.
he full expansion of equation ( 17 ) reads, 

 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

∂ γt ( z 1 ,θ1 ) 
∂ σ8 

0 · ∂ γt ( z 1 ,θ1 ) 
∂ b 

0 ·
0 ∂ γt ( z 1 ,θ2 ) 

∂ σ8 
· 0 ∂ γt ( z 1 ,θ2 ) 

∂ b 
·

· · · · · ·
∂ γt ( z 2 ,θ1 ) 

∂ σ8 
0 · ∂ γt ( z 2 ,θ1 ) 

∂ b 
0 ·

0 ∂ γt ( z 2 ,θ2 ) 
∂ σ8 

· 0 ∂ γt ( z 2 ,θ2 ) 
∂ b 

·
· · · · · ·

∂ ω( z 1 ,θ1 ) 
∂ σ8 

0 · ∂ ω( z 1 ,θ1 ) 
∂ b 

0 ·
0 ∂ ω( z 1 ,θ2 ) 

∂ σ8 
· 0 ∂ ω( z 1 ,θ2 ) 

∂ b 
·

· · · · · ·
∂ ω( z 2 ,θ1 ) 

∂ σ8 
0 · ∂ ω( z 2 ,θ1 ) 

∂ b 
0 ·

0 ∂ ω( z 2 ,θ2 ) 
∂ σ8 

· 0 ∂ ω( z 2 ,θ2 ) 
∂ b 

·
· · · · · ·

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(18) 

here N p = 2 is the number of parameters of interest. We note
hat D generalizes the 1-parameter deri v ati ve in equation ( 14 ) to
 multidimensional case. Each column in equation ( 18 ) represents
he partial deri v ati ve of ∂ μi / ∂ p where p = σ 8 , b , at scale θ i with
 = 1. . . N θ , and redshift z n with n = 1. . . N z . F or e xample, in the
ase of a single redshift and two different angular bins N z = 1, N θ =
, equation ( 18 ) becomes, 

 = 

⎛ ⎜ ⎜ ⎜ ⎝ 

∂ γt ( z 1 ,θ1 ) 
∂ σ8 

0 ∂ γt ( z 1 ,θ1 ) 
∂ b 

0 

0 ∂ γt ( z 1 ,θ2 ) 
∂ σ8 

0 ∂ γt ( z 1 ,θ2 ) 
∂ b 

∂ ω( z 1 ,θ1 ) 
∂ σ8 

0 ∂ ω( z 1 ,θ1 ) 
∂ b 

0 
0 ∂ ω( z 1 ,θ2 ) 

∂ σ8 
0 ∂ ω( z 1 ,θ2 ) 

∂ b 

⎞ ⎟ ⎟ ⎟ ⎠ 

(19) 

here the 0 entries are determined by δi , j in equation ( 17 ). In analogy
ith equation ( 14 ), the optimal weights W are then constructed as a
atrix, 

 = C 

−1 D [ Dim. = N st N z N θ × N p N θ ] (20) 
NRAS 525, 3865–3878 (2023) 
pplying W to the initial data set X we obtain the compressed data
et Y , 

 = W 

T X [ Dim. = N p N θ × 1] (21) 

nd the compressed covariance, 

 Y = W 

T C W [ Dim. = N p N θ × N p N θ ] (22) 

e note that the compressed statistic Y contains the same information
ith respect to the parameters as X , in the sense that the Fisher matrix
f X with respect to the parameters is the same as the Fisher matrix
f Y . 
Case (ii): Two statistics measured at different redshifts for
any scales, compressed to many scales for each of two param-

ters, using weights evaluated at a single scale. This is a slightly
ess-than-optimal data compression scheme, but by fixing an ef fecti ve
cale it is possible to apply the weights to individual galaxies as we
iscuss below. We use the same uncompressed data vector X and
ovariance C as in Case (i), but the weights are derived for a single
cale θ s , using the one-dimensional compression (equation 14 ). We
se a single-scale covariance C s and a single-scale derivative matrix
 s obtained by e v aluating C and D at a single scale, e.g. for D s in

quation ( 17 ) we get 

 [ A,n,i] , [ α,j ] = 

∂ ξA ( θs , z n ) 

∂ p α

δij (23) 

nd 

D s = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

∂ γt ( z 1 ,θs ) 
∂ σ8 

0 · ∂ γt ( z 1 ,θs ) 
∂ b 

0 ·
0 ∂ γt ( z 1 ,θs ) 

∂ σ8 
· 0 ∂ γt ( z 1 ,θs ) 

∂ b 
·

· · · · · ·
∂ γt ( z 2 ,θs ) 

∂ σ8 
0 · ∂ γt ( z 2 ,θs ) 

∂ b 
0 ·

0 ∂ γt ( z 2 ,θs ) 
∂ σ8 

· 0 ∂ γt ( z 2 ,θs ) 
∂ b 

·
· · · · · ·

∂ ω( z 1 ,θs ) 
∂ σ8 

0 · ∂ ω( z 1 ,θs ) 
∂ b 

0 ·
0 ∂ ω( z 1 ,θs ) 

∂ σ8 
· 0 ∂ ω( z 1 ,θs ) 

∂ b 
·

· · · · · ·
∂ ω( z 2 ,θs ) 

∂ σ8 
0 · ∂ ω( z 2 ,θs ) 

∂ b 
0 ·

0 ∂ ω( z 2 ,θs ) 
∂ σ8 

· 0 ∂ ω( z 2 ,θs ) 
∂ b 

·
· · · · · ·

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(24) 

nd then, 

 s = C 

−1 
s D s [ Dim. = N st N z × N p ] (25) 

his weight matrix for a single angular scale θ s may be written out
ore fully as: 

 ss = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

W γt ,σ8 ( z 1 , θs ) W γt ,b ( z 1 , θs ) 
W γt ,σ8 ( z 2 , θs ) W γt ,b ( z 2 , θs ) 

· · · · · ·
W w,σ8 ( z 1 , θs ) W w,b ( z 1 , θs ) 
W w,σ8 ( z 2 , θs ) W w,b ( z 2 , θs ) 

· · · · · ·

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(26) 

hese weights are then applied to all scales as an ‘approximate’
eight matrix (i.e. an approximation to the optimal weights). This is

chieved by replicating each element of W ss into an N θ × N θ block
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n order to apply the same weight to all scales: 

 app = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

W γt ,σ8 ( z 1 , θs ) I i , j W γt ,b ( z 1 , θs ) I i , j 
· ·
· ·

W γt ,σ8 ( z N , θs ) I i , j W γt ,b ( z N , θs ) I i , j 
W ω,σ8 ( z 1 , θs ) I i , j W ω,b ( z 1 , θs ) I i , j 

· ·
· ·

W ω,σ8 ( z N , θs ) I i , j W ω,b ( z N , θs ) I i , j 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(27) 

here W app has dimension N st N z N θ × N p N θ and I i , j is the identity
atrix of dimension N θ × N θ . The compressed statistic and covari- 

nce matrix are then derived using this approximate weight matrix: 

 app = W 

T 
app X [ Dim. = N p N θ × 1] (28) 

nd, 

 Y app = W 

T 
app C W app [ Dim. = N p N θ × N p N θ ] (29) 

n this case, unlike in Case (i), information is lost in the sense that
he Fisher matrix of Y app is not the same as the Fisher matrix of X .

e’ll compare these different compression schemes as applied to 
imulated data in Section 5 below. 

.2 Weights applied to individual galaxies 

e now outline a scheme whereby the optimal correlation function 
eights derived above can be applied directly to individual galaxies 

n data analysis. In this scenario the weights can be used for more
eneral applications, outside of data compression. Similarly to the 
KP weights, we can use them as optimal weights for lenses when
ombining galaxy clustering and lensing. 

In Section 3.1 , we determined optimal redshift weights for a joint
nalysis of the angular galaxy correlation function ω( θ ) and the 
verage tangential shear γ t ( θ ) around those galaxies, for creating 
he compressed statistic Y ( θ ). For each model parameter, we can use
quation ( 28 ) to re-write those relations as: 

 tot ( θ ) = 

∑ 

i 

W ω,i ω i ( θ ) , (30) 

t, tot ( θ ) = 

∑ 

i 

W γ,i γt,i ( θ ) , (31) 

 ( θ ) = ω tot ( θ ) + γt, tot ( θ ) , (32) 

here i labels the redshift bins, W ω, i is the optimal redshift weight
or ω( θ ) in redshift bin i , and W γ , i is the optimal redshift weight for
t ( θ ), where those weights are determined using equation ( 27 ). 
In what follows, we replicate these combinations by applying 

eights to each of the individual objects (galaxies and random points) 
s a function of redshift, and measuring a correlation function across
ll redshifts. We denote with g ω, i the per-galaxy weights for ω( θ ),
nd with g γ , i the per-galaxy weights for γ t ( θ ). 

For ω( θ ) we consider an estimator for the total correlation function
cross redshifts of the form: 

 tot ( θ ) = 

˜ DD tot − 2 ̃  DR tot + 

˜ RR tot 

RR tot 
(33) 

Zhu et al. 2016 ), where the numerator involves weighted total pair
ounts, which (for the purposes of the deri v ation) we can express in
erms of a sum o v er the pair counts in redshift bins, 

˜ D tot ( θ ) = 

∑ 

i 

∑ 

j 

g ω,i g ω,j D i D j ( θ ) , (34) 
˜ R tot ( θ ) = 

∑ 

i 

∑ 

j 

g ω,i g ω,j D i R j ( θ ) , (35) 

˜ R tot ( θ ) = 

∑ 

i 

∑ 

j 

g ω,i g ω,j R i R j ( θ ) , (36) 

here D i D j , D i R j , R i R j are the auto/cross-pair counts between
edshift bins i and j , and the denominator of equation ( 33 ) involves
nweighted total random pair counts. Hence, 

 tot ( θ ) = 

∑ 

i 

∑ 

j g ω,i g ω,j 

(
D i D j − 2 D i R j + R i R j 

)
RR tot 

. (37) 

ubstituting in the auto/cross-correlation function between redshift 
ins i and j , ω ij = ( D i D j − 2 D i R j + R i R j )/ R i R j we find, 

 tot ( θ ) = 

∑ 

i 

∑ 

j g ω,i g ω,j R i R j ( θ ) ω ij ( θ ) 

RR tot ( θ ) 
. (38) 

n the approximation that the cross-correlations between different 
edshift slices are zero, ω ij = 0 if i �= j : 

 tot ( θ ) = 

∑ 

i g 
2 
ω,i RR i ( θ ) ω i ( θ ) 

RR tot ( θ ) 
, (39) 

here we use RR i = R i R i . Comparing the form of this equation with
quation ( 30 ), the galaxy and random weights g ω, i can be written in
erms of the ω( θ ) weights W ω, i in redshift bins i : 

 ω,i = 

√ 

W ω,i RR tot ( θeff ) 

RR i ( θeff ) 
, (40) 

 v aluated at some ef fecti ve scale θ = θ eff . 
We can derive similar per-galaxy weights for γ t ( θ ). For the

urposes of this deri v ation we’ll assume an estimator of the form: 

t ( θ ) = 

∑ 

ls w l w s e t,ls ∑ 

ls w l w s 

, (41) 

here w l and w s are lens weights and source weights, and e t ls indi-
ates the tangential shear of sources around lenses. (This estimator 
xcludes the random lens term, but this term makes no contribution
o the signal.) We further assume w s = 1 for the purposes of this
eri v ation. Similarly to equation ( 33 ), we apply w l = g γt ,i in the
umerator of the estimator and w l = 1 in the denominator, such that, 

tot ( θ ) = 

∑ 

ls g γ,i e t,ls 

D tot D s 

, (42) 

here D tot D s is the cross-pair count between all the lenses and the
ources. Breaking the numerator into tangential shear measurements 
n different redshift bins, γ i = 

∑ 

ls e t,ls / D i D s , we find: 

tot ( θ ) = 

∑ 

i g γ,i D i D s ( θ ) γi ( θ ) 

D tot D s ( θ ) 
. (43) 

omparing the form of this equation with equation ( 30 ), we can find
he lens galaxy weights g γ , i in terms of the γ t ( θ ) weights W γ , i in
edshift bins i : 

 γ,i = 

W γ,i D tot D s ( θeff ) 

D i D s ( θeff ) 
. (44) 

equations ( 40 ) and ( 44 ) hence give the individual galaxy redshift
eights for measurements of ω( θ ) and γ t ( θ ), which are equi v alent

o the optimal correlation function weights derived in Case (ii) of
ection 3.1 . 
MNRAS 525, 3865–3878 (2023) 
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Figure 1. The angular galaxy correlation function ω( θ ) (top panels) and the average tangential shear γ t ( θ ) (bottom panels), measured on one region, across 
three of the eight redshift bins between 0.2 < z < 0.3, 0.3 < z < 0.4, 0.4 < z < 0.5 with scale cut R ( θ ) > 5 h −1 Mpc. For display purposes, we plot the minimum 

common fitted θ range across for all redshifts. The best fitting model is plotted in grey for all redshift bins. Error bars are computed from the diagonal of the 
covariance matrix. 
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 SIMULA  TED  DA  TA  A N D  MEASUREMENTS  

.1 Simulations 

e tested these algorithms using simulated catalogues that were
epresentative of future overlapping DESI and weak lensing data
ets. We sampled these catalogues from the Buzzard simulation suite
DeRose et al. 2019 ), which uses full N -body particle simulations to
erive light-cones, dark matter halo catalogues and lensing fields via
ay-tracing. The Buzzard light-cones are populated with a complete
ample of galaxies to apparent magnitude limit i = 27, using the
DDGALS (Wechsler et al. 2021 ) abundance-matching algorithm

o sample luminosities and colours. Convergence and shear fields are
erived using the CALCLENS (Becker 2013 ) algorithm, and shear
omponents are assigned to each simulated galaxy. 

We selected lens and source samples from these Buzzard light-
one catalogues. First, using the simulated galaxy magnitudes, we
reated DESI Bright Galaxy (BG) and Luminous Red Galaxy (LRG)
argets matching the densities and redshift distributions of these
amples. We produced a total lens sample across the redshift range 0.1
 z < 0.9 by combining BGs in the range 0.1 < z < 0.5, with LRGs in

he range 0.5 < z < 0.9. We then created a representative weak lensing
ource sample of angular density 10 arcmin −2 by sub-sampling the
uzzard shear catalogues with a source redshift distribution 

( z) ∝ z 2 e −z/z 0 , (45) 

here z 0 = 0.2. We assigned a shape noise error of σ e = 0.28
er ellipticity component, and a photometric redshift error of
z = 0 . 1 (1 + z). 
For the purposes of our current study, we did not simulate any
ultiplicative shape bias corrections and we assumed unity weights

or completeness and shape measurement for all sources and lenses.
Each Buzzard light-cone is built across half the sky. We used one of

hese half-sky catalogues, and divided it into 18 pseudo-independent
egions each of area ∼1000 sq deg, which is representative of the
NRAS 525, 3865–3878 (2023) 
 v erlap area between DESI and each of the weak lensing data
ets DES, HSC, and KiDS. We analysed each of these 18 regions
eparately, to study the sample variance in our results. 

.2 Correlation function measurements 

e measured the correlation functions of the simulated catalogues
or each redshift bin and angular scale. For the angular correlation
unction we used the Landy–Szalay estimator (Landy & Szalay
993 ), 

 = 

D D − 2 D R + R R 

RR 

, (46) 

or each angular scale θ . For γ t measurements we used the estimator, 

t = 

( N R /N D ) 
∑ 

ls e t,ls −
∑ 

rs e t,rs 

R r R s 

, (47) 

here N D and N R are the number of data and random points, and
 r R s denotes the cross-pair count between the random lenses in each

edshift bin and all sources. We computed the correlation functions
escribed in equations ( 46 ) and ( 47 ) using the public code TREECORR

Jarvis 2015 ). For this analysis we used 30 logarithmically spaced
ngular separation bins in the range 0.003 < θ < 3 deg, and eight
inearly spaced lens redshift bins in the range 0.1 < z < 0.9. 

Fig. 1 displays the uncompressed correlation functions across three
f the eight redshift bins (red circles) 0.2 < z < 0.3, 0.3 < z < 0.4, 0.4
 z < 0.5, measured from one of the Buzzard regions. The top panel

orresponds to the measurements of ω( θ ), while the bottom panel
ndicates the measurements of γ t ( θ ). The best-fitting model is plotted
s grey continuous lines. For display purposes we plot the minimum
ommon fitted θ range across for all redshifts (see Section 5.2 ). The
rror-bars are derived as the square root of the diagonal covariance
atrix elements defined in Section 2.4 . The full covariance of the

ncompressed statistics is displayed as a correlation matrix in Fig. 2 .
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Figure 2. The correlation matrix of the uncompressed data set. The bins are 
ordered by statistic, redshift, and scale, with i and j indices ranging from 1 to 
N st × N z × N θ as illustrated in equation ( 16 ), with N st = 2 for this case. 
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 RESULTS  

e used the lensing and galaxy clustering statistics defined in Section 
.1 and measured in Section 4.1 , and fit for the σ 8 and galaxy bias
arameters using several different approaches. In Section 5.1 , we 
resent the results obtained using a standard approach fitting to 
he uncompressed measurements, where a tomographic analysis is 
erformed across the full redshift range. In Section 5.2 , we re vie w
he optimal redshift weights obtained in this analysis, which may be 
sed to compute individual galaxy weights, and in Section 5.3 we 
resent the results obtained from data-compressed analyses, using 
he methodology described in Section 3 . We compare and contrast 
he outcomes of these different approaches in Section 5.4 . 

We fit 18 individual Buzzard simulation regions, and present the 
verage and dispersion of the results. All fits are performed at angular
cales where R( θ ) > 5 h 

−1 Mpc , where R is the projected co-moving
alaxy separation at the redshift of the measurement, such that a 
inear galaxy bias model applied to an acceptable approximation 
iv en our conte xt. We repeated the analysis using a different scale
ut R( θ ) > 8 h 

−1 Mpc , finding consistent results (see Appendix A).
We sampled the posterior distributions, using BILBY (Ashton et al. 

019 ). We ran eight independent chains for each fit, each consisting
f 500 w alk ers. We determined the convergence of the samples using
he Gelman–Rubin criteria (R − 1 < 0.01) (Gelman & Rubin 1992 ).
he flat priors used on the parameters are specified in each individual
nalysis below. For simplicity of notation, we present the different 
nalyses under the labels of Case (i),(ii),(iii), and (iv) which indicate: 

(i) Data compression of γ t and ω using scale and redshift depen- 
ent weights and their covariance. We compress γ t and ω with respect 
o four parameters: σ 8 , b 0 , b 1 , and b 2 . The covariance between the
tatistics is compressed using the same scale-dependent weighting 
cheme. 

(ii) Data compression of γ t and ω using redshift dependent 
eights fixing one single ef fecti ve scale in the weights. We compress
t and ω with respect to four parameters: σ 8 , b 0 , b 1 , and b 2 . The
ovariance between the statistics is compressed using the same 
f fecti ve-scale weighting scheme. 
(iii) The uncompressed analysis, considering γ t and ω across 
ifferent redshift bins and scales and their covariance. 
(iv) Same as (ii) but using a linear model for the bias–redshift

elation to investigate possible systematics, i.e. we set b 2 = 0 and
ompress γ t and ω with respect to: σ 8 , b 0 , and b 1 . 

.1 Fits to uncompressed correlations 

or the uncompressed analysis, that we refer to as Case (iii), we
imultaneously fit models to the N z = 8 redshift bins. We built a
ata vector X combining measurements of γ t ( z, θ ) and ω( z, θ ),
ollowing equation ( 15 ), and used the full joint cov ariance deri ved
rom equation ( 16 ). After applying the scale cut R( θ ) > 5 h 

−1 Mpc ,
e used a remaining number of 87 data points across all redshifts.
e fit for a total of nine model parameters: a single value of σ 8 , and

ne linear bias parameter for each redshift bin: b i with i = 1, . . . , 8.
e set a uniform prior on all the parameters σ 8 , b i ∈ [0, 4]. 
Assuming a Gaussian likelihood, the χ2 statistic used to determine 

he likelihood of each model is computed as, 

2 = ( M − X ) T C 

−1 ( M − X ) , (48) 

here M is the model vector for γ t ( z, θ ) and ω( z, θ ), ordered in the
ame sequence as X . The M terms are computed using equations ( 7 )
nd ( 8 ), and subject to the same scale cuts. 

We find σ 8,mean = 0.76 ± 0.044, where we quote the mean of
he maximum likelihood estimate o v er 18 regions, and the error
s the mean standard deviation of the posterior distribution. For 
he minimum value of χ2 , we find a mean value of χ2 

mean / d . o . f =
 . 84, indicating an acceptable goodness-of-fit. We find a σ 8 value
onsistent with, but slightly lower than, the fiducial value of the
ocks. Possible reasons for this include the adoption of a linear

alaxy bias model, which may not be fully accurate. Since the focus
f this analysis is on e v aluating the error (the information loss) in the
arameters, rather than necessarily reco v ering a particular fiducial 
alue, this issue does not impact our conclusions. We also check that
he different fitting cases lead to very similar results in terms of best
ts, to ensure that the compression does not add biases. 
The results for the bias parameters for one of the regions analysed,

or each redshift slice are shown in Fig. 3 as the turquoise dots, where
he error bars indicate the 1 σ ranges. We find that the galaxy bias
ncreases steadily with redshift as predicted by a hierarchical model 
f galaxy formation (Mo & White 1996 ) and described by DESI
ollaboration ( 2016 ). The b versus z trend is dominated by changes

n luminosity, as predicted by the increased luminosity of galaxies vs
edshift. As noted in Section 2.5, we confirm the smooth relationship
f b vs z around z = 0.5, between BG and LRGs samples. 

.2 Optimal redshift weights 

e considered two types of data compression, Case (i) and (ii),
s described in Section 3 , which correspond to optimal correlation
unction weights and those determined at a single scale, respectively. 
he initial data set X and uncompressed model are computed 
s for the uncompressed data, and we apply the same scale cut
( θ ) > 5 h 

−1 Mpc as for the uncompressed analysis. We selected
our parameters of interest σ 8 and b 0 , b 1 , b 2 , describing a linear
alaxy bias with a quadratic evolution in redshift, as described in
ection 2.1 , and compared our results with linear and cubic bias
volution choices. 

We computed the set of weight matrices for these four parameters,
 and W app , as derived for Case (i) and (ii). In Figs 4 and 5

e compare the weights of Case (i) (solid lines) and Case (ii)
MNRAS 525, 3865–3878 (2023) 
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Figure 3. Parameter fits for the bias–redshift relation for one of the regions 
analysed, from the uncompressed analysis (Case iii, black dots in all three 
panels) and the following compressed analyses: linear bias–redshift relation 
where b 2 = 0 in equation ( 12 ) (Case iv, grey regions, top panel), quadratic 
bias (Case i, yellow regions, and middle panel), and cubic bias (Case v, 
red regions, and bottom panel). The errors displayed are computed from the 
standard deviation of the posterior distribution. 
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Figure 4. Comparison of the γ t weights as a function of redshift, following 
Case (i) and (ii) approaches (solid and dashed lines), using θ eff = 180 ◦/200 
(top) and θ eff = 180 ◦/100 (bottom) for Case (ii), and displaying the weights 
for θ = θ eff for Case (i). Only the components of the weight matrix for γ t , 
and with respect to σ 8 are displayed here. 
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dashed lines). Fig. 4 displays the component of the weight matrix
erived from γ t , while Fig. 5 shows the weights corresponding to
. In both figures we display only the component of the weights

elated to σ 8 , noting that similar forms are obtained for the bias 
omponent. 
NRAS 525, 3865–3878 (2023) 
We select two different effective scales corresponding to angular
avenumbers � = (100, 200) to compare the weights of Case (i)

nd (ii), which are representative of the range of scales we are
tting, analogous to the Feldman et al. ( 1994 ) scheme. The Case
ii) weights are obtained fixing an ef fecti ve scale θ eff = 180 ◦� −1 in
he computation of the weight matrix. Case (i) weights are computed
s a function of scale, for comparison we plot the Case (i) weights
or θ eff = 180 ◦/200 and θ eff = 180 ◦/100 components. 

For the purposes of these comparisons, we are plotting the weight
unctions relative to a particular scale θ eff , for both Case (i) and (ii).
o we ver, those weight functions are not equi v alent, as the scale-
ependent weights in Case (i) are derived using the full covariance
cross all scales, while the Case (ii) weights only consider the value
f the variance at a single scale. In practice, while applying Case (i)
eights to the data, part of the information about θ eff is contained

n different weighted modes, given that the covariance across all
cales is non-diagonal, while Case (ii) assume the same weight
unction across all scales. Further, the shape of the weights with
edshift depends on the balance of sample variance and noise, which
epends on scale. Thus, the choice of fixing a specific scale θ eff , or
ompressing o v er all scales, impacts the weights. Although we will
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Figure 5. Comparison of the ω( θ ) weights as a function of redshift, displayed 
in the same style as Fig. 4 . 
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Table 1. Angular scales considered for R ( θ ) > 5 h −1 Mpc for each redshift 
bin, displayed using the range of central angular separation bin values 
included in our analysis. 

z range θ range (deg) 

0.1 < z < 0.2 0.67 < θ < 2.67 
0.2 < z < 0.3 0.42 < θ < 2.67 
0.3 < z < 0.4 0.34 < θ < 2.67 
0.4 < z < 0.5 0.27 < θ < 2.67 
0.5 < z < 0.6 0.21 < θ < 2.67 
0.6 < z < 0.7 0.21 < θ < 2.67 
0.7 < z < 0.8 0.16 < θ < 2.67 
0.8 < z < 0.9 0.16 < θ < 2.67 

Figure 6. The compressed correlation functions Y ( θ ) weighted with respect 
to the different parameters ( σ 8 , b 0 , b 1 , b 2 ) for a scale cut R ( θ ) > 5 h −1 Mpc. 
The best-fitting model is plotted in grey. The error bars are computed from 

the diagonal of the compressed covariance matrix. 
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how that the eventual cosmological result is not sensitive to these 
ifferences. 
In general, the trend of the weights with redshift is determined 

y how the covariance component interacts with the derivative of 
he models. As expected, we find that the γ t weights shown in 
ig. 4 decrease with redshift: following the trend of the galaxy–
alaxy lensing signal to decrease with redshift, given that fewer 
ources lie behind higher-redshift lenses. For θ eff = 180 ◦/100 we 
otice a slightly different trend with redshift for ω (bottom panel of 
ig. 5 ). 
We do not find a significant difference in the trend of the weights

ith redshift for different cases, noting that the normalization 
f the weights is free 1 in the deri v ation. We can say that the
rend of the weights does not vary significantly as a function of 
cale. 

These weights can be applied to obtain the individual galaxy 
eights by following the procedure described in Section 3.2 . Given 

hat these treatments are equi v alent, we just present the correlation
unction fits in this section. 
 The normalization is free for the total weight function, applied to γ t + ω; 
igs 4 , 5 sho w indi vidual component of the weights ( γ t , ω), for which the 
ormalization is not arbitrary. 

w

r
σ

.3 Fits to compressed correlations 

e applied the weight matrices W and W app to the uncompressed
ata vectors X and M (equations 20 and 27 ) to obtain the compressed
ata sets Y , Y app , and compressed models M , M app . Given the
( θ ) > 5 h 

−1 Mpc scale cut, only data from a subset of redshift bins
n X contributes to the corresponding scale bin of the compressed
ata Y , consistently with the uncompressed case. The length of the
ompressed data vector is 2 × 153, the θ ranges considered for each
edshift bin are displayed in Table 1 . 

Fig. 6 displays the compressed data sets Y , obtained using equation
 21 ), with respect to the different parameters of interest ( σ 8 , b 0 , b 1 ,
 2 ; red squares and circles). The error bars are computed from the
iagonal of the compressed covariance matrix. 
We computed the compressed covariances for Cases (i) and (ii) 

ollowing equations ( 22 ) and ( 29 ). Fig. 7 displays the covariance for
he compressed data sample, as correlation matrix. For simplicity, 
e show all the scales N θ before the scale cut, which depends
n redshift. For both Case (i) and (ii) the χ2 statistic is built 
s, 

χ2 = ( M Y − Y ) T C 

−1 
Y ( M Y − Y ) , (49) 

here for Case (ii) we use Y app instead of Y . 
We fit for σ 8 and the quadratic bias parameters, finding mean 

esults σ8 = 0 . 760 ± 0 . 0468 and χ2 /d.o.f. = 0.88 for Case (i), and 
8 = 0 . 764 ± 0 . 0485 and χ2 /d.o.f. = 0.82 for Case (ii) across the 
MNRAS 525, 3865–3878 (2023) 



3874 R. Rug g eri et al. 

M

Figure 7. The correlation matrix of the compressed correlation functions for 
N p = 4 free parameters. The bins are ordered in scale and in the four different 
parameters: i and j range from 1 to N θ × N p as illustrated in equation ( 22 ). 
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Figure 8. Likelihood contours for σ 8 and bias from the different methods: 
Case (i), (ii), (iii), and (iv). We present the results obtained for one of the 
re gion considered. F or the bias, for Case (i), (ii), and (iii) we compare b( z eff ) = 

b 0 + b 1 z eff + b 2 z 
2 
eff with z eff = 0.5, and b ( z eff ) = b 0 + b 1 z eff for Case (iv), 

as per equation ( 12 ). 

Figure 9. Fitting results for σ 8 from the different methods, from left to 
right: Case (i), (ii), (iii), and (iv). We display the mean and averaged errors of 
the 18 regions considered. The error bars are computed from the standard 
deviations of the posterior distributions. The values displayed are: Case 
(i) σ 8 = 0.760 ± 0.046, Case (ii) σ 8 = 0.764 ± 0.048, Case (iii) σ 8 = 

0.756 ± 0.045, and Case (iv) σ 8 = 0.787 ± 0.053. Dashed grey line indicates 
the fiducial σ 8 of the mocks. 
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8 realizations. We do not find a significant difference in the error in
8 for Case (i) with respect to Case (ii), meaning that the weights do
ot lose their optimality when an ef fecti ve scale is fixed, similar to
he FKP weights. 

In Fig. 3 , we compare the results for the bias fits, using the
ethods described abo v e. We do not include Case (ii), as the results

re identical to Case (i). We fit for a linear, quadratic, and cubic
volution for b ( z) (grey and yellow and pink shades) using Case
i) compression, and we compare them with the results from the
ncompressed analysis (black dots). The confidence regions are
omputed by reconstructing b ( z) from the fit of b 0 , b 1 , b 2 in equation
 12 ), taking the standard deviation of b ( z) at each redshift. We find
hat the quadratic b ( z) gives an appropriate description of the bias–
edshift relation b ( z), consistent with the uncompressed analysis.
sing a linear evolution for b ( z) results in a larger error on σ 8 ,
robably due to the fact that a linear evolution model is not describing
he bias–redshift relation sufficiently accurately, σ 8 = 0.787 ± 0.053
nd χ2 /d.o.f. = 0.82. We tested a third-order bias–redshift relation
n Case (v), finding no significant difference in the constraints with
espect Case (i). 

Fig. 6 shows the compressed statistics Y for Case (i) (red circles),
ompared to the best-fitting model (solid grey line), for the range
f scales considered. We plot the different components of Y with
espect to σ 8 and the different bias parameters. The error bars on
he compressed data are plotted as the square root of the diagonal
lements of the covariance matrix. The models provide a good
escription of the data, reflecting the acceptable value of the χ2 

tatistic. 

.4 Comparison between analyses 

n Fig. 8 , we display the likelihood contour for σ 8 and bias for one
f the regions considered, from the different methods considered:
ase (i), (ii), (iii), and (i v) (the yello w, red, blue, and grey contours,

espectiv ely). F or the bias, we compare b( z eff ) = b 0 + b 1 z eff + b 2 z 
2 
eff 

ith z eff = 0.5 for for Case (i), (ii), (iii), and b ( z eff ) = b 0 + b 1 z eff for
ase (iv), as per equation ( 12 ). 
NRAS 525, 3865–3878 (2023) 
We summarize the results for all cases and regions in Fig. 9 , where
e display the 68 per cent confidence region for the posterior proba-
ility distribution of σ 8 . From left to right, the yellow dot indicates the
esult from optimal weighting including scale dependence; the red
ot indicates the results from a compressed analysis with an ef fecti ve
cale. The blue point denotes the uncompressed analysis, and the grey
oint corresponds to a compressed single-scale analysis with a linear
edshift evolution for b ( z) in the model (as opposed to the fiducial
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Figure 10. The distribution of the best-fitting σ 8 across the 18 Buzzard 
mocks for Case (i), (ii), (iii), and (iv). Each σ 8 corresponds to the maximum 

likelihood value. 

q
a
(
i
t
d
r

a  

a  

c  

r
f  

r
w
a
b
r
e
i
t  

m
5  

o
s

σ

c
(
s
C
C  

e  

d

(  

a
m  

n
T  

(
d

Figure 11. The distribution of the standard deviation of σ 8 across the 18 
Buzzard regions for Case (i), (ii), (iii), and (iv). Each standard deviation is 
computed from the posterior distribution of σ 8 . 

Figure 12. The distribution of reduced χ2 across the 18 Buzzard regions for 
Case (i), (ii), (iii), and (iv). 

6

I  

c  

l  

K
f
W
g
R  

w  

b  

p
l

c
s  

w
i
w  

σ  

t  

r
t

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/525/3/3865/7191259 by U
niversity C

ollege London user on 24 O
ctober 2023
uadratic evolution). We find consistent results between all types of 
nalysis, and comparable standard deviations for both Cases (i) and 
ii), and the uncompressed analysis, implying that the compression 
s almost lossless, even for the single-scale approximation. We note 
hat an analysis based on the individual galaxy weights, which are 
erived to match the single-scale approximation, would give the same 
esults. 

The histograms in Fig. 10 show the distribution of σ 8 as measured 
cross the 18 Buzzard regions used in this study, for the four cases
nalysed. The displayed colours are consistent with Fig. 9 . We find
onsistent values of the mean for all cases. For robustness check, we
epeated Case (iii) fits using the same bias–redshift relationship as 
or Case (i) and (ii), as described in equation ( 12 ), finding identical
esults on σ 8 best-fit and variance. We expected this, from Fig. 3 
hich shows that a quadratic bias–redshift relationship is well in 

greement with the bias values measured across the eight redshift 
ins. Case (iv) with linear evolving bias is slightly shifted with 
espect to the other distributions. As discussed earlier, linear bias 
volution is not accurately reproducing the bias parameters fitted in 
ndividual redshift bins. We find the best-fitting σ 8 for all methods 
o be slightly lower (close to 1 σ ) than the fiducial value of the
ocks, shown as the black dashed line. As discussed in Section 

.1 , this issue is likely related to the linear bias model adopted in
ur analysis, and does not affect the conclusions of our current 
tudy. 

Fig. 11 shows the distribution of the standard deviation for 
8 as measured across 18 Buzzard regions. The displayed 
olours are consistent with Fig. 9 . The compressed analysis 
both optimal and single-scale, yellow and red histograms) gives 
imilar results to the uncompressed analysis (blue histogram): 
ase (i) σ 8 = 0.760 ± 0.046, Case (ii) σ 8 = 0.764 ± 0.048, and 
ase (iii) σ 8 = 0.756 ± 0.045. The analysis with a linear redshift
volution for b ( z) (grey histogram) leads to higher values of standard
eviation: Case (iv) σ 8 = 0.787 ± 0.053. 
Fig. 12 displays the distribution of χ2 across all the regions 

with the same colour as for Fig. 10 ). We find that all realizations
re consistent with reduced χ2 = 1, noticing a slightly higher 
ean χ2 for the linear -ev olving bias case. Case (iii) shows a

arrower distribution of χ2 /d.o.f, with respect the other Cases. 
his is because Case (iii) has a higher number of free parameters

nine), and the variance of the χ2 scales with the inverse of 
.o.f. 
 C O N C L U S I O N  

n this work, we used simulated data sets of future combined galaxy
lustering and weak lensing surv e ys, representing the re gion of o v er-
ap between DESI Y1 and imaging surv e ys such as DES, HSC, and
iDS, to explore data compression and optimal weighting algorithms 

or extracting cosmological parameters from these combined probes. 
e derived data-compression schemes which can be applied to 
 alaxy–g alaxy lensing and clustering statistics, extending the work of 
uggeri & Blake ( 2020a ) into configuration space. For this test case
e focussed on a small parameter set consisting of σ 8 and the galaxy
ias parameters (whose de generac y can be broken by combined
robes), noting that these techniques can be readily extended to 
arger parameter sets. 

We investigated different types of compression, in particular 
omparing a sub-optimal approach where an ef fecti ve angular 
cale is selected to derive the weights, with an optimal scheme
here the scale dependence is included in the weights, find- 

ng no significant difference in the results (for scale-dependent 
eights: σ 8 = 0.760 ± 0.046, for ef fecti ve angular scale weights:
8 = 0.764 ± 0.048). This allows us to use the single-scale weights

o derive a weighting scheme to be applied to individual galaxies
ather than correlation functions, producing near-optimal results in 
his case. Both compression approaches (single-scale and optimal) 
MNRAS 525, 3865–3878 (2023) 
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ead to a standard deviation of σ 8 , very similar to the uncompressed
nalysis ( σ 8 = 0.756 ± 0.045). This means that in both cases our
ompression is preserving the information rele v ant to our scientific
oal. 
Future work, as part of the mock-challenge effort to validate DESI

1 analysis, will involve: 

(i) Testing the optimal galaxy redshift weights in the presence of
ealistic window functions, 

(ii) Extending the methodology to more parameters, to allow for
ider exploration of the cosmological model, 
(iii) Extension to more observed statistics, by adding correlation

unction multipoles which describe redshift-space distortions, 
(iv) Testing different fitting ranges and non-linear models for the

alaxy bias, to get unbiased constraints of σ 8 and other parameters. 
(v) Including cosmic shear to our analysis, performing a full 3 ×2-

oint correlation function analysis. 
(vi) As DESI has multiple targets observed, a potential extension

f this work may apply the data-compression methodology to
ultitracer analyses. 

This program of work will calibrate data-compression techniques
or creating no v el tests of the cosmological model using combined
robes. 
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PPEN D IX:  
igure A1. Comparison between the results for the uncompressed analyses usin
 h −1 Mpc (blue contours). Both analyses assume a galaxy linear bias. As expect
loser to the fiducial cosmology one: 0.82, as the effect of non-linear galaxy bias is
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g two different scale cuts: R( θ ) > 5 h −1 Mpc (red contours) and R( θ ) > 

ed the value of σ 8 recoveconstraints from the R( θ ) > 8 h −1 Mpc results is 
 lower than in R( θ ) > 5 h −1 Mpc results. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/525/3/3865/7191259 by U
niversity C

ollege London user on 24 O
ctober 2023



3878 R. Rug g eri et al. 

M

1
 

A
2

 

n
3

 

9
4

 

R
5

 

C
6

 

S
7

 

s
8

 

O
9

 

A
1

 

s
1

1
 

C
1

 

s

14 
 

U
1

 

K
1

 

Y
1

 

e
1

 

M
1

 

C
2

 

C
2

 

S  

2
 

W
2

 

9
2

 

1
2

T

D
ow

nloaded from
 https://academ

ic.oup.com
/m
 School of Mathematics and Physics, University of Queensland, QLD 4072,
ustralia 
 Centre for Astrophysics & Supercomputing, Swinburne University of Tech-
ology, P.O. Box 218, Hawthorn, VIC 3122, Australia 
 Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA
4720, USA 

 Department of Physics, The University of Texas at Dallas, 800 W. Campbell
d, Richardson, TX 75080, USA 

 Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street,
ambridg e , MA 02138, USA 

 Department of Physics & Astronomy, University College London, Gower
treet, London, WC1E 6BT, UK 

 Department of Physics and Astronomy, University of Waterloo, 200 Univer-
ity Ave W, Waterloo, ON N2L 3G1, Canada 
 Perimeter Institute for Theoretical Physics, 31 Caroline St. North, Waterloo,
N N2L 2Y5, Canada 
 Waterloo Centre for Astrophysics, University of Waterloo, 200 University
ve W, Waterloo, ON N2L 3G1, Canada 
0 Kavli Institute for Particle Astrophysics and Cosmology, Stanford Univer-
ity, Menlo Park, CA 94305, USA 

1 Physics Department, Stanford University, Stanford, CA 93405, USA 

2 Department of Astronomy and Astrophysics, University of California, Santa
ruz, 1156 High Street, Santa Cruz, CA 95065, USA 

3 Center for Cosmology and Astro-Particle Physics, The Ohio State Univer-
ity, Columbus, OH 43210, USA 
NRAS 525, 3865–3878 (2023) 

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an 
( https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reus
Department of Physics, The Ohio State University, Columbus, OH 43210,
SA 

5 Department of Physics and Astronomy, Sejong University, Seoul 143-747,
orea 

6 Korea Astronomy and Space Science Institute, 776, Daedeokdae-ro,
useong-gu, Daejeon 34055, Republic of Korea 
7 Department of Physics, Southern Methodist University, 3215 Daniel Av-
nue, Dallas, TX 75275, USA 

8 Instituto de F ́ısica, Universidad Nacional Aut ́onoma de M ́exico, Cd. de
 ́exico C.P. 04510, M ́exico 

9 Department of Physics and Astronomy, University of Rochester, 500 Joseph
. Wilson Boulevard, Rochester, NY 14627, USA 

0 Instituci ́o Catalana de Recerca i Estudis Avan c ¸ats, Passeig de Llu ́ıs
ompanys, 23, E-08010 Barcelona, Spain 

1 Institut de F ́ısica d’Altes Energies (IFAE), The Barcelona Institute of
cience and Technology, Campus UAB, E-08193 Bellaterra Barcelona, Spain
2 Space Sciences Laboratory, University of California, Berkeley, 7 Gauss
ay , Berkeley , CA 94720, USA 

3 University of California, Berkeley, 110 Sproul Hall #5800 Berkeley, CA
4720, USA 

4 Instituto de Astrofisica de Andaluc ́ıa, Glorieta de la Astronom ́ıa, s/n, E-
8008 Granada, Spain 
5 University of Michigan, Ann Arbor, MI 48109, USA 

his paper has been typeset from a T E 

X/L 

A T E 

X file prepared by the author. 
© 2023 The Author(s). 
Open Access article distributed under the terms of the Creative Commons Attribution License 
e, distribution, and reproduction in any medium, provided the original work is properly cited. 

nras/article/525/3/3865/7191259 by U
niversity C

ollege London user on 24 O
ctober 2023

https://creativecommons.org/licenses/by/4.0/

	1 INTRODUCTION
	2 MODELS AND COVARIANCE
	3 DATA COMPRESSION
	4 SIMULATED DATA AND MEASUREMENTS
	5 RESULTS
	6 CONCLUSION
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES
	APPENDIX:

