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ABSTRACT

Combining different observational probes, such as galaxy clustering and weak lensing, is a promising technique for unveiling the
physics of the Universe with upcoming dark energy experiments. The galaxy redshift sample from the Dark Energy Spectroscopic
Instrument (DESI) will have a significant overlap with major ongoing imaging surveys specifically designed for weak lensing
measurements: the Kilo-Degree Survey (KiDS), the Dark Energy Survey (DES), and the Hyper Suprime-Cam (HSC) survey.
In this work, we analyse simulated redshift and lensing catalogues to establish a new strategy for combining high-quality
cosmological imaging and spectroscopic data, in view of the first-year data assembly analysis of DESI. In a test case fitting
for a reduced parameter set, we employ an optimal data compression scheme able to identify those aspects of the data that are
most sensitive to cosmological information and amplify them with respect to other aspects of the data. We find this optimal
compression approach is able to preserve all the information related to the growth of structures.

Key words: gravitational lensing: weak —methods: statistical —large-scale structure of Universe —cosmology: observations.

1 INTRODUCTION

Over the next five years, the Dark Energy Spectroscopic Instrument
(DESI) will map the position of 230 million galaxies, reconstructing
the cosmic history from the nearby universe to a distance of 11
billion light-years (DESI Collaboration 2016). This unprecedented
volume of data, 10-15 times the size of current samples, will provide
insights to fundamental questions unanswered by the current standard
cosmological model.

Some of the key science questions that DESI aims to address will
benefit from combining DESI data with other cosmological probes.
In this paper, we focus on the potential of combining DESI and
weak gravitational lensing data. DESI has a significant overlap with
ongoing deep imaging surveys specifically designed for weak lensing
measurements: the Kilo-Degree Survey (KiDS; de Jong et al. 2013),
the Dark Energy Survey (DES; Dark Energy Survey Collaboration
2016), and the Hyper Suprime-Cam (HSC) survey (Mandelbaum
et al. 2018). The DESI Year 1 data set is expected to have at
least 1000 deg® overlap with these lensing surveys. Combining the
cosmological information contained in DESI large-scale structure
and external lensing data sets will allow for broader exploration
of new theories of gravity, by measuring how modifications to the
current theory of gravity would affect light and matter simultaneously
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(e.g. Daniel et al. 2010; Joudaki et al. 2018; Garcia-Quintero, Ishak &
Ning 2020). A joint analysis will improve measurements of the
parameters of interest, decrease the degeneracies, and help mitigate
systematic errors not controlled in an individual analysis.

Whilst combined analysis of these new data sets will push our
understanding of the Universe to the next level, we wish to emphasise
two key linked challenges to be solved. The first challenge is how to
optimally weight the data to achieve a given scientific outcome (for
example, how to weight a DESI galaxy contributing to both galaxy—
galaxy lensing and clustering measurements). The second challenge
is how to make tractable the big-data volumes produced by DESI
using techniques such as data compression. In this context, an im-
portant advantage of data compression is mitigating the challenge of
the combined-probe covariance. After separating all the tomographic
and separation bins, a combined analysis of DESI and weak lensing
data could utilise many hundreds or even thousands of data points
with significant inter-correlations. If the covariance is estimated using
a standard approach of performing similar measurements on mock
catalogues, an intractable number of mocks may be required to
maintain a low level of noise (Kaufman 1967; Hartlap, Simon &
Schneider 2007; Ruggeri & Blake 2020b; Percival et al. 2022).
Whilst analytical covariance estimates are also possible, these may
not accurately incorporate details such as the survey footprint or
other effects such as non-linearities or fibre collisions.

Previous studies have developed optimal weighting schemes for
data compression with a focus on measuring the growth rate of
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structure (Ruggeri et al. 2017, 2019a, b; Zhao et al. 2019), angular
diameter distance (Zhu et al. 2018), primordial non Gaussianity
(Castorina et al. 2019), and cosmic shear (Bellini et al. 2019).
Mootoovaloo et al. (2020) present an application of the MOPED
algorithm (Heavens, Jimenez & Lahav 2000) to weak lensing
measurements. These studies explored optimal weighting for mea-
surements with individual probes, demonstrating how an optimal
weighting scheme applied to a data set gives unbiased results and is
efficient in decreasing the computational costs.

In Ruggeri & Blake (2020a), we developed and tested an efficient
way to combine information from galaxies at different epochs in the
evolution of the Universe using lensing and clustering statistics in
Fourier space, discussing the advantages of such an approach with
respect to the binning of the galaxies adopted by past analyses and
testing the optimal weighting technique on Gaussian realisations.

In this work, we extend the study of Ruggeri & Blake (2020a) by
applying the data-compression methodology to configuration-space
statistics of clustering and galaxy—galaxy lensing measured from
realistic mock simulations modelling the first year of DESI data. For
the purposes of this study we utilise a small parameter set, fixing the
majority of the cosmological parameters and focusing on fitting for
the overall normalisation of the power spectrum og and the galaxy
bias parameters as a test case, although these techniques can be
readily extended to a wider parameter set.

We also derive a weighting scheme that can be applied directly
to galaxies, instead of to the power spectra or correlation function
measurements. In a similar approach to ‘FKP weighting’ (Feldman,
Kaiser & Peacock 1994), by fixing an effective scale we generate
weights which can be applied to individual galaxies, provided that
the weights used are a smooth function on the range of scales
considered. We hence calculate optimal weights for the lenses for
a combined-probe analysis for the first time, extending FKP weights
to include other probes. If the redshift bins are thin enough that
the evolution in redshift within each bin is negligible, and large
enough that the lensing signal can be measured, galaxy-weighting
and correlation function weighting give identical results. However,
the galaxy weighting approach is independent of the width of the
redshift bins considered, provided that enough freedom is allowed in
describing all parameters in the model as a function of redshift.

The paper is organized as follows: in Section 2.1, we briefly review
the models of the combined-probes statistics and their covariance
that we use in our analysis. In Section 3, we derive the optimal
weighting scheme for configuration-space statistics and the weights
to be applied to individual objects with respect to a set of parameters.
Section 4 describes the mock data used for the analysis and the
estimator employed to measure the angular correlation functions in
both lensing and clustering. In Section 5, we present the test results
from data-compression, and compare them with an uncompressed
analysis. We conclude in Section 6.

2 MODELS AND COVARIANCE

In this section, we summarize our theoretical model for the
combined-probe statistics we use in this study: the average tangential
shear y,(0) around lens galaxies and their angular clustering w(0),
along with the covariance of these statistics.

2.1 Angular power spectra for combined probes

We define the angular (cross-)power spectra between two fields §,,
8, measured in redshift bins i, j, as a function of the projected Fourier
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mode, £, as

B i J
cile) = / dx%ﬂﬂ/x,zu», )

where P,,(k, z) is the 3D (cross-)power spectrum of the fields at
redshift z and wavenumber k, and x(z) is the comoving distance
(Kaiser 1992; Hu & Jain 2004). We note that equation (1) is derived
assuming the Limber and flat-sky approximations (Kilbinger et al.
2017; Lemos, Challinor & Efstathiou 2017).

The weight function g, () depends on the field considered. For
the galaxy density field 8,4, g,(x) is defined as

i _ nicns(z) dZ

q,(x) = —; a

lens

@

where ni,, (z) is the lens redshift distribution of sample i, with z the
redshift corresponding to x, and 7l is the average lens density.
For the convergence field 6., g,(x) is determined by the lensing
efficiency,

3HjQm X /X 4y Mouree(@) d2 (X = %0
X

ﬁi dX/ X/

source

ql(x) = A3)

2¢2 a(y)
where Hy and 2, denote the values of the present-day Hubble
parameter and matter density, ¢ is the speed of light, xmax is the
maximum comoving distance of the source distribution, n’ ..(z)
and 7’ . are the source redshift distribution and average density
of sources in sample i, and a(y) is the cosmic scale factor. We
describe the specific source and lens configurations used in our study

in Section 4.1 below.

2.2 Covariance of angular power spectra

The Gaussian covariance matrix between two angular power spectra
Cii (L)), CH(¢), for samples (i, j, k, 1), is given by Hu & Jain (2004)
and Krause & Eifler (2017),
B 471’5[1[2
Qe + DAL,

(CI£E0) + u8icNg) (Cla(€2) + 81180 )

x [

+ (C;ilé(el) + 8i18aszi) (Cgck(&) + 5jk5b°Ng)} @

where €2 is the angular area of the overlapping sample in steradians.
The noise terms are,

Ng = l/ﬁlenm
N, = Uez/ﬁsourcev (5)

where o, is the shape noise.

2.3 Configuration-space statistics

In configuration-space measurements of galaxy—galaxy lensing, we
work with the average tangential shear (y((#)). This quantity defines
the tangential shear of background galaxies at angular separation 6
from a lens galaxy, and is related to the convergence « as,

r(0)) = (k(< 0) — (k(0)), Q)

where k(< 6) is the integrated convergence within separation 6. y,
can be described in terms of the Cg power spectrum via,

dee
)/[(G)Z/TCgK(E) J2(£0), @)
4

where J,, denotes the Bessel function of the first kind.
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We also define the angular correlation function w(6) of the lens
galaxies at separation €, which can be formulated as a function of
the galaxy—galaxy angular power spectrum C, as,

dee
w(0) = o Cye(£) Jo(£0). (3)

See e.g. Blake et al. (2020).

2.4 Covariance of configuration-space statistics

The Gaussian covariance matrix C, between y((f) and w(6) for Ny
separation bins is composed of three main blocks:

1 © g2
Cly), (6] = — / U6 (16;)
0

Q (2m)?
{CL +1Cu® + NI [Cos) + Ny }. ©

2 [ d
Clw(8;), w(0;)] = Q—/ 7(27_[)2 Jo(16;)Jo(16;) x
s JO

{ [ng(l) + Ng] [ng(l) + Ng] } ’ (10)

2

2 d?l
Clo®), (8] = a/wfo(l@)fz(mj)

X Cge(l) [Ceg(D) + Ny . (11)

where for each separation bin, we integrated equations (9), (10), and
(11) over the angular area of the bin (Hu & Jain 2004).

2.5 Fiducial cosmology

We generated the non-linear matter power spectrum used in these
model computations using the CAMB software (Lewis & Bridle
2002), where we adopted the re-calibrated halofit model of Takahashi
et al. (2012). We assumed a fiducial cosmological model consistent
with the Buzzard simulations (DeRose et al. 2019) introduced in
Section 4.1, with a matter density 2, = 0.286, baryon density
Q, = 0.047, Hubble parameter 2 = 0.7, amplitude of matter
clustering og = 0.82, and spectral index ny, = 0.96.

To model the galaxy—galaxy and galaxy-convergence power spec-
tra Pg, and Py, we assume a linear galaxy bias relation where
Py & b?03 and Py, o ba. Due to the selection of our mock DESI
samples described in Section 4.1, the galaxy bias evolves with
redshift. We describe this redshift-dependent relation using a Taylor
expansion up to second order,

b(z) = by + biz + br2’, 12)

where by, by, and b, are free parameters. We tested that a second-order
model was sufficient to capture the galaxy bias evolution present in
our mocks, and adding higher-order terms produced no significant
change in our conclusions: see Fig. 3 and related discussion in
Section 5.3.

3 DATA COMPRESSION

In this section, we present different types of data compression for
analysing galaxy surveys in various scenarios. In Section 3.1, we
derive optimal weights to be applied to correlation functions, and
in Section 3.2, we explore how these weights may be applied
to individual galaxies using an ‘effective scale’ approximation.
These optimal weighting schemes extend to configuration space our
previous work (Ruggeri & Blake 2020a) for lensing and clustering
optimal compression in Fourier space.
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3.1 Weights applied to correlation functions

One of the aims of our work is to derive weight functions able to com-
press galaxy clustering and galaxy—galaxy lensing measurements,
across different redshifts z and angles 6, with minimal information
loss. To do this, we determine optimal redshift weights for the average
tangential shear y, (0, z) and angular galaxy correlation w (0, z).

For clarity before proceeding further, we first summarize the
optimal weights derived in the case of a single data vector and
parameter. Given an initial data set x with dimension n, we can
linearly compress it into a single number y,

y=w'x, (13)

which contains the same information as x, with respect to a single
parameter A;, if w is an optimal weight function defined as,

wl =C'd, (14)

where C is the covariance of the data and d indicates the derivative
of the model p with respect to the parameter X; at each point,
d = 9p/0A;. In this work, we focus on linear compression, which
is optimal under the assumption of Gaussianity, alternative non-
linear optimal compression options for equation (13) have been
discussed in Alsing & Wandelt (2018) and Jeffrey, Alsing & Lanusse
(2021). As discussed in Ruggeri et al. (2017), the compression
is optimal under the assumptions that p is Gaussian and that the
covariance matrix does not depend on the parameters of interest,
ie. 0C/0A; = 0. Although covariance generally does depend on
these parameters, it is usually fixed for the purpose of cosmological
analyses. Recent lensing—clustering analyses have shown that the
cosmology dependence in the covariance matrix affect the parameter
constraints at the level of 0.10-0.20 (Kodwani, Alonso & Ferreira
2019; Friedrich et al. 2021; Joachimi et al. 2021). The covariances
assumed here are for Gaussian cases, which means that the weights
are in principle sub-optimal in the presence of non-Gaussianity. We
investigate the impact of these assumptions in Section 5, where we
compare the results of the compressed and uncompressed data sets.
We now discuss optimal weighting for a multidimensional parameter
space. We use the example of a combined-probe analysis of galaxy—
galaxy lensing and clustering for two parameters og and galaxy bias
b, noting that the same formalism can be applied to different statistics
and extended to a larger number of parameters. In particular we derive
weights for two scenarios:

(i) We consider the two statistics measured at a number of redshifts
N, for many scales Ny, optimally compressed across redshift to
the same number of scales, for each of two parameters. We do
not consider the compression of these statistics across scale (i.e.
to a single scale) because our model is sensitive to scales, i.e. the
systematic errors in the model are scale-dependent, and we want to
explore this aspect.

(i) We study a slightly less-than-optimal data compression in-
volving single-scale weights rather than optimal weights. This is
in analogy with FKP weighting (Feldman et al. 1994) where the
weights used are computed fixing a single scale of interest. In fact,
scale-dependent weights cannot be applied to individual galaxies
when working in Fourier space or configuration space with standard
codes. We will investigate how sub-optimal the fixed-scale weights
are, compared to scale-dependent optimal weights.

For clarity, we set out the full mathematical operations used in
these processes as follows: (see also Zhao et al. 2019):

Case (i) Two statistics measured at different redshifts for many
scales, compressed to many scales for each of 2 parameters. We
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construct the data vector as:

vi(z1, 61)
Vi (Zl ) 92)
vi(z2, 61)
vi(z2, 62)

Data vector X = [Dim. = Ng¢N_Ny x 1] (15)

w(z1,01)
(z1,62)

(22, 01)
(22, 02)

where we also summarize the dimensions of each vector or matrix
for clarity. Here, Ny denotes the number of statistics used, in our
case Ny = 2. The covariance matrix C has dimension [NyN,Ny x
N, slN ZN 0]:

Cly, (01, z1), (01, z1)] -+ Cly: (61, 21), @1 (O 20)]
C= . . . (16)

C[w(emy Zn)y Vt(el’ Zl)] o C[a)(em» Zn)7 wt(ema Zn)]

with m = Ny, n = N, where each term in equation (16) is derived

from equations (9), (10), or (11). We then construct the derivative

matrix D of dimension [NyN Ny x NpNg] as,

aéA (91 s Zn)
0pa

where A is the statistic, n is the redshift bin, « is the parameter, and

(i, j) are the separation bins, with §;; denoting the Kronecker delta.
The full expansion of equation (17) reads,

Dipnitfe.j1 = 8ij an

9y (z1,01) 0 L Oy(zi01) 0
[l ob
08 Oyi(z1,600) | 0 9y1(z1.62) |

dog ab

9y1(22,01) 0 . On(z2.01) 0

9oy ob
0 9yi(z2,00) | 0 i (22,60) |
dog 9b
D= auco 0 . 20GLo) 0 (18)
0oy deiz) 0 ob Qi1 )
w(z1.0) | o@E.0) |
0 dog 0 9b
9w(z2,01) . 0w(z2,601)
d0s 0 b 0
0 dw(z2,0h) | 0 9w(z2.00) |

dog ob

where N, = 2 is the number of parameters of interest. We note
that D generalizes the 1-parameter derivative in equation (14) to
a multidimensional case. Each column in equation (18) represents
the partial derivative of Op;/0p where p = oy, b, at scale 6; with
i = 1...Ny, and redshift z, with n = 1...N,. For example, in the
case of a single redshift and two different angular bins N, = 1, Ny =
2, equation (18) becomes,

9y (z1,01) 0 9y(21.61) 0
o ob
0 e (o ouGe)
D= dog ob (19)
- dw(z1.01) 0 dw(z1,01) 0
[6] ob
88 dw(z1,02) 0 dw(z1,02)
dog b

where the 0 entries are determined by §;; in equation (17). In analogy
with equation (14), the optimal weights W are then constructed as a
matrix,

W=cC'D [Dim. = NyN,Ng x NpNy] (20)

MNRAS 525, 3865-3878 (2023)

Applying W to the initial data set X we obtain the compressed data
setY,

Y=W'X [Dim. = N, N, x 1] 1)

and the compressed covariance,

Cy=W'CW [Dim. = N, Ny x N,Ng] (22)
We note that the compressed statistic Y contains the same information
with respect to the parameters as X, in the sense that the Fisher matrix
of X with respect to the parameters is the same as the Fisher matrix
of Y.

Case (ii): Two statistics measured at different redshifts for
many scales, compressed to many scales for each of two param-
eters, using weights evaluated at a single scale. This is a slightly
less-than-optimal data compression scheme, but by fixing an effective
scale it is possible to apply the weights to individual galaxies as we
discuss below. We use the same uncompressed data vector X and
covariance C as in Case (i), but the weights are derived for a single
scale 6, using the one-dimensional compression (equation 14). We
use a single-scale covariance C; and a single-scale derivative matrix
D, obtained by evaluating C and D at a single scale, e.g. for Dy in
equation (17) we get

084(65, z0)
Dipnitej = —=——36ij (23)
0Pa
and
D, =
3yi(z1.05) RCIAGED)
o a<09> T (09)
Yi(21.05 Y21,
0 He - 0 THm
0y:(22,05) 9yi(22,05)
dog : 0 : b 0
0 yi(z2,65) . 0 yi(z2.,65) |
oy b
) . (24)
dw(z1,6s) dw(z1,05)
aagY a(Oo). o a(og)'
w(Z],05 (z],05
0 dog 0 db '
9w(z2,65) dw(z2,65)
dog a(Oe). b 0(09)
@(z2,05) | w(22,05) .
0 dog 0 ob
and then,
-1 .
W, =C. "D, [Dim. = N¢N, x Np] (25)

This weight matrix for a single angular scale 6, may be written out
more fully as:

Wy,,ag (Zl s 95) Wy,,b(zl s '95)
Wy,.ag (ZZs 09) Wy,,h(ZZs 9%)
W (2120 Wa(21,60) 20
Ww,ag (Z2’ 9%) Ww,b(ZZv 09)

These weights are then applied to all scales as an ‘approximate’
weight matrix (i.e. an approximation to the optimal weights). This is
achieved by replicating each element of Wy, into an Ny x N, block
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in order to apply the same weight to all scales:

Wy,.og (Zla 05)11] Wy,,b(zla 95)11]

Wy,ﬁg (ZN7 Qs)l—i,j Wy,,b(ZN’ Qs)l—i,j

w. =
P Woos(21, 09T 5 Wo (21, 09T

@7

Wa)ﬁg (ZNv 9%)1-1_] Wu),h(ZNv QS)Z-I,J

where W, has dimension NgN.Ny x N Ny and Z;; is the identity
matrix of dimension Ny x Ny. The compressed statistic and covari-
ance matrix are then derived using this approximate weight matrix:

Yo = Wi, X [Dim. = NNy x 1] (28)
and,
Cyapp = W, CWyy, [Dim. = NNy x NpNy] 29)

In this case, unlike in Case (i), information is lost in the sense that
the Fisher matrix of Yy, is not the same as the Fisher matrix of X.
We’ll compare these different compression schemes as applied to
simulated data in Section 5 below.

3.2 Weights applied to individual galaxies

We now outline a scheme whereby the optimal correlation function
weights derived above can be applied directly to individual galaxies
in data analysis. In this scenario the weights can be used for more
general applications, outside of data compression. Similarly to the
FKP weights, we can use them as optimal weights for lenses when
combining galaxy clustering and lensing.

In Section 3.1, we determined optimal redshift weights for a joint
analysis of the angular galaxy correlation function w(f) and the
average tangential shear y,(0) around those galaxies, for creating
the compressed statistic Y(6). For each model parameter, we can use
equation (28) to re-write those relations as:

ou(0) = W, 0i(6), (30)
Vi(0) =Y Wy i v1.4(0), (31)
Y(0) = 0(0) + Vr.10(0), (32)

where i labels the redshift bins, W, ; is the optimal redshift weight
for w(@) in redshift bin i, and W, ; is the optimal redshift weight for
y(0), where those weights are determined using equation (27).

In what follows, we replicate these combinations by applying
weights to each of the individual objects (galaxies and random points)
as a function of redshift, and measuring a correlation function across
all redshifts. We denote with g, ; the per-galaxy weights for w(9),
and with g, ; the per-galaxy weights for y(6).

For w(#) we consider an estimator for the total correlation function
across redshifts of the form:

DDtot -2 Dth + RRtot

W (0) = RR (33)
tot

(Zhu et al. 2016), where the numerator involves weighted total pair
counts, which (for the purposes of the derivation) we can express in
terms of a sum over the pair counts in redshift bins,

DDw(®) = > 8w 8w DiD;(0), (34)
i
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DRa(0) = > 80 80 DiR;(6), (35)
i

RRa(0) = D> 80 80 RiR; (), (36)
i

where D;D;, D;R;, R;R; are the auto/cross-pair counts between
redshift bins i and j, and the denominator of equation (33) involves
unweighted total random pair counts. Hence,

Zi Z/ 8w,i gwA,j (DiDj - 2D1R/’ + R[Rj)

W (0) = RR
tot

(37)

Substituting in the auto/cross-correlation function between redshift
bins i andj, wj = (D,Dj — 2D,Rj + R,Rj)/R,Rj we ﬁnd,

Zi Zj 8w,i 8w,j RiRj(Q)wij(e)

we(0) = RRo(®)

(38)

In the approximation that the cross-correlations between different
redshift slices are zero, w; = 0if i # j:

> 80 RRi(0) wi(6)

W (0) = RRui(6)

: (39)

where we use RR; = R;R;. Comparing the form of this equation with
equation (30), the galaxy and random weights g,,; can be written in
terms of the w(0) weights W,,; in redshift bins i:

Ww.i RRmt(eeff)
i A T (40)
S )

evaluated at some effective scale 0 = 0.
We can derive similar per-galaxy weights for y(6). For the
purposes of this derivation we’ll assume an estimator of the form:

215 W) Wy €y s

Els Wy Wy

where w; and wy are lens weights and source weights, and ¢;, indi-
cates the tangential shear of sources around lenses. (This estimator
excludes the random lens term, but this term makes no contribution
to the signal.) We further assume w, = 1 for the purposes of this
derivation. Similarly to equation (33), we apply w; = g,,; in the
numerator of the estimator and w; = 1 in the denominator, such that,

v(0) = (41)

D s 8y.i €ls

0) =
Yior(0) DD,

, (42)

where Dy, D; is the cross-pair count between all the lenses and the
sources. Breaking the numerator into tangential shear measurements
in different redshift bins, y; = > ise.15/D;Ds, we find:

> &y.i DiDy(8) v;(9)
Dy Ds(8)

Yia(0) = (43)
Comparing the form of this equation with equation (30), we can find
the lens galaxy weights g, ; in terms of the y(6) weights W, ; in
redshift bins i:

_ Wy.i Dtole(geff)

= (44)
By D; Dy(0urr)

equations (40) and (44) hence give the individual galaxy redshift

weights for measurements of w(6) and y(6), which are equivalent
to the optimal correlation function weights derived in Case (ii) of
Section 3.1.
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Figure 1. The angular galaxy correlation function w(0) (top panels) and the average tangential shear y(6) (bottom panels), measured on one region, across
three of the eight redshift bins between 0.2 < z < 0.3,0.3 < z < 0.4, 0.4 < z < 0.5 with scale cut R(9) > 5h~! Mpc. For display purposes, we plot the minimum
common fitted 6 range across for all redshifts. The best fitting model is plotted in grey for all redshift bins. Error bars are computed from the diagonal of the

covariance matrix.
4 SIMULATED DATA AND MEASUREMENTS

4.1 Simulations

We tested these algorithms using simulated catalogues that were
representative of future overlapping DESI and weak lensing data
sets. We sampled these catalogues from the Buzzard simulation suite
(DeRose et al. 2019), which uses full N-body particle simulations to
derive light-cones, dark matter halo catalogues and lensing fields via
ray-tracing. The Buzzard light-cones are populated with a complete
sample of galaxies to apparent magnitude limit i = 27, using the
ADDGALS (Wechsler et al. 2021) abundance-matching algorithm
to sample luminosities and colours. Convergence and shear fields are
derived using the CALCLENS (Becker 2013) algorithm, and shear
components are assigned to each simulated galaxy.

We selected lens and source samples from these Buzzard light-
cone catalogues. First, using the simulated galaxy magnitudes, we
created DESI Bright Galaxy (BG) and Luminous Red Galaxy (LRG)
targets matching the densities and redshift distributions of these
samples. We produced a total lens sample across the redshift range 0.1
< z < 0.9 by combining BGs in the range 0.1 < z < 0.5, with LRGs in
therange 0.5 < z < 0.9. We then created a representative weak lensing
source sample of angular density 10 arcmin~2 by sub-sampling the
Buzzard shear catalogues with a source redshift distribution

p(2) o FPe¥0, (45)

where zp = 0.2. We assigned a shape noise error of o, = 0.28
per ellipticity component, and a photometric redshift error of
o, =0.1(1 +2).

For the purposes of our current study, we did not simulate any
multiplicative shape bias corrections and we assumed unity weights
for completeness and shape measurement for all sources and lenses.

Each Buzzard light-cone is built across half the sky. We used one of
these half-sky catalogues, and divided it into 18 pseudo-independent
regions each of area ~1000 sq deg, which is representative of the
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overlap area between DESI and each of the weak lensing data
sets DES, HSC, and KiDS. We analysed each of these 18 regions
separately, to study the sample variance in our results.

4.2 Correlation function measurements

We measured the correlation functions of the simulated catalogues
for each redshift bin and angular scale. For the angular correlation
function we used the Landy-Szalay estimator (Landy & Szalay
1993),

_ DD —2DR+RR
- RR

w , (46)

for each angular scale 6. For y, measurements we used the estimator,

V= (NR/ND) le Crls — er Ct,rs
t— ’

47
R R, (47

where Np and Ny are the number of data and random points, and
R, R, denotes the cross-pair count between the random lenses in each
redshift bin and all sources. We computed the correlation functions
described in equations (46) and (47) using the public code TREECORR
(Jarvis 2015). For this analysis we used 30 logarithmically spaced
angular separation bins in the range 0.003 < 6 < 3 deg, and eight
linearly spaced lens redshift bins in the range 0.1 < z < 0.9.

Fig. 1 displays the uncompressed correlation functions across three
of the eight redshift bins (red circles) 0.2 <z < 0.3,0.3 <z < 04,0.4
< z < 0.5, measured from one of the Buzzard regions. The top panel
corresponds to the measurements of w(6), while the bottom panel
indicates the measurements of y((6). The best-fitting model is plotted
as grey continuous lines. For display purposes we plot the minimum
common fitted 6 range across for all redshifts (see Section 5.2). The
error-bars are derived as the square root of the diagonal covariance
matrix elements defined in Section 2.4. The full covariance of the
uncompressed statistics is displayed as a correlation matrix in Fig. 2.
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Figure 2. The correlation matrix of the uncompressed data set. The bins are
ordered by statistic, redshift, and scale, with i and j indices ranging from 1 to
Nyt X N; x Ny as illustrated in equation (16), with Ny = 2 for this case.

5 RESULTS

We used the lensing and galaxy clustering statistics defined in Section
2.1 and measured in Section 4.1, and fit for the og and galaxy bias
parameters using several different approaches. In Section 5.1, we
present the results obtained using a standard approach fitting to
the uncompressed measurements, where a tomographic analysis is
performed across the full redshift range. In Section 5.2, we review
the optimal redshift weights obtained in this analysis, which may be
used to compute individual galaxy weights, and in Section 5.3 we
present the results obtained from data-compressed analyses, using
the methodology described in Section 3. We compare and contrast
the outcomes of these different approaches in Section 5.4.

We fit 18 individual Buzzard simulation regions, and present the
average and dispersion of the results. All fits are performed at angular
scales where R(6) > 5h~! Mpc, where R is the projected co-moving
galaxy separation at the redshift of the measurement, such that a
linear galaxy bias model applied to an acceptable approximation
given our context. We repeated the analysis using a different scale
cut R(9) > 8 h~! Mpc, finding consistent results (see Appendix A).

We sampled the posterior distributions, using BILBY (Ashton et al.
2019). We ran eight independent chains for each fit, each consisting
of 500 walkers. We determined the convergence of the samples using
the Gelman—Rubin criteria (R — 1 < 0.01) (Gelman & Rubin 1992).
The flat priors used on the parameters are specified in each individual
analysis below. For simplicity of notation, we present the different
analyses under the labels of Case (i),(ii),(iii), and (iv) which indicate:

(i) Data compression of y and w using scale and redshift depen-
dent weights and their covariance. We compress y and o with respect
to four parameters: o, by, by, and b,. The covariance between the
statistics is compressed using the same scale-dependent weighting
scheme.

(ii) Data compression of y, and w using redshift dependent
weights fixing one single effective scale in the weights. We compress
y. and w with respect to four parameters: og, by, by, and b,. The
covariance between the statistics is compressed using the same
effective-scale weighting scheme.

Data compression for DESI + Lensing 3871

(iii) The uncompressed analysis, considering y, and @ across
different redshift bins and scales and their covariance.

(iv) Same as (ii) but using a linear model for the bias—redshift
relation to investigate possible systematics, i.e. we set b, = 0 and
compress ¢ and w with respect to: og, by, and b;.

5.1 Fits to uncompressed correlations

For the uncompressed analysis, that we refer to as Case (iii), we
simultaneously fit models to the N, = 8 redshift bins. We built a
data vector X combining measurements of y(z, ) and w(z, 9),
following equation (15), and used the full joint covariance derived
from equation (16). After applying the scale cut R(9) > 5h~! Mpc,
we used a remaining number of 87 data points across all redshifts.
We fit for a total of nine model parameters: a single value of o5, and
one linear bias parameter for each redshift bin: ; withi=1, ..., 8.
‘We set a uniform prior on all the parameters o, b; € [0, 4].

Assuming a Gaussian likelihood, the x? statistic used to determine
the likelihood of each model is computed as,

X=M-=-X)TC'M - X), (48)

where M is the model vector for y(z, 0) and w(z, 6), ordered in the
same sequence as X. The M terms are computed using equations (7)
and (8), and subject to the same scale cuts.

We find 0gmean = 0.76 £ 0.044, where we quote the mean of
the maximum likelihood estimate over 18 regions, and the error
as the mean standard deviation of the posterior distribution. For
the minimum value of x2, we find a mean value of x2.,./d.o.f =
0.84, indicating an acceptable goodness-of-fit. We find a og value
consistent with, but slightly lower than, the fiducial value of the
mocks. Possible reasons for this include the adoption of a linear
galaxy bias model, which may not be fully accurate. Since the focus
of this analysis is on evaluating the error (the information loss) in the
parameters, rather than necessarily recovering a particular fiducial
value, this issue does not impact our conclusions. We also check that
the different fitting cases lead to very similar results in terms of best
fits, to ensure that the compression does not add biases.

The results for the bias parameters for one of the regions analysed,
for each redshift slice are shown in Fig. 3 as the turquoise dots, where
the error bars indicate the 1o ranges. We find that the galaxy bias
increases steadily with redshift as predicted by a hierarchical model
of galaxy formation (Mo & White 1996) and described by DESI
Collaboration (2016). The b versus z trend is dominated by changes
in luminosity, as predicted by the increased luminosity of galaxies vs
redshift. As noted in Section 2.5, we confirm the smooth relationship
of b vs z around z = 0.5, between BG and LRGs samples.

5.2 Optimal redshift weights

We considered two types of data compression, Case (i) and (ii),
as described in Section 3, which correspond to optimal correlation
function weights and those determined at a single scale, respectively.
The initial data set X and uncompressed model are computed
as for the uncompressed data, and we apply the same scale cut
R(0) > 5h~' Mpc as for the uncompressed analysis. We selected
four parameters of interest og and by, by, by, describing a linear
galaxy bias with a quadratic evolution in redshift, as described in
Section 2.1, and compared our results with linear and cubic bias
evolution choices.

We computed the set of weight matrices for these four parameters,
W and Wy, as derived for Case (i) and (ii). In Figs 4 and 5
we compare the weights of Case (i) (solid lines) and Case (ii)
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Figure 3. Parameter fits for the bias—redshift relation for one of the regions
analysed, from the uncompressed analysis (Case iii, black dots in all three
panels) and the following compressed analyses: linear bias—redshift relation
where b, = 0 in equation (12) (Case iv, grey regions, top panel), quadratic
bias (Case i, yellow regions, and middle panel), and cubic bias (Case v,
red regions, and bottom panel). The errors displayed are computed from the
standard deviation of the posterior distribution.

(dashed lines). Fig. 4 displays the component of the weight matrix
derived from y,, while Fig. 5 shows the weights corresponding to
. In both figures we display only the component of the weights
related to og, noting that similar forms are obtained for the bias
component.
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Figure 4. Comparison of the y weights as a function of redshift, following
Case (i) and (ii) approaches (solid and dashed lines), using 6. = 180°/200
(top) and Ot = 180°/100 (bottom) for Case (ii), and displaying the weights
for 6 = O for Case (i). Only the components of the weight matrix for y,
and with respect to og are displayed here.

We select two different effective scales corresponding to angular
wavenumbers £ = (100, 200) to compare the weights of Case (i)
and (ii), which are representative of the range of scales we are
fitting, analogous to the Feldman et al. (1994) scheme. The Case
(ii) weights are obtained fixing an effective scale O = 180°¢~! in
the computation of the weight matrix. Case (i) weights are computed
as a function of scale, for comparison we plot the Case (i) weights
for 6. = 180°/200 and 6. = 180°/100 components.

For the purposes of these comparisons, we are plotting the weight
functions relative to a particular scale 6., for both Case (i) and (ii).
However, those weight functions are not equivalent, as the scale-
dependent weights in Case (i) are derived using the full covariance
across all scales, while the Case (ii) weights only consider the value
of the variance at a single scale. In practice, while applying Case (i)
weights to the data, part of the information about 6 is contained
in different weighted modes, given that the covariance across all
scales is non-diagonal, while Case (ii) assume the same weight
function across all scales. Further, the shape of the weights with
redshift depends on the balance of sample variance and noise, which
depends on scale. Thus, the choice of fixing a specific scale O, or
compressing over all scales, impacts the weights. Although we will
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Figure 5. Comparison of the w(9) weights as a function of redshift, displayed
in the same style as Fig. 4.

show that the eventual cosmological result is not sensitive to these
differences.

In general, the trend of the weights with redshift is determined
by how the covariance component interacts with the derivative of
the models. As expected, we find that the y, weights shown in
Fig. 4 decrease with redshift: following the trend of the galaxy—
galaxy lensing signal to decrease with redshift, given that fewer
sources lie behind higher-redshift lenses. For 0.4 = 180°/100 we
notice a slightly different trend with redshift for w (bottom panel of
Fig. 5).

We do not find a significant difference in the trend of the weights
with redshift for different cases, noting that the normalization
of the weights is free! in the derivation. We can say that the
trend of the weights does not vary significantly as a function of
scale.

These weights can be applied to obtain the individual galaxy
weights by following the procedure described in Section 3.2. Given
that these treatments are equivalent, we just present the correlation
function fits in this section.

The normalization is free for the total weight function, applied to y; 4+ w;
Figs 4, 5 show individual component of the weights (y, w), for which the
normalization is not arbitrary.
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Table 1. Angular scales considered for R(6) > 5h~! Mpc for each redshift
bin, displayed using the range of central angular separation bin values
included in our analysis.

z range 0 range (deg)
0.1 <z<02 0.67 <6 < 2.67
02<z<03 042 <0 <2.67
03<z<04 0.34 <0 <2.67
04<z<05 0.27 <0 <2.67
05<z<0.6 0.21 <0 < 2.67
0.6 <z<0.7 0.21 <0 <2.67
0.7<z<08 0.16 <0 < 2.67
08<z<09 0.16 <0 < 2.67
Osg
105f bg
| by
b
> 104+
103

[ [ [ [ [ [ [ [ I
0.75 1.00 1.25 1.50 1.75 2.00 2.25 250 2.75
6ldeg]

Figure 6. The compressed correlation functions Y(6) weighted with respect
to the different parameters (og, by, b1, b2) for a scale cut R(0) > 5h~1 Mpc.
The best-fitting model is plotted in grey. The error bars are computed from
the diagonal of the compressed covariance matrix.

5.3 Fits to compressed correlations

We applied the weight matrices W and Wy, to the uncompressed
data vectors X and M (equations 20 and 27) to obtain the compressed
data sets Y, Yy, and compressed models M , M 4. Given the
R(0) > 5h~! Mpc scale cut, only data from a subset of redshift bins
in X contributes to the corresponding scale bin of the compressed
data Y, consistently with the uncompressed case. The length of the
compressed data vector is 2 x 153, the 0 ranges considered for each
redshift bin are displayed in Table 1.

Fig. 6 displays the compressed data sets Y, obtained using equation
(21), with respect to the different parameters of interest (o', bg, by,
by; red squares and circles). The error bars are computed from the
diagonal of the compressed covariance matrix.

We computed the compressed covariances for Cases (i) and (ii)
following equations (22) and (29). Fig. 7 displays the covariance for
the compressed data sample, as correlation matrix. For simplicity,
we show all the scales N, before the scale cut, which depends
on redshift. For both Case (i) and (ii) the x? statistic is built
as,

X=My-Y)'Cy!My-Y), (49)

where for Case (ii) we use Yy, instead of Y.

We fit for og and the quadratic bias parameters, finding mean
results og = 0.760 & 0.0468 and x2/d.o.f. = 0.88 for Case (i), and
oy = 0.764 £ 0.0485 and x?/d.o.f. = 0.82 for Case (ii) across the
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Figure 7. The correlation matrix of the compressed correlation functions for
N, = 4 free parameters. The bins are ordered in scale and in the four different
parameters: i and j range from 1 to Ny x N,, as illustrated in equation (22).

18 realizations. We do not find a significant difference in the error in
og for Case (i) with respect to Case (ii), meaning that the weights do
not lose their optimality when an effective scale is fixed, similar to
the FKP weights.

In Fig. 3, we compare the results for the bias fits, using the
methods described above. We do not include Case (ii), as the results
are identical to Case (i). We fit for a linear, quadratic, and cubic
evolution for b(z) (grey and yellow and pink shades) using Case
(i) compression, and we compare them with the results from the
uncompressed analysis (black dots). The confidence regions are
computed by reconstructing b(z) from the fit of by, by, b, in equation
(12), taking the standard deviation of b(z) at each redshift. We find
that the quadratic b(z) gives an appropriate description of the bias—
redshift relation b(z), consistent with the uncompressed analysis.
Using a linear evolution for b(z) results in a larger error on osg,
probably due to the fact that a linear evolution model is not describing
the bias—redshift relation sufficiently accurately, o = 0.787 & 0.053
and x?/d.o.f. = 0.82. We tested a third-order bias—redshift relation
in Case (v), finding no significant difference in the constraints with
respect Case (i).

Fig. 6 shows the compressed statistics Y for Case (i) (red circles),
compared to the best-fitting model (solid grey line), for the range
of scales considered. We plot the different components of Y with
respect to og and the different bias parameters. The error bars on
the compressed data are plotted as the square root of the diagonal
elements of the covariance matrix. The models provide a good
description of the data, reflecting the acceptable value of the 2
statistic.

5.4 Comparison between analyses

In Fig. 8, we display the likelihood contour for o3 and bias for one
of the regions considered, from the different methods considered:
Case (i), (ii), (iii), and (iv) (the yellow, red, blue, and grey contours,
respectively). For the bias, we compare b(z.r) = by + by Zett + b2Z§ff
with zeg = 0.5 for for Case (i), (ii), (iii), and b(zegr) = by + by zesr for
Case (iv), as per equation (12).
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Figure 8. Likelihood contours for og and bias from the different methods:
Case (i), (ii), (iii), and (iv). We present the results obtained for one of the
region considered. For the bias, for Case (i), (ii), and (iii) we compare b(zefr) =
bo + b1zefr + bzzgff with zegr = 0.5, and b(zefr) = bo + by zefr for Case (iv),
as per equation (12).

1.1

1.0
0.9
0.8 +
0.7

0.6

0.5 i i v
Analyses

Figure 9. Fitting results for og from the different methods, from left to
right: Case (i), (ii), (iii), and (iv). We display the mean and averaged errors of
the 18 regions considered. The error bars are computed from the standard
deviations of the posterior distributions. The values displayed are: Case
(i) o = 0.760 £+ 0.046, Case (ii) og = 0.764 £ 0.048, Case (iii) og =
0.756 £ 0.045, and Case (iv) og = 0.787 £ 0.053. Dashed grey line indicates
the fiducial og of the mocks.

‘We summarize the results for all cases and regions in Fig. 9, where
we display the 68 per cent confidence region for the posterior proba-
bility distribution of o 3. From left to right, the yellow dot indicates the
result from optimal weighting including scale dependence; the red
dot indicates the results from a compressed analysis with an effective
scale. The blue point denotes the uncompressed analysis, and the grey
point corresponds to a compressed single-scale analysis with a linear
redshift evolution for b(z) in the model (as opposed to the fiducial
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Figure 10. The distribution of the best-fitting og across the 18 Buzzard
mocks for Case (i), (ii), (iii), and (iv). Each og corresponds to the maximum
likelihood value.

quadratic evolution). We find consistent results between all types of
analysis, and comparable standard deviations for both Cases (i) and
(ii), and the uncompressed analysis, implying that the compression
is almost lossless, even for the single-scale approximation. We note
that an analysis based on the individual galaxy weights, which are
derived to match the single-scale approximation, would give the same
results.

The histograms in Fig. 10 show the distribution of o3 as measured
across the 18 Buzzard regions used in this study, for the four cases
analysed. The displayed colours are consistent with Fig. 9. We find
consistent values of the mean for all cases. For robustness check, we
repeated Case (iii) fits using the same bias—redshift relationship as
for Case (i) and (ii), as described in equation (12), finding identical
results on og best-fit and variance. We expected this, from Fig. 3
which shows that a quadratic bias—redshift relationship is well in
agreement with the bias values measured across the eight redshift
bins. Case (iv) with linear evolving bias is slightly shifted with
respect to the other distributions. As discussed earlier, linear bias
evolution is not accurately reproducing the bias parameters fitted in
individual redshift bins. We find the best-fitting og for all methods
to be slightly lower (close to 1) than the fiducial value of the
mocks, shown as the black dashed line. As discussed in Section
5.1, this issue is likely related to the linear bias model adopted in
our analysis, and does not affect the conclusions of our current
study.

Fig. 11 shows the distribution of the standard deviation for
og as measured across 18 Buzzard regions. The displayed
colours are consistent with Fig. 9. The compressed analysis
(both optimal and single-scale, yellow and red histograms) gives
similar results to the uncompressed analysis (blue histogram):
Case (i) og = 0.760 £ 0.046, Case (ii) o3 = 0.764 £ 0.048, and
Case (iii) o0y = 0.756 £ 0.045. The analysis with a linear redshift
evolution for b(z) (grey histogram) leads to higher values of standard
deviation: Case (iv) og = 0.787 £ 0.053.

Fig. 12 displays the distribution of x? across all the regions
(with the same colour as for Fig. 10). We find that all realizations
are consistent with reduced x> = 1, noticing a slightly higher
mean x2 for the linear-evolving bias case. Case (iii) shows a
narrower distribution of x2/d.o.f, with respect the other Cases.
This is because Case (iii) has a higher number of free parameters
(nine), and the variance of the x2 scales with the inverse of
d.of.
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Figure 11. The distribution of the standard deviation of og across the 18
Buzzard regions for Case (i), (ii), (iii), and (iv). Each standard deviation is
computed from the posterior distribution of og.
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Figure 12. The distribution of reduced x 2 across the 18 Buzzard regions for
Case (i), (ii), (iii), and (iv).

6 CONCLUSION

In this work, we used simulated data sets of future combined galaxy
clustering and weak lensing surveys, representing the region of over-
lap between DESI Y1 and imaging surveys such as DES, HSC, and
KiDS, to explore data compression and optimal weighting algorithms
for extracting cosmological parameters from these combined probes.
We derived data-compression schemes which can be applied to
galaxy—galaxy lensing and clustering statistics, extending the work of
Ruggeri & Blake (2020a) into configuration space. For this test case
we focussed on a small parameter set consisting of o' and the galaxy
bias parameters (whose degeneracy can be broken by combined
probes), noting that these techniques can be readily extended to
larger parameter sets.

We investigated different types of compression, in particular
comparing a sub-optimal approach where an effective angular
scale is selected to derive the weights, with an optimal scheme
where the scale dependence is included in the weights, find-
ing no significant difference in the results (for scale-dependent
weights: og = 0.760 £ 0.046, for effective angular scale weights:
o = 0.764 £ 0.048). This allows us to use the single-scale weights
to derive a weighting scheme to be applied to individual galaxies
rather than correlation functions, producing near-optimal results in
this case. Both compression approaches (single-scale and optimal)
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lead to a standard deviation of og, very similar to the uncompressed
analysis (og = 0.756 & 0.045). This means that in both cases our
compression is preserving the information relevant to our scientific
goal.

Future work, as part of the mock-challenge effort to validate DESI
Y1 analysis, will involve:

(i) Testing the optimal galaxy redshift weights in the presence of
realistic window functions,

(i1) Extending the methodology to more parameters, to allow for
wider exploration of the cosmological model,

(iii) Extension to more observed statistics, by adding correlation
function multipoles which describe redshift-space distortions,

(iv) Testing different fitting ranges and non-linear models for the
galaxy bias, to get unbiased constraints of o'g and other parameters.

(v) Including cosmic shear to our analysis, performing a full 3 x2-
point correlation function analysis.

(vi) As DESI has multiple targets observed, a potential extension
of this work may apply the data-compression methodology to
multitracer analyses.

This program of work will calibrate data-compression techniques
for creating novel tests of the cosmological model using combined
probes.
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Figure Al. Comparison between the results for the uncompressed analyses using two different scale cuts: R(9) > 5h~! Mpc (red contours) and R(6) >
8 h~! Mpc (blue contours). Both analyses assume a galaxy linear bias. As expected the value of g recoveconstraints from the R() > 8~ Mpc results is
closer to the fiducial cosmology one: 0.82, as the effect of non-linear galaxy bias is lower than in R(6) > 5h~! Mpc results.
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