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SUMMARY

Biomolecular nuclear magnetic resonance (NMR) spectroscopy and artificial intelligence (AI) have a burgeon-
ing synergy. Deep learning-based structural predictors have forever changed structural biology, yet these
tools currently face limitations in accurately characterizing protein dynamics, allostery, and conformational
heterogeneity. We begin by highlighting the unique abilities of biomolecular NMR spectroscopy to comple-
ment AI-based structural predictions toward addressing these knowledge gaps. We then highlight the direct
integration of deep learning approaches into biomolecular NMR methods. AI-based tools can dramatically
improve the acquisition and analysis of NMR spectra, enhancing the accuracy and reliability of NMR mea-
surements, thus streamlining experimental processes. Additionally, deep learning enables the development
of novel types of NMR experiments that were previously unattainable, expanding the scope and potential of
biomolecular NMR spectroscopy. Ultimately, a combination of AI and NMR promises to further revolutionize
structural biology on several levels, advance our understanding of complex biomolecular systems, and
accelerate drug discovery efforts.
INTRODUCTION

Deep learning, a sub-field of machine learning and artificial intel-

ligence (AI), has led to impressive advancements in many disci-

plines, particularly computer vision and language processing.1–4

Due to the flexibility of deep learning, it is now deeply embedded

into many aspects of science and daily life, including highly so-

phisticated large language models (LLMs), creation of digital

art and music, as well as accurate predictions of protein struc-

ture from amino-acid sequences.1–4

Like numerous scientific disciplines, deep learning, both indi-

rectly and directly, has revolutionized the field of biomolecular

nuclear magnetic resonance (NMR) spectroscopy. Since its

inception in the 1940s, NMR has undergone a dramatic

expansion from its original application in materials science

and chemistry to a versatile tool for environmental analysis,

drug discovery, characterization of macromolecular com-

plexes, and metabolic function in humans.5 Biomolecular

NMR spectroscopy, in particular, is a cornerstone in structural

biology, providing atomic-level insights into the interactions

and dynamics of biomolecules. Deep-learning based structure

predictors like AlphaFold26 and ESM-27 have demonstrated

remarkable capabilities for protein structure determination

(Figure 1A), offering freely available predictions for entire pro-

teomes, including the human proteome.8 These tools and

others have become invaluable aids to experimental structure

determination methods, such as X-ray crystallography, cryo-

electron microscopy (cryo-EM), and NMR spectroscopy, and

are also playing increasingly important roles in drug discov-

ery.9–11 However, it is important to acknowledge that while
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these AI-based tools are highly useful, they do have certain lim-

itations in providing insights into various aspects of protein

biology including the mechanism of folding, stability, post-

translational modifications, mutations, and intrinsically disor-

dered proteins (IDPs). Additionally, these software tools are

constrained in their capacity to predict conformational switch-

ing, as well as to provide detailed understanding of protein

functional dynamics.6,7

Limitations in these AI-based tools have underscored the sig-

nificance of NMR as an experimental tool in directly addressing

these crucial knowledge gaps. In the first two sections of this re-

view, we highlight how biomolecular NMR, particularly solution-

state NMRmethods characterizing protein dynamics, can effec-

tively fill these gaps in our understanding, complementing the

substantial progress achieved through structural predictors

(Figure 1). In the final section of the review, we highlight how

deep learning can be directly leveraged in the context of solu-

tion-state NMR to analyze spectra, improve the accuracy and

reliability of NMR measurements, streamline the time and ex-

penses associated with NMR experiments, and enable the

development of novel types of NMR experiments that were pre-

viously unattainable (Figure 2).

NMR spectroscopy is founded on the principle that nuclei

interact with a magnetic field, providing valuable information

about their local chemical environments. When subjected to an

external magnetic field, the nuclear spin magnetization reso-

nates at a specific frequency (the Larmor frequency), which is

influenced by factors such as the nucleus’ gyromagnetic ratio,

the magnetic field strength, and the chemical environment near

the nucleus.
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Figure 1. Illustrating the spectrum of AI-based strengths in
characterizing protein structure and dynamics along with the high
complementarity of NMR spectroscopy
(A–E) AI methods have achieved remarkable success in predicting the struc-
tures of small proteins (A) and occasionally in predicting protein-ligand
interactions (B). However, the characterization of heterogeneous conforma-
tional ensembles, such as those exhibited by IDPs and proteins undergoing
significant structural transitions, poses an increasing challenge for AI methods
(C). Furthermore, accurately describing protein dynamics and transient states
(D) and capturing allosteric regulation (E) remain extremely difficult for current
AI-based approaches. To address these challenges, we highlight the appli-
cation of NMR techniques, which provide valuable experimental data on
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The chemical shift, which relates to the Larmor frequency, is

the easiest biomolecular NMR parameter to measure and it of-

fers crucial biochemical insights. For instance, perturbations in

the chemical shifts of backbone nuclei can indicate binding

interactions or changes in secondary structure (Figure 1B).

Through-space interactions can be investigated with the use

of Nuclear Overhauser Effects (NOEs) for distances less than

approximately 6 Å or paramagnetic relaxation enhancements

(PREs) for distances between 10 and 25 Å.12,13 Prior to the

rise of highly accurate AI-based structural predictors for pro-

teins, NMR-based structural determination posed several chal-

lenges. The complexity and interpretive difficulty of the result-

ing spectra, coupled with the indirect nature of the obtained

parameters as reporters of structural information, often made

the process both challenging and laborious, although attempts

have been made to automate the process.14 Moreover, NMR-

based structural determination methods are primarily suitable

for relatively small proteins (<40 kDa). Although NMR-based

structural determination has to some extent been overshad-

owed by AI protein structure predictors, X-ray crystallography,

and cryo-EM, NMR still provides invaluable insights where the

predictive models fall short, particularly in areas concerning dy-

namics, rare folds, ligand binding, and alternative confor-

mations.

Biomolecular NMR is often solely viewed as a structural tech-

nique, however, it is also uniquely able to characterize protein

dynamics and flexibility acrossmany timescales with atomic res-

olution (Figures 1C and 1D).15,16 For example, some NMR

methods, such as the classical model-free analyses17 enable

the study of motions on the picosecond (ps) to nanosecond

(ns) timescale. For microsecond (ms) to millisecond (ms) motions,

relaxation dispersion measurements, including R1r experi-

ments,18,19 Carr-Purcell-Meiboom-Gill (CPMG), chemical ex-

change saturation transfer (CEST), or dark state exchange satu-

ration transfer (DEST) can be employed. Additionally, slower

motions can be characterized using longitudinal exchange

methods.20

The ability of NMR spectroscopy to characterize protein dy-

namics facilitates a comprehensive understanding of the

behavior of proteins beyond static structures. By utilizing multi-

ple nuclei as probes and operating under equilibrium conditions,

without the need for external temperature or pressure changes,

NMR can measure protein dynamics at the atomic level across

a broad range of timescales. This dynamic and quantitative

approach allows for the exploration of exchange dynamics be-

tween interconverting states, which is crucial for unraveling pro-

cesses such as macromolecular recognition, allostery, signal

transduction, and assembly. Notably, NMR observables provide

valuable insights as they represent weighted time- and ensemble

averages of proteins, highlighting the inherently dynamic nature

of biomolecules, including protein motion, conformational sam-

pling, and transient non-covalent interactions. In certain cases,

NMR can also provide state-specific parameters that are chal-

lenging to acquire through alternative methods.
protein conformation, flexibility, and interactions. By combining the strengths
of AI and NMR, a more comprehensive understanding of protein structures
and dynamics can be achieved, offering the potential for new discoveries in the
field of structural biology.



Figure 2. Direct application of AI-based methods to unleash the power of NMR spectroscopy
Illustration of the transformative power of DNNs to reconstruct sparce data, enhance resolution and decouple spectra with virtual homonuclear decouplings, pick
peaks in crowded spectra, and perform autonomous analyses.
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Characterization of protein dynamics by solution-
state NMR
Protein structural dynamics is a crucial property of enzyme func-

tion, as highlighted by the induced fit model of enzyme ki-

netics,21,22 which posits that enzymes undergo conformational

changes upon binding to a substrate to achieve optimal catalytic

activity. An alternative to this model is the conformational selec-

tion23 or population shift model, which suggests that proteins

can exist in thermally excited functional states, even without a

substrate or binding partner present. A deep understanding of

protein dynamics is therefore critical for understanding protein

function, and solution-state NMR spectroscopy is one of the

most accurate and precise experimental methods for this char-

acterization (Figure 1D). Proteins undergo a wide range of mo-

tions across a varying timescales,15,17,24–31 which can broadly

be classified into two categories: (1) fast motion (ps to ns) char-

acteristic of local backbone and side-chain fluctuations and (2)

slowmotion (ms, ms, or s) typically characteristic of larger confor-

mational exchanges. Over the past four decades, a battery of

experimental approaches has been developed to quantify dy-

namics across these timescales (Figures 1C–1E). Fast motions

can be analyzed by measuring longitudinal spin-relaxation rates

(R1), transverse spin-relaxation rates (R2), and steady-state het-

eronuclear NOEs on proton-bound 13C or 15N nuclei.17 Hetero-

nuclear {1H}-15N NOEs are particularly sensitive to ps motions,

while longitudinal relaxation rates (R1) are sensitive to motions

on the ps to ns timescale. Transverse relaxation rates (R2) are
more sensitive to ns motions, but they also report on chemical

and conformational exchange contributions from slower ms to

ms dynamics. Hence, dynamics on the ms to ms timescale can

be characterized in terms of an exchange contribution to R2,

called Rex,
32 such that the observed transverse relaxation rate

is given by, Robs
2 = R0

2 +Rex, where R0
2 represents the intrinsic

rate of transverse relaxation rate of the nucleus typically origi-

nating from dipole-dipole and chemical shift anisotropy interac-

tions. The values ofR1, R2, and the NOE can be determined using

well established methods,17,33 and further analysis can be per-

formed using the model-free formalism approach.34,35 Key

parameters obtained from a model-free analysis36–38 include

the rigidity of the bond vector (the order parameter, S2), the time-

scales of the local motions (te) the overall molecular tumbling (the

rotational correlation time, tc), as well as the chemical exchange

contributions (Rex). While the model-free formalism can account

for Rex, it only provides a qualitative view of ms to ms timescale

motion.

Over the past two decades significant advances have been

made in NMR techniques for studying conformational exchange

and protein dynamics across a wide range of timescales. In the

late 1990s, two key experiments were introduced:R1r (for kex be-

tween 4,000 s�1 and 1,000 s�1)18,19 andCPMG-based relaxation

dispersion experiments (for kex between 4,000 s�1 and

200 s�1).39–43 These experiments effectively suppress the contri-

butions from chemical exchange processes (Rex) in a controlled

manner by applying an external radio frequency (RF) field of vary-

ing strength. In theR1r experiments,Rex suppression is achieved

by ‘‘spin-locking’’ the nucleus of interest with a spin-lock field

that is either on-resonance or off-resonance. On the other

hand, in CPMG-based relaxation dispersion experiments, a
Structure 31, November 2, 2023 3



ll
OPEN ACCESS Review

Please cite this article in press as: Shukla et al., Biomolecular NMR spectroscopy in the era of artificial intelligence, Structure (2023), https://doi.org/
10.1016/j.str.2023.09.011
series of refocusing p pulses are applied at regular intervals dur-

ing a relaxation delay, which effectively refocuses the effects of

the chemical exchange processes, including Rex contributions.

By varying the intensity and duration of the spin-lock field in

R1r experiments and the inter-pulse delays in the CPMG-based

relaxation dispersion experiments, exchange dynamics occur-

ring on thems timescale can be characterized. These techniques

have beenwidely used to investigate protein dynamics within the

ms to ms range and gain insights into the structure and dynamics

of low-populated excited states of proteins sampled at the ms

timescale.44–47 The analysis of relaxation dispersion profiles ac-

quired at multiple magnetic field strengths provides information

about exchange rates, populations, and chemical shifts of the

excited state(s).

In the early 2000s and 2010s, the CEST43,48–50 and DEST51 ex-

periments were adapted to study slower timescale exchange

processes within a window of 40 s�1 < kex < 500 s�1. By effec-

tively and selectively saturating protein resonances in the

low-populated state with a low-power RF field and monitoring

the exchange of saturation to the ground state, one can obtain

information about ms dynamics and sparsely populated states.

CEST experiments, like CPMG-based relaxation dispersion ex-

periments, offer insight into the populations of sparsely popu-

lated exited states, exchange rates, and chemical shifts. Initially,

both 15N and 13C versions of these experiments were developed

for characterizing ms dynamics in small (<10 kDa) to

medium size (<30 kDa) proteins, at both backbone46 and side-

chain positions.52 Subsequently, with the introduction of the

methyl-TROSY experiment in 2003 for studying large proteins

(up to 1 MDa), methyl-TROSY-based pulse sequences53 for

the CPMG-based relaxation dispersion and CEST experiments

were developed.41,54,55 These experiments have been instru-

mental in characterizing ms dynamics in large proteins and

macromolecular complexes, thereby complementing cryo-EM

studies.43,56 In recent years, further advancements have been

made in NMR techniques for studying conformational exchange

including developments for functional side-chains.57,58 These

include a multiple-quantum CEST method focusing on the

side-chain guanidinium group of the arginine amino acid and

amine of lysine side chains57,59,60 and diverse sets of methods

to characterize lysine side-chains and carboxylic acids.61 These

methods provide insights into conformational dynamics, ligand

binding, and other interactions involving charged residues in

proteins.

Overall, the application of NMR techniques aimed at charac-

terizing conformational dynamics has significantly advanced

our understanding of protein function. By characterizing dy-

namics and conformational exchange, these methods have

enabled researchers to explore the complex behavior of proteins

across various timescales, thereby providing valuable insights

into structure-function relationships.

Identification and characterization of allosteric/
regulatory sites in proteins
Although AlphaFold2 and ESM-2 have provided significant ad-

vancements in protein structure prediction (Figure 1A), these

predictions are often insufficient for identifying regulatory sites

involved in allosteric regulation (Figure 1E). Allosteric regulation

remains a prevalent and effective mechanism for controlling
4 Structure 31, November 2, 2023
enzymatic and binding activity by connecting distal sites within

a protein, for example the active and periphery sites. Therefore,

the identification and characterization of allosteric sites in pro-

teins plays an important role in understanding protein function

and developing specific allosteric inhibitors and activators.

A fundamental question in the study of allostery revolves

around the mechanism by which changes in one region of a pro-

tein propagate to other regions, thereby regulating binding or

enzymatic activity. Numerous examples, such as investigations

of the PDZ domain,62 catabolite activator protein (CAP),63 ad-

enylate kinase,64 calmodulin,65 heat shock protein 90,66,67 and

human histone deacetylase 8 (HDAC8),31 provide compelling ev-

idence that allostery can induce perturbations to the internal dy-

namics of a protein or enzyme. These perturbations, in turn, can

induce conformational transitions and alter the dynamics of the

active site. Conversely, perturbations at the active site can also

influence the dynamics of the allosteric sites in certain cases.

Allostery, being closely linked to changes in structure and dy-

namics resulting from ligand binding, can be studied very effec-

tively by NMR spectroscopy. NMR uniquely allows one to probe

multiple conformational states simultaneously, providing an

advantage for identifying and characterizing allosteric sites and

their impact on enzymatic activity. In the following, we provide

a summary of NMR-based tools and methods that can be

applied for this purpose.

Chemical shift perturbation (CSP) analyses68 using 1H-15N

heteronuclear single quantum coherence (HSQC) spectra (for

proteins <30 kDa) and methyl-TROSY spectra (for proteins up

to 1 MDa) can be employed to identify allosteric regulatory re-

gions within a protein. This powerful method involves comparing

spectra of the free and, for example, ligand-bound species,

enabling the detection of significant CSPs in distal residues,

thus suggesting the presence of potential allosteric sites. Simi-

larly, this method can be applied to compare spectra with and

without known potential allosteric effectors to identify allosteric

communication pathways.67,69 The identification of allosteric

sites can also be facilitated through the analysis of PREs by iden-

tifying the protein residues affected by a PRE label.70–72 Further-

more, since allosteric communication is often a dynamical

process, relaxation measurements, such as CEST and CPMG

(introduced previously), provide valuable information on confor-

mational dynamics and the flexibility of regions involved in allo-

steric regulation.73–75 For example, CSP analyses in conjunction

with methyl-TROSY NMR experiments were applied to probe

changes in methyl groups around allosteric sites in the WD40

domain of Cell division control protein 4 (Cdc4) upon titration

with its partner, Sic1-derived multi-CPD substrate (pSic1).76

Similarly, we have recently applied methyl-TROSY NMR and

multiple-quantum methyl-TROSY CPMG relaxation dispersion

experiments to investigate the structural and dynamical coupling

throughout the HDAC8 enzyme and identified a regulatory site

21 Å away from the enzyme’s active site.31 Furthermore, we

also observed bidirectional communication between the active

and regulatory sites via both titration of a competitive inhibitor

and site-directed mutagenesis.31

It is important to note that functional studies, such as

biochemical assays of the wild type protein and the protein

with mutations introduced near the potential allosteric site, are

crucial for confirming allosteric effects and determining the
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functional consequences of the identified site. These studies aid

in understanding the impact of allosteric sites on ligand binding

and catalytic activity.31,77,78 Ultimately, by correlating the NMR-

derived structural and dynamical information with functional

consequences, the significance of the allosteric sites in protein

regulation can be effectively established. This knowledge can

inform the design of targeted drugs that modulate protein func-

tion by targeting allosteric sites, thereby guiding the develop-

ment of therapeutic interventions.

NMR complements cryo-EM in the study of
macromolecular complexes
Cryo-EM has gained widespread popularity in the last decade as

a valuable method for analyzing the structure of large proteins

and macromolecular complexes. However, obtaining atomic-

level details, especially for flexible regions within these mole-

cules, remains a challenge for many systems. Currently, most

cryo-EM structures have resolutions of 5–6 Å. Nevertheless, it

is now increasingly common for cryo-EM structures to have res-

olutions of 3–4 Å, with some structures below 3 Å.79,80 To gain

detailed information about specific regions or domains within

the complex, NMR is often instrumental. Methyl-TROSY based

NMR spectroscopy enables the investigation of conformational

dynamics and interactions within macromolecular complexes.

In certain cases, a combination of NMR and cryo-EM data

have been used to obtain a more comprehensive understanding

of the structure and function of macromolecular complexes.56,81

Recent advances have led to an integrated use of NMR and

cryo-EM for the determination of large complex structures

with high precision and accuracy. For instance, an integrated

approach was employed to determine the structure of the

468 kDa dodecameric aminopeptidase tetrahedral aminopepti-

dase (TET2) with a resolution below 1 Å.82 Moreover, molecular

dynamics (MD) simulations, in conjunction with solution-state

chemical shifts and solid-state magic angle spinning (MAS)

NMR, were used to refine the cryo-EM structure.80 This demon-

strates the potential of NMR spectroscopy to complement cryo-

EM and computational methods to improve the resolution of

complex macromolecular structures.

G-protein coupled receptors (GPCRs) are cell membrane re-

ceptors that play a crucial role in signal transduction and impact

various physiological processes. They are frequently targeted

by pharmaceutical drugs, with over 30% of FDA-approved

drugs currently targeting GPCRs. While X-ray crystal structures

of various monomeric GPCRs have been deposited in the Pro-

tein DataBank, there are ongoing debates as to whether

GPCRs form higher order complexes.83,84 Solution-state NMR

has been utilized to investigate the activation and regulation of

GPCRs. However, studying GPCRs using NMR presents unique

challenges, particularly in regard to protein labeling. Typical

protein labeling methods employing E. coli are not applicable

due to the post-translational modifications that GPCRs undergo.

Consequently, eukaryotic expression is necessary for GPCR

production. Additionally, to take full advantage of high resolution

in 15N, 1H transverse relaxation-optimized spectroscopy

(TROSY) andmethyl-TROSY based NMR experiments, deuteria-

tion of GPCRs is required. Unfortunately, eukaryotic organisms

such as insect and mammalian cells do not tolerate D2O well;

however, successful expression of deuterated human GPCRs
was achieved using P. pastoris in D2O media.85,86 Scientists

are now employing two different strategies, 19F NMR and methyl

labeling based NMR,87–90 to enhance the understanding of

GPCR activation and regulation, as well as to expand GPCR-tar-

geted drug design. Recent NMR investigations using 19F and

methyl probes have shed light on the dynamical characteristics

of various receptor states, revealing the pathways and interme-

diate stages involved in their activation.88,89,91,92 This dynamical

perspective goes beyond the static perspective of GPCRs ob-

tained through alternative techniques, enriching our understand-

ing and ability to target of GPCRs.

BIOMOLECULAR NMR TO CHARACTERIZE FLEXIBLE
PROTEINS AND FLEXIBLE REGIONS OF PROTEINS

Introduction to IDPs and IDRs
AlphaFold2,6 ESM-2,7 and other AI-based protein structure pre-

dictors have played pivotal roles in highlighting the strong prev-

alence of intrinsically disordered proteins (IDPs) and proteins

with intrinsically disordered regions (IDRs). In contrast to struc-

tured proteins whose functions can to some extent be under-

stood with a single conformation alone (which now can be

reliably predicted), IDPs and IDRs lack well-defined three-

dimensional structures and instead exist as equilibria of rapidly

interconverting states. It is now well accepted that IDPs and

IDRs constitute an estimated 30–50% of the human prote-

ome,93,94 where they often play key biological roles in regulating

signaling pathways, facilitating molecular recognition, and

participating in the formation of protein complexes.

Although low-confidence scores of AI-based protein structural

algorithms correlate well with the presence of disordered re-

gions,95 these tools cannot reliably produce ensembles of

conformational states that these regions adopt, and they some-

times fail to predict how such distributions change in the pres-

ence of binding partners.96 Other computational techniques,

including all-atom MD simulations and ensemble generators,

offer a versatile toolset for modeling diverse conformational en-

sembles adopted by IDPs and IDRs across a wide range of time-

scales,97–99 spanning from the ns to the ms and evenms regimes.

In certain cases, simplifying the system with coarse-grained

models, where atoms are represented as ‘‘beads,’’ enables

the exploration of even longer timescales.98 Recently, such

coarse-graining approaches have paved the way for large-scale

simulations of entire proteomes.100,101 Leveraging the vast

amounts of data generated by these simulations, coupled with

the power of deep learning, it was possible predict general prop-

erties of disordered proteins, such as radii of gyration from

sequence alone.100,101 Nevertheless, both all-atom and

coarse-grained MD suffer from sampling limitations and force

field inaccuracies, such that different parameter sets predict

dramatically different ensembles for the same disordered

sequence, highlighting the importance of experimental ap-

proaches, especially if atomic insight is desired.

Experimental structural techniques such as X-ray crystallog-

raphy and cryo-EM generally fail to provide atomic information

about highly dynamic protein regions, like those found in IDPs

and IDRs. Consequently, the Protein Data Bank, on which AI-

based protein structure predictors are trained, are generally

devoid of detailed structural information on these highly
Structure 31, November 2, 2023 5



ll
OPEN ACCESS Review

Please cite this article in press as: Shukla et al., Biomolecular NMR spectroscopy in the era of artificial intelligence, Structure (2023), https://doi.org/
10.1016/j.str.2023.09.011
prevalent biomolecules. NMR spectroscopy, however, is

uniquely suited to characterize the behavior and interactions of

these otherwise elusive proteins at the atomistic level onmultiple

timescales. Below we briefly outline NMR-based methods used

to probe the structures, dynamics, and interactions of IDPs and

IDRs, and highlight applications of NMR to characterize the

many diverse interaction types of these prevalent biomolecules.

NMR methods to probe the structures, dynamics, and
interactions of IDPs and IDRs
Conformational ensembles of IDPs and IDRs can be probed

with several NMR techniques including chemical shifts,

scalar couplings, and residual dipolar couplings (RDCs)

(Figure 1C).97,102,103 These NMR measurements provide valuable

insights into the equilibrium states of IDPs and IDRs, and serve as

crucial tools to validate, restrain, or reweight structural ensembles

obtained from computational approaches.97,102,104–107 For

example, the 2D 1H, 15N HSQC experiment provides data on

each 1H-15N spin-pair in the peptide backbone for non-proline

residues and amide-containing side chains. This experiment pro-

vides a ‘‘fingerprint’’ of the protein, and immediately reveals

whether a protein is disordered or folded. Disordered proteins

typically display spectra with limited chemical-shift dispersions

in the 1HN dimension, indicating that each residue experiences a

similar, solvent-exposed environment, whereas residues in folded

proteins experience a wide range of chemical environments,

including those that are solvent-exposed or buried in hydrophobic

cores, resulting in a large dispersion of corresponding signals.108

This approachwas used to elegantly demonstrate that the regions

of the disordered eukaryotic translation initiation factor 4E binding

protein 2 folds into a well-defined structure upon phosphoryla-

tion.109 Additionally, an observable called the ‘‘secondary chemi-

cal shift’’110,111 can be calculated for several nuclei within each

amino acid residue including 1Ha,
1HN,

15N, 13CO, 13Ca, and
13Cb. By comparing observed secondary chemical shifts to refer-

ence values for random coils, one can quantify secondary struc-

tural propensities and localize regions of disorder within a given

sequence.102,110,111

Due to their highly extended states, disordered proteins have a

large degree of solvent exposure and undergo substantial

hydrogen exchange with the bulk water, particularly at physio-

logical pH and temperatures (pH > 7.0 and T > 25�C). Signals
from labile hydrogens can thereby experience extreme line

broadening and loss of intensity. Measurements under physio-

logical conditions (pH 7.4, 37�C) can be acquired using
13C-direct detection, such as the 13CO–15N (CON) experiment,

an alternative to the 1H-15N HSQC, which is insensitive to

hydrogen exchange.112,113

While conformational and solvent exchange can contribute to

signal loss, these phenomena can be exploited to garner further

information about the dynamics of IDPs on the ps to ms time-

scale using spin-relaxation measurements, hydrogen-deuterium

exchange, and PREs. Relaxation measurements, including

CPMG114 and CEST,115,116 provide insights into the molecular

motions on the ms timescale of the different regions within

IDPs, shedding light on the flexibility and conformational dy-

namics of these proteins. Hydrogen-deuterium exchange exper-

iments allow for the characterization of solvent accessibility,

providing information about regions that are protected or
6 Structure 31, November 2, 2023
exposed within the IDP. PREs can be employed to investigate

the spatial proximity of IDPs to paramagnetic species, enabling

the identification of transient or weak long-range interactions

that may be crucial for the function of IDPs.117 Incorporating

data that report on dynamical properties and interactions118,119

with equilibrium structural data further enhances our under-

standing of IDP behavior and functionality. The interplay be-

tween structure and dynamics is essential for the diverse func-

tional roles of IDPs and IDRs, such as their involvement in

protein-protein interactions, signaling pathways, and molecular

recognition processes.

Application of NMR to probe IDP/scaffold interactions
IDPs and IDRs have exceptionally diverse interaction modes,

including folding-upon-binding,120 dynamic (or ‘‘fuzzy’’) complex

formation,121 and fold-switching mediated by post-translational

modifications. The affinities of complex formation involving

IDPs and IDRs also span an enormous range, from millimolar122

to picomolar.123 NMR has made significant contributions in

elucidating and precisely localizing these interactions, enabling

scientists to determine whether conformations fold prior to inter-

action, local structural changes are induced upon interaction, or

if folding even occurs at all upon interaction.124

Folding-upon-binding of the disordered domain of Sendai vi-

rus nucleoprotein was characterized using NMR to understand

how this domain interacts with the folded C-terminal domain of

the phosphoprotein. A combined analysis of 1HN,
13CO, and

15N CPMG experiments was employed to characterize a three-

state, dynamic interaction between the two partners. A ‘‘confor-

mational funnelling’’ mechanism was observed, in which the

disordered domain first adopts a helical conformation, which in

turn is stabilized non-specifically on the surface of its folded part-

ner. This helix then localizes into a specific binding site at a rate

consistent with the dynamics of the folded domain.114 In another

recent study,multi-nuclear CEST experiments were employed to

demonstrate that the disordered DNA binding domain of the cyti-

dine repressor (CytR) transiently populates a folded excited

state, responsible for binding DNA via a ‘‘conformational selec-

tion’’ mechanism. The structure of this excited state was eluci-

dated using chemical shifts and RDCs.116

DEST is another NMR method that allows one to characterize

the exchange between NMR-‘‘visible’’ and NMR-‘‘invisible’’ spe-

cies, particularly complexes larger than 1 MDa or paramagneti-

cally broadened states.51,125 In this method, the highly elevated

R2 values of the large species allow for partial saturation by a

weak RF field, where the magnetization of the NMR-‘‘visible’’

species is unaffected. Through chemical exchange, the partial

saturation is transferred to the NMR-‘‘visible’’ species and re-

corded as a decrease in signal intensity of the NMR-‘‘visible’’

species. The decrease in signal intensity as a function of the

RF field offset is measured, and the resulting shape of the pro-

files reflect residue-specific parameters of the NMR-‘‘visible’’

species interacting with the otherwise invisible state. This

approach was applied to probe how the dynamic 40- and

42-residue disordered amyloid-b peptides interact with aggre-

gated species, associated with Alzheimer’s disease, at the resi-

due-specific level.126 It was observed that the first eight residues

of amyloid-b do not directly interact with the aggregated spe-

cies, but instead exist in a mobile ‘‘tethered’’ state, whereas
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the hydrophobic central core of the peptides and hydrophobic

regions of the C-termini are in direct contact with the aggre-

gated, fibrillar species. It was also observed that the R2 values

were significantly larger for C-terminal residues of the

42-residue variant than those of the 40-residue variant, poten-

tially explaining the dramatic difference in aggregation rate.

NMR has also been instrumental alongside single molecule

Förster resonance energy transfer (FRET) experiments and

coarse-grained simulations to characterize a picomolar complex

between disordered and positively charged histone H1 and the

disordered negatively charged nuclear chaperone prothymo-

sin-a. Chemical shift perturbations, signal intensity changes,

and 15N R1 and R2 measurements were employed to localize a

binding region of approximately 60 residues. The analysis

demonstrated that the complex was extremely dynamic, driven

by non-specific charge complementarity, and that no structural

changes occur upon complex formation.123

Application of NMR to probe IDPs and IDRs
undergoing LLPS
Liquid-liquid phase separation (LLPS) is a process in which

certain biomolecules, including proteins and nucleic acids,

form distinct liquid-like compartments in the absence of mem-

branes within cells at physiological concentrations and condi-

tions. Proteins that undergo LLPS often contain IDRs with low

complexity sequences and remain dynamic in solution.127

Sometimes referred to as biomolecular condensates or mem-

braneless organelles, these compartments play crucial roles in

cellular organization, signal transduction, and gene regulation.

Solution-state NMR offers unique advantages for probing the

structural and dynamical properties of IDPs inside liquid-like as-

semblies128 given the ability to analyze biomolecules at the

atomistic level in their native liquid state in conditions that either

mimic cellular environments or even directly in-cell.

LLPS is often described in the context of the two phases: (1)

the dilute phase, in which the biomolecule of interest is at a con-

centration below that required for phase separation, and (2) the

coacervate (or condensed) phase, in which the biomolecule of

interest is at or above a concentration required for phase sepa-

ration. There are a variety of techniques to prepare samples con-

taining only the dilute or condensed phase,128 however, some

samples are biphasic (coacervates suspended in the dilute

phase). The resulting NMR spectra contain significant overlap-

ping signals from biomolecules in both environments. In these

cases, relaxation and diffusion editing can be used to isolate sig-

nals from the dispersed or condensed phase, respectively. For

example, HSQC measurements of an elastin-like polypeptide

enriched in hydrophobic residues undergoing LLPS yields poorly

resolved peaks.129 However, by using anR2 relaxation filter to re-

move signals with R2 relaxation rates above 5 s�1 (thus selecting

for fast tumbling), Sharpe et al. were able to select for the dilute

phase, as biomolecules in the condensed phase have high R2

rates due to the high viscosity of the environment.129 Conversely,

in the same study, diffusion editing was employed to remove sig-

nals arising from biomolecules with a diffusion rate faster than

10�7 cm2 s�1, thus selecting for biomolecules from the coacer-

vate phase.129

Whether measurements are taken directly in dilute phases,

condensed phases, or filtered in biphasic samples, chemical
shifts have played a crucial role in demonstrating that IDPs

with low complexity domains remain disordered in the

condensed phase via the persistence of low peak disper-

sion.129–131 Perturbations of chemical shifts and signal inten-

sities can also be used to map binding and self-interactions.

For example, chemical shift measurements acquired using the

CON experiment identified residue-specific patterns mediating

the interactions between the C-terminal disordered regions of

the translational regulators FMRP and CAPRIN1 that repress

translation by deadenylating mRNA.132

In addition to chemical shifts, NOEs, coupled with differential

isotopic labeling schemes and heteronuclear selection have

been used to distinguish between intra- and intermolecular inter-

actions of less than 6 Å in LLPS.128,129,131,133 Furthermore, intra-

and intermolecular PRE measurements have been used to

monitor disruption of long-range contacts via phosphorylation

of the low complexity domain of fused in sarcoma (FUS).134 Dy-

namics on the ps to ns timescale can also be probed for phase

separating systems. For example, the phase-separating low-

complexity domain of transactive response DNA-binding protein

43 (TDP-43) was shown to contain short regions of transient hel-

icity of approximately 20-residues in length in its dilute phase, via

an increase in R2 values and the observation of heteronuclear

NOEs.130 Other NMR methods, including off-resonance R1r ex-

periments, were used to demonstrate that residues of the germ

granule protein Ddx4 exchange with a minor state with a rate

of approximately 18 s�1 in the condensed phase.135

To date, various NMR methods have demonstrated that IDPs

remain in their disordered states in the condensed phase, how-

ever, the dynamics are often restricted. Due to the complexities

of LLPS sample preparation (e.g., limited stability and protein ag-

gregation) minimal models such as single domains of full length

proteins are often studied. Advanced techniques such as

segmental isotopic labeling and in-cell NMR offer promising av-

enues for future research, allowing scientists to enhance the un-

derstanding of biological systems by increasing their complexity

and maximizing their relevance in a biological context.

Application of NMR to probe small-molecule binding
to IDPs
NMR has played an important role in elucidating mechanisms of

small molecule-binding to IDPs.104,136,137 Because of their lack

of well-defined binding pockets, the mechanisms underpinning

small-molecule interactions with disordered proteins are an

open area of research. Some small molecules have been reported

to have extremely subtle effects on the protein chemical

shifts.104,136,138 We recently demonstrated that ligand-detected
19F transverse relaxation rates (R2) are highly sensitive to the inter-

action between a small molecule and the disordered domains of

non-structural protein 5A from hepatitis C virus, in contrast to

chemical shift perturbations which are minimally sensitive to this

interaction. By combining R2 measurements, chemical shift per-

turbations, and diffusion ordered spectroscopy (DOSY) measure-

ments, we could calculate the affinity of the interaction to be

approximately 300 mM and the rotational correlation time of the

bound state (tc) to be approximately 50 ps suggesting that the

small molecule remains highly dynamic in the bound form. These

results suggest that ligand-detected 19F transverse relaxation

measurements could represent a highly effective screening
Structure 31, November 2, 2023 7
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strategy to identify molecules capable of interacting with these

traditionally elusive, dynamic biomolecules.138

Since their discovery, IDPs and IDRs have challenged para-

digms in structural biology. These biomolecules can be functional

in their highly dynamic forms, and in fact, it is their extreme flexi-

bility that often enables them to regulate their many diverse func-

tions. Despite significant progress in protein structure prediction,

current approaches cannot yet reliably predict atomistic, confor-

mational ensembles of IDPs and IDRs. The primary limitation

lies in the scarcity of reliable training data for new AI tools, which

impedes the development of accurate models. MD simulations

have the potential to address this limitation by providing enor-

mous amounts of relevant data; however, inaccuracies in force

fields and sampling limitations hinder their accuracy, resulting in

AImodels thatmay reflect these biases. NMRspectroscopyoffers

a comprehensive toolkit for accurately characterizing these con-

formationally heterogeneous biomolecules and their interactions

acrossmultiple timescales. IntegratingMDandNMRapproaches,

two highly complementary techniques, holds tremendous prom-

ise in reliably and precisely characterizing the structural properties

of IDPs.97,102,104,105With sufficient experimental data and compu-

tational resources, input has been139 and will continue to be inte-

grated into AI-driven protein ensemble predictors and ‘‘back-cal-

culators,’’140 enabling a deeper understanding of the intricate

relationships between structure, dynamics, and function in these

highly dynamic proteins.

DIRECT APPLICATIONS OF DEEP LEARNING WITHIN
NMR SPECTROSCOPY

Advances in AI and deep learning such as protein structure pre-

dictors indirectly underscore the need for further analyses of pro-

teinmotions, an area towhich NMR can offer unparalleled insight

as discussed previously. Within NMR spectroscopy, neural net-

works have been developed for peak-picking,141 for classifica-

tion of peaks,142,143 and for automated assignment144 of NMR

spectra for more than 30 years. Widely used tools such as

TALOS+,145 that predicts backbone dihedral angles from chem-

ical shifts, and the random coil index (RCI) method,146 that pre-

dicts order parameters from chemical shifts, are also based on

neural networks and machine learning. However, over the last

half decade there has been a recent reinvigoration in this area;

AI and deep learning tools have been recently integrated directly

with the transformation and analysis of NMR data to improve the

methodology. These tools can transform complex NMRdata into

easily interpretable spectra and are now starting to assist the

NMR user with complex tasks of analyzing NMR spectra more

effectively (Figure 2). In the following, we will initially discuss

how deep learning tools have been developed to robustly recon-

struct sparsely and non-uniformly sampled (NUS) spectra. We

will also discuss how deep learning has emerged as a powerful

tool for virtual decoupling and enhancing the resolution of

NMR spectra, enabling significant advancements in both solu-

tion biomolecular NMR147 and solid-state NMR spectros-

copy.148 Finally, we will discuss new developments of deep

learning to perform autonomous analysis of complex NMR

data, which includes both the detection of peaks in NMR spectra

and the analysis of complex NMR data reporting on the chemical

and conformational exchange of proteins. The focus below will
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mainly be on biomolecular and related applications, although

impressive developments have also appeared within other fields

of NMR spectroscopy.

Deep learning tools to transform NMR spectra
Unlike traditional tools for analysis and transformation of data,

where a pre-defined algorithm is required, in deep learning,

deep neural networks (DNNs) are trained to learn a mapping be-

tween an input and a desired output (Figure 2). A key advantage

of deep learning compared to traditional tools and algorithms is

that it has been particularly successful at performing tasks that

are often intuitive to humans but difficult to formalize into a

pre-defined algorithm.3,4 Within supervised deep learning, the

main technique used within NMR, training the DNNs require a

large amount of so-called ‘‘training data,’’ where pairs of input

and desired output are provided, and sophisticated minimisers,

such as ADAM or RMSprop, are employed to optimize the

weights within the layers of the DNN to learn the mapping.

Within most fields of NMR spectroscopy, including biomole-

cular NMR, the Fourier transform is themain function or mapping

used to transform raw time-domain data into frequency-domain

data, enabling analysis downstream. Such traditional analyses

typically involvemanual inspections at each stage of the analysis

and least-squares fitting is often used to assess the obtained

spectral parameters with a pre-defined algorithm, for example,

to extract information about structure, dynamics, or kinetics of

a system. However, this traditional linear workflow imposes con-

straints on experimental design and data analysis. Deep learning

approaches have demonstrated the potential to overcome these

constraints and outperform traditional methods in various scien-

tific domains. Therefore, there is significant potential for deep

learning approaches to enhance transformation and analysis

stages within NMR, improving efficiency, utility, and user-friend-

liness.

Proof-of-concept studies initially focused on the reconstruction

of non-uniform-sampling (NUS) biomolecular NMR data.149–152

Sparse sampling and NUS techniques are commonly employed

in biomolecular NMR to acquire high-dimensional spectra,153–155

such as 4D methyl-methyl nuclear Overhauser effect spectros-

copy (NOESY) spectra156 or spectra for chemical shift assign-

ments of IDPs.157 These approaches significantly expedite data

acquisition while preserving the quality of spectral information

by strategically selecting only a subset of data points for collec-

tion. The reduction in experimental time achieved by sparse sam-

pling and NUS techniques are particularly important for biomole-

cules with limited stabilities. For the deep learning developments

in NUS NMR, the input data consisted of sparsely sampled NMR

spectra and the output was the fully sampled spectrum, either in

the time domain149,150 or in the frequency domain.151,152 For re-

constructions in the time domain, the DNN effectively predicts

the missing data points, whereas for reconstructions in the fre-

quencydomain theDNN removes artifacts associatedwith sparse

and non-Nyquist sampling. Overall using aDNN for reconstruction

of sparsely sampled dataweredemonstratedby several groups to

be effective with high accuracy, even when the sampling was

very sparse. Although DNN reconstructions typically did not

substantially outperform traditional algorithms used in biomole-

cular NMR, such as multidimensional decomposition (MDD)

NMR,158 istHMS,159 and sparse multidi- mensional iterative
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lineshape-enhanced (SMILE) reconstruction,160 there are several

advantages in using DNNs, including faster reconstructions151,152

and ease of implementation into automated pipelines. Robust

DNN network architectures, such as FID-Net,150 which are easy

and fast to train, are now available to generally transform biomol-

ecular NMR spectra.

One notable finding from these initial developments is that the

DNNs can be trained on fully synthetic data,149,150 which differs

from many other machine learning fields where obtaining,

curating, and annotating training data are often a bottleneck.

Additionally, the well-understood theory for NMR spectroscopy

allows for accurate simulation of nearly all possible NMR exper-

iments either using simple home-written or specialized software,

such as SPINACH,161 or SIMPSON.162 This establishes a solid

foundation for developing and utilizing supervised deep learning

methods for the analysis and transformation of complex

NMR data.

Deep learning and virtual homonuclear decoupling
Homonuclear scalar couplings play an important role in all areas

of NMR, where they are used to transfer magnetization between

various sites in both small molecules and in macromolecules in

solution. The early development of multi-dimensional NMR ex-

periments, such as COrrelated SpectroscopY (COSY) and TOtal

Correlation SpectroscopY (TOCSY) experiments, hinge on

transfer between spins mediated by homonuclear scalar cou-

plings. Even today, most chemical shift assignments for small

molecules and proteins in solution heavily depend on transfers

via these couplings. However, the presence of homonuclear

couplings between neighboring nuclei can adversely impact

the quality of NMR spectra, leading to overlapping peaks that

hinder the identification and quantification of signals from indi-

vidual nuclei. Effectively, these scalar couplings double, triple,

or quadruple the number of peaks in the observed NMR spec-

trum, significantly reducing the resolution and often complicates

interpretation.

To remove homonuclear couplings and sharpen peaks, de-

coupling schemes are commonly employed. However, these

schemes can cause a range of deleterious effects including side-

bands, Bloch-Siegert shifts, and severe relaxation losses.163,164

To address this, the preferred method for eliminating homonu-

clear couplings in biomolecular NMR spectra involves virtual de-

coupling techniques such as in-phase/anti-phase (IPAP)165 and

(double in-phase/anti-phase) DIPAP.166,167 These methods

require recording several sub-spectra, and the final decoupled

spectrum is obtained by taking linear combinations of these

sub-spectra. Although these approaches have proven useful,

they do come with several drawbacks. Several spectra must

be recorded, and additional delays and frequency-selective

pulses are often required to invert the passive spin(s) for virtual

decoupling, all of which lead to reduced sensitivity and, in

some cases, severe artifacts in the final spectrum.

In recent years, deep learning has emerged as a powerful tool

for virtually decoupling of NMR spectra. In these applications,

the DNN is trained on pairs of spectra, where the input spectra

contain scalar couplings, while the target output spectrum is the

decoupled spectrum. Similar to the reconstruction of sparsely

sampled spectra, the training data can be synthetically generated

using scenario-specific parameters. Our recent work on virtual
decoupling of 13Ca-detected spectra has demonstrated the accu-

rate training of DNNs to virtually decouple differentmultiplet struc-

tures in a single pass.147 13Ca-detected NMR spectra have previ-

ously been shown to provide valuable information on IDPs for

assignments,167,168 however, these spectra lead to a complex

doublet-of-doublet pattern originating from scalar couplings be-

tween 13Ca and
13COaswell as 13Ca and

13Cb (for non-glycine res-

idues). Methods such as DIPAP or double spin-state selective

excitation (DS3E) methods have previously been used to virtually

decouple these experiments,166 although these decoupling tech-

niques require four sub-spectra to be recorded and often lead to

artifacts in the resulting spectra for serine, threonine, and glycine

residues. In contrast, using DNNs, we showed that 13Ca-detected

spectra can be robustly decoupled, that only one input spectrum

is required, and that the DNN virtually decouples all residue types,

including, serine, threonine and glycine.147 More importantly, vir-

tual decoupling with DNNs eliminates the need for implementing

frequency-selective pulses into the pulse sequences, allowing

for enhanced signal-to-noise ratios and accurate decoupling of

all sites, irrespective of the chemical shift of the passive spin.

Furthermore, deep learning-based tools have also been devel-

oped to assist in obtaining decoupled NMR spectra of small mol-

ecules. Recent work169 showcases the utilization of deep learning

in the context of pure shift NMR,170 a technique that enhances the

resolution of NMR spectra, typically of organic compounds, with

overlapping signals. The authors first obtain Zangger-Sterk de-

coupled spectra,171 which are then processed with a trained

DNN to generate high-resolution spectra devoid of couplings.

This approach can effectively separate overlapping peaks,

enabling a more accurate determination of chemical shifts. This

methodology was successfully applied to various systems, such

as natural products and synthetic molecules, facilitating improved

spectral analysis.

The integration of deep learning techniques within NMR

spectroscopy has revolutionized the field by enabling the trans-

formation of complex spectra of both small molecules and bio-

molecules into high-resolution spectra. These advancements

provide enhanced resolution, sensitivity, and interpretability,

empowering researchers to gain deeper insights into the struc-

tures and dynamics of the molecules under investigation.

Deep learning tools for the analysis of NMR data
The Achilles’ heel of NMR spectroscopy is often the extraction of

the relevant parameters from complex data to report on the prop-

erties of the molecule or system under investigation. This includes

tasks such as chemical shift assignment, interpretations of cross-

peaks in NOESY spectra to derive inter-atomic distances, and the

analysis of CPMG42 andCEST172 data to gain insight on functional

dynamics and transiently populated states.173

Although advancements in isotope labeling schemes174 and

NMR-based methods have enabled a plethora of experiments

to investigate diverse biochemical properties, these techniques

often require laborious manual or semi-manual procedures and

often require the knowledge of specialists with decades of expe-

rience. Consequently, sophisticated NMR methods that offer

invaluable insights into biological systems are effectively only

accessible to a limited fraction of scientists in biochemistry

and structural biology. However, this scenario is poised to

change with the emergence of autonomous and robust AI and
Structure 31, November 2, 2023 9
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deep learning tools, whichwill make even themost sophisticated

NMR methods available to all scientists.

Automated detection of cross-peaks, called peak-picking, in

biomolecular NMR has been an active field of research for de-

cades. The task is very similar to what is often known as segmen-

tation and object detection in the field of AI, and it is therefore not

surprising that one of the first analysis tasks in biomolecular

NMR, in which DNNs were used to aid the analysis, was peak-

picking.175 Subsequent DNN tools have been developed for

picking peaks in complex 2D NMR spectra,176 although manual

inspection and intervention are still often required.

Analysis of CEST spectra can be time-consuming and labour-

intensive, even with sophisticated software available for least-

squares fitting. Challenges persist in identifying appropriate

starting parameters for the fitting procedure and evaluating the

outcomes of the analysis. Recently we showed that DNNs can

be trained to autonomously analyze CEST data.177 Notably,

even one of the most complicated CEST experiments, the 1HN

CEST experiment,55 which exhibits anti-phase CEST ‘‘dips,’’

can be analyzed autonomously by DNNs. Specifically, for the
1HN CEST experiment, two separate DNNs were trained: one

for decoupling the anti-phase 1HN CEST profile into an in-phase

CEST profile and another for determining the chemical shifts of

the exchanging species along with uncertainties. When these

two DNNs are combined, they provide a single autonomous

tool. Cross-validations on both synthetic and experimental

data have demonstrated the accurate determination of chemical

shifts and their uncertainties using trained DNNs. The advan-

tages of employing DNNs for analysis of experimental CEST

data are many-fold; the analysis becomes autonomous, elimi-

nating the need for end-users to optimize processing parameters

thus enabling any scientist interested in chemical and conforma-

tional exchange to use these experiments. Furthermore, the

autonomous analysis can easily be implemented into automated

pipelines, as exemplified recently by theNMROnline—ELECTRO

cloud-based analysis software.178

Overall, we believe that there is a bright future in integrating

deep learning and AI directly within various aspects of NMR spec-

troscopy. This includes the transformation of NMR spectra to

achieve improved resolution and sensitivity, aswell as the analysis

of NMR data through the generation of automated pipelines using

AI tools. The direct implementation of AI offers enhanced accu-

racy and reliability of NMR measurements while reducing the

time and costs associated with performing and analyzing NMR

experiments. Particularly intriguing is the prospect of developing

AI and NMR as a unified tool, where AI-driven analysis and poten-

tial transformations of NMR data are considered in the develop-

ment of NMR methods. Early indications of this potential have

already emerged,147 as evidenced by simplified pulse sequences

that substantially improve sensitivity and resolution through anal-

ysis with DNNs rather than classical 1822 Fourier transforms.179

CONCLUSIONS AND OUTLOOK

Biomolecular NMR has undergone significant transformations in

recent decades, evolving from its traditional role in solving struc-

tures of small-to-medium sized proteins180 to an unparalleled

experimental method that provides insights on functional macro-

molecular dynamics and transient interactions. As such, NMR has
10 Structure 31, November 2, 2023
become a key complement to experimental structural techniques

such as X-ray crystallography, cryo-EM, and AI-based structure

prediction,181 offering orthogonal information about molecular

motion and alternative states. Additionally, biomolecular NMR

spectroscopy serves as a valuable tool in conjunction with MD

simulations. While simulations provide atomistic (or near-atom-

istic) details of large macromolecular complexes or IDPs, the

incorporation of experimental NMR parameters as restraints or

cross-validation data helps overcome force field inaccuracies.

Finally, in the era of computational structural biology, provided

by significant advancements such as AlphaFold26 or ESM-2,7

NMR spectroscopy has become more important than ever. The

computational approaches of today excel at generating high-

quality structures of large (non-disordered) macromolecular com-

plexes, while biomolecular NMR provides invaluable insights into

the flexibility, dynamics, and kinetics of functional structural tran-

sitions surrounding these average structures and is especially

well-suited for proteins containing IDRs.

It is conceivable that in the near future, AI agents will autono-

mously operateNMRmachines, akin to howself-driving cars navi-

gate with minimal input from passengers. This development will

unlock the full potential of NMR spectroscopy, removing the bar-

rier of decades of training that currently limit the technique’s

accessibility. Combined with data from computational structural

biology, including AI-generated structures and potentially AI-

analyzed cryo-EM data, any researcher will have the opportunity

to explore new ideas and gain a deeper understanding of complex

biological systems.
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