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HistoMIL: A Python package for training
multiple instance learning models
on histopathology slides

Shi Pan1,* and Maria Secrier1,2,*

SUMMARY

Hematoxylin and eosin (H&E) stained slides are widely used in disease diagnosis. Remarkable advances in
deep learning have made it possible to detect complex molecular patterns in these histopathology slides,
suggesting automated approaches could help inform pathologists’ decisions. Multiple instance learning
(MIL) algorithms have shown promise in this context, outperforming transfer learning (TL) methods for
various tasks, but their implementation and usage remains complex. We introduce HistoMIL, a Python
package designed to streamline the implementation, training and inference process of MIL-based algo-
rithms for computational pathologists and biomedical researchers. It integrates a self-supervised learning
module for feature encoding, and a full pipeline encompassing TL and three MIL algorithms: ABMIL,
DSMIL, and TransMIL. The PyTorch Lightning framework enables effortless customization and algorithm
implementation. We illustrate HistoMIL’s capabilities by building predictive models for 2,487 cancer hall-
mark genes on breast cancer histology slides, achieving AUROC performances of up to 85%.

INTRODUCTION

Histopathology slides stained with hematoxylin and eosin (H&E) are widely regarded as the gold standard for diagnosing cancer and other

diseases. Deep learning (DL)1 based approaches have demonstrated remarkable potential for reproducing the workflows of human experts

employing such slides in a variety of tasks, e.g., diagnosing cancer and classifying tumor types2,3; segmenting sub-regions at the pixel level

to identify nuclei or tissue boundaries4,5; and predicting important clinical metrics such as survival6, recurrence rates7,8 and response to

treatment.9 Several studies have shown that DL-based approaches can also predict more complex molecular characteristics from

whole slide image (WSI) datasets, such as microsatellite instability, DNA damage repair deficiencies, mutations or gene expression

patterns.10–13

Although transfer learning (TL) was initially widely used for WSI classification tasks, recent research has introduced multiple instance

learning (MIL) as an alternative machine learning (ML) framework. MIL is designed to learn from bag-level labels rather than the more precise

instance-level labels, and has been shown to outperform TL in certain tasks like survival prediction.14,15 However, implementing a MIL-based

pipeline to predict molecular labels from WSI datasets presents significant challenges.

Digital pathology WSI datasets consist of large images scanned from original diagnostic tissue slides stained with H&E, often containing

billions of pixels in a single file. This brings about specific challenges when applyingMIL-basedmethods: (1) WSI files cannot be directly read

by widely used image processing packages such as PIL,16 (2) classic architectures of a neural network are designed for lower resolution

(i.e., 224 3 224 pixels17), and (3) loading an entire batch of WSIs during training is almost unmanageable and untraceable due to the limited

GPU memory. There are various strategies to tackle these issues, and from a toolkit design perspective, they can be categorized into slide

reading, preprocessing and ML oriented packages. While earlier implementations primarily focused on user-friendly WSI reading APIs, an

increasing number of packages are now being designed to meet the requirements of ML algorithms. However, the existing pipelines do

not fully exploit the capabilities of DL approaches.

WSI reading packages/libraries such as OpenSlide,18 BioFormats,19 and HighDicom20 offer efficient tools for accessing rawWSI data for-

mats, yet they exhibit shortcomings when integrated with neural network training. Notably, QuPath allows a basic ML pipeline with packages

like scikit-learn20 through its graphical user interface, but it is not designed for DL or MIL algorithms. Pre-processing packages like PyHIST,21

deep-histopath,22 Multi_Scale_Tools,23 and ASAP24 include common processing steps like readingmulti-scale information,25 tissue segmen-

tation or patching. However, designing a comprehensive and broadly applicable ML-oriented package that encompasses basic components

like WSI reading, patch extraction and color normalisation26,27 remains difficult. Some preprocessing packages, such as CLAM28 and deep-

histopath,22 deliver quality preprocessing pipelines but may be restrictive when integrated with other algorithms or different datasets.
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ML oriented packages like DeepMed,27 MONAI29 or TIAToolBox25 streamline the training process of DL models. For instance, MONAI

extends PyTorch’s capabilities for medical data and imaging, providing specialized AI model architectures, transformations and utilities

tailored for specific purposes. However, its core code does not specifically optimize for H&E data or various WSI formats. Packages like

PathML30 aim to deliver richer content for their users by integrating more extensive models such as tissue segmentation. Also, researchers

can easily and quickly train DL models on WSI datasets by using the TL protocol. For some of the open source packages, various useful tools

have been integrated together, e.g., cell segmentation30 or graph aggregator.25 Packages like TIAToolBox also offer improved scalability

through their module design and unit-testable code.25 However, a significant challenge in the context of TL arises when dealing with molec-

ular-level labels lacking pixel-level annotations. This leads to reliance on pseudo-labels, potentially affecting model performance or gener-

alization capabilities.31 For instance, consider a scenario where a tumor region is marked as exhibiting high expression of a particular gene

that is unique to a subtype of T cells. In such cases, the model being usedmay end up learning intricate patterns for all cell populations in the

tumor tissue, leading to the misclassification of all cells as positive cases. A robust feature encoder can also significantly influence the final

results in target classification tasks. Self-Supervised Learning (SSL) has emerged as a prominent training paradigm that leverages the inherent

data structure, negating the need for extra labeling. In the context of Whole Slide Imaging (WSI) classification, SSL holds the potential to

create highly specialized feature encoders tailored for WSI datasets.32 Nevertheless, employing existing SSL packages requires multiple pre-

processing steps for WSIs, PNG or JPEG conversion, followed by SSL training with invocation and processing. This essentially entails building

a complete SSL pipeline alongside the core training process for WSI classification.

To address some of the challenges highlighted above, we introduce HistoMIL, a DL package based on PyTorch33,34 and PyTorch Light-

ning35 that simplifies the training of WSI-based classification models. HistoMIL provides a complete preprocessing pipeline, reducing the

complexity of converting rawWSI data into a usable format for DL frameworks.We implementmultipleMILmodels that allow flexible training

against different target labels, along with multiple SSLmodels that simplify the training of feature encoders. We demonstrate HistoMIL’s per-

formance in predicting over 2,000 cancer-relevant molecular labels in breast cancer H&E slides from the Cancer Genome Atlas (TCGA). Addi-

tionally, we pinpoint specific pathways that can be effectively identified within histopathological tissue.

RESULTS

To facilitate the implementation of MIL-based workflows for classifying histopathology images based on specific molecular labels, we have

developed a DL Python package entitled HistoMIL. HistoMIL leverages PyTorch and PyTorch Lightning to provide an efficient framework for

all essential steps in DL tasks involving H&E slides. These steps encompass preprocessing slide data, training MIL and TL models on the pro-

cessed dataset to predict molecular labels of interest, and visualizing the classifier performance and prediction results within the examined

slides. Below, we showcase the features and capabilities of the package, accompanied by examples of its application to large-scale cancer

datasets.

Overview of the HistoMIL package

The HistoMIL library is structured into three tiers: data, model, and experiment (Figure 1A). The data level encompasses multiple data pre-

processing steps, includingWSI reading, tissue segmentation and patching. Similar to other ML-oriented packages, we incorporate functions

for image normalization and feature extraction to store intermediate data and expedite model training. Additionally, we introduce a cohort

level to handle metadata such as patient details, molecular labels, and other information. The design of HistoMIL aligns with the evolution of

relevant packages in the existing literature (Figure 1B).

Thedata level draws inspiration from variousWSI reading andprocessing packages.We introduce a universal reader class that allows users

to customize different wrappers to access interfaces from other readers. This approachmitigates the limitation of relying solely on one reader

package. For instance, OpenSlide,18 BioFormats,19 HighDicom20 are typical tools that provide a user-friendly API to handleWSI data formats.

However, the Python interface of OpenSlide18 does not support certain formats, such as OME-TIFF.18 BioFormats19 and QuPath20 support a

wider array ofWSI formats but are heavily dependent on Java environments. In HistoMIL, users only need to adhere to our predefined abstract

class, implementing a unified interface function for various reading libraries. This simplifies the conversion of diverse data types into a stan-

dard numpy matrix and associated metadata. Consequently, users have the flexibility to choose their preferred reading library based on in-

dividual requirements, thereby circumventing issues related to file formats. For the preprocessing steps, we have incorporated features

inspired by the strengths of existing packages. For instance, we introduce a multi-threaded preprocessing design inspired by CLAM,28

and we allow users to pre-calculate features for the selected patches, a concept drawn from TIAToolBox,25 to expedite MIL model training.

Themodel level is divided into two key components: the backbone and the MIL method. Our backbone module seamlessly incorporates

the interface of the timm PyTorch image model,33 enabling the downloading of various backbone network architectures and pre-trained

parameters for feature extraction. This design philosophy is also present in other open source packages like DeepMed27 or TIAToolBox.25

However, these packages rely on TL methods, which consider only the original slide-level or patient-level labels, assigning them to each par-

titioned patch as training label information. In TL-based approaches, introducing pseudo-labels becomes necessary when pixel level labels

are unavailable, but this introduces additional noise to the model training process. Training a batch of models may also pose challenges for

packages like PathML,30 as models may learn misleading information from pseudo-labels and become trapped in local optima. In extreme

cases, areas containing the cells of interest may be extremely small, with only a handful of patches containing genuinely relevant information.

Our package implements multiple MIL methods (ABMIL,31 DSMIL,32 TransMIL36) alongside a baseline TL model. The entire algorithm imple-

mentation is based on PyTorch Lightning,35 enabling rapid training and fine-tuning of models for specific labels. Additionally, our package
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allows users to apply SSL protocols to train the feature extractor from scratch using only WSI datasets. Existing libraries often use pre-trained

models from ImageNet as feature extractors. While recent research demonstrates that feature extractor networks trained with SSL on WSIs

can enhance final performance,14,32 this feature is not supported by existing ML packages. Furthermore, HistoMIL includes pre-defined pa-

rameters as default settings, which allows users to quickly try out and scale-up an algorithm for different targets. Inspired by packages like

stainlib,26 we have included some utility functions to handle data augmentation, a technique employed to ensure slides with different color

ranges are transformed in a uniform way to enable meaningful comparisons.

At the experiment level, configuring different models for various datasets and hardware conditions becomes a straightforward task. For

instance, researchers may wish to to gain a comprehensive understanding of how multiple biomarkers are spatially distributed by predicting

these molecular labels fromH&E slides. They might want to predict hundreds of target labels in an initial setting. Most existing packages lack

the ability to efficiently scale up algorithms formultiplemolecular labels, as they are not designed to deploy a batch ofmodels simultaneously.

In HistoMIL, researchers can effortlessly initialize a series of instances to explore the hyperparameter space defined by the customizable para

class. A Trainer class instancewill initialize a PyTorch Lightningmodule, adapting to hardware requirements automatically. Furthermore, third-

party tuners like the Ray tuner37 can directly utilize these module instances, making it easy to discover the optimal model configuration.

Figure 1C illustrates which modules are used at different stages of a process that employs a MIL algorithm.

Details on the interplay between modules during preprocessing, SSL and MIL can be found in Figure 2. Moreover, Figure 2 demonstrates

how the HistoMIL package streamlines complex pipelines with minimal code. Further information on the implementation of HistoMIL,

including data-level design, model training and experimental setup, can be found in the STAR methods section.

Applying HistoMIL to predict cancer hallmarks in H&E stained slides

In this section, we demonstrate the usability and scalability of HistoMIL in WSI-level prediction tasks employing state-of-the-art DL models.

One clinically relevant task in cancer that has been recently made feasible by modern computational pathology is assessing the state of spe-

cific genes or entire molecular pathways directly within histopathology tissue slides using DL techniques.10,38 This rapid evaluation can aid in

Figure 1. Overview of the HistoMIL package design and working pipeline

(A) The diagram illustrates the relevant modules comprising HistoMIL and the logical structure organizing them. HistoMIL features four levels encompassing file

reading, WSI-related processing modules, deep learning algorithms, and experiment management modules.

(B) The relationship between HistoMIL modules and state-of-the-art libraries. The proposed package covers the entire workflow of WSI reading, preprocessing,

and MIL algorithms, a design informed by the primary functionalities of other packages in the literature.

(C) How HistoMIL’s various modules operate within an actual pipeline. We enumerate a typical processing workflow, including preprocessing, MIL training, and

inference components. It is evident that different modules correspond to distinct functional parts within the process.
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diagnosis, prognosis and treatment decisions. Typically, such assessments involve gene panel profiling or immunohistochemistry (IHC), but

these tests introduce time delays and additional costs, as they are additional steps following visual inspection of routinely stained H&E sec-

tions. HistoMIL simplifies this process by providing a fast and efficient implementation for predicting diverse molecular labels in H&E-stained

slides.

Here, we showcase HistoMIL’s capacity to streamline the entire analysis workflow required to predict thousands of cancer hallmarks. We

used 1,012 H&E-stained slides of breast cancer tissue andmatched RNA-seq data from TCGA to train over 8,000 models for the classification

of 2,487 cancer hallmark genes. First, we processed theWSI dataset using pre-defined preprocessing functions. This step involves extracting

Figure 2. Diagram depicting three primary application scenarios for HistoMIL and their corresponding code blocks

(A) The invocation method for HistoMIL during batch preprocessing. With predefined processing parameters, HistoMIL can process an entire dataset in one go

using just three to four simple commands.

(B) The code and calling logic for SSL training. HistoMIL facilitates SSL on WSI datasets by predefining SSL-related parameters and modifying the trainer

accordingly.

(C) The code andmodule calling process forMIL training. Compared to SSL, MIL adds adjustments to themodel’s parameters while simplifying the training setup

process. For users with access to a GPU server, numerous models can be trained simultaneously by configuring parameters in the bash file.
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the tissue area fromH&E histological images, generating patches automatically, and saving them as H5DF and image files. Subsequently, we

trained the Feature Extractor Network using the SSL module and predicted the target gene expression labels using the built-in MIL algo-

rithms. As depicted in Figure 3A, the implementation of the pipeline is simplified through the use of the generic interface provided by

HistoMIL. This reduction in complexity significantly eases the workload for researchers aiming to expand these methods.

Despite the clear benefits of utilizing MIL algorithms for H&E-based predictions, researchers with limited coding experience may

encounter difficulties when attempting to replicate MIL workflows, where slight variations in code may result in vastly different outcomes.

Moreover, the complexity of handling high-dimensional histological data may discourage novice researchers from adopting this approach.

In training our models, we adhered to the methodologies detailed in the original papers of TL,27 ABMIL,31 DSMIL32 and TransMIL,36 and em-

ployed the PyTorch Lightning wrapper designed by the HistoMIL library for the training process. This package simplifies these steps, making

them accessible and ensuring reproducibility even for those lacking an in-depth understanding of MIL algorithms. For each algorithm, we

trained over 2,000 models to predict the expression levels of selected cancer hallmark genes.

To demonstrate how HistoMIL handles the complexWSI processing steps, we have reproduced the pipeline in an instance notebook. This

can be found in the Notebooks folder of the HistoMIL GitHub repository (see STAR methods). We have used code snippets and condensed

the code to illustrate the usage of HistoMIL, underscoring its efficiency for WSI prediction tasks. Additionally, our model implementation

Figure 3. Experimental workflow and performance comparison

(A) The diagram showcases the complete workflow for utilizing HistoMIL in predictive experiments. The raw data from TCGA-BRCA undergoes preprocessing,

yielding image patches and associated labels suitable for MIL processing. The experimental task involves predicting gene expression, with the model’s

performance displayed as AUROC.

(B) Comparison of performance distribution among different algorithms in predicting the expression of 2,487 cancer-related genes. Each distribution contains

2,487 data points. The box centerlines depict the medians, and the edges depict the first/third quartiles. TransMIL exhibits superior performance relative to the

other algorithms.

(C) The top 30 genes with the highest AUROC scores. In the test set, the model’s accuracy in predicting gene expression levels (high or low) reaches up to�86%.

See also Table S2.
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includes options for computing an attention score or providing patch-level predictions, enabling MIL algorithms to predict the target labels

for individual patches. In this particular example, we focused on WSI-level labels, where one expression value is available per gene and per

slide. To expedite training and inference times, we did not perform additional data augmentation, yet the models were still able to success-

fully predict the target label.

Predicting gene expression labels in the benchmark TCGA breast cancer dataset showcases the potential of using HistoMIL onWSI data-

sets. All of the predictions are based only on WSI data. Our target labels encompass the expression levels of 2,487 different cancer hallmark

genes derived from MSigDB, selected as a benchmark task to demonstrate the scalability of our package. We regarded this task as a typical

weakly supervised learning challenge and opted for the TransMIL method to learn the aggregation function. We utilized the ResNet-18 pre-

trained feature extractor as a backbone network, and all training procedures were executed on the PyTorch Lightning platform with early

stopping.

Our experiments involved two training paradigms (TL and MIL) and a total of four different DL algorithms: TL, ABMIL,31 DSMIL,32 and

TransMIL.36 The experimental outcomes consistently demonstrated that MIL algorithms generally outperformed TL algorithms when using

the same feature encoder (Figure 3B). Furthermore, variations in performance were observed among different MIL algorithms, with a general

trend of TransMIL >DSMIL > ABMIL. Considering the characteristics of these algorithms, it can be reasoned that the introduction of attention

mechanisms and neighborhood information have played a significant role in driving these performance differences. Firstly, the slide-level

attention mechanism could allow the algorithm to compare the importance of patches within a slide for classification. Additionally,

TransMIL, which incorporates neighborhood information, has yielded the best results in our experiments. This is possibly due to the neighbor

information capturing the broader changes in tissue structure, which may be relevant in the context of a certain gene being expressed or

deactivated.

Among the top genes where different models demonstrated good performance metrics on the test set (Figure 3C, Table S2) were

MAD2L1, KIF2C and AURKA. These are cell cycle regulators involved in spindle assembly and stabilization, and they promote chromosome

segregation during mitosis.39–41 Other top-ranking genes such as F2RL2 or FSHB are involved in G protein-coupled receptor signaling,41

whileMMP2 and POSTN are involved in matrix remodeling and cell adhesion.42,43 These highly relevant cancer-promoting processes would

be expected to leave a clear morphological trace in the tissue. Therefore, the activity of these genes might be more easily identifiable due to

linked changes in tumor cell morphology and tissue structure as seen in theH&E slides. In addition, since differentMIL algorithms show similar

performance in predicting the expression of these genes, it further indicates that the expression patterns of these genes in H&E slides have a

certain predictability. These patterns can be easily captured throughout the entire slide using heatmap gradients of expression, thus inform-

ing on the spatial distribution of activity for a specific gene throughout the entire tissue (Figure 4).

Some genes, on the other hand, are more difficult to predict (Table S3). For instance, the performance of the TransMIL algorithm is poor

when predicting the expression levels of SPRR3, a marker for terminal squamous cell differentiation linked with tumor progression in early

Figure 4. Model predictions for gene expression throughout the entire slide

The first image on the left in the top row is the original tissue slide. The remaining heatmaps in the first row demonstrate the spatial distribution of gene activity for

selected lowly expressed genes that were predicted by the model. The heat maps in the second row exhibit the spatial distribution of gene activity for highly

expressed genes that were accurately predicted by the model. The purple to yellow gradient indicates increasing levels of predicted gene expression per

patch. Intratumor heterogeneity of gene expression can be observed, particularly for LAS1L or CYB5R3.
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stage breast cancers,44 and PGAM2, a gene involved in oxidative stress responses.45 This could be explained by the complexity of the reg-

ulatory processes driven by these genes which may not render clear morphological changes in the cells. This could also be compounded by

tumor heterogeneity, e.g., if oxidative stress is present in only part of the cancer tissue. Furthermore, unlikeMAD2L1, F2RL2, and KIF2C, genes

such as SPRR3 and PGAM2 exhibit higher performance variability among different MIL algorithms, and their performance is normally lower

than an AUROC of 65%.

To further explore the capability of MIL methods, we focused on the higher-level activity captured by individual genes within the tissue,

which can be summarized within hallmark pathways underlying cancer initiation and progression. These included processes such as angio-

genesis, which plays a crucial role in the formation of blood vessels to support tumor growth, hypoxia, triggered when cancer cells experience

inadequate levels of oxygen, or the P53 pathway, which regulates cell-cycle arrest and apoptosis in response to DNA damage (see Table S1

for a complete list). Across 14 key hallmark pathways we observed markedly consistent levels of performance of different MIL algorithms in

predicting the expression of the genes involved in the respective pathways (Figure 5).

The E2F target genes had the highest average AUROC in our experiments (Figure 5). This pathway participates in the cell cycle G1/S tran-

sition andDNA replication, and is generally upregulated in tumor cells, leading to abnormal cell proliferation.46 Such proliferation differences

may bemore easily captured in the morphology of the cells as well as nuclear staining within H&E-stained sections. In fact, the top 50 highest

performing models were for genes involved in cell cycle checkpoints, mitosis and DNA integrity (Table S4), suggesting that cell division-

related processes are most easily captured within cancer H&E slides using this methodology. This is not surprising, given the remarkably

high performances (>90%) of DL models when it comes to distinguishing tumor areas from normal cells47 considering that proliferation is

the key defining hallmark of cancer. In contrast, the bottom 50 least performingmodels (with AUROCs <62%) were for genes involved in tyro-

sine kinase and apoptotic signaling, nucleotide excision repair and oxidative stress responses (Table S5), whichmight not be accompanied by

visible phenotypic changes in the tumor microenvironment.

Thus, we demonstrate how HistoMIL can be used to assess the detection of thousands of disease-relevant molecules in a speedy and effi-

cient manner, with most informative results obtained for genes that are either expressed throughout the entire slide or not expressed at all

within the tissue.

DISCUSSION

Building aMIL pipeline for WSI datasets is a complex undertaking, demanding extensive engineering expertise and a deep understanding of

model hyperparameters. The intricacies of WSIs necessitate additional efforts is terms of data retrieval, preprocessing and normalization

compared to typical image processing models used in standard classification tasks. In particular, WSI data requires specialized handling dur-

ing retrieval and preprocessing due to its unique nature. Moreover, since H&E slides are relatively sensitive to color variations, they require an

additional normalization step and should carefully select data augmentation steps (i.e., must not undergo extreme cropping operations). In

Figure 5. Performance of various algorithms on predicting pathway-level activity in cancer

TransMIL, DSMIL, ABMIL and TL (Transfer Learning) algorithm performance is compared across selected pathways. The boxes depict the AUROCdistributions for

each algorithm, colored according to the legend. White circles represent the median values, while black lines indicate the mean. The edges of the boxes depict

the first/third quartiles and the whiskers depict the minima/maxima. The different hallmark pathway groups are arranged from left to right in descending order of

median values according to the TransMIL algorithm.
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this paper, we introduce HistoMIL, a Python library designed to streamline the pre- and post-processing of WSIs within aMIL-based pipeline.

It seamlessly integrates with PyTorch, a widely used DL toolkit, simplifying the training of a batch of MIL-models for diverse targets. The use of

PyTorch Lightning further simplifies the training process. Furthermore, our HistoMIL package offers an uncomplicated method for training a

feature extractor using an SSL protocol, which can enhance the performance of various methods within the target data domain. We provide a

detailed tutorial on how to use this package, tailored to both technical and non-technical users, in our Notebooks folder at https://github.

com/secrierlab/HistoMIL.

HistoMIL aims to facilitate the training and application of MIL algorithms for predicting molecular labels based on digital pathology slides

by providing an easy-to-use API. In doing so, we hope to equip users with a comprehensive toolkit that empowers them to concentrate on

developing new algorithms and addressing biological questions. To achieve this goal, we have implemented a wide range of modules and

functions to streamline the process of training and using SSL andMIL. With HistoMIL’s SSL component, generating a feature extractor for the

diagnostic slide dataset becomes effortless, subsequently enabling the prediction of various molecular labels. In our experiments, we illus-

trate how HistoMIL can be used to predict of the expression status of multiple genes in H&E slides using the built-in MIL algorithms. These

pipelines have been implemented in the form of interactive notebooks and can be opened and evaluated on cloud platforms such as Google

Colab and Kaggle. This highlights how HistoMIL can be used to greatly simplify the complexity of engineering implementations. We hope

that the examples provided will assist other users in incorporating MIL methods as effective tools in their analysis pipelines.

By designing HistoMIL to maintain consistency and ease of use when introducing customized models, we have observed that the data

processing steps of different algorithms can be shared due to the repeated use of HistoMIL modules. Additionally, different algorithms

can also share the same intermediate data results. Furthermore, batch processing and patch aggregation in HistoMIL come with pre-set

values, which greatly reduces the level of difficulty for users. It is important to note that HistoMIL is not limited to the implemented MIL

algorithms. Due to its modular and scalable design, users can conveniently implement and modify new algorithms. This flexibility allows

for the training of customizable algorithms based on existing work. Therefore, any algorithm implementation involving MIL and WSIs can

benefit from the functionality we provide. In addition, many tasks involving WSIs can be easily accommodated through modifications to al-

gorithms or loss functions.

We showcased the strong performance of HistoMIL across more than 2,000 gene expression prediction tasks using a variety of MIL algo-

rithms. Notably, we achieved AUCs exceeding 80% for 130 genes. TransMIL demonstrated superior results compared to other MIL or TL

algorithms. We showed that amongst classical cancer hallmark pathways the most identifiable within H&E-stained slides are the ones related

to cell proliferation, in line with other findings in the field,10 whereas kinase signaling, apoptosis and oxidative stress processes are more diffi-

cult to capture from the tissue morphology. This suggests that cancer diagnosis and progression tasks could be more easily automated on

histopathology slides than tasks related to targeted treatment decisions. Furthermore, the spatial visualization capabilities of HistoMIL pave

the way toward further analyses of spatial patterns of gene activity, which could be used to understand how cancers develop within the tissue

and interact with their environment.

HistoMIL is an open-source project that will continue to add additional pre-trained models and functionality. In the future, we intend to

enhance the currently availablemodels by training themon additional datasets and including otherMIL algorithms. A logical extension of our

work is its application in tasks like cancer grading, survival prediction and the exploration of othermolecular or clinical labels in different tumor

types. Importantly, the package is not restricted to the analysis of cancer datasets alone, and could be readily applied to address a wide range

of biomedical questions seeking to uncover meaningful patterns within H&E stained slides. Future versions of HistoMIL could aid with patient

diagnosis or help pathologists identify subtle differences in gene activity that might not be readily discernible in traditional histological sec-

tions. Extracting features and analyzing results is typically a time-consuming and computationally intensive task, but by using HistoMIL we can

train models on a very large scale. This may lead to faster and more efficient analysis of whole slide images in future clinical usage.

Limitations of the study

Our experiments have shed light on certain limitations within the existing MIL algorithms. First, as expected, the performance of these algo-

rithms is highly dependent on the image quality of the slides. As the expression levels of some genes are correlated with the color patterns of

the images, themodels are sensitive to the color changes in the original slides. In our experiment, tomaintain simplicity in the training process

and reduce extraneous variables, we did not introduce additional data augmentation steps. This might have compromised the generalization

capabilities of the resulting model. In practice, different molecular labels may require distinct data augmentation strategies as critical param-

eters for performance optimization. We underscore the importance of considering this as an essential step for accurate model construction

and prediction.

MIL algorithms also incorporate attention mechanisms and neighborhood information, rendering them more susceptible to variations

within a single slide, such as local color changes.Moreover, patch-level predictions can introduce biases. Somegenesmight not be expressed

in all regions of the slide, but because a single expression label is available per slide, the models would tend to assume high expression in all

areas when this label is high. We frequently observed this phenomenon in our experiments. Whether this reflects a genuine feature of gene

activity within the tissue or a model limitation remains to be determined. To address this issue, future work should focus on incorporating

additional annotations, such as those obtained through immunohistochemistry, to acquire higher-resolution data for a specific biomarker

across the entire tissue rather than relying on a single label per slide.

The interpretability of an AI model in biology and medical research cannot be overstated. In HistoMIL, the ABMIL and TransMIL imple-

mentations inherently feature attention scores to demonstrate good interpretability. The DSMIL method generates patch-level prediction
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values as part of its output. Furthermore, gradient-based interpretability methods can be incorporatedwith some simple additional functions.

In subsequent extensions, we plan to introduce distinct interpretability components to the HistoMIL framework, thereby providing a unified

interpretability interface for all the supported models. To further enhance interpretability, future research endeavors in the field should also

incorporate experimental validation of the model predictions.

The number of samples in the tested dataset also limits our analyses. In the context of TL, the number of training samples is determined by

the number ofWSIs in the datasetmultipliedby the number of patches within eachWSI. In essence, each patch extracted from aWSI is treated

as an independent sample, resulting in a substantial number of training samples. However, when employing the MIL method, the number of

training samples for the slide-level classifier is equivalent to the number of WSIs in the dataset. This is becauseMIL treats eachWSI as a single

sample, rather than considering each patch within the WSI as an individual sample. This fundamental distinction has the potential to impact

the generalization capability of theMILmethod. It alsomakes themodel aggregation part prone to beingmisled by certain samples and thus

trapped in local optima. Although we selected the largest cancer dataset available from TCGA (TCGA-BRCA), the total number of WSI sam-

ples remains relatively limited, which further constrains the potential performance of our models. Furthermore, while TCGA-BRCA is a cancer

dataset, due to time and resource constraints, our current experiment did not include testing on other cancer datasets or those related to

other diseases. Thus, our biological conclusions are unlikely to be generalizable to other types of cancers or diseases. Our future work will

aim to address those issues by expanding the pool of diagnostic slides from other sources.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Maria Secrier (m.secrier@ucl.

ac.uk).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� This paper analyzes existing, publicly available data generated by the TCGA Research Network: https://www.cancer.gov/tcga. The link

to the datasets is listed in the key resources table.

� The HistoMIL package is available at GitHub: https://github.com/secrierlab/HistoMIL. The version of the code used to produce the re-

sults of the paper has been deposited at Zenodo: https://doi.org/10.5281/zenodo.8220572.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

This paper analyses publicly available RNA-sequencing and H&E data from TCGA, collected from 1,062 breast cancer patients. All data

comply with ethical regulations, with approval and informed consent for collection and sharing already obtainedby TheCancerGenomeAtlas

(TCGA). Sex, age and ethnicity information for the study participants can be found at https://portal.gdc.cancer.gov/projects/TCGA-BRCA.

Clinical information was available for 1,048 patients, out of which 99% (n = 1,036) were female and 1% (n = 12) weremale, with ages comprised

between 26 and 90 (median of 58). The cohort was split by ethnicity as follows: 38 Hispanic or Latino, 842 not Hispanic/Latino, 168 unreported.

The tumor stages analyzed in the study were as follows: T1 (n = 266), T2 (n = 607), T3 (n = 134), T4 (n = 39), Tx (n = 2). The sex and ethnicity

information were not taken into account in the analysis because breast cancer predominantly affects women (99% in the analyzed cohort) and

TCGA data is not sufficiently diverse and powered for ethnicity analyses in the context of our study. This may limit the study’s generalisability.

Experimental groups were defined by the median expression of each hallmark gene considered in the study as detailed below.

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

HistoMIL This paper GitHub: https://github.com/secrierlab/

HistoMIL; Zenodo: https://doi.org/10.5281/

zenodo.8220572

PyTorch Paszke et al.34 https://pytorch.org/

PyTorch Lightning Falcon35 https://lightning.ai/docs/pytorch/stable/

OpenSlide-pytorch Goode et al.18 https://openslide.org/api/python/

ABMIL Leiby et al.31 https://github.com/AMLab-Amsterdam/

AttentionDeepMIL

DSMIL Li et al.32 https://github.com/binli123/dsmil-wsi

TransMIL Shao et al.36 https://github.com/szc19990412/TransMIL

TCGAbiolinks Colaprico et al.48 https://bioconductor.org/packages/release/

bioc/html/TCGAbiolinks.html

msigdbr Igor Dolgalev https://igordot.github.io/msigdbr/

GeneMania Warde-Farley et al.49 https://genemania.org/

Other

H&E slides and RNA-seq data from the TCGA

BRCA cohort (GDC data portal)

TCGA, Weinstein et al.50 https://www.cancer.gov/tcga; https://portal.

gdc.cancer.gov/projects/TCGA-BRCA

MSigDB hallmark gene set Liberzon et al.51 https://www.gsea-msigdb.org/gsea/msigdb/

human/genesets.jsp?collection=H
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Ethics approval and consent to participate

All data employed in this study comply with ethical regulations, with approval and informed consent for collection and sharing already ob-

tained by The Cancer Genome Atlas (TCGA).

METHOD DETAILS

Experimental setting and dataset

In this paper, we exemplify the power and versatility of HistoMIL in oncology-related tasks by building prediction models for 2,487 cancer-

related genes.

Dataset

The Cancer Genome Atlas (TCGA) is a collaborative project that aims to characterise the genomic and molecular landscape of various can-

cers.50 We chose TCGA-BRCA as the largest available dataset with diagnostic H&E-stained slides and matched RNA-sequencing which we

could use to define cancer-relevant labels (n = 2,487). The TCGA-BRCAdataset contains a large amount of data, includingwhole slide images,

genomic data, clinical data, and more. It includes samples from a diverse patient population, including patients of different ages, races, and

ethnicities. This helps avoid biases as potential factors that may affect model performance. As a widely used data source, the TCGA-BRCA

dataset has undergone quality control, which ensures that the data is of high quality and well-annotated. This can help reduce the noise and

variability in the dataset. We downloaded 1,133 diagnostic WSIs from the Genomic Data Commons (GDC) Data Portal.52 In our experiment,

we splitWSIs into patches, then automatically selectedWSIs withmore than 1,000 patches, and further removed the images which were blurry

or containing marks. This left us with 1,012 WSIs for analyses, which we split into 80% for training and 20% for testing.

Prediction task

The target labels for the experiments were extracted from the RNA-seq profiles of the same TCGA-BRCA patients for which H&E-stained

diagnostic slides were also available, downloaded using the TCGAbiolinks package.48 We surveyed 2,487 genes involved in various cancer

hallmark pathways derived fromMSigDB51 using themsigdbr R package (see Table S1), and used the FPKM normalised expression values for

each gene to categorise tumors as ‘‘highly’’ or ‘‘lowly’’ expressing the respective gene based on the median split. This is a targeted task de-

signed to demonstrate that HistoMIL can assist researchers in rapidly scaling up the classifiers required for their studies. In this task, the

HistoMIL package was used to train and validate prediction models for the expression of the selected 2,487 cancer hallmark genes. In the

steps involving MIL training and inference, we employed servers powered by A100 and V100 GPUs. Typically, training for a gene expression

spans 100 epochs with early stopping. Predictions for some genes might peak as early as the 5th or 6th epoch, triggering the early stopping

mechanism. Within the trainer of HistoMIL, we incorporated options for researchers to either randomly split the training set proportionally or

choose K-fold validation, facilitating the validation of the training process. By integrating support for TorchMetrics, users can easily select how

to evaluate model performance andmonitor training progress. Researchers can also determine which slides, generated by specific hospitals,

would be placed in a different set as an independent test set to evaluate model performance. This approach facilitates a more robust eval-

uation of the model’s generalization capabilities. For this experiment, we used an 80% training set and 20% test set strategy to keep a simple

experimental setting. We note that we did not employ the SSLmodule in this analysis example in order to simplify the training process and to

focus on comparing the performance of TL and MIL methods.

Finally, functional enrichment analysis was performed using GeneMania.49 By predicting the expression of a gene of interest throughout

the entire tissue slide, researchers can highlight the features derived from the attention score or gradient vectors.

We believe using HistoMIL could aid in diagnosis or help pathologists identify subtle differences in gene activity that might not be

apparent in traditional histological sections. Extracting features and analysing results is normally a time-consuming and computationally

intensive task. By using HistoMIL, we can train models on a very large scale. This may lead to faster and more efficient analysis of whole slide

images in future clinical usage.

Module design in HistoMIL

Data level design

The HistoMIL design includes a data level to handle different data formats, preprocessing and other meta-information of the target cohort.

Pre-processing WSIs can be time-consuming and computationally expensive in many cases. By integrating a number of configurations and

functions, the HistoMIL package offers a functional interface to smoothly run each necessary step in a different pipeline, and save the inter-

mediate output as needed. After initialising a Slide instance and reading the slide files, we divide the preprocessing steps into three separate

concept categories: Tissue, Patch, and Feature. Each of these concepts is linkedwith a parameter class to help usersmodify the preprocessing

steps by following their own experimental requirements. A manager class namedWSI_collector helps users unify the initialisation, calculation

and loading process of these concepts to further decrease the complexity of usage.

Reading rawWSI data. HistoMIL can handle different data formats by implementing slide_backend wrappers for widely considered pack-

ages such as OpenSlide-Python.18 This design can help researchers access the raw data of different WSI formats and provides a common

interface for the subsequent steps. For instance, the scale pyramid in WSI processing can be more important than other areas as some
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WSI files naturally include multi-scale representation of the raw data.25 A series of downscaled or upscaled versions of the original slide will

help the potential deep learning models get more information. HistoMIL will create a common scale pyramid as metadata of a WSI file. Also,

researchers can implement customised slide wrappers to access additional slide formats. This modular design enables the rapid integration

of customised slide backends into existing pipelines, thereby facilitating the support of different datasets. All these elements are consoli-

dated within the Slide instance when using HistoMIL.

Tissue masking and patch extraction. WSIs typically involve a considerable area that only includes non-biologically relevant background

elements such as glass or marker pen. HistoMIL includes a Tissue class to identify and remove these areas by generating a tissue mask.

Inspired by otherML-oriented packages, the Tissue class includes a wrapper for anOtsu function to categorise pixels into foreground or back-

ground.28 Some basic morphological operations are integrated to eliminate small holes within the tissue region. Researchers can also imple-

ment different wrapper functions for different purposes. Patch extraction, which aims to decrease the cost of GPU memory when training a

model, works in a similar manner. A largeWSI can be partitioned into small patches by using an integrated function to iteratively walk through

the tissue area. All the intermediate data is stored for further usage, and the proposed implementation can avoid filling availablememory with

enhancedmemory efficiency. By using this scale pyramid, we configure the segmentation process in higher scale pyramid levels as our default

setting to decrease computational costs. Similarly, the default settings of patch selection functions, which can decidewhether current patches

need to be processed in a pipeline, are applied at a high pyramid level. We use a multiple processing pool to further accelerate the patching

step, similarly to the CLAMpackage.28 All these parameters (such as step size and window size in the patch concept class) can be easily modi-

fied in related parameter classes to fit different requests.

Feature extraction. A pre-calculation step for the feature extraction part may decrease time costs during training. Some MIL algo-

rithms14,32,36 can work with pre-trained feature extraction networks and choose to calculate feature vectors for each selected patch in a pre-

processing step. By following this paradigm, we designed a Feature class to synchronise the manipulation and maintenance of the feature

vectors generated from each slide. This design can also simplify the potential clustering process for feature vectors within each bag or clus-

tering on the entire dataset. Hence, preprocessing, which would have required the implementation of multiple functions and methods, has

been simplified to a few lines of code invocation in HistoMIL (Figure 2A).

Model training

In HistoMIL, model training is a crucial part especially for the target molecular labels that may be difficult to identify by only considering

tissue morphology differences. MIL has been introduced as a higher performing weakly supervised learning protocol for WSI classification.

A slide (or WSI) is considered as a bag of instances in the MIL protocol. Each bag may contain hundreds or thousands of instances

(patches) that are assembled into slide-level features for classification. To the best of our knowledge, no existing package to date has

been designed to handle MIL methods. There is considerable complexity in building a MIL pipeline for WSI classification tasks due to

the inherent complexity of WSI formats, heterogeneous nature of cell morphology, and unbalanced target labels. HistoMIL is designed

to simplify the implementation of MIL-based pipelines by implementing Self-Supervised Learning and Multiple Instance Learning modules

(Figures 2B and 2C).

Self-supervised learning for feature extraction. End-to-End training for aMIL pipeline that consists of feature extractors and aggregators

may be computationally expensive, especially in a large WSI. Therefore, the existing model either uses fixed patch features derived from

CNNs or simply employs a small number of high-scoring patches to update feature extractors. Inspired by the TL paradigm, the feature

extractor network can re-use pre-trained parameters from general image classification domains (e.g., ImageNet). The advantage is that there

are different pre-trained feature extraction networks that can be chosen for different tasks. Thus, target classification models can be trained

quickly with a pre-trained feature extractor network. However, if a pre-trained feature network is not trained on a WSI dataset, it may require

extra effort in the preprocessing steps and the model may not converge. The process of aggregating and classifying may also be susceptible

to the issue of overfitting and inadequate supervision, resulting in potential bias and other limitations.

Self-Supervised Learning (SSL) is frequently mentioned as a solution for the mentioned problems. While some studies, such as Lu et al.,28

have shown that the SSL phase is a crucial element in a pipeline, integrating the WSI dataset into an SSL pipeline remains difficult. HistoMIL

offers an easy way to accomplish this part by using a user-friendly SSLmodule. To train a feature extractor, theHistoMIL package offers an easy

way to apply self-supervised trainingmethods. Firstly, we introduce a trainer class to simplify the training process on aWSI dataset. A wrapper

class is created for the timm package33 which includes most of the popular backbone architectures and potential pre-trained parameters.

Some widely employed SSL methods have been implemented, such as the MoCo53,54 and SimCLR55 methods. By using these built-in

methods, HistoMIL also offers predetermined hyperparameters to further simplify the training process to new users. Also, it is specifically de-

signed for WSI data. Users can simply download raw data from projects such as TCGA and do not need to worry about preprocessing and

data augmentation. In addition, utilising the feature extractor network trained by HistoMIL’s SSL module negates the necessity to account for

discrepancies in operator implementation that may arise when importing trained parameters from other packages. Moreover, by embedding

SSL methods within the HistoMIL package, researchers can effortlessly incorporate the selection of SSL methods and backbone architectures

as hyperparameters when optimising their models.
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MIL methods. To train a slide-level classifier on target labels, HistoMIL offers a variety of algorithms that are ready to use. To the best of our

knowledge, no existing package can simplify the training and classification process for MIL algorithms in WSI datasets. Transfer Learning (TL)

protocols and Multiple Instance Learning (MIL) protocols have both been widely considered by researchers for classification tasks on WSIs.

While packages such as DeepMed27 have been designed to apply TL-based models on WSI datasets, there are considerable difficulties in

implementing a MIL model for WSI classification tasks. Whole slide images often encompass several gigabytes or even terabytes, and the

aggregation function ofMILmethodsmay suffer due to its high-dimensional feature space, with tens of thousands of feature vectors per slide.

Moreover, there is the lack of a standard implementation for various MIL algorithms. For molecular labels, training a MIL model may be even

more difficult when faced with problems such as heterogeneity of cell morphology and imbalanced data. In some extreme cases, the target

classification model may be vulnerable to overfitting, and is unable to explore rich feature representations because of the insufficient super-

vised signal. All these challenges require users to have considerable experience with implementing and training deep neural networks. This

requirement may exclude researchers who need these models but lack the necessary experience. HistoMIL simplifies this aspect by intro-

ducing built-in MIL modules with pre-defined hyperparameters.

In HistoMIL, a customizable sampler function in our Dataloader implementation is introduced that only samples some instances from each

bag. Different batch sizes can be used if theMIL algorithm needs to sampleN instances from each bag. But if all the patchesmust be read in at

once, the batch size should be fixed at 1 and this may lead to an unstable training process. In our default setting, we chose to decrease the

initial learning rate and accumulate gradients over the training steps to smooth the optimisation process. We also include a cohort instance

during training to handle patient metadata, whichmeans users can also assign pseudo labels for each patch based on the label per slide, and

this enables users to train their model using the transfer learning paradigm as well.

Trainer and experiment manager

A significant amount of time and effort is spent on the tuning process and hyperparameter selection steps when training onWSI datasets. We

designed the trainer class and experiment class in HistoMIL, which are built on the PyTorch Lightning framework, to cut these costs. Our target

is to simplify the tuning process for different target labels. The SSL, TL andMIL algorithmsmentioned above are implemented using a related

PyTorch Lightning module in HistoMIL. Researchers can initialise a PyTorch Lightning instance with HistoMIL, and this instance can be easily

fed into third-party tuners such as the Ray tuner package.37

Software and package

HistoMIL utilises Python as the primary implementation language and PyTorch as the underlying deep learning platform.33 Using these

libraries, HistoMIL can easily implement customised algorithms. Furthermore, we introduced PyTorch Lightning as a higher-level framework

to simplify the implementation of training code.35 All the built-in algorithms in HistoMIL adhere to PyTorch Lightning’s design philosophy,

which decomposes the training process into different functions. This facilitates user customization while also ensuring concise implementa-

tion. The HistoMIL package is available at the following GitHub repository: https://github.com/secrierlab/HistoMIL. The version of the code

used to produce the results of the paper has been deposited at Zenodo (https://doi.org/10.5281/zenodo.8220572).

Development environment

In the present research, we employed the PyTorch framework due to its renowned flexibility and accessibility for deep learning tasks. The

computational experiments were executed on a cluster equipped with NVIDIA A100 or V100 graphics cards and 1TB of storage. Our system

runs on the Ubuntu 18.04 operating system, with the Anaconda platform facilitating Python-based development. Additionally, to enhance the

training efficiency of our deep learning models, GPU acceleration was leveraged using the CUDA toolkit provided by NVIDIA.

QUANTIFICATION AND STATISTICAL ANALYSIS

Evaluation metrics

To facilitate a robust comparison with state-of-the-art predictors, we adopted the Area Under the Receiver Operating Characteristic Curve

(AUROC) as our primary performance evaluation criterion to validate the efficacy of our model. The dataset was randomly partitioned into

training and test sets in an 8:2 ratio. Classification tasks for all datasets utilized in this study pertained to binary classification based on varying

levels of gene expression. The AUROC metric encapsulates both sensitivity and specificity of predictions. Generally, a higher AUC score in-

dicates superior classifier performance for a given task. An AUC score of 0.5 signifies random guessing, whereas a score of 1 denotes perfect

classification.

The pathway enrichment analysis was performed via a hypergeometric test as implemented in GeneMania. All enriched pathways with an

FDR>0.1 were taken into account.

ll
OPEN ACCESS

iScience 26, 108073, October 20, 2023 15

iScience
Article

https://github.com/secrierlab/HistoMIL
https://doi.org/10.5281/zenodo.8220572

	ELS_ISCI108073_annotate_v26i10.pdf
	HistoMIL: A Python package for training multiple instance learning models on histopathology slides
	Introduction
	Results
	Overview of the HistoMIL package
	Applying HistoMIL to predict cancer hallmarks in H&E stained slides

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	Inclusion and diversity
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and study participant details
	Ethics approval and consent to participate

	Method details
	Experimental setting and dataset
	Dataset
	Prediction task

	Module design in HistoMIL
	Data level design
	Reading raw WSI data
	Tissue masking and patch extraction
	Feature extraction

	Model training
	Self-supervised learning for feature extraction
	MIL methods


	Trainer and experiment manager
	Software and package
	Development environment

	Quantification and statistical analysis
	Evaluation metrics







