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A B S T R A C T

Purpose
At least 94 common single nucleotide polymorphisms (SNPs) are associatedwith breast cancer. The
extent to which an SNP panel can refine risk in womenwho receive preventive therapy has not been
directly assessed previously.

Materials and Methods
A risk score on the basis of 88 SNPs (SNP88) was investigated in a nested case-control study of
women enrolled in the International Breast Intervention Study (IBIS-I) or the Royal Marsden study. A
total of 359 women who developed cancer were matched to 636 controls by age, trial, follow-up
time, and treatment arm. Genotyping was done using the OncoArray. Conditional logistic regression
andmatched concordance indices (mC) were used tomeasure the performance of SNP88 alone and
with other breast cancer risk factors assessed using the Tyrer-Cuzick (TC) model.

Results
SNP88 was predictive of breast cancer risk overall (interquartile range odds ratio [IQ-OR], 1.37; 95%
CI, 1.14 to 1.66; mC, 0.55), but mainly for estrogen receptor–positive disease (IQ-OR, 1.44; 95% CI,
1.16 to 1.79; P for heterogeneity = .10) versus estrogen receptor–negative disease. However, the
observed risk of SNP88was only 46% (95%CI, 19% to 74%) of expected. No significant interaction
was observed with treatment arm (placebo IQ-OR, 1.46; 95% CI, 1.13 to 1.87; tamoxifen IQ-OR,
1.25; 95% CI, 0.96 to 1.64; P for heterogeneity = .5). The predictive power was similar to the TC
model (IQ-OR, 1.45; 95% CI, 1.21 to 1.73; mC, 0.55), but SNP88 was independent of TC (Spearman
rank-order correlation, 0.012; P = .7), and when combined multiplicatively, a substantial improve-
ment was seen (IQ-OR, 1.64; 95% CI, 1.36 to 1.97; mC, 0.60).

Conclusion
A polygenic risk score may be used to refine risk from the TC or similar models in womenwho are at
an elevated risk of breast cancer and considering preventive therapy. Recalibration may be nec-
essary for accurate risk assessment.

J Clin Oncol 35:743-750. © 2016 by American Society of Clinical Oncology. Licensed under the
Creative Commons Attribution 4.0 License: http://creativecommons.org/licenses/by/4.0/

INTRODUCTION

Breast cancer is associated with mutations in rare
but highly penetrant dominant genes such as
BRCA1 and BRCA2 and, to a lesser extent, genes
such as CHEK2 and PALB2.1 Although important
for families with a history of the disease, they are
too rare to be of much use for risk stratification
in the general population. At least 94 common
breast risk single nucleotide polymorphisms
(SNPs) have been shown to be associated with
breast cancer.2-18 It is anticipated that many more

will be found in future,1 but they are expected to
be individually much less predictive. Each SNP
found to date only confers a small relative risk,
but together, they can usefully stratify risk in the
general population.19

Accurate risk assessment is important for
many decisions about preventive interven-
tions, such as increased screening and preventive
therapy.20 Risk evaluators available include the
Breast Cancer Risk Assessment Tool (Gail model),
Tyrer-Cuzick (TC), Breast Cancer Surveillance
Consortium, and the Breast and Ovarian Analysis
of Disease Incidence and Carrier Estimation
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Algorithm models.21-24 SNP panels are most likely to be of use in
clinical practice if they can be combined with such models; therefore,
it is important to measure how much additional information they add.

Previous work in this area has been done using case-control
studies ofmainly postmenopausal women.Wacholder et al25 showed
that fitting a SNP10 risk score in addition to Gail model factors
yielded amodest improvement.Mealiffe et al26 found a similar result
in in the Women’s Health Initiative trial using a predefined SNP7
panel, and Lee et al27 reported that a SNP51 panel added to Gail
model risk factors in Asian women. Vachon et al28 showed that
a predefined SNP76 panel added information to the Breast Cancer
Surveillance Consortium model in three case-control studies.
Mavaddat et al29 fitted a SNP77 panel in a large case-control analysis
of women from the general population. Dite et al30 reported that
a predefined SNP77 panel was informative for women at increased
risk for breast cancer as a result of classic risk factors from the
Australian Breast Cancer Family Registry.

Our focus is the extent to which an SNP panel can refine risk in
women already at an increased risk for breast cancer as a result of
classic factors and who may receive preventive therapy and to assess
whether the preventive effect of tamoxifen varied according to SNP-
derived estimates of risk. A previous study of the first of these issues
has been conducted by Vachon et al.31 They used a nested case-
control study within the National Surgical Adjuvant Breast and
Bowel Project P-1 and P-2 prevention trials, on the basis of women
receiving tamoxifen or raloxifene (no placebo), and found that a 75-
SNP panel had good univariable power for predicting subsequent
risk and added accuracy to the Gail model. However, they did not
compare directly with women who did not receive treatment and
therefore were unable to directly test for a difference betweenwomen
receiving treatment or not, nor could they estimate the relative
information from the SNP panel compared with classic factors.

A consortium has designed a custom Illumina (San Diego, CA)
array (OncoArray), with more than half a million SNPs, including
most known breast-cancer risk SNPs. In this article, we present the
results from an SNP score on the basis of this assay, using a nested
case-control study of women recruited into the International Breast
Intervention Study (IBIS-I)32 and Royal Marsden33 randomized
tamoxifen prevention trials. The SNPs used were those for which the
breast cancer risk has been previously validated and are directly
available or have close surrogates on the OncoArray. The main
objectives were to evaluate the performance of the SNP panel
using a population at increased risk as a result of classic risk factors
(including a family history or prior proliferative benign tissue
diagnosis); compare and combine this with risk estimates from the
TC model,22 which uses classic phenotypic factors; and to conduct
subgroup analyses to assess the performance by treatment allo-
cation (tamoxifen or placebo) and estrogen-receptor (ER) status of
the tumors that subsequently occurred.

MATERIALS AND METHODS

Patients
Women were recruited into the IBIS-I and Royal Marsden (Marsden)

trials, as previously described32,33 (Data Supplement). Both trials were
double blindwithwomen randomly assigned to receive tamoxifen (20mg/day)
or placebo for 5 years (IBIS-I) or 5 to 8 years (Marsden). Subsequent

cancers were ascertained by clinic visits during the treatment period and
thereafter by questionnaire, cancer registry follow-up, and/or clinic visits.
All women provided informed consent, including for use of their samples
in future research. The trials are registered at www.controlled-trials.com as
ISRCTN91879928 (IBIS-I) and ISRCTN07027313 (Marsden).

Specimen Characteristics
Blood samples were taken at baseline from all women in IBIS-I and

were stored at 270°C. The baseline blood samples for Marsden were
destroyed by a fire, and subsequent blood samples were collected where
possible and stored at 270°C. However, they were not available for 38
cases, where tissue samples from formalin-fixed paraffin-embedded blocks
were used. They were included only in a sensitivity analysis.

Assay Methods
Weused 10mL of extracted DNA from IBIS-I (concentration 100 ng/mL)

and Marsden (50 ng/mL) samples on thirteen 96-well plates, including
a separate plate for the formalin-fixed paraffin-embedded block samples.
Two samples with known genotypes were used as internal controls for each
plate. Assays were carried out blindly at Genome Quebec (Montreal,
Canada), which was clinical service provider–certified by Illumina; the
Illumina OncoArray was used, and the Illumina HTS (high-throughput
sequencing) protocol was rigorously followed.

Study Design
The primary end point was diagnosis of invasive breast cancer or

ductal carcinoma in situ. The study was designed to use all cases from the
trials with material available for genotyping and hadmore than 99% power
to detect the expected polygenic score at a 5% level.34 The Marsden trial
was a pilot for the IBIS-I trial, and the cohorts had similar characteristics.
They were combined to increase precision and to provide greater power for
subgroup analyses, as in previous analyses.35 Case-control matching was by
study, age at baseline (6 2 years), treatment arm, and follow-up time, with
two controls per case in IBIS-I and one in Marsden. IBIS-I recruited from
1992 to 2001, and Marsden recruited from 1986 to 1996. The end of
follow-up for the current analysis was 2014 and 2010, respectively; median
follow-up was 16.5 years for IBIS-I and 18.4 years for Marsden.

A polygenic score was used to provide an overall risk estimate.26

Three SNPs were excluded because they had no surrogate SNP on the
OncoArray (r2 , .8 from the 1000 Genomes Project Central European
panel36) and three SNPs failed quality control. We calculated the nor-
malized odds ratio for each of the three SNP genotypes (no risk alleles,
1 risk allele, and 2 risk alleles) from published per-allele odds ratios,
assuming independence and normalizing by an assumed risk allele fre-
quency so that the average risk was unity.16-18 An overall SNP risk score for
each woman (SNP88) was formed by multiplying the odds ratios for each
of her 88 genotypes together (Data Supplement). The odds ratios for the
TC risk22 (v7.02) at entry to each study were obtained by dividing the 10-
year predicted odds for a person by that from the average population of
a woman of the same age (Data Supplement).

Analysis Methods
SNPs that failed in more than 2% of the samples were excluded, as well

as samples that failed for more than 10 SNPs. Hardy-Weinberg equilibrium
for each SNP in cases and controls was tested by assessing the observed
number of homozygotes against expected using a binomial distribution.
Sporadic assay failures in SNP88 were assigned the population risk of 1.0.
Conditional logistic regressionwas used for the logarithmof the SNP88 score
and TC risk, alone and in combination, assuming independence. A bivariable
model was then used to assess the added value of the SNP88 score to the TC
riskmodel. Interaction tests were used to examine subgroups. SNP88 and TC
calibration was assessed primarily by regressing observed risks on expected
risks. Calibration of SNP88 was further explored by deciles of the SNP88 in
controls and for TC by the ratio of observed to expected cancers diagnosed in
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the entire placebo arm of the IBIS-I trial, overall and by decile (TC in the
complete Marsden cohort was unavailable). Concordance indices for
matched sets were used as a secondary measure of discrimination.34 The
distribution of absolute 10-year risk was estimated by weighting cases and
controls to reflect a 6% 10-year risk for the whole trial.32,33 An 8% 10-year
risk cut point was chosen because this is the threshold recommended in the
United Kingdom for offering preventive therapy.20 The reclassification of
cases and controls about this cut point from TC was assessed using an SNP
score that was recalibrated to the data. A sensitivity analysis was undertaken
to impute risk from failed assays in the 88 SNPs by applying the Beagle
algorithm (Data Supplement).37 A sensitivity analysis considered when tissue
samples that did not fail more than 10 SNPs were included.

RESULTS

A CONSORT diagram of the source of patients is shown in
Figure 1. A total of 1,276 women (483 cases, 793 controls) from

both trials were initially selected for the case-control study.
However, insufficient DNAwas available in 169 samples, and the
initial design was adjusted to ensure that all cases had matched
controls. Twenty-five samples (2.3%) with more than 10 failures
were excluded (Data Supplement), in addition to all tissue
sample results, because tissue samples were more likely to have
more than 10 SNP failures. This led to a primary analysis sample
of 995 women (359 cases, 636 controls).

The sample characteristics of participants are listed in
Table 1. Briefly, 41% were randomly assigned to tamoxifen
and 59% to placebo; the imbalance reflects the lower pro-
portion of cancers in women treated with tamoxifen. The
majority of cancers were ER-positive (74%). At trial entry the
median age was 50 years, 46% of participants were post-
menopausal, and the median body mass index was 25.5 kg/m2.
The characteristics in the two trials were broadly similar (Data
Supplement).

Sample insufficient
Quality control

Failed >10 SNPs
Matched to failure
Marsden tissue sample

Excluded

(n = 169)
(n = 112)

(n = 25; 13 cases)
(n = 21; 2 cases)

(n = 66; 33 cases)

(n = 281)

Case-control design

Primary analysis

Cases
Controls

(n = 995)

(n = 359)
(n = 636)

Tamoxifen

Cases
Controls

(n = 404)

(n = 145)
(n = 259)

Placebo

Cases
Controls

(n = 591)

(n = 214)
(n = 377)

IBIS-I

Cases
Controls

 (n = 309)

(n = 98)
(n = 211)

Marsden

Cases
Controls

(n = 95)

(n = 47)
(n = 48)

IBIS-I

Cases
Controls

(n = 479)

(n = 158)
(n = 321)

Marsden

Cases
Controls

(n = 112)

(n = 56)
(n = 56)

Tamoxifen prevention trials

IBIS-I
Marsden

(N = 9,648)

(n = 7,154; 627 cases)
(n = 2,494; 282 cases)

IBIS-I
Marsden

(n = 1,276)

(n = 930; 310 cases)
(n = 346; 173 cases)

Not in study
Cases (material unavailable)

IBIS-I
Marsden

Controls (not selected)
IBIS-I
Marsden

(n = 426)
(n = 317)
(n = 109)

(n = 7,946)
(n = 5,907)
(n = 2,039)

(n = 8,372)

Fig 1. CONSORT diagram. IBIS-I, International
Breast Intervention Study; Marsden, Royal
Marsden study; SNPs, single nucleotide
polymorphisms.
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Quality control of individual SNPs was assessed before cal-
culating an SNP score. One SNP failed all samples (rs6678914), but
the percentage of failed samples was less than 2% for all but two of
the others, rs4808801 and rs2236007 (Data Supplement), which
were excluded, leaving 88 SNPs for our primary analysis. The
distribution of homozygotes satisfied the Hardy-Weinberg equi-
librium in controls (P. .067 for each SNP; Data Supplement), and
overall, the observed and expected number of homozygotes in
controls were 36,177 and 36,176, respectively (P = 1.0). For cases, it
was 20,349 and 20,443, respectively (P = .28).

As expected, the SNPs were mostly uncorrelated. However,
three pairs had r2 . .1: rs554219 and rs7591516 (0.36); rs2363956
and rs8170 (0.25); and rs12662670 and rs2046210 (0.15). These are
in line with expectations from the 1000 Genomes Project Central
European panel. We made no adjustment for these small corre-
lations in the SNP score.

SNP88 was predictive in the overall sample (interquartile
range odds ratio [IQ-OR], 1.37; 95% CI, 1.14 to 1.66; matched
concordance index, 0.55; P, .001), mainly for ER-positive disease
(IQ-OR, 1.44; 95% CI, 1.16 to 1.79) versus ER-negative disease
(IQ-OR, 0.99; 95% CI, 0.61 to 1.61; P = .10). No significant in-
teraction was observed by treatment arm, but there were slightly
stronger effects in untreated women (IQ-OR, 1.46; 95% CI, 1.13 to
1.87) compared with those receiving tamoxifen (IQ-OR, 1.25; 95%
CI, 0.96 to 1.64; P = .5). The SNP score was nonsignificantly more

predictive in IBIS-I than Marsden (P = .21; Table 2; Data Sup-
plement), and so was TC (P = .6).

There was almost no correlation between the TC model and
the SNP score (Spearman coefficient, 0.012; P = .7; Fig 2). SNP88
added significant independent information to TC (P , .001), and
when combined multiplicatively, a substantial increase was seen in
the predictive power (Table 2). The matched concordance index
increased from 0.55 to 0.60, and the fit (x2

1 = 28.6) was close to that
for a full bivariable model (x2

2 = 30.0). These results suggest that
TC and SNP88 are largely independent and may be combined
multiplicatively.

Calibration of the SNP score was assessed by comparing the
model calculated odds ratios with those predicted by the SNP88
score in population deciles (Fig 2C). The observed SNP score risk
was, in general, closer to unity than expected, and the log-odds
ratio for SNP88 was estimated to be 46% (95% CI, 19% to 74%) of
expected (Data Supplement). Calibration of the SNP score was
slightly better for ER-positive cancers, where risk was 56% (95%
CI, 23% to 88%) of expected. After allowance for TC in a bivariable
model, the observed SNP88 risk was 49% (95%CI, 21% to 77%) of
expected.

The TC model risk distribution was not significantly different
from observed in this case-control study (slope, 71%; 95%CI, 37%
to 106%; Data Supplement). In addition, TC was well calibrated for
absolute risk in the IBIS-I placebo arm, where 363 cancers were

Table 1. Sample Characteristics

Characteristic Case Control P*

Total, No. 359 636
Treatment, No.
Placebo 214 377
Tamoxifen 145 259

ER status, No.
Positive 265 466
Negative 64 117
Unknown 30 53

Median age, years (IQR) 50 (45-54) 49 (46-54) .9
Age at menarche, years, No. (%)
, 12 81 (23) 152 (24) .9
12 67 (19) 105 (17)
. 1 206 (58) 374 (59)
Unknown 5 5

Parity
Nulliparous, No. (%) 61 (17) 85 (13) .19
Age at first birth, years (IQR) 24.0 (21.0-27.0) 24.0 (21.0-27.0) .7
Unknown 6 10

Menopausal status, No. (%)
Premenopausal 188 (52) 305 (48) .059
Perimenopausal 18 (5) 27 (4)
Postmenopausal 153 (43) 304 (48)

BMI, kg/m2

Median (IQR) 25.7 (22.6-28.7) 25.4 (23.0-29.4) .5
Unknown, No. 11 8

No. of first-degree relatives affected (%)
0 39 (11) 55 (9) .40
1 261 (73) 482 (76)
. 2 59 (16) 99 (16)

Median 10-year TC OR (IQR) 2.46 (1.91-3.21) 2.20 (1.78-2.81) , .001
Median SNP88 score (IQR) 1.13 (0.81-1.62) 1.00 (0.72-1.40) , .001

Abbreviations: BMI, body mass index; ER, estrogen receptor; IQR, interquartile range; OR, odds ratio; SNP, single nucleotide polymorphism; TC, Tyrer-Cuzick model,
compared with general population.
*P from conditional logistic regression.
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diagnosed compared with 361 expected, and calibration was
maintained by decile (Hosmer-Lemeshow x2

8 = 13.7; P = .09;
Data Supplement).

When reweighted to the original population, the percentage of
women with 10-year predicted risk above 8% if untreated was 18%
for TC and increased to 21% if recalibrated SNP88 was added.
Table 3 lists the number of cases and controls who were reclassified
when recalibrated SNP88 was added to TC. It shows that although
the number in the $ 8% group was not substantially increased,
those who were upgraded were at a significantly higher risk than
were those who were downgraded (OR, 2.67; 95% CI, 1.12 to 6.60;
P = .015).

No significant interactions between SNP88 and any subgroups
were observed (all P . 0.1; Data Supplement). In sensitivity

analyses, there was little difference when missing data were
imputed (Data Supplement) or when the analysis included all
tissue samples that met the quality control thresholds (Data
Supplement).

DISCUSSION

A polygenic SNP score on the basis of common low penetrance
genetic polymorphisms provides additional risk information for
women who are already at an increased risk for the disease as
a result of classic factors. SNP88 was independent of the TC risk
model, and no loss of relative predictive power was seen when it
was used in combination with TC. However, the SNP panel seems

Table 2. Discrimination of the SNP Score Alone and in Combination with the TC Model, and in Subgroups Based on Trial, ER Status, and Treatment Arm With Tests
for Heterogeneity

Result IQ-OR 95% CI LR-x2 P mC mC 95% CI

Effects by SNP88 1.37 1.14 to 1.66 11.3 , .001 0.55 0.51 to 0.60
Effects by TC alone 1.45 1.21 to 1.73 17.6 , .001 0.55 0.51 to 0.60
Effects by combined TC 3 SNP88 (df 5 1)* 1.64 1.36 to 1.97 28.6* , .001 0.60 0.55 to 0.64

Dx2
1 = 12.4† , .001

SNP88 effects by subgroup
Trial

IBIS-I 1.45 1.17 to 1.78 12.6 , .001 0.57 0.52 to 0.62
Marsden 1.11 0.73 to 1.69 0.2 .6 0.49 0.39 to 0.58
Heterogeneity .21

ER status
ER-positive 1.44 1.16 to 1.79 11.6 , .001 0.56 0.50 to 0.61
ER-negative 0.99 0.61 to 1.61 0.0 1.0 0.52 0.42 to 0.63
Heterogeneity .10

Treatment
Placebo 1.46 1.13 to 1.87 8.9 .003 0.57 0.52 to 0.63
Tamoxifen 1.25 0.96 to 1.64 2.8 .094 0.52 0.45 to 0.60
Heterogeneity .5

TC effects by subgroup
Trial

IBIS-I 1.44 1.19 to 1.73 15.3 , .001 0.55 0.50 to 0.60
Marsden 1.28 0.94 to 1.73 2.6 .11 0.56 0.46 to 0.66
Heterogeneity .6

ER status
ER-positive 1.33 1.10 to 1.60 9.2 .002 0.55 0.49 to 0.60
ER-negative 1.94 1.22 to 3.07 8.8 .003 0.59 0.48 to 0.68
Heterogeneity .23

Treatment
Placebo 1.54 1.21 to 1.96 13.3 , .001 0.55 0.49 to 0.61
Tamoxifen 1.31 1.02 to 1.68 4.6 .032 0.56 0.50 to 0.63
Heterogeneity .6

Combined TC 3 SNP88 effects by subgroup
Trial

IBIS-I 1.68 1.37 to 2.05 27.5 , .001 0.61 0.56 to 0.66
Marsden 1.33 0.92 to 1.92 2.3 .13 0.54 0.45 to 0.64
Heterogeneity .28

ER status
ER-positive 1.62 1.31 to 1.99 21.9 , .001 0.60 0.54 to 0.65
ER-negative 1.63 0.96 to 2.76 3.5 .063 0.58 0.46 to 0.69
Heterogeneity .6

Treatment
Placebo 1.79 1.39 to 2.31 22.3 , .001 0.62 0.56 to 0.68
Tamoxifen 1.43 1.10 to 1.88 7.2 .007 0.56 0.49 to 0.63
Heterogeneity .36

Abbreviations: ER, estrogen receptor; IBIS-I, International Breast Intervention Study; IQ-OR, odds ratio difference between 25th and 75th percentile in controls; LR-x2,
log likelihood-ratio x2 statistic; Marsden, Royal Marsden study; mC, matched concordance indices; SNP, single nucleotide polymorphism; TC, Tyrer-Cuzick.
*TC 3 SNP88, combined multiplicatively (df 5 1).
†Dx2 is for improvement when SNP88 is added to TC in a bivariable model.
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to be in need of recalibration, at least when applied to high-risk
women in similar populations. SNP88 had less than half the ex-
pected risk on the basis of multiplying published risks for indi-
vidual SNPs. In addition, the spread of risks associated with SNP88
were of a smaller magnitude than those of TC (Table 1), especially
after recalibration. Thus, although the SNP score had minimal
ability to increase the number of classically high-risk women to be
at more than 8% 10-year risk (Table 3), it did more accurately
populate this group. The SNP score also did not predict which
women would differentially benefit from tamoxifen.

One possible reason for the poor calibration of the SNP score
is overfitting. Using the published odds ratios and CIs, we applied
a James-Stein shrinkage estimator and estimated that this might
account for overfitting of approximately 5% in calibration (data
not shown). Thus, it is unlikely to explain most of the difference
between observed and expected risks.

In general populations, polygenic scores have demonstrated
good calibration. For example, Vachon et al28 used a SNP76 panel
in a general population and found an OR per standard deviation
(SD) of approximately 1.5, compared with 1.6 expected (calculated
by computer simulation following Brentnall et al19): calibration
was approximately 86% [loge(1.5)/loge(1.6)]. Dite et al

30 reported
a SNP77 panel in women with a family history. The OR per SD
was approximately 1.4, which was only approximately 70% of
expected. In the context of prevention trials, Vachon et al31 re-
ported an odds ratio of approximately 1.8 for the difference be-
tween the top and bottom quintile of their SNP75 panel, compared
with approximately 3.8 if the score had been well calibrated. Thus,
overall, our results are not inconsistent with previous findings for
women with an elevated risk of cancer, and it seems that recali-
bration of polygenic risk scores is needed for these women. A
strong family history might change the relationship between SNPs
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Fig 2. (A) Distribution of 88 single nucleo-
tide polymorphisms risk score (SNP88) in
cases and controls. (B) SNP88 and Tyrer-
Cuzick odds ratios (ORs) for cases and con-
trols; Spearman coefficient 0.012, P = .7,
where each interquartile range in controls is
represented by the dashed lines. (C) logistic
regression fit (gold line) of observed versus
predicted ORs from the SNP score in both
arms, blue points are estimates from each
decile of SNP88 in controls, and the rug plot at
the top and bottom gives the observed SNP88
in cases and controls, respectively.

Table 3. Reclassification of the Number of Cases of the Total Number of Cases and Controls, by 8% 10-Year Risk Groups From TC Alone and When Combined
With cSNP88

TC Risk , 8%, No. (%) TC 3 cSNP88 Risk $ 8%, No. (%) Total, No (%)

, 8% 225 of 702 (32) 40 of 85 (47) 265 of 787 (34)
$ 8 % 11 of 44 (25) 83 of 164 (51) 94 of 208 (45)
Total 236 of 746 (32) 123 of 249 (49) 359 of 995 (36)

NOTE. Bold cells indicate those who changed risk group. Percentages are based on the case-control population and are not weighted back to the trial population.
Abbreviations: cSNP88, recalibrated 88 single nucleotide polymorphisms risk score; TC, Tyrer-Cuzick model.
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and risk because risks for each SNP are different for BRCA1 and
BRCA2mutation carriers than for the general population.38,39 The
percentage of BRCA1 and BRCA2 carriers was estimated to be 2.8%
in Marsden and 1.9% in IBIS-I from the TC model; therefore, this
is only a partial explanation.

A limitation of this study is that we could not assess the
performance of SNPs in conjunction with mammographic breast
density, which is another important component of risk.40 Also, the
findings are only applicable to similar high-risk groups of women
of the same age. It is likely that these findings apply to other risk
models, such as the Gail model, because SNP scores are largely
independent of the factors used.25

The study has several strengths. First, the cancers were di-
agnosed prospectively from an extended follow-up period. Second,
we were able to compare the performance within the tamoxifen
and placebo arms directly, without indirect comparisons with
other studies. Third, we were able to assess howmuch an SNP score
adds compared with a risk model on the basis of classic factors
(except for age). This was not possible in the analysis from the P1
and P2 trials,31 because they matched on risk from classic factors.
Another advantage of the current study is that the SNPs were
genotyped directly (36 of 75 were imputed in Vachon et al31), so
that a poor imputation procedure is not a possible reason for the
calibration issue.

In conclusion, our findings extend earlier work to high-risk
populations and indicate that SNP scores increase the accuracy of
risk assessment for these women, but substantial recalibration
seems to be required for accurate risk assessment.
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