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Abstract. Regression and machine learning methods are applied to the
problem of Value-at-Risk determination in the context of �nancial Op-
erational Risk, in order to determine an optimal technique that agrees
su�ciently well with established Monte Carlo analyses. The annualised
sum of operational losses is identi�ed as the most signi�cant statisti-
cal in�uence on Value-at-Risk, and a technique using it as a proxy for
measured Value-at-Risk in a Test environment is formalised. The opti-
mal stand-alone model is Generalized Additive, with approximately 61%
success. The success rate can be enhanced to approximately 65% using
a stacked model.
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1 Introduction and Motivation

Intuitively, descriptive statistics of the �nancial data should provide a broad
indication of the �nancial risk associated with the data. Surprisingly, little at-
tention has been paid to using data properties directly to measure �nancial risk.
In this paper we attempt to relate the descriptive statistics of Operational 3

losses ("OpRisk") to Value-at-Risk (VaR): a �nancial risk metric originating
from the J.P. Morgan/Reuters "RiskMetrics" measure from the 1990s. [11].

The most generally applicable way to determine VaR in the context of OpRisk
is the Monte-Carlo-based Loss Distribution Approach (LDA [7]). Using the LDA
has been a persistent problem because it is nearly always possible to �nd, for any
single data set, multiple disparate 'solutions'. Then, which to choose is unclear. In
this paper we explore a range of regression and machine learning (ML) techniques
in order to �nd an optimal method to estimate VaR using descriptive statistics
of the data. Any selected technique should be quick to use, interpretable, and
agree tolerably well with the LDA-calculated value.

3 The risk of �nancial loss due to �awed or failed processes, policies, systems or events
that disrupt business operations.
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2 Literature Review

We concentrate on the few attempts to relate OpRisk VaR to properties of the
underlying data. Curti and Migueis [5] and [6] test whether metrics derived from
past VaR calculations can be used to predict future VaR calculations, using
quantile regression. They use explanatory features such as loss frequency and
mean total loss, with balance sheet co-variates such as Market Capitalisation.
Some characteristics of our analysis are proposed by Chavez-Demoulin et al
[3]. They implement a bespoke GAM, using economic co-variates as distribution
hyper-parameters. The statistical properties used areMean, Standard Deviation,
Median, Third Quartile, Maximum, Skewness, Number of Losses Above 1¿m.
Consequently, Tail properties 4 were missing. No methodological comparisons are
given. Very recently, Mitic [10] established an upper bound for VaR as 7 1

3×S/Y ,
where S is the loss sum and Y is the number of years spanned by those losses.

ML methods have been applied in the context of OpRisk, but not directly
to predict VaR. Chen and Wen [4] used simulated data to predict OpRisk losses
with operational control explanatory variables. Pakhchanyan et al [12] used SVM
and naive Bayes algorithms to assign data to speci�c risk classes. Aziz and
Dowling [1], and Carrivick and Westphal [2], note the use of ML methods in
OpRisk control (e.g. fraud prevention). Pena et al [13] is a rare example of a ML
method for calculating OpRisk capital. Diverse data sources are integrated using
a convolutional neural network empowered by fuzzy cognitive maps. In common
with the LDA, the inputs to their model are OpRisk frequency and severities.

3 Optimal methodology determination for VaR

Our approach is to apply Linear Regression (LR) and ML methods to a common
data set that would be appropriate for a mid-to-large western European bank,
optimised using a Proxy (described in Section 3.4).

3.1 Data and pre-processing

Approximately 1100 random samples of sizes between 200 and 1000 were gen-
erated using appropriate 'fat-tailed' distributions (LogNormal, Weibull, Gener-
alised Pareto etc.). The time span was a nominal 5 years. A single 66.7% Training
set was determined by sampling and optimising Mean Absolute Error (MAE)
using (LR). LR is thereby set as a stringent base from which to judge other
results.

The Training and Test set features were standardised, separately, to mean 0
and standard deviation 1. We have found that results were impaired by either
normalising data to [0,1], or by removing signi�cantly correlated features. For
each data set, the following principal statistics were calculated.

4 The largest p% of losses, with, typically, p ∈ (1, 10)
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• Mean, SD, Skewness, Kurtosis, Maximum, Sum (applied to all data)

• MeanTail SDTail, SkewnessTail, KurtosisTail (applied to the data Tail)

• Quantiles Q10-Q90 in steps of 10, Quantiles Q91-Q99 in steps of 1

The Capital (VaR at 99.9%) for each data set was calculated by �tting all
distributions, and selecting the optimal distribution with respect to the TNA
'best �t' statistic [8], which is robust with respect to data set size.

3.2 Candidate VaR assessment models

A range of regression, ML, and other models were applied to the common data
set (Section 3.1). The names below are used in the results tables in Section 4.

• LR, acting as a base reference method

• Other regressions: BAYES, RIDGE, LASSO, LOESS

• ML: Neural Network (NN ), Random Forest (RF ), Support Vector Machine
(SVM ), Bagging (BAG)

• Boost methods: XG, Adaptive Gradient (ADA), Gradient (GRAD)

• Others: GLM, GAM, k-Nearest Neighbours (KNN )

• STACK : the optimised (Section 3.4) mean of a subset of preceding models

3.3 Success Metrics

Established metrics (R2, MAE ) do not provide a su�ciently precise compari-
son of predicted and actual results. We use them mainly in parameter optimi-
sations. Instead, a multi-part metric is used to measure prediction "success".
The percentage of instances for which the predicted value di�ers from the LDA-
calculated value by 10%, 25%, 50%, 75% and 90% provides a Progressive Success
(abbreviated to PS ) metric. In particular, the 10%, 25% �gures correspond ap-
proximately to tolerable error bounds in the context of OpRisk VaR calculations.

3.4 Optimisation using a Proxy

We have found that routine application of the methods of Section 3.2 does not
provide su�cient success when the multi-part metric in Section 3.3 is applied.
The primary problem is for small (< ¿20m) VaR. The prediction error can the
very large in comparison with the 'actual' value, and the 10% component of the
multi-part success metric is particularly sensitive in that range. The Proxy, in
which a known feature replaces an unknown feature, improves results consider-
ably. It works by scaling predicted results in the Test environment using scale
factors calculated in the Training environment, and using a known feature of the
Test data in place of "actual" (but unknown) Test VaR values.
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Proxy Correction

Recent work [9] has shown that feature Annualised Sum (i.e. the sum of all data
divided by the number of years spanned by the data) is highly correlated with
OpRisk VaR, so we de�ne and use a Proxy for "actual" Test VaR values using
Annualised Sum. We call it AnnSum for short, and stress that AnnSum is always
known for Test data, whereas "actual" Test VaR is not. The Proxy is used to
modify Test predictions in a way that is bene�cial in Training. The graphic in
Figure 1 shows the principal stages in Proxy optimisation. Processes are applied
in the order indicated by the STEP numbers. Indexing is done for over- and
under-predictions (relative to the Proxy). In Figure 1, the resulting indices are
denoted by IU and IL, and scale factors derived using them are denoted by KU

and KL.

Fig. 1. The principal stages in Proxy optimisation. STEP labels refer to the detailed
steps in Section 3.4

.

Proxy Correction: Details

The formal explanation below follows the same steps as in Figure 1, and uses
notation that makes a distinction between the Training and Test environments:
superscript Tr for the Training environment, superscript Te for the Test envi-
ronment, P for Proxy, Y for actual VaR, Z for predicted VaR, and subscript
opt for optimised variates.
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STEP 1. Determine a linear �t of the Proxy feature to the LDA-calculated
VaR in the Training and Test environments separately. The intercepts +1 rep-
resent de minimis VaR for zero loss.

P(Tr) = a(Tr)Y(Tr) + 1; P(Te) = a(Te)Y(Te) + 1; (1)

STEP 2. In the main optimisation stage, the instances that have a 10%
di�erence for the Training Proxy relative to the predicted VaR are identi�ed,

and indexed by indices I
(Tr)
l and I

(Tr)
u .

I
(Tr)
l =

−Z(Tr) +P(Tr)

P(Tr)
; I(Tr)

u =
Z(Tr) −P(Tr)

P(Tr)
(2)

STEP 3. Scaling constants Kl and Ku are found by optimising MAE for
the indexed predicted ("Z") and Proxy ("P").

Z
(Tr)
opt = min

(0,1)
E
[∣∣KlZ

(Tr) −P(Tr)
∣∣I(I(Tr)

l ) +
∣∣KuZ

(Tr) −P(Tr)
∣∣I(I(Tr)

u )
]

(3)

STEP 4. Indices marking 10% relative deviations of Test predictions from
the Test Proxy values are de�ned in a similar way to STEP 2.

I
(Te)
l =

−Z(Te) +P(Te)

P(Te)
; I(Te)

u =
Z(Te) −P(Te)

P(Te)
(4)

STEP 5. The constants Kl and Ku feed through to the Test environment.
The �nal Test predictor is the model-derived predictor (index m in Equation 4),
with the Proxy optimisations applied on the sets indexed u or l. No transfor-
mation is applied to Test predictions that correspond to the complement of the
indices from STEP 4 (these are the "acceptable" predictions).

Under predictions: Z
(Te)
opt I(I

(Te)
l ) = 1 +KlZ

(Te)I(I(Te)
l )

Over predictions: Z
(Te)
opt I(I

(Te)
u ) = 1 +KuZ

(Te)I(I(Te)
u )

Acceptable predictions index: I
(Te)
m = I(∼ I

(Te)
u & ∼ I

(Te)
l )

Acceptable predictions unscaled: Z
(Te)
opt I(I

(Te)
m ) = Z(Te)I(I(Te)

m ) (5)

Section 4.2 shows empirical results for the Proxy/Actual relationship.

4 Results

Overall results are presented �rst, and are followed by results speci�c to ap-
plication of the Proxy correction. We concentrate on results using all available
explanatory features in standardised form, since that con�guration usually ad-
mits superior performance over others.
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4.1 Model Prediction Results

Table 1 shows ordinates of the Progressive Success metric per model, in the Test
environment, in decreasing order of the 10% and 25% components of the met-
ric. Their ranges (22-35% and 56-63% respectively) indicate reasonable success,
given the stringency of the metric and Training set selection method. The LR
model using normalised uncorrelated features out-performed the LR model using
standardised correlated features. Both LR results are shown.

Table 1. Test environment Progressive Success metric ordinates per model, with Proxy :
retaining correlated standardised features in all cases except for LR Normalised Un-
correlated.

Metric 0.1 0.25 0.5 0.75 0.9 MAE R2

STACK 0.35 0.61 0.84 0.96 0.97 36.57 0.84
LR Norm, Uncorr 0.31 0.63 0.90 0.97 0.97 29.85 0.90
GAM 0.31 0.63 0.88 0.97 0.97 33.95 0.84

BAYES 0.29 0.63 0.87 0.96 0.97 34.63 0.84
XG 0.29 0.59 0.85 0.95 0.96 36.51 0.81
LR Std, Corr 0.28 0.62 0.87 0.95 0.97 35.93 0.83
NN 0.28 0.61 0.86 0.96 0.96 35.26 0.83
RIDGE 0.28 0.62 0.88 0.96 0.97 35.14 0.84
LOESS 0.28 0.61 0.89 0.98 0.99 34.16 0.86
RF 0.26 0.62 0.86 0.95 0.97 34.85 0.85
KNN 0.26 0.60 0.84 0.96 0.96 41.67 0.79
SVM 0.26 0.61 0.88 0.98 0.98 35.06 0.85
GRAD 0.26 0.54 0.88 0.96 0.96 33.28 0.87
LASSO 0.25 0.62 0.86 0.96 0.97 38.30 0.80
GLM 0.24 0.59 0.86 0.99 0.99 40.73 0.78
ADA 0.23 0.60 0.88 0.97 0.97 34.72 0.85
BAG 0.22 0.56 0.88 0.97 0.99 34.65 0.85

A selection of scatter plots is shown in Figure 2. Each node is an LDA-
calculated/ prediction pair. The four plots illustrate optimal cases. There are
two contrasting 'simplest' LR models, one with standardised features and the
other without. Normalising features usually results in more accurate predictions
for LDA-calculated VaR > ¿500m, at the expense of impaired overall success,
and this is apparent in the upper right scatter. The GAM produced the highest
individual 10% and 25% components of the Progressive Success metric using all
features, standardised. The Stack Model produced the highest overall 10% and
25% components, again using all features, standardised.
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Fig. 2. Result scatters: Test environment. Upper Left: LR All features/Standardised.
Upper Right: LR Uncorrelated features/Normalised. Lower Left: GAM all fea-
tures/Standardised. Lower Right: STACK all features/Standardised. Filled circles are
nodes for which VaR predictions agree with actual VaR with 95% 2-tail con�dence.
Filled squares are outliers.
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4.2 The e�ect of the Proxy

Feature importance may be assessed by the Feature Di�erence method, noting
the e�ect on MAE of successively excluding each feature using LR. When applied
to the Training set, Sum is the most signi�cant feature (54.1% of the variance).
Table 2 shows the e�ect in percentage terms of the Proxy in boosting components
of the PS metric. The large percentage improvements are notable in nearly all
cases. They come at the expense of reduced MAE and R2 scores in most cases.

Table 2. Percentage boosting of components of the PS metric by applying the Proxy,
expressed as the Annual Sum variate. Negatives indicate performance impairment.

Metric 0.1 0.25 0.5 0.75 0.9 MAE R2

GAM 38.57 56.8 33.66 24.79 18.75 -12.66 0.93
BAYES 100 79.82 49.73 30.13 25.83 -18.01 1.4
XG 36.92 39.69 15.72 10.86 9.49 2.67 -5.18
LR 81.25 81.13 41.67 27.71 25.21 -17.27 1.4
NN 44.25 30.16 10.67 8.71 5.68 -2.95 -3.24
RIDGE 55.23 72.44 41.3 27.07 21.48 -13.79 0.42
LOESS 34.38 33.1 27.52 18.99 14.5 -16.11 2.26
RF 47.5 43.25 32.59 23.52 17.69 -16.02 1.66
KNN 95.24 74.07 32.32 27 22.86 -19.23 -3.16
SVM 38.98 29.93 15.48 11.31 9.29 -7.69 0.02
GRAD 9.59 21.43 10 7.19 3.83 -5.99 -0.31
LASSO 182.14 128.24 68.55 44.02 36.65 -15.25 -1.71
GLM 0 0.55 0.75 0.65 0.65 -6.5 4.92
ADA 40.39 61.34 29.38 21.97 18.06 -8.19 -0.48
BAG 20.9 18.18 9.62 6.92 4.22 -6.46 -0.24

Figure 3 shows how much di�erence the Proxy can make. Nodes with low
value (< ¿100m) VaR are shown with and without the Proxy. In the former
case, nodes are concentrated on the diagonal ("predicted = actual") line, but
some under-prediction is evident. In the latter case, there are multiple disparate
predictions for individual nodes with low-valued actual VaR.

5 Discussion

The motivation for this study was to determine if OpRisk VaR can be estimated
directly from the statistical properties of the underlying data. The principal
model for doing that was to be multivariate linear regression. The results using
that method, measured using the PS metric, proved to be lower than expected.
That prompted alternative models to be used. It also raises several issues.

1. The values obtained using the LDA may not be optimal as far as VaR as-
sessment is concerned, even though their �tted distributions are optimal.
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Fig. 3. Linear Model actual/predicted scatter. Left: with Proxy. Right: without.

Considerations such as shape of the model QQ curve and consistency with
results from previous years are also important.

2. The variability of LDA-derived results suggests that a simple model (such
as LR) could be used for validation, or even as an LDA replacement. In
the former case, LDA-derived distributions could be rejected based on an
alternative assessment.

3. Possibly the descriptive statistics of the data are not adequate for VaR de-
termination. Suitable alternative are not apparent.

4. The Proxy correction can only be applied if a suitable proxy can be found.

6 Conclusion

Any of the methods discussed in this paper should be used to validate, or even
replace, an LDA-derived VaR, provided that we can be con�dent that whichever
is selected is a correct re�ection of the underlying data. Given the multiple
alternatives, which, if any, should be selected? There is compelling pressure to
select a simple method that is explainable to practitioners in terms of data
features. For this reason, LR is a clear choice.
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